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Abstract

The patient transfer, as a common seen and necessary healthcare procedure, plays

an important role in maintaining efficient treatment and improving the quality of

healthcare. Among various factors impacting and indicating the safety and effi-

ciency of the patient transfer, the length-of-stay (LOS), which is not often studied

in this field, is worth investigating. Phase-type (PH) distributions, as one of the

popular methods of modeling LOS, will be integrated in an aggregated Markov

chain to construct a model to describe the sequences of LOS in each hospital unit.

In this paper, we model the intra-hospital transfer flow routes by fitting aggregated

PH distribution and using Maximum Likelihood Estimation to estimate the param-

eters. Following the results of distribution fitting, the patients can be divided into

different groups according to their LOS in the same unit. By analyzing each group

to find out its common characteristics, intra-hospital transfer routes, admission and

discharge situations, the associations among significant factors, the LOS and the

treatment efficiency are evaluated.

Key words: Phase-type distribution, length-of-stay, intra-hospital transfer,

Markov chain

1. Introduction

The patient transfer is defined as transfer of patient within the same facility for

any diagnostic procedure or transfer to another facility with more advanced care. It

includes types of intra- and inter-hospital transfer, which aim to maintain the con-

tinuity of medical care and to improve the existing management of the patient [1].

However, it also brings risks to the patients during transfers. There exist various
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guidelines for safe patient transfer and all state same key elements for both intra-

and inter-hospital transfer [2, 3]. Considering the current practice of transfers, a

statistical modeling of the patient transfer is still necessary to optimize the man-

agement and to reduce the unexpected delay. In this paper, we focus on the transfer

of patients between wards and departments (called “units” in the following) within

a hospital.

1.1. Patient transfer
Although the intra-hospital transfer is performed daily, it can put patients at risk

and even have life-threatening impacts on patients. The intra-hospital transfers trig-

ger complications and worsen outcomes [4], increase staff burden [5], and higher

care costs. The unnecessary transfers, and the delay and wasting time in trans-

fers worsen the situation. In [6–8], it is verified that the inefficient intra-hospital

transfer had increased hospital length-of-stay (LOS) and patient mortality. These

suggest an urgent need to identify factors associated with wasting time in transfer

as well as to improve the efficiency of the intra-hospital transfer system.

Besides the key elements for intra-hospital transfers such as pre-transfer stabi-

lization and preparation [9], accompanying the patient [10], equipment, drugs, and

monitoring, optimizing the procedure and reducing waiting time to improve trans-

fer efficiency is essential, since it is revealed only 12% efficiency in the transfer

process [11]. The wasting time and delay in transfers can be caused by communi-

cation breakdowns, resources (bed, equipment, etc.) and staff assignment problem,

lag in updating documentation and information.

The LOS, as an important measure of healthcare efficiency, has been studied

to help improve healthcare services and resource allocation. In [12], the factors

associated with LOS are investigated through analysis in terms of different units,

transfer patterns, diagnosis, etc. The results show that the transfer status and trans-

fer time are two factors correlated with LOS. Therefore, the association between

LOS and transfer flow information is worth investigating in terms of hospital units.

Lots of previous works have studied on reducing LOS, delay, and overcrowding

problem in the emergency departments (ED). The ED is a specialized medical treat-

ment unit which deals with emergency medicine, the acute care of patients without

the need of prior appointment. It is suggested in [13–15] that ED crowding is not

an isolated phenomenon and appears to affect hospitals nationwide. Patients are

evaluated and treated in the ED, and further treatments depend on their conditions.

Longer LOS in ED may cause delay in the emergency treatment to other patients

and compromise the quality of healthcare.

In [15], alternative units like Emergency Medicine Ward, Chest pain observa-

tion units, and Clinical Decision Units (CDU) have been set up to meet the de-

mands of ED, and to reduce the LOS in ED. In [16], the relationship between the
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ED and the CDU, the CDU admissions criteria, and decreasing LOS in both units

are investigated. Expeditious transfer of patients to the CDU may decrease the

ED overcrowding, ED waiting time, and avoid the phenomenon of patients leaving

the ED without being diagnosed. The CDU may also provide cost savings to both

patients and hospitals.

Patients are usually transferred to a general ward (GW) when medical staff de-

cides that they are no longer in danger and can be treated under normal observation.

Different types of wards are investigated in [17, 18], and the patient satisfaction,

and decreases in LOS in different wards are also compared.

The intensive care unit (ICU) is a place where critically ill patients should be

admitted as soon as possible to receive specialized care. It is concluded in [19]

that prolonged ED to ICU time is associated with increased hospital mortality after

treatment in ICU. And longer LOS in ICU may contribute to higher mortality [20].

Studying the LOS in ICU as well as the ED-ICU transfer plays an important role

in making decision on whether or not sending patients to ICU and shortening the

waiting time in the transfer.

Among methods of studying LOS, the phase-type (PH) distributions gains pop-

ularity over time. The PH distributions, as a popular method applied in queueing

theory, reliability theory, and healthcare, describe the absorption time of an evanes-

cent finite-state Continuous Time Markov Chain (CTMC) [21]. Among the special

structured PH distributions, the Coxian PH distributions are often used in model-

ing and investigating the LOS data. A lot of previous research has been conducted

on the analysis of LOS of patients with various diseases [22–24], and in these pa-

pers, the patients are classified into LOS groups which correspond to the states in

the Coxian PH distributions. In each LOS group, patients may share similar char-

acteristics and require similar treatment and resource assignment. However, the

LOS distributions along with the unit transfer during the hospital stay has not been

widely studied yet.

1.2. Aggregated Markov process
The aggregated Markov process was motivated by the neurophysiological in-

vestigation [25, 26]. In these papers, bursts are the observable phenomenon and

the time from the start of the first opening to the end of last opening in the burst

is measured. The states in the system can be divided into three subsets, and the

probability density function for the lifetime of sojourn in each subset is defined

and evaluated. The states in these papers can be treated as the units in a hospital.

In [27, 28], the forward and backward recursions and the spectral decomposi-

tion are applied respectively to derive and simplify the likelihood function, which

is the joint probability density of dwell time sequence, and its derivatives. The

Maximum Likelihood Estimation (MLE) of parameters is obtained afterwards.
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In [29], both expectation-maximization (EM) algorithm and Bayesian method

are used to model the aggregate failure-time data, which is an issue to deal with

for reliability estimation. To apply the aggregated Markov processes in healthcare

area, Xie et al. [30] develop a CTMC model for the LOS of elderly patients moving

within and between residential home care and nursing home care, upon which the

aggregated Markov process theory and parameter estimation approach is applied.

In [31], both Aggregated Markov model and Coxian PH distributions are used in

modeling the elderly flow in the hospital services.

For such kind of analysis, a department or facility represents a unit with em-

bedded states or groups in the aggregated Markov process. In each unit, a Coxian

PH distribution can be used to model the LOS of patients during the stay in that

unit. Most of previous works on modeling LOS in units have only focused on sin-

gle unit, and the impacts of delay transfer. It lacks broad applications of aggregated

Markov process to investigating transfers among multiple units and consider dwell

in each unit simultaneously. A model built upon patient flow among units which

can simulate the general daily intra-hospital transfers is in need.

In this paper, we apply statistical modeling to intra-hospital patient transfer

information from ED to other units, such as GW and CDU. Our goal is to construct

an aggregated PH distribution to model the time spent in each unit, and also assess

the transition rates among different units. Patients with similar characteristics may

share similar LOS sequence in a series of units, which may provide a better view

of the patients arrangement at admission and avoid wasting time in transfer.

For our collected patient flow information (more details given in Section 4.1),

we filter the data to only contain the records of geriatric patients being admitted

into ED directly, and then being transferred to other units for further surgical pro-

cedure or to GW before discharge. The unit transfers include ED-GW, ED-CDU,

ED-ICU, ED-Discharge, ICU-GW and ICU-Discharge. One needs to notice that

the sojourn time within one unit follows a Coxian PH distribution, while the overall

LOS before discharge follows a general PH distribution.

The remainder of this paper is organized as follows. In Section 2, we intro-

duce the continuous time Markov process and how it is extended to the aggregated

Markov process. The normal PH distributions and the aggregated PH distributions

are then defined in this section. Section 3 explains the details of implementing the

MLE in fitting the aggregated PH distribution. In Section 4, the process of data

collections and pre-analysis are presented and followed with the model construct-

ing, parameter estimation, and further analysis. Finally, Section 5 concludes the

paper.
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2. Aggregated Markov Process

2.1. Continuous time Markov process
Let {X(t)}t≥0 be a continuous time Markov process with state space S = {1,2,

· · · ,m,0}, where m≥ 1 is a finite number, such that the states 1, · · · ,m are transient

states and state 0 is an absorbing state. The sojourn in each transient state i (i =
1, · · · ,m) follows an exponential distribution with parameter λi. Then the transition

rate from state i (i = 1, · · · ,m) to state j ( j = 0,1, · · · ,m) can be denoted by λi j =
λi pi j, where λi is interpreted as the average rate of moving out of state i, and pi j is

the probability of transferring from state i to state j with λi > 0, pi j ≥ 0, λi j ≥ 0.

Let the initial distribution of such CTMC as π = (π1, · · · ,πm) with ∑m
i=1 πi = 1.

The transition rate matrix or infinitesimal generator matrix Q, describing that the

rate a CTMC moves between states, can be written in block-matrix form as

Q =

(
T q
0 0

)

Here,

T =

⎡
⎢⎢⎢⎣
−λ1 λ1 p12 · · · λ1 p1m

λ2 p21 −λ2 · · · λ1 p2m
...

...
. . .

...

λm pm1 λm pm2 · · · −λm

⎤
⎥⎥⎥⎦

m×m

and q =

⎡
⎢⎢⎢⎣

λ1 p1,0

λ2 p2,0
...

λm pm,0

⎤
⎥⎥⎥⎦

m×1

.

The matrix T describes the moving of the CTMC among transient states, and the

vector q consists of transition rates from transient states to the absorbing state, and

0 is a 1×m vector of 0. Note that q = Te where e is a m× 1 vector of ones, and

this property will be further used in derivative correction in Section 3.3.

We use a random variable Y to denote the time to absorption, and it said to

have a continuous PH distribution. Then the probability that the CTMC is not in

the absorbing state at time y is P(Y > y) = p(y)e = πexp(Ty). Similarly, the cumu-

lative distribution function (CDF) of Y is P(Y ≤ y) = F(y) = 1−πexp(Ty)e, and

the probability density function (PDF) is f (y) = F
′
(y) =−TπeTye = qπexp(Ty).

One special type of the PH distribution is Coxian PH distribution, in which the

CTMC can only move sequentially or enter the absorbing state directly from any

of the m transient states. It has been previously shown that Coxian PH distributions

are ideal methods in fitting the LOS of patients (see [22–24]).

2.2. Aggregated Markov chain
In studying the LOS in hospital or the sojourn in one unit, the CTMC is always

used to interpret the whole healthcare treatment process. If we consider each state
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in the CTMC as an aggregate of several substates or groups, the aggregated Markov

Chain is then introduced to measure the transition within and among the states. For

example, the transfer from short-term stay group to long-term stay group inside a

hospital unit and the intra-transfer among units in a hospital form an aggregated

Markov Chain.

Figure 1: 2-Unit Hospital Patient Flow

The Fig. 1 illustrates a simple example for a patient flow in a hospital. A

group of patients being admitted into the hospital stay in the ward for 23.2 hours

averagely. A part of the group may keep staying in the ward, and another part

are probably transferred to the ICU for further treatment while the rest discharged

from the hospital. For the second group of patients with an average stay of 34.7

hours, there also exists a potential that some of them enter into the ICU and the

rest are discharged directly. In the ICU, two similar LOS groups are identified with

mean LOS as 11 hours and 18 hours separately. The patient flow process in Fig.

1 is a two-state aggregated Markov process. Each state in the aggregated Markov

process represents a unit in a hospital and we assume that there exist two LOS

groups in each unit. The initial distribution denotes how the patients enter into

the hospital, and more specifically is the admission probability into each unit after

being admitted. It is impossible for a patient belonging to the longer LOS group

to be transferred to the shorter LOS group, and patients will finally leave the group

they belong to. Thus, the time spent in each unit follows a Coxian PH distribution.

Transitions among LOS groups and intra-transfers among units are both transi-

tion processes, and they denote a change of status, activity, or stage characteristics.

Figuring out the distributions of such transition processes and capturing the shared

characteristics of patients with similar transfer experiences are meaningful to im-

prove the healthcare efficiency and to fill the gap due to the differences in altered

level of care during unit transfer.

In real applications, the number of groups in each unit can take any arbitrary

positive value. Assuming there are m1 groups in the first unit, m2 groups in the
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second unit, and so on. There is one absorbing unit as discharging from hospital at

the end of the hospital visit. Once entering into the first unit with initial distribution

π1, the system can move to the next group in the same unit with rate as λ i, j
11 , i, j =

1, · · · ,m1 , i �= j or to the first group in the second unit directly with transition rate

λ i,1
12 , i = 1, · · · ,m1. It is also possible to exit the system directly from the first unit

with absorbing rates λ i
10, i = 1, · · · ,m1. The subscript of transition rates denotes

the current unit and the next unit it is going to enter into, and the superscript tells

the same information of the LOS groups.

Figure 2: Hospital patient flow

Therefore, when considering K units in a hospital (Fig. 2), if assuming there

are mk groups in the unit k, i = 1, · · · ,K, the initial distribution becomes

π = (π1, · · · ,πK) = (π1
1 , · · · ,0,π1

2 , · · · ,0,π1
K , · · · ,0)1×(∑K

k=1 mk)
,

the absorbing vector becomes

q = (q10,q20, · · · ,qK0)
T = (λ 1

10, · · · ,λ m1

10 , · · · ,λ 1
K0, · · · ,λ mk

K0)
T
(∑K

k=1 mk)×1
,

and the transition matrix T becomes a K×K-blocks partitioned matrix

T =

⎛
⎜⎜⎜⎝

T11 T12 · · · T1K

T21 T22 · · · T2K

· · · · · · . . . · · ·
TK1 TK2 · · · TKK

⎞
⎟⎟⎟⎠

(∑K
k=1 mk)×(∑K

k=1 mk)

,

where q =−Te, and here e represents an (∑K
k=1 mk)×1 column vector with every

element being 1. As shown in Fig. 2, the outer level is a general PH distribution

consists of K states and one absorbing states, representing K units in hospital and

discharging from hospital, respectively. The inner level for state k (k = 1,2, · · · ,K)

is a Coxian PH distribution with mk transient substates, denoting mk LOS groups,
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and one absorbing substate, representing leaving the unit to other units or discharg-

ing from hospital directly.

The diagonal blocks Tkk, k = 1, · · · ,K, as shown below, are transition matrices

of Coxian PH distribution since there only exist transfers from the previous LOS

group to the next LOS group or to the absorbing state (exiting the unit).

Tkk =

⎛
⎜⎜⎜⎝
−λ 1

kk λ 1,2
kk · · · 0 0

...
... · · · · · · ...

0 0 · · · −λ mk−1

kk λ mk−1,mk
kk

0 0 · · · 0 −λ mk
kk

⎞
⎟⎟⎟⎠

mk×mk

.

The off-diagonal blocks Tkl, k, l = 1, · · · ,K, k �= l, as shown below, only contain

the transition rates from the all of the groups in the kth state to the first group in the

lth state

Tkl =

⎛
⎜⎝

λ 1,1
kl 0 · · · 0
...

... · · · ...

λ mk,1
kl 0 · · · 0

⎞
⎟⎠ .

Then the probability of spending time yk in state k, and then moving into an-

other state l is

gkl(yk) = exp(Tkkyk)Tkl,

where the (i, j)th element of the matrix gkl(yk) is the conditional probability that

X(t) enters state k, stays for a period of yk, and exits from the ith group to the jth
group of state l. Here, i = 1, · · · ,mk, j = 1, · · · ,ml , k, l = 1, · · · ,K, and k �= l.

Similarly, the probability of spending time yk in unit k, and then exiting the

system is

gk0(yk) = exp(Tkkyk)qk0

where the ith element of the vector gk0(yk) is the conditional probability that X(t)
spends time yk in state k, and exit from the ith group to the absorbing state, which

should be treated as having only one group. Here, i = 1, · · · ,mk, k = 1, · · · ,K.

Let y be an independent and identically distributed sample from a population

with PDF as f (y), denoting a sequence of sojourn in each state the observation

visits before absorption. We can use a R-dimensional vector (w1,w2, · · · ,wR) to

represent the sojourn vector as y = (yw1
,yw2

, · · · ,ywR), where (w1,w2, · · · ,wR) are

the states it visits and R is the number of jumps the observation y has. Then the

PDF of the observation y is

f (y) = πw1
exp(Tw1w1

yw1
)Tw1w2

exp(Tw2w2
yw2

)Tw2w3
· · ·exp(TwRwRywR)qwRe, (1)

where 1≤ w1,w2 · · · ,wR ≤ K.
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The parameters to be estimated in (1) include the transition rates among the

LOS groups in unit k, k =w1,w2 · · · ,wR, and the transition rates from all mk groups

in unit k to the unit l, where w1 ≤ k, l ≤ wR.

Then, the proportion of the ith LOS group in the unit k can be calculated by

integrating the transition rates in Tkk, i.e.,

Pi
k =

λ 1,2
kk

λ 1
kk
× λ 2,3

kk

λ 2
kk
×·· · λ

i−1,i
kk

λ i−1
kk

× (1− λ i,i+1
kk

λ i
kk

), i = 1, · · · ,mk−1,

Pmk
k =

λ 1,2
kk

λ 1
kk
× λ 2,3

kk

λ 2
kk
×·· · λ

mk−1,i
kk

λ mk−1
kk

, k = 1, · · · ,K.

(2)

Similarly, the probability of the transfer from the ith LOS group in unit k to the

unit l can be obtained using elements in both Tkk and Tkl , Pi
kl =

λ i,1
kl

λ i
kk−λ i,i+1

kk
, i =

1, · · · ,mk−1,and Pmk
kl =

λ mk ,1
kl

λ mk
kk

k = 1, · · · ,K, l = 0, · · · ,K, k �= l.

Furthermore, by separating the patients in unit k into LOS groups according

to the Pi
k, one can obtain the actual LOS range of each group, and further analyze

the shared characteristics of patients in the same group which can help detect the

potential longer-stay patients. When a patient stays in unit k long enough to be

assigned to group i, then there is a probability of Pi
kl for the patient to be transferred

to unit l or discharge (if l = 0) directly.

3. Maximum Likelihood Estimation

In order to simplify the likelihood function and the derivative of it over the

unknown parameters, we introduce forward vectors and backward vectors in Sec-

tion 3.1. Moreover, the spectral decomposition is used in Section 3.2 to get rid of

the exponential matrix terms in the likelihood function. The derivatives of likeli-

hood function over transition matrix and absorbing vectors, as well as the MLE are

computed in Sections 3.3, 3.4.

3.1. Forward and backward recursions

Since the likelihood function of a series of sojourn time consists of the product

of the gab(t) function [28], we can define the forward vectors as αT
wr
= πw1 ∏r

i=1 gwiwi+1
(ywi),

where r = 1,2, · · · ,R. Then by forward recursion, αT
wr

= αwr−1
gwrwr+1

(ywr), where

r = 1,2, · · · ,R and αT
w0

= πw1
. The last forward vector gives the likelihood function

f (y) = αT
wR

= πw1

R

∏
i=1

gwiwi+1
(ywi)1. (3)

9



As expressed in (1) and (3), the likelihood function given the observation y is just

the sum of the last forward vector αR, which denotes the total probability of exiting

the whole system from the last group, the mR group, in the unit wR the observation

y visited before exiting.

In a similar way, the backward vectors βwk can be defined as βwr =∏R
i=r gwiwi+1

(ywi),
where r = 1,2, · · · ,R. Again the backward recursion forms βwr = gwrwr+1

(ywr)βwr+1
,

where r = R,R−1, · · · ,1, and βR+1 = 1.

3.2. Spectral decomposition
In [26], the equilibrium probabilities of It , denoted by wi. No matter the

forward or the backward recursion involves calculating the probability function

fkl(yk), which depends on the matrix exponential of both Tkk and Tkl , k= 1, · · · ,K, l =
0, · · · ,K. An efficient way to calculate the matrix exponential is using spectral rep-

resentation of matrix. The spectral decomposition of matrix Tkk is

Tkk =
mk

∑
i=1

λ k
i Ak

i , (4)

where λ k
i is the ith eigenvalue of Tkk, and Ak

i is the projector onto eigenvalue λ k
i , a

matrix determine from the ∑nk
i=1 Ak

i = I, and

Ak
i Ak

j =

{
Ak

i , if i = j
0, otherwise.

The formula for the projector is Ak
i = ∏λ k

j �=λ k
i

Tkk−λ k
j I

λ k
i −λ k

j
. According to the definition

of the spectral decomposition, we have the following property:

If the spectral decomposition of T is T = ∑n
i=1 λiAi, then it follows that for any

polynomial f , one has

f (T) =
n

∑
i=1

f (λi)Ai = f (λ1)A1 + · · ·+ f (λn)An.

Then the probability densities of the system staying in unit k for a duration y,

and then transfer to another unit k+1 is as follows

gk,k+1(y) =
mk

∑
i=1

Ak
i exp(λ k

i y)Tk,k+1.

The one-dimensional density of entering into the system through unit k and

exiting from it is

fk(yk) = πk exp(Tkkyk)qk =
mk

∑
i=1

πkAk
i qk exp(λ k

i yk). (5)
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The two-dimensional density of starting from unit k, transferring to unit r, and

finally exit from unit r is

fk,l(yk,yl) = πk exp(Tkkyk)Tkl exp(Tllyl)ql =
mk

∑
i=1

ml

∑
j=1

πkAk
i TklAl

jql exp(λ k
j yk +λ l

i yl).

(6)

3.3. Derivative of likelihood function
By applying the chain rule of differentiation to (1) and making use of αwr and

βwr , we have

∂ f (y)
∂Twawb

= πw1

R

∏
r=1,r �=a

gwrwr+1
(ywr)1×

∂gwawb(ywa)

∂Twawb

=
∂αT

wa−1
gwawb(ywa)βwb

∂Twawb

. (7)

The key to calculating the equations (7) is the expression αT
wa−1

gwawb(ywa)βwb ,a,b=
1, · · · ,R + 1. Furthermore, the expression αT

wa−1
gwawb(ywa)βwb only depends on

Twawa and Twawb . By equation (4) and equation (5), we have the spectral represen-

tation as follows

gwawb(ywa) =
nwa

∑
i=1

Ai,waTwawb exp(λi,waywa).

It is easy to find that the function gwawb(ywa) linearly depends on Twawb , thus

the derivative can be represented as

∂αwa−1
gwawb(ywa)βwb

∂Twawb

=(αT
wa−1

exp(Twawaywa))
T β T

wb
=

nwa

∑
i=1

Ai,waαwa−1
β T

wb
exp(λi,waywa).

According the findings in [28], the derivative of likelihood function over transition

matrix and absorbing vectors are as follows

∂ f (y)
∂Tkl

=
mk

∑
i=1

AT
i,k[

R

∑
r=1,wr=k,wr+1=l

ᾱwr−1
β̄ T

wr+1
exp(λi,kyk)],

∂ f (y)
∂qk

=
mk

∑
i=1

AT
i,k[

R

∑
r=1,wr=k,wr+1=0

ᾱwr−1
β̄ T

wr+1
exp(λi,kyk)],

∂ f (y)
∂Tkk

=
mk

∑
i=1

mk

∑
j=1

AT
i,k[

R

∑
r=1,wr=k

ᾱwr−1
β̄ T

wr+1
Tk,wr+1

γi, j,k(yk)]AT
j,k,

(8)

where

ck =
1

|αk| , ᾱk = (
k

∏
i=0

ci)αk, β̄k = (
R

∏
i=k

ci)βk,
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γi, j,k(yk) =

{
yk exp(λi,kyk), i = j
exp(λi,kyk)−exp(λ j,kyk)

λi,k−λ j,k
, i �= j

It should be taken into account the relationship between Tkl and Tkk that ∑K
l=0 Tkl =

0, k = 1, · · · ,K, that is the rows of the Q should sum to zero. The adjusted partial

derivative of likelihood function over Tkl should be

∂ f (y)
∂Tkl

+
∂ f (y)
∂Tkk

∂Tkk

∂Tkl
=

∂ f (y)
∂Tkl

−1
∂ f (y)
∂Tkk

, l �= k, k, l = 1, · · · ,K.

Suppose we have N observations, the set W = (w1,w2, · · · ,wN) consists of

units vectors, where wn = (wn
1, · · · ,wn

Rn+1)1×(Rn+1) represents the units, including

the absorbing unit, the observation n visits sequentially, including the absorbing

states. Similarly, Y = (y1,y2, · · · ,yN), yn = (ywn
1
, · · · ,ywn

Rn
)1×Rn denotes the LOS

time in each unit, excluding the absorbing unit, the nth observation visits. Timing

up and taking log of the likelihood function given nth observation, we can obtain

the final log-likelihood function as

logL(W,Y|T,q) =
N

∑
n=1

log(πwn
1

Rn

∏
r=1

gwn
r ,w

n
r+1

(ywn
r
)).

Then the final derivative of log likelihood function over matrix T is as follows

∂ logL(W,Y|T,q)
∂T

=
N

∑
n=1

∂ logπwn
1
∏Rn

r=1 gwn
r ,w

n
r+1

(ywn
r
)

∂T
(9)

=
N

∑
n=1

∂ log f (yn)

∂T
=

N

∑
n=1

1

f (yn)

∂ f (yn)

∂T
.

3.4. Maximum likelihood estimation
In Section 3.3, we already compute the expression of likelihood and its first

order derivatives with respect to elements of Q, then the next step is to maximize

the likelihood. Actually, generating the first order derivatives by the forward and

backward recursion is already time consuming, neither is computing the Jacobian

matrix of the gradient or the Hessian matrix of the likelihood. Hence, the Quasi-

Newton method can be used here, in which the Hessian matrix is not computed.

Instead, the Hessian matrix is replaced with its approximation.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm , as one of the Quasi-

Newton algorithms, uses Sherman-Morrison formula to obtain the updated Hessian

matrix and is one of the most popular method of the same class. The Wolfe con-

ditions are used in the line search procedure to compute an acceptable step length

that reduces the objective function. The steps in BFGS are shown in Algorithm 1,

which is implemented in Matlab.
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Algorithm 1 BFGS Method

1: Given starting point T0, convergence tolerance ε > 0, inverse Hessian approx-

imation H0, iteration index s← 0;

2: while ∂ logL(W,Y|T(s),q)
∂T

(s)
> ε do;

3: Compute search direction

ps =−Hs× ∂ logL(W,Y|T(s),q)
∂T(s)

;

4: Set T(s+1) = T(s) +αs ps (αs obtained from a line search satisfying the

Wolfe conditions);

5: Define ss = T(s+1)−T(s) and

6:

us =
∂ logL(W,Y|T(s+1),q)

∂Tk+1
− ∂ logL(W,Y|T(s),q)

∂T(s)
;

7: Compute the updated Hs+1 = (I− ssuT
s

uT
s ss

)Hs(I− ussT
s

uT
s ss

)+ sssT
s

uT
s ss

;

8: s← s+1;

4. Experiments

4.1. Data processing
We collected the transfer information of patients in the Banner University Med-

ical Center Tucson - Main Campus and South Campus from 2012 to 2017. The data

consists of patient medical record number, event type (admission, transfer, and dis-

charge), unit ID, unit name, and the date and time the patients being transferred

into and out of the units. The admission and discharge details as well as the demo-

graphic information are also included.

Since the LOS in ED is always a critical issue and it impacts the efficiency

of healthcare and the survive of patients, we are interested in building a statistical

model which can measure the LOS within ED and the transfer rates to other units

inside a hospital. We filter the datasets to only contain the records of geriatric

patients being admitted into ED directly, and then being transferred to other units

for further surgical procedure or to GW before discharge. The information those

patients under unqualified conditions, such as missing values, errors in record, etc,

are illuminated.

The cleaned data set consists of 3225 records and contains information of 2849

patients, and the demographic information of the patients is presented in Table 1.

More than half of the patients are females, and 75.18% of them are under 85 years

old. Moreover, most of the patients are discharged to home for self-care.
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Table 1: Demographic of patients

Category # Frequency

Number of patients 2849 100.00%

Gender

Female 1584 55.60%

Male 1262 44.30%

Unknown 3 0.10%

Age
Age≤85 2142 75.18%

Age>85 707 24.82%

Race

White or Caucasian 2430 85.29%

American Indian or Alaska Native 63 2.21%

Asian 27 0.95%

Black or African American 82 2.88%

Multiracial 23 0.81%

Unknown 27 0.95%

Other 191 6.70%

Patient Refused 6 0.21%

Admit Type

Elective 6 0.21%

Emergency 2623 92.07%

Trauma Center 220 7.72%

Discharge Destination

Home and Self-care 2217 77.82%

Other hospital or Facility 532 18.67%

Readmission 4 0.14%

Others 96 3.37%

Following the description of total LOS in hospital shown in Table 2, the pa-

tients were discharged averagely after 65.48 hours (approximately 3 days), while

the maximum LOS in hospital is up to 926.62 hours (approximately 39 days), and

the minimum LOS is 0.1 hours which refers to an immediate discharge after admis-

sion. The mean LOS is larger than the median value of LOS, indicating the overall

LOS distribution is right skewed. Furthermore, for the distribution of the LOS,

approximately 25% of patients were discharged after within 1 day, and out of these

patients, approximately 75% left the hospital within three days of hospitalization.

Table 2: Overall LOS description

# 3225

max 926.62

min 0.10

mean 65.48

25th percentile 26.03

median 43.68

75th percentile 77.68
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In the filtered data set, 4 transient units kept are ED, CDU, GW, and ICU.

In Table 3, the number of visits in each unit, and the range (minimum/min and

maximum/max values in hours) of the LOS in the units are presented. Since all of

the patients are admitted into the ED, the visits in this unit is same with the number

of patient records. The LOS in the ED ranges from 0.1 hour to 73.57 hours, which

means that patients can be transferred to other units directly after admission or be

provided with treatment in the ED.

The average stay in CDU is almost one day (23.88 hours). According to [16],

the LOS for patients in the CDU could hopefully be decreased to under 18 hours.

Besides developing and implementing inclusion criteria, analyzing the patients’

characteristic and distribution in different LOS groups can also help. For the group

with longer LOS in the CDU, the admission to the CDU can be restricted and the

transfer to other units can also be considered to release the burden in the CDU.

Table 3: Statistical description of LOS in each unit

Unit Name # max min mean 25th percentile median 75th percentile

ED 3225 73.57 0.10 8.53 5.39 7.37 10.27

GW 1746 836.65 0.38 79.61 36.08 61.93 98.82

CDU 1301 119.03 0.57 23.88 15.42 20.33 26.57

ICU 129 914.43 1.98 102.60 25.43 47.75 111.25

ED GW CDU ICU
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Figure 3: The boxplot and CDF of LOS in each unit

The Fig. 3 shows the box-plot and the CDF distribution of the LOS in each

unit, in which a visual comparison of range, average, percentile of the LOS among
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units are presented. In Fig. 3(a), the GW has the most outliers. But according to

Kolmogorov-Smirnov (KS) tests, the LOS data does not follow normal distribution,

then we still keep the outliers. The time spent in ED is smaller and has less variation

than other units, which can also be illustrated in the CDF plots in Fig. 3(b).

By fitting the LOS data by Coxian PH distributions, each unit can have various

number of LOS groups, ranging from 2 to 7 from existing literature. In this paper,

we first use classic Coxian PH distributions to fit the dwell in each unit (refer to

[23] for the methods), then assign the visits in each unit into the corresponding

optimal group numbers.

4.2. Intra-hospital patient transfer

In Section 4.1, the LOS is analyzed only in the perspective of a single unit

without considering the intra-transfers from or to the unit. In this section, we in-

troduce the types of transfers in our data set, and conduct analysis on the LOS in

each transfer route. Among all records of the patient flow information, 51.38% of

them become ED-GW patients, 40.34% of them are ED-CDU patients, 4.00% visit

ICU, and the rest 4.25% are discharged directly after being treated in ED.

Since all of the patients in our collected data start their stay in a hospital from

ED, the LOS distributions of patients in ED before being transferred to other units

are analyzed in Table 4. The patients discharged from ED directly have the largest

mean and the smallest minimum of LOS, and that is due to the complex reasons of

leaving the hospital ranging from death, admission no show, inter-hospital transfer,

to discharges to home.

Table 4: LOS distribution in ED before transfer to the next unit

To Unit # max min mean 25th percentile median 75th percentile

Ward 1657 43.30 1.50 9.00 5.90 7.87 10.73

CDU 1301 73.57 1.00 7.98 5.07 6.88 9.62

ICU 129 19.57 1.17 5.62 3.37 4.52 7.03

Discharge 138 34.23 0.10 10.60 4.26 9.91 16.47

The patients transferred to CDU also have large statistical values of LOS in

the ED. The patients who are transferred to CDU from ED are not well enough for

direct discharge but also not in a severe condition to be admitted to the ward. In

Fig. 4, the plots of CDF of the time spent in each unit during intra-transfer routes

are compared against the one of the overall LOS in that unit.

In the literature, the transfers from ED to CDU, GW, ICU, and from ICU to

GW are widely studied, so are the challenges during these transfers. In [32], a

recent study shows that patients in a CDU had a 25% shorter overall length of stay,
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Figure 4: LOS in each intra-transfer compared with the total LOS in each unit

resulting in estimated cost savings of $1 billion/year across the US. The ED-CDU

transfers play an increasingly significant role in decreasing overall LOS, reducing

number of admissions to wards, and enhancing quality and safety of treatment.

For the ED unit, as one of most common unit where the patients in GW are

transferred from, the waiting time of a patient from the time of requesting a bed in

GW to the time of leaving the ED is a significant measure of health care efficiency

[33]. An adequate modeling of the transfer process can help avoid delays in an

ED-GW transfers which are due to the allocation issue.

The ED-ICU patients have relative short LOS because of the severity in the

situation, and doctors in ED have to make decision on the further treatment as soon

as possible. The ED and ICU are two main admission sources of inpatients ad-

mission to GW. Even though there exists cases where patients go through multiple
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transfers, such as from GW to ICU, and then back to GW, we only consider the

initial visit to GW.

Although the ICU-GW transfers are not as urgent as ED-GW since patients

have already received satisfactory treatments in ICU [33], there still exist chal-

lenges in the handing over patients from the ICU to the GW as communication

and collaborative failure [34]. One of the potential solutions is to figure out the

characteristics of patients involved in the ICU-GW transfer.

Above all, in this paper, the transfer routes we consider include, ED-GW-

Discharge, ED-CDU-Discharge, ED-ICU-Discharge, ED-Discharge, ED-ICU-GW-

Discharge. The unit transfers include ED-GW, ED-CDU, ED-ICU, ED-Discharge,

ICU-GW and ICU-Discharge. One needs to notice that the sojourn time within

one unit follows a Coxian PH distribution, while the overall LOS before discharge

follows a general PH distribution.

4.3. Model construction

As stated in Section 4.2, four units are chosen as ED, GW, CDU, and ICU

in our model. Each unit can have a variety number of LOS groups (Section 4.1).

According to the top two optimal fitting results, we assign 4 or 5 groups to unit ED,

2 or 3 groups to unit GW and unit CDU, and 2 groups to unit ICU. We construct

the aggregated PH distribution based on various combinations of LOS groups and

use the MLE method to estimate the parameters. In Table 5, the number of LOS

groups in each unit and the log likelihood value as well as Akaike Information

Criterion (AIC) are presented. The set of LOS group numbers having the maximal

log-likelihood and minimal AIC are chosen as m1 = 4,m2 = 3,m3 = 4,m4 = 2.

Table 5: The log-likelihood and AIC values

m1 m2 m3 m4 log-likelihood AIC

4 3 3 2 -30089.63 60253.26

4 2 3 2 -30126.70 60321.41

4 3 4 2 -29761.80 59601.60

4 2 4 2 -29799.21 59670.41

5 3 3 2 -30275.71 60635.42

5 2 3 2 -30329.99 60737.98

5 3 4 2 -29947.88 59983.76

5 2 4 2 -29985.29 60052.57

The transfer routes mentioned in Section 4.2 are shown in Figure 5. Patients

admitted to the ED can either go to one of the GW, CDU, and ICU or discharge.

The patients can also be transferred to the next LOS group in the same unit if they
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Figure 5: 4-unit hospital patient flow

stay longer. Besides, no matter which LOS group the patients belong to, they can

also be discharged from hospital directly.

The initial distribution is a vector with only non-zero value for the first element

since all of the transfer routes start from the first group in the ED. That is

π = (π1
1 ,0, · · · ,0,0)1×(∑4

k=1 mk)
= (1,0, · · · ,0,0)1×(∑4

k=1 mk)
,

and the transition matrix is constructed as⎛
⎜⎜⎝

T11 T12 T13 T14

0 T22 0 0
0 0 T33 0
0 T42 0 T44

⎞
⎟⎟⎠ ,

where

T11 =

⎛
⎜⎜⎜⎝
−λ 1

11 λ 1,2
11 0 0

0 −λ 2
11 −λ 2,3

11 0

0 0 −λ 3
11 −λ 3,4

11

0 0 0 −λ 4
11

⎞
⎟⎟⎟⎠, T12 =

⎛
⎜⎜⎜⎝

λ 1,1
12 0 0

λ 2,1
12 0 0

λ 3,1
12 0 0

λ 4,1
12 0 0

⎞
⎟⎟⎟⎠, T13 =

⎛
⎜⎜⎜⎝

λ 1,1
13 0 0 0

λ 2,1
13 0 0 0

λ 3,1
13 0 0 0

λ 4,1
13 0 0 0

⎞
⎟⎟⎟⎠,

T14 =

⎛
⎜⎜⎜⎝

λ 1,1
14 0

λ 2,1
14 0

λ 3,1
14 0

λ 4,1
14 0

⎞
⎟⎟⎟⎠, T22 =

⎛
⎝−λ 1

22 λ 1,2
22 0

0 −λ 2
22 −λ 2,3

22

0 0 −λ 3
22

⎞
⎠, T33 =

⎛
⎜⎜⎜⎝
−λ 1

33 λ 1,2
33 0 0

0 −λ 2
33 −λ 2,3

33 0

0 0 −λ 3
33 −λ 3,4

33

0 0 0 −λ 4
33

⎞
⎟⎟⎟⎠,

T42 =

(
λ 1,1

42 0 0

λ 2,1
42 0 0

)
, T44 =

(−λ 1
44 λ 1,2

44

0 −λ 2
44

)
.
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4.4. Results analysis

The parameter estimation results are presented in Table 6. The mk×mk,k =
1, · · · ,4 matrices on the diagonal positions are the transition rates among LOS

groups within the same unit, while off diagonal parameters are the transition rates

among different units. For example, the transition rate from the first LOS group to

the second LOS group in ED is 0.6662, and the transition rate from the first LOS

group from ED to GW is 0.0011.

According to eq. (2), the LOS range in each groups with consideration of

the involved transfers can be obtained. In Table 7, the minimum/min and maxi-

mum/max values in hours of LOS in each unit with impacts of transfers are shown.

Table 7: Aggregated PH distribution fitted in each unit

ED GW CDU ICU

min max min max min max min max

Group1 0.10 1.42 0.38 4.28 0.57 2.43 1.98 99.55

Group2 1.50 2.07 4.32 122.20 2.45 3.03 99.75 914.43

Group3 2.10 6.57 122.25 836.65 3.10 19.40 - -

Group4 6.58 73.57 - - 19.42 119.03 - -

Moreover, we can summarize that 98.84% of Group1 patients and 99.51% of

Group2 patients staying in the ED will come to the next LOS group for longer stay

in the ED. The last LOS group in the ED have a probability of 0.59 to be admitted

into the GW and a probability of 0.36 to visit the CDU. The results coincide with

the truth that 99.58% of GW patients and 99.46% of CDU patients previously stay

in the ED for more than 2.07 hours. We can conclude that if a patient has been

cared for more than about 2 hours in the ED, there is a high chance for him to be

transferred to other units for further treatment.

Similarly, 98.51% of Group1 patients in GW and over 98% of Group1 and

Group2 patients in CDU will stay longer. The transition probability to discharge

are 0.8247 from the second group in the GW and 0.4328 from the third group in the

CDU respectively. That is to say, for those patients who have already been cared

for 5 days in GW or over 1 day in CDU are probably leaving the hospital very soon.

Both the first and the second groups in the ICU have a relative high probability of

being transferred to the GW as 0.7194 and 0.9818 respectively, which means that

the transfer route in the hospital would hard to come to an end soon once entering

the ICU.

Figures 6, 7, 8, and 9 show a comparison of the age, gender, admission type and

discharge destination, respectively, of patients who are involved in a unit transfer

among four LOS groups in ED. For ED-CDU patients, trauma-center admission
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Figure 6: The age in LOS groups in each transfer from ED
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Figure 7: The gender in LOS groups in each transfer from ED
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Figure 8: The admission type in LOS groups in each transfer from ED
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Figure 9: The discharge destinations in LOS groups in each transfer from ED
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may associate with a shorter stay in ED and a relatively lower rate of discharging

to home. Trauma-center, as a unit which treats the most high-risk of injuries, comes

with less direct discharge to home following the treatment in both [35] and [36].

In this case, a further study in ED-CDU transfer can be conducted to verify the

function of the CDU in improving the healthcare efficiency and outcomes.

For ED-ICU patients, the first LOS group in ED only consists of those who are

less than 85 years old and most of them are males. Staying in ED for less than

1.5 hours and being sent to ICU very soon may be due to the condition of patient

getting worse and results in inter-hospital transfer at last. For those stay in ED for

a short period and discharge directly, uncontrolled worsening and higher rate of

mortality are more likely to happen.
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Figure 10: The age in LOS groups in each transfer from ICU
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Figure 11: The gender in LOS groups in each transfer from ICU

Similarly, Figures 10, 11, 12 and 13 present comparisons on both LOS groups

in ICU with consideration to the ICU-GW and ICU-Discharge transfers. Based on

our data, patients who follows ED-ICU-GW-Discharge route and stay in ICU over

5 days (120 hours) are probably transferred to other hospital or healthcare facility

for further treatment and recovery care. Meanwhile, patients who leave the ICU

from the longer stay group have a high rate of mortality or readmission.
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Figure 12: The admission type in LOS groups in each transfer from ICU
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Figure 13: The discharge destinations in LOS groups in each transfer from ICU

5. Conclusions

In this paper, the overall LOS information in ED, GW, CDU, ICU, and the LOS

of patients involved in each intra-transfer are investigated. An aggregated Markov

chain is constructed based on the patient flow information, and each state in the

aggregated Markov chain corresponds to a unit in the hospital. Patients in each

unit can be divided into multiple groups according to their LOS in the unit, and

there exist transition rates from shorter LOS groups to longer LOS groups.

Even though there exist cases where patients go through multiple transfers,

such as from GW to ICU, and then back to GW, we only consider the initial visit

to GW. Although the ICU-GW transfers are not as urgent as ED-GW since pa-

tients have already received satisfactory treatments in ICU [33], there still exist

challenges in the handing over patients from the ICU to the GW as communication

and collaborative failure [34]. One of the potential solutions is to figure out the

characteristics of patients involved in the ICU-GW transfer.

By fitting aggregated PH distribution to the sequences of time patients spent in

each unit, the transition rate between two LOS groups in each unit and the transfer

25



rates among units are estimated. Further analysis such as the LOS distribution (in

the current unit) of patients who discharged from each group in the previous unit

are conducted respectively. Moreover, covariates such as age, gender, admission

type, and discharge destination are analyzed in terms of patients in each unit along

with patients in each transfer route. The analysis shows that the characteristics of

patients, their LOS in a unit, and the following transfer behaviors are associated,

which gives us an overall view of which factors to notice when a new patient comes

to the hospital. For example, patients stay in the ED for more than 2 hours would

probably be transferred to next unit for further treatment. For patients who are

transferred from ED to CDU, trauma-center admission is associated with a shorter

stay in ED and a lower home discharge rate.

The covariate analysis in this paper are mainly from a interpretation perspec-

tive. Actually, the impacts of covariates can be incorporated into the aggregated PH

distribution, and the corresponding algorithm should be developed. We focus on

the intra-hospital transfer in this paper, and in reality, the transfers among different

healthcare facilities happen all the time. For future research, the aggregated PH

distributions can be extended to multiple layers where the inter-hospital transfers

will be the upper level state in the aggregated Markov chain. The algorithms for

estimating the multi-level aggregated PH distributions are worth further study to

build a complete transfer system.
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