Research 1: Crowdsourcing and Visualization

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Recommending Deployment Strategies
for Collaborative Tasks

Dong Wei Senjuti Basu Roy Sihem Amer-Yahia
NJIT, USA NJIT, USA CNRS, Univ. Grenoble Alpes, France
dw277@njit.edu senjutib@njit.edu sihem.amer-yahia@cnrs.fr
ABSTRACT task deployment requires that requesters identify appropriate

Our work contributes to aiding requesters in deploying col-
laborative tasks in crowdsourcing. We initiate the study of
recommending deployment strategies for collaborative tasks
to requesters that are consistent with deployment parame-
ters they desire: a lower-bound on the quality of the crowd
contribution, an upper-bound on the latency of task com-
pletion, and an upper-bound on the cost incurred by paying
workers. A deployment strategy is a choice of value for three
dimensions: Structure (whether to solicit the workforce se-
quentially or simultaneously), Organization (to organize it
collaboratively or independently), and Style (to rely solely
on the crowd or to combine it with machine algorithms).
We propose StratRec, an optimization-driven middle layer
that recommends deployment strategies and alternative de-
ployment parameters to requesters by accounting for worker
availability. Our solutions are grounded in discrete optimiza-
tion and computational geometry techniques that produce
results with theoretical guarantees. We present extensive
experiments on Amazon Mechanical Turk, and conduct syn-
thetic experiments to validate the qualitative and scalability
aspects of StratRec.

ACM Reference Format:

Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia. 2020. Recom-
mending Deployment Strategies for Collaborative Tasks. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 20), June 14-19, 2020, Portland, OR, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3318464.
3389719

1 INTRODUCTION

Despite becoming a popular means of deploying tasks, crowd-
sourcing offers very little help to requesters. In particular,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06....$15.00
https://doi.org/10.1145/3318464.3389719

deployment strategies. A strategy involves the interplay of
multiple dimensions: Structure (whether to solicit the work-
force sequentially or simultaneously), Organization (to orga-
nize it collaboratively or independently), and Style (to rely
on the crowd alone or on a combination of crowd and ma-
chine algorithms). A strategy needs to be commensurate
to deployment parameters desired by a requester, namely, a
lower-bound on quality, an upper-bound on latency, and an
upper-bound on cost. For example, for a sentence translation
task, a requester wants the translated sentences to be at least
80% as good as the work of a domain expert, in a span of
at most 2 days, and at a maximum cost of $100. Till date,
the burden is entirely on requesters to design deployment
strategies that satisfy desired parameters. Our effort in this
paper is to present a formalism and computationally effi-
cient algorithms to recommend multiple strategies (namely
k) to the requester that are commensurate to her deployment
parameters, primarily for collaborative tasks.

A recent work [5] investigated the deployment of text cre-
ation tasks in Amazon Mechanical Turk (AMT) empirically.
The authors validated the effectiveness of different strategies
for different collaborative tasks, such as text summarization
and text translation, and provided evidence for the need to
guide requesters in choosing the right strategy. In this paper,
we propose fo automate strategy recommendation. This is
particularly challenging because the estimation of the cost,
quality, and latency of a strategy for a given deployment
request must account for many factors.

To realize our contributions, we develop StratRec (refer
to Figure 1), an optimization-driven middle layer that sits
between requesters, workers, and platforms. StratRec has
two main modules: Aggregator and Alternative Parameter
Recommendation (ADPaR in short). Aggregator is respon-
sible for recommending k strategies to a batch of incom-
ing deployment requests, considering worker availability.
If the platform does not have enough qualified workers to
satisfy all requests, Aggregator triages them by optimizing
platform-centric goals, i.e., to maximize throughput or pay-off
(Section 2.2). Unsatisfied requests are sent to ADPaR, which
recommends different deployment parameters for which k
strategies are available.

In principle, recommending deployment strategies involves
modeling worker availability considering their skills for the

https://doi.org/10.1145/3318464.3389719
https://doi.org/10.1145/3318464.3389719
https://doi.org/10.1145/3318464.3389719

Research 1: Crowdsourcing and Visualization

Task

requester-1 Successful

Recommendations
Task Worker
requester-2 AvailaW}

Task - —> | Aggregator
requester-m Unsuccessful ADPAR
l requests
Opfimization|| Alternative
Batch SD:piloymenf :Vorkforce |, | guided Deployment
Deployment a ng -> eqUIremgn -> batch Parameters
Modeling Computation
deployment || Reco

Figure 1: StratRec Framework

tasks that require deployment. This gives rise to a complex
function that estimates parameters (quality, latency, and
cost) of a strategy considering worker skills, task types, and
worker availability. As the first ever principled investiga-
tion of strategy recommendation in crowdsourcing, we first
make a binary match between workers’ skills and task types
and then estimate strategy parameters considering those
workers’ availability. Worker availability is captured as a
probability distribution function (pdf) by leveraging histor-
ical data on a platform. For example, the pdf can capture
that there is a 70% chance of having 7% of the workers and a
30% chance of having 2% of the workers available who are
suitable to undertake a certain type of task. In expectation,
this gives rise to 5.5% of available workers. If a platform has
4000 total workers available to undertake a certain type of
task, that gives rise to a total of 220 available workers in an
expected sense. StratRec works with such expected values.
Contribution 1. Modeling and Formalism: We present
a general framework StratRec for modeling quality, cost, and
latency of a set of collaborative tasks, when deployed based
on a strategy considering worker availability (Section 3.1).
The first problem we study is Batch Deployment Recommen-
dation inside to deploy a batch of tasks to maximize two
different platform-centric criteria: task throughput and pay-
off. After that, unsatisfied requests are sent one by one to
the Alternative Parameter Recommendation module (ADPaR).
ADPaR solves an optimization problem that recommends al-
ternative parameters for which k deployment strategies exist.
For instance, if a request has a very small latency thresh-
old that cannot be attained based on worker availability,
ADPaR may recommend increasing the latency and cost
thresholds to find k legitimate strategies. ADPaR does not
arbitrarily choose the alternative deployment parameters. It
recommends those alternative parameters that are closest,
i.e., minimizing the ¢, distance to the ones specified.
Contribution 2. Algorithms: In Section 3, we design
BatchStrat, a unified algorithmic framework to solve the

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Batch Deployment Recommendation problem. BatchStrat is
greedy in nature and provides exact results for the through-
put maximization problem, and a 1/2-approximation factor
for the pay-off maximization problem (which is NP-hard). In
Section 4, we develop ADPaR-Exact to solve ADPaR that is
geometric and exploits the fact that our objective function is
monotone (Equation 3). Even though the original problem
is defined in a continuous space, we present a discretized
technique that is exact. ADPaR-Exact employs a sweep-line
technique [9] that gradually relaxes quality, cost, and la-
tency, and is guaranteed to produce the tightest alternative
parameters for which k deployment strategies exist.
Contribution 3. Experiments: We conduct comprehen-
sive real-world deployments for text editing applications
with real workers and rigorous synthetic data experiments
(Section 5). The former validates that worker availability
varies over time, and could be reasonably estimated through
multiple real world deployments. It also shows with statistical
significance that cost, quality, latency have a linear relation-
ship with worker availability for text editing tasks. Our real
data experiments (Section 5.1.2) also validate that when tasks
are deployed considering the recommendation of StratRec,
with statistical significance, they achieve higher quality and
lower latency, under the fixed cost threshold on an average,
compared to the deployments that do not consult StratRec.
These results validate the effectiveness of deployment recom-
mendations of our proposed framework and its algorithms.

2 FRAMEWORK AND PROBLEM
2.1 Data Model

Crowdsourcing Tasks: A platform is designed to crowd-
source tasks, deployed by a set of requesters and undertaken
by crowd workers. We consider collaborative tasks such as
sentence translation, text summarization, and puzzle solv-
ing [29, 30].

Deployment Strategies: A deployment strategy [17]
instantiates three dimensions: Structure (sequential or simul-
taneous), Organization (collaborative or independent), and
Style (crowd-only or crowd and algorithms). We rely on com-
mon deployment strategies [5, 17] and refer to them as S.
Figure 2 enlists some strategies that are suitable for text
translation tasks (from English to French in this example).
For instance, SEQ-IND-CRO in Figure 2(a) dictates that work-
ers complete tasks sequentially (SEQ), independently (IND)
and with no help from algorithms (CRO). In SIM-COL-CRO
(Figure 2(b)), workers are solicited in parallel (SIM) to com-
plete a task collaboratively (COL) and with no help from
algorithms (CRO). The last strategy SIM-IND-HYB dictates a
hybrid work style (HYB) where workers are combined with
algorithms, for instance with Google Translate.

Research 1: Crowdsourcing and Visualization

A platform could provide the ability to implement some
strategies. For instance, communication between workers
enables SEQ, while collaboration enables COL. Additionally,
coordination between machines and humans may enable
HYB. Therefore, strategies could be implemented inside or
outside platforms. In the latter, a platform could be used
solely for hiring workers who are then redirected to an envi-
ronment where strategies are implemented. In all cases, we
will assume a set of strategies S for a given platform.

For the purpose of illustration, we will only use a few
strategies in this paper. However, in principle, the number
of possible strategies could be very large. The closest anal-
ogy is query plans in relational databases in which joins,
selections, and projections could be combined any number
of times and in different orders. Additionally, there exists
multiple real world tools Turkomatic [19] or Soylent [4], that
aid requesters in planning and solving collaborative tasks. In
Turkomatic, while workers decompose and solve tasks, re-
questers can view the status of worker-designed workflows
in real time; intervene to change tasks; and request new
solutions. Such tools would certainly benefit from strategy
recommendation.

Task Requests and Deployment Parameters: A requester
intends to find one or more strategies (notationally k, a small
integer) for a deployment d with parameters on quality, cost,
and latency (d.quality, d.cost, d.latency) such that, when a
task in d is deployed using strategy s € S, it is estimated to
achieve a crowd contribution quality s.quality, by spending
at most s.cost, and the deployment will last at most s.latency.

Quality | Cost | Latency
dy | 04 0.17 | 0.28
dy | 0.8 0.2 0.28
ds | 0.7 0.83 | 0.28
s1 | 0.5 0.25 | 0.28
s2 | 0.75 0.33 | 0.28
s3 | 0.8 0.5 0.14
sg | 0.88 0.58 | 0.14

Table 1: Deployment Requests and Strategies

ExAMPLE 1. Assume there are 3 (m = 3) task deployment
requests for different types of collaborative sentence translation
tasks. The first requester d; is interested in deploying sentence
translation tasks for 2 days (out of 7 days), at a cost up to $100
(out of $600 max), and expects the quality of the translation to
reach at least 40% of domain expert quality. Table 1 presents

these after normalization between [0 — 1]. We set k = 3.
A strategy s is suitable to be recommended to d, if

s.quality > d.quality AND s.cost < d.cost AND s.latency <
d.latency. Estimating the parameters s.quality, s.cost,

s.latency for each s and deployment d requires accounting
for the worker pool and their skills who are available to un-
dertake tasks in d. A simple yet reasonable approach to that is

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

to first match task types in a deployment request with workers’
skills to select a pool of workers. Following that, we account for
worker availability from this selected pool, since the deployed
tasks are to be done by those workers. Thus, the (estimated)
quality, cost and latency of a strategy for a task is a function
of worker availability, considering a selected pool of workers
who are suitable for the tasks.

Worker Availability: Worker availability is a discrete
random variable and is represented by its corresponding
distribution function (pdf), which gives the probability of
the proportion of workers who are suitable and available
to undertake tasks of a certain type within a specified time
d.latency (refer to Example 1). This pdfis computed from his-
torical data on workers’ arrival and departure on a platform.
StratRec computes the expected value of this pdf to represent
the available workforce W, as a normalized value in [0, 1].
In the remainder of the paper, worker availability stands for
worker availability in expectation, unless otherwise speci-
fied. How to accurately estimate worker availability is an
interesting yet orthogonal problem and not our focus here.

2.2 Illustration of StratRec

StratRec is an optimization-driven middle layer that sits be-
tween requesters, workers, and platforms. At any time, a
crowdsourcing platform has a batch of m deployment re-
quests each with its own parameters as defined above, com-
ing from different requesters. StratRec is composed of two
main modules - Aggregator and Alternative Parameter Rec-
ommendation (or ADPaR).

For the purpose of illustration, continuing with Example 1,
S consists of the set of 4 deployment strategies, as shown in
Figure 2: SIM-COL-CRO, SEQ-IND-CRO, SIM-IND-CRO, SIM-
IND-HYB. To ease understanding, we name them as sy, sz, 3,
s, respectively.

These requests, once received by StratRec, are sent to the
Aggregator. First, it analyzes the Worker Pool to estimate
worker availability. There is a 50% probability of having 700
workers and a 50% probability of having 900 workers out of
1000 suitable workers for sentence translation tasks available
for the next 7 days. Thus, the expected worker availability W
is 0.8. After that, it consults the Deployment Strategy Model-
ing in Batch Deployment module to estimate the quality, cost,
and latency of a strategy (more in Section 3.1) for a deploy-
ment. Since all deployments are of the same type, Equation 4,
could be used to estimate those Strategy parameters (also
presented in Table 1). Then, it consults the Workforce Require-
ment Computation to estimate the workforce requirement of
each strategy (more in Section 3.2 and Figure 3). Finally, the
Optimization Guided Batch Deployment (refer to Section 3.3)
is invoked to select a subset of requests that optimizes the
underlying goal and recommends k strategies for each. Each

Research 1: Crowdsourcing and Visualization

English Text English Text

|

Worker-1

French Text

[&WorkerJ &Worker-n }

& Worker-n
French Text
French Text

Final Fren¢ch Text
(a) SEQ-IND-CRO (b) SIM-COL-CRO

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

English Text English Text
v
Automatic Translation
(French Text) .

Worker-1 Worker-n Worker-1 Worker-n

French Text French Text French Text French Text

-
Evaluation [
Best French
Translation E

(¢) SIM-IND-CRO

Evaluation]

Best French
Translation g

(d) SIM-IND-HYB

Figure 2: Deployment Strategies

unsatisfied request d; is sent to ADPaR that recommends an
alternative deployment d; to the requester for which there
exist k deployment strategies.

Using Example 1, out of the three deployment requests,
only ds could be fully served (considering either throughput
or pay-off objective) and s;, s3, s4 are recommended. d; and
dy are then sent to ADPaR one by one.

2.3 Problem Definitions

ProBLEM 1. Batch Deployment Recommendation:
Given an optimization goal F, a set S of strategies, a batch of
m deployment requests from different requesters, where the i-th
task deployment d; is associated with parameters d;.quality,
dj.cost and d;.latency, and worker availability W, distribute
W among these requests by recommending k strategies for each
request, such that F is optimized.

The high level problem optimization problem could be for-
malized as:

Maximize F = Zf’
st.) W <W AND 1)

d; is successful

where f; is the optimization value of deployment d; and
w; is the workforce required to successfully recommend k
strategies it. A deployment request d; is successful, if for
each of the k strategies in the recommended set of strategies
S;, the following three criteria are met: s.cost < d;.cost,
s.latency < d;.latency and s.quality > d;.quality.

Using Example 1, ds is successful, as it will return SZ =
{s2, 83,54}, such that ds.cost > sy.cost > s3.cost > sy.cost
& ds.latency > sy.latency > ss.latency > sp.latency &
ds.quality < sy.quality < ss.quality < sy.quality, and it
could be deployed with the available workforce W = 0.8.

In this work, F is designed to maximize one of two different
platform centric-goals: task throughput and pay-off.

Throughput maximizes the total number of successful strat-
egy recommendations without exceeding W. Formally,

m
Maximize Z X

i=1
s.t.in XW,’ <Ww

1 d;.cost < sj.cost AND (2)
d;.latency < s;.latency AND
d;.quality > s;j.quality AND
ISil =k, Vi=1,....mj=1,...,|S

0 otherwise

Xi =

Pay-off maximizes d;.cost, if d; is a successful deployment
request without exceeding W. The rest of the formulation is
akin to Equation 2.

ProBLEM 2. Alternative Parameter Recommendation:
Given a deployment d, worker availability W, a set of de-
ployment strategies S, and a cardinality constraint k, ADPaR
recommends an alternative deployment d’ and associated k
strategies, such that, the Euclidean distance (£,) between d and
d’ is minimized.

Formally, our problem could be stated as a constrained opti-
mization problem:

min (d’.cost — d.cost)* + (d’.latency — d.latency)?
+ (d’.quality — d.quality)*

S|
s.t. Z xj=k
/= ©)
1 d’.cost < sj.cost AND
o d’.latency < s;.latency AND
;=

d’.quality > s;j.quality
0 otherwise
Based on Example 1, if ADPaR takes the following input
values d; : (0.4,0.17,0.28) and S. For d, the alternative rec-

ommendation should be (0.4, 0.5, 0.28) with three strategies
$1, 82, 53.

Research 1: Crowdsourcing and Visualization

3 DEPLOYMENT RECOMMENDATION

We describe our proposed solution for Batch Deployment
Recommendation (Problem 1). Given m requests and W, the
Aggregator invokes BatchStrat, our unified solution to solve
the batch deployment recommendation problem. There are
three major steps involved. BatchStrat first obtains model
parameters of a set of candidate strategies (Section 3.1),
then computes workforce requirement to satisfy these re-
quests (Section 3.2), and finally performs optimization to
select a subset of m deployment requests, such that differ-
ent platform-centric optimization goals could be achieved
(Section 3.3).

We first provide an abstraction that serves the purpose
of designing BatchStrat. Given m deployment requests and
W workforce availability, we intend to compute a two di-
mensional matrix ‘W, where there are |S| columns that map
to available deployment strategies and m rows of different
deployment requests. Figure 3a shows the matrix built for
Example 1. A cell w;; in this matrix estimates the workforce
required to deploy i-th request using j-th strategy. This ma-
trix ‘W is crucial to enable platform centric optimization for
batch deployment.

3.1 Deployment Strategy Modeling

BatchStrat first performs deployment strategy modeling to
estimate quality, cost, latency of a strategy s for a given de-
ployment request d. As the first principled solution, it models
these parameters as a linear function of worker availability,
from the filtered pool of workers whose profiles match tasks
in the deployment request . Therefore, if d is deployed us-
ing strategy s, the quality parameter of this deployment is
modeled as:

sq.quality = aqu.(wqu) + Bqds (4)

Our experimental evaluation (Table 6) in Section 5.1, per-
formed on AMT validates this linearity assumption with 90%
statistical significance for two text editing tasks.

Model parameters @ and f are obtained for every s, d,
and parameter (quality, cost, latency) combination, by fitting
historical data to this linear model. Once these parameters
are known, BatchStrat uses Equation 4 again to estimate
workforce requirement wgq; to satisfy quality threshold (cost
and latency like-wise) for deployment d using strategy s. We
repeat this exercise for each s € S, which comprises our set
of candidate strategies for a deployment d.

!We note that StratRec could be adapted for tasks that do not exhibit
such linear relationships.

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

3.2 Workforce Requirement Computation

The goal of the Workforce Requirement Computation is to
estimate workforce requirement per (deployment, strategy)
pair. It performs that in two sub-steps, as described below.
(1) Computing Matrix ‘W': The first step is to compute W,
where w; ; represents the workforce requirement of deploy-
ing d; with strategy s;. Recall that in Equation 4, as long as for
a deployment d;, the deployment parameters on quality, cost,
and latency, i.e., d;.quality, d;.cost and d;.latency are known,
for a strategy, s;, we can compute w; j, i.e., that is the mini-
mum workforce needed to achieve those thresholds, by con-
sidering the equality condition, i.e., s;.quality = d;.quality
(similarly for cost and latency), and solving Equation 4 for
w, with known (a, f§) values. Using Example 1, the table in
Figure 3a shows the rows and columns of matrix ‘W and
how a workforce requirement could be calculated for wy;.
Basically, once we solve the workforce requirement of qual-
ity, cost, and latency(wg;j, wcij, wiij), the overall workforce
requirement of deploying d; using s; is the maximum over
these three requirements. Formally, they could be stated as
follows:

d;.quality = agijwgij + Pqij
wij = Max §d;.cost = acijWeij + Peij
d;.latency = ay;jwij + Puij

Using Example 1, wy; is the maximum over {wg11, Wei1, Win1 }-
Figure 3a shows how wj; needs to be computed for deploy-
ment d; and strategy s; for the running example.

Running Time: Running time of computing ‘W is O(m|S)|),
since computing each cell w;; takes constant time.

(2) Computing Workforce Requirement per Deploy-
ment: For a deployment request d; to be successful, Batch-
Strat has to find k strategies, such that each satisfies the
deployment parameters. In step (2), we investigate how to
make compute workforce requirement for all k strategies,
for each d;. The output of this step produces a vector w
of length m, where the i-th value represents the aggregated
workforce requirement for request d;. Computing w requires
understanding of two cases:

e Sum-case: It is possible that the task designer intends
to perform the deployment using all k strategies. There-
fore, the minimum workforce (w;) needed to satisfy
cardinality constraint k; is ZZ=1Wiy (where w;,, is the
y-th smallest workforce value in row i of matrix W.

e Max-case: The task designer intends to only deploy
one of the k recommended strategies - in that case,
Wi = Wiy, (Where w;; is the k-th smallest workforce
value in row i of matrix W).

Figures 3b and 3c represent how W is calculated considering
sum-case and max-case, respectively.

Research 1: Crowdsourcing and Visualization

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

s1 s2 s3 | sa s1 2 3 |sa w ‘ s1 52 s3 s4 w.
a1 P ™ i i
(0.4, 04=a"w +f d1 d1 N .
0.17, . ") (0.3, 0.4=a”.wn+ﬁ“’ 3 (0.4, 0.4:0{’.»’H~ﬂ“
o282 | = Max)0.17=a"w, + 3 Sawa (|, =Max]0.17=a"0, + " w=)wW oma [= Maxl0.17=a", +f° W= |
" ! o W= Mar 017 =, + B4 w, ! y 283w, = Mar) 0.17=a", +5 W, | Wi rd i
0.28=a"w, + 8 S “ g 2 3min{wi} |
028=a"w, +p 028=a"w, +4'
s b a2
o, (08,
0.20, v, (0.8,0.20,)
’ 0.20, w, 2), d w,,
0.28,2) 0.28,2) 21 W2 0.28,2) Wi 2 \’V2
(603.7’0.8 d3 d3
3,0.28, (0.7,0.83 w. (0.7,083, -
3) ,0.28,3) Wy, 32 | Wiz [Was W3 0.28,3) wy, Wiy [Wiy Wy, W3

(a) Requirement for (dy, s1)
(Sum)

(b) Aggregated requirement per request

(c) Aggregated requirement per request
(Max)

Figure 3: Computing Workforce Requirement

Running Time: The running time of computing the ag-
gregated workforce requirement of the i-th deployment re-
quest is O(|S|klog|S]), if we use min-heaps to retrieve the k
smallest numbers. The overall running time is again

O(mk log|S]).

3.3 Optimization-Guided Batch
Deployment

Finally, we focus on the optimization step of BatchStrat,
where, given W, the objective is to distribute the available
workforce W among m deployment requests such that it op-
timizes a platform-centric goal F. Since W can be limited, it
may not be possible to successfully satisfy all deployment
requests in a single batch. This requires distributing W ju-
diciously among competing deployment requests and satis-
fying the ones that maximize platform-centric optimization
goals, i.e., throughput or pay-off.

At this point, a keen reader may notice that the batch
deployment problem bears a resemblance to a well-known
discrete optimization problem that falls into the general cat-
egory of assignment problems, specifically, Knapsack-type
of problems [10]. The objective is to maximize a goal (in
this case, throughput or pay-off), subject to the capacity
constraint of worker availability W. In fact, depending on
the nature of the problem, the optimization-guided batch
deployment problem could become intractable.

Intuitively, when the objective is only to maximize through-
put (i.e., the number of satisfied deployment requests), the
problem is polynomial-time solvable. However, when there
is an additional dimension, such as pay-off, the problem
becomes NP-hard problem, as we shall prove next.

THEOREM 1. The Pay-Off maximization problem is NP-
hard [33].

Our proposed solution bears similarity to the greedy ap-
proximation algorithm of the Knapsack problem [14]. The ob-
jective is to sort the deployment strategies in non-increasing

order of {7’[The algorithm greedily adds deployments based

on this sorted order until it hits a deployment d; that can
no longer be satisfied by W, that is, X;=;. x d; > W. At that
step, it chooses the better of {d;, d;,d;_1} and d; and the pro-
cess continues until no further deployment requests could
be satisfied based on W. Lines 4 — 8 in Algorithm BatchStrat
describe those steps.

Running Time: The running time of this step is domi-
nated by the sorting time of the deployment requests, which
is O(m logm).

Algorithm 1 Algorithm BatchStrat

1: Input: m deployment requests, S, objective function F,
available workforce W

2: Output: recommendations for a subset of deployment
requests.

3: Estimate model parameters for each (strategy, deploy-
ment) pair.

4: Compute Workforce Requirement Matrix W

5: Compute Workforce Requirement per Deployment Vec-
tor W

6: Compute the objective function value f; of each deploy-
ment request d;

7: Sort the deployment requests in non-increasing order of

i

8: Greedily add deployments until we hit d;, such that
Zi:l..x di >W
9: Pick the better of {d;,d>,d;—1} and d;

3.3.1 Maximizing Throughput. When task throughput is
maximized, the objective function F is computed simply by
counting the number of deployment requests that are satis-
fied by the Aggregator. Therefore, f;, the objective function
value of deployment d; is the same for all the deployment re-
quests and is 1. Our solution, BatchStrat-ThroughPut, sorts
the deployment requests in increasing order of workforce
requirement w; to make w% non-increasing. Other than that,
the rest of the algorithm remains unchanged.

Research 1: Crowdsourcing and Visualization

‘Quatity Q
(a) Deployment parameters in (b) Projection of d’ on (L, Q)
3-D space plane

Figure 4: ADPaR

THEOREM 2. Algorithm BatchStrat-ThroughPut gives an
exact solution to the problem [33].

3.3.2 Maximizing Pay-Off. Unlike throughput, when pay-off
is maximized, there is an additional dimension involved that
is different potentially for each deployment request. f; for
deployment request d; is computed using d'.cost, the amount
of payment deployment d; is willing to expend. Other than
that, the rest of the algorithm remains unchanged.

THEOREM 3. Algorithm BatchStrat-PayOff has a
1/2-approximation factor [33].

4 ADPAR

We discuss our solution to the ADPaR problem, that takes a
deployment d and strategy set S as inputs, and is designed
to recommend alternative deployment parameters d’ to opti-
mize the goal stated in Equation 3 (Section 2.3), such that d’
satisfies the cardinality constraint of d.

Going back to Example 1 with the request d, StratRec
there is no strategy that satisfies d; (refer to Figure 4a).

At a high level, ADPaR bears a resemblance to Skyline and
Skyband queries [8, 16, 27] - but as we describe in Section 6,
there are significant differences between these two problems
- thus the former solutions do not adapt to solve ADPaR. Sim-
ilarly, ADPaR is significantly different from existing works
on query refinement [2, 11, 24, 25], that we further delineate
in Section 6.

4.1 Algorithm ADPaR-Exact

Our treatment is geometric and exploits the monotonicity
of our objective function (Equation 1 in Section 2.3). Even
though the original problem is defined in a continuous space,
we present a discretized technique that is exact. ADPaR-
Exact, employs three sweep-lines [9], one for each parameter,
quality, cost, and latency and gradually relaxes the parame-
ters to produce the tightest alternative parameters that admit
k strategies. By its unique design choice, ADPaR-Exact is
empowered to select the parameter that is most suitable to
optimize the objective function, and hence, produces exact
solutions to ADPaR.

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

ADPaR-Exact has four main steps. Before getting into
those details, we present a few simplifications to the prob-
lem for the purpose of elucidation. As we have described
before, we normalize quality, cost, latency thresholds of a
deployment or of a strategy in [0, 1], and inverse quality to
(1 — quality). This step is just for unification, making our
treatment for all three parameters uniform inside ADPaR,
where smaller is better, and the deployment thresholds are
considered as upper-bounds. With this, each strategy is a
point in a 3-dimensional space and a deployment parameter
(modulo its cardinality constraint) is an axis-parallel hyper-
rectangle[9] in that space. Consider Figure 4a that shows the
4 strategies in Example 1 and d; as a hyper-rectangle.

Step-1 of ADPaR-Exact computes the relaxation (incre-
ment) that a deployment requires to satisfy a strategy among
each deployment parameter. This is akin to computing s;.cost—
d;.cost (likewise for quality and latency) and when the strat-
egy cost is smaller than the deployment threshold, it shows
no relaxation is needed - hence we transform that to 0. The
problem is studied for quality, cost, and latency (referred to
as Q, C, L) (Table 3). It also initializes d’ = {1, 1, 1}, the worst
possible relaxation.

Step-2 of ADPaR-Exact involves sorting the strategies based
on the computed relaxation values from step-1 in an increas-
ing order across all parameters, as well as keeping track of
the index of the strategies and the parameters of the relax-
ation values. The sorted relaxation scores are stored in list
R, the corresponding I data structure provides the strategy
index, and D provides the parameter value. In other words,
R[j] represents the j-th smallest relaxation value, where I[j]
represents the index of the strategy and D[j] represents the
parameter value corresponding to that. A cursor r is initial-
ized to the first position in R (Table 4). Another data structure,
a boolean matrix M of size |S|x 3 (Table 2) is used that keeps
track of the number of strategies that are covered by the cur-
rent movement of cursor r in list R. This matrix is initialized
to 0 and the entries are updated to 1, as r advances.

Step-3 involves designing three sweep-lines along Q, C, and
L (Table 5). A sweep line is an imaginary vertical line which
is swept across the plane rightwards. The Q sweep-line sorts
the 8 in C L plane in increasing order of Q (the other two
works in a similar fashion). ADPaR-Exact sweeps the line
as it encounters strategies, in order to discretize the sweep.
At the beginning, each sweep-line points the k-th strategy
along Q, C, L, respectively. d’ is updated and contains the
current Q, C, L value i..e, d’.quality = Q, d’.cost = C, and
d’.latency = L. Cursor r points to the smallest of these three
values in R. Matrix M is updated to see what parameters of
which strategies are covered so far.

Research 1: Crowdsourcing and Visualization

At step-4, ADPaR-Exact checks if the current d” covers k
strategies or not. This involves reading through I and check-
ing if there exists k strategies such that for each strategy
s.quality < d’.quality and s.cost < d’.cost and s.latency <
d’.latency. If there are not k such strategies, it advances r to
the next position and resets d’ = {1, 1, 1} again.

If there are more than k strategies, the new d’, however,
does not ensure that it is the tightest one to optimize Equa-
tion 3. Therefore, ADPaR-Exact cannot halt. ADPaR-Exact
needs to check if there exists another d" that still covers k
strategies better than d’. This can indeed happen as we are
dealing with a 3-dimensional problem and these three values
in combination determine the objective function.

ADPaR-Exact takes a turn in considering the current val-
ues of each parameter based on d’, and creates a projec-
tion on the corresponding 2-D plane, for the fixed value of
the third parameter. Figure 4b shows an example in (Q, L)
plane for a fixed cost. It then considers all strategies whose
s.cost < d’.cost. After that, it finds the largest expansion
among the two parameters such that this new d covers k
strategies. This gives rise to three new deployment parame-
ters, dc dQ dL It chooses the best of these three and updates
d’. At this point, it checks if M has k strategies covered. If it
does, it stops processing and returns the new d’ and the k
strategies. If it does not, it advances the cursor r to the right.

Using Example 1, the alternative parameters are (0.75, 0.5,
0.28) for d, and s, s, s3 are returned.

LemMA 1. To cover k strategies, d’ needs to be initialized at
least to the k' smallest values on each paramete [33].

LEMMA 2. Going by the relaxation value and parameter
order of R and D, it ensures the tightest increase in the objective
function in ADPaR-Exact [33].

THEOREM 4. ADPaR-Exact produces an exact solution to the
ADPaR problem [33].

Running Time: Step-1 of Algorithm ADPaR-Exact takes
O(|S]). Step-2 and 3 are dominated by sorting time, which
takes O(|S| log|S|). Step-4 is the most time-consuming and
takes O(|S3|). Therefore, the overall running time of the
algorithm is cubic to the number of strategies.

5 EXPERIMENTAL EVALUATION

In our real-world deployments, we estimate worker availabil-
ity and demonstrate the need for optimization (Section 5.1).
In synthetic data experiments (Section 5.2), we present re-
sults to validate the qualitative and scalability aspects of our
algorithms.

5.1 Real Data Experiments

We perform two different real data experiments that involve
workers from AMT focusing on text editing tasks. The first

10

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Cost | Quality | Latency
S1 0 0 1
S2 0 0 1
s3 10 0 0
4|0 0 0

Table 2: matrix M

Cost | Quality | Latency
sp |03 0.05 0
sy | 0.05 | 0.13 0
s3 |0 0.3 0
sa |0 0.38 0

Table 3: Step 1

Relaxation R 0 0 0 0 |0 |O
Strategy Index I | 1 2 3 4 |3 |4
Parameter D L L L L |[C |C
Relaxation R 0.050.05]0.13|03]0.3]0.38
Strategy Index I | 1 2 2 1 13 |4
Parameter D Q C Q C |Q |Q

Table 4: Step 2

sweep-line(Q) | C, L plane | 0.05 | 0.13 | 0.3 | 0.38
s.cost 03 (0050 0
s.datency |0 0 0 0
Q, L plane | 0 0 0.05 | 0.3
s.quality 0.13 | 0.05
s.latency | 0 0 0 0
C,Qplane | 0 0 0 0
s.cost 03 (0050 0
s.quality | 0.05 | 0.13 | 0.3 | 0.38

Table 5: Step 3

sweep-line(C)

sweep-line(L)

experiments (Section 5.1.1) empirically validate key assump-
tions in designing StratRec. the second experiments (Sec-
tion 5.1.2) validate the effectiveness of StratRec when com-
pared to the case where no recommendation is made.

5.1.1 Validating Key Assumptions. We consider two types
of tasks: a) sentence translation (translating from English to
Hindi) and text creation (writing 4 to 5 sentences on some
topic) to validate the following questions:

1. Can worker availability be estimated and does it vary over
time? We performed 3 different deployments for each task.
The first deployment was done on the weekend (Friday 12am
to Monday 12am), the second deployment was done at the
beginning to the middle of the week (Monday to Thurs-
day), the last one is from the middle of the week until the
week-end (Thursday to Sunday). We design the HITs (Hu-
man Intelligence Tasks) in AMT such that each task needs to

Research 1: Crowdsourcing and Visualization

Algorithm 2 Algorithm ADPaR-Exact for alternative de-
ployment parameter recommendation

Require: S, k, W, d, k.
1: Compute relaxation values s.quality—d.quality, s.cost —
d.cost, s.latency — d.latency, Vs € S.
Compute R by sorting 3|S| numbers in increasing order.
Compute I and D accordingly.
Initialize M to all 0’s and d” = {1,1, 1}
Initialize Cursor r = R[0]
Sort (C L), (Q L), and (Q C) planes based on the Q, C, L
sweep-lines respectively.
7: x= k-th value in (C L), y= k-th value in (Q L), z= k-th
value in (Q C) plane
8: Update d’= {x,y, z}
9: r = minimum {x, y, z}
10: Update matrix M
11: if d’ covers > k strategies then
12: Compute the best d” better than d’ that covers k

AR AN B

strategies
13: if M covers k strategies then
14: d’ = d’ and return
15: if M covers < k strategies then
16: move r to the right

17: if d’ covers < k strategies then

18: Move r to the right

19: Update d”’s one of the parameters by consulting R
and D

20: go back to line 10

be undertaken by a maximum number of workers x. Worker
availability is computed as the ratio of x?’, where x’ is the
actual number of workers who undertook the task during the
deployment time (although this does not fully conform to our
formal worker availability definition, it is our sincere attempt
to quantify worker availability using public platforms).

2. How does worker availability impact deployment parame-
ters? We need to be able to calculate the quality, cost, and
latency, along with worker availability. Latency and cost
are easier to calculate, basically, it is the total amount of
money that was paid to workers and the total amount of
time the workers used to make edits in the document. Since
text editing tasks are knowledge-intensive, to compute the
quality of the crowd contributions, we ask a domain expert
to judge the quality completed tasks as a percentage. Once
worker availability, quality, cost, and latency are computed,
we perform curve fitting that has the best fit to the series of
data points.

3. How do deployment strategies impact different task types?
We deployed both types of text editing tasks using two differ-
ent deployment strategies SEQ-IND-CRO and SIM-COL-CRO
that were shown to be effective with more than 70% of quality

1

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Original Mary had a little lamb, little lamb, | Lavender’s blue, Rock-a-bye, baby, in
Text little lamb, dilly dilly, the treetop
Mary had a little lamb, its fleece Lavender’s green | When the wind blows,
was white as snow. When you are &i:ﬁi': k‘;\gt “r"Ck
Everywhere that Mary went, Mary | king, dilly dilly, breaks, the crz?dle wil
went, Mary went, I shall be queen fall
Everywhere that Mary went, the And down will come
lamb was sure to go. baby, cradle and all
Sequential ERE R e i AT Y AT, TF-T-aT, T, T H
-independe | wreft, fr= AT, WA AT, ST AT e, /1
nt- crowd Y TF T T A AT HET FTEIEE I
areft A, ST o T e §, | T T A e
2 y HATTRT =T,
off, ST o, il T A A
AT ot
simultaneo | &Y % TTE T FreT AT HHAT 4T, TiF-T-aT, AT, AErT
us- TS AT FAAT, AT A AT A=A, | FAAT AT AT, ST ZAT TR, A
collaborativ | #7T 3 WTH AT3T AT FHAT 4T, IHT | 124y A<y, gEELTEe 3T
e-crowd | % A% #1 avE HEF AT T F T ST FST FET AT @feAr
BT STE Y Al TE, TS HT AT 5 € AT ST AT
o o

Figure 5: Translation: Original Texts and Translation

score for short texts [5]. Since our effort here was to evaluate
the effectiveness of these two strategies considering qual-
ity, cost, and latency, we did not set values for deployment
parameters and we simply observed them through experi-
mentation.

Tasks and Deployment Design: We chose three popular
English nursery rhymes for sentence translation. Each rhyme
consisted of 4-5 lines that were to be translated from English
to Hindi (one such sample rhyme is shown in Figure 5). For
text creation, we considered three popular topics, Robert
Mueller Report, Notre Dame Cathedral, and 2019 Pulitzer prizes.
One sample text creation is shown in Figure 6.

We designed three deployment windows at different days
of the week. Unlike micro-tasks in AMT, text editing tasks
require significantly more time to complete (we allocated 2
hours per HIT). A HIT contains either 3 sentence translation
tasks or three text creation tasks as opposed to micro-tasks,
where a HIT may contain tens of tasks. For each task type, we
validated 2 deployment strategies - in SEQ-IND-CRO, workers
were to work in sequence and independently, whereas, in
SIM-COL-CRO, workers were asked to work simultaneously
and collaboratively. We created 2 different samples of the
same study resulting in a total of 8 HITs deployed inside the
same window. Each HIT was asked to be completed by 10
workers paid $2 each if the worker spent enough time (more
than 10 minutes). This way, a total of 80 unique workers
were hired for each deployment window, and a total of 240
workers were hired for all three deployments.

Worker Recruitment: For both task types, we recruited
workers with a HIT approval rate greater than 90%. For

Research 1: Crowdsourcing and Visualization

Strategy TOPIC TEXT

Robert
Mueller
report

The Mueller Report, formally titled the Report on the
Investigation into Russian Interference in the 2016 Presidential
Election, is the official report documenting the findings of the
Special Counsel investigation, led by Robert Mueller, info
Russian efforts to interfere in the 2016 United States
presidential election, allegations of conspiracy or coordination
between Donald Trump's presidential campaign and Russia,
and allegations of obstruction of justice. The report was
submitted to Attorney General William Barr on March 22, 2019.
This report addressed obstruction of justice, stating it "does not
conclude that the President committed a crime, [and] it also
does not exonerate him’.

Sequential -
independent-
crowd

Robert
Mueller
report

It was a report related to United States counterintelligence
investigation of the Russian government's efforts to interfere in
the 2016 presidential election. As of April 2019, thirty-four
indlividuals were indicted by Special Counsel investigators.
Eight have pled guilty to or been convicted of felonies,
including at least five Trump associates and campaign officials.
The report concluded that Russian interference in the 2016
presidential election did occur and "violated U.S. criminal law."

simultaneous -
collaborative-
crowd

Figure 6: Text Creation: Robert Mueller Report

Seq-IC

& Sim-CC

Worker Availability
)
[

OJ J-

Deployment-window

Figure 7: Worker Availability Estimation

sentence translation, we additionally filtered workers on ge-
ographic locations, either US or India. For text creation tasks,
we recruited US-based workers with a Bachelor’s degree.

Enabling collaboration: After workers were recruited
from AMT, they were directed to Google Docs where the
tasks were described and the workers were given instruc-
tions. The docs were set up in editing mode, so edits could
be monitored.

Experiment Design: An experiment is comprised of three
steps. In Step-1, all initially recruited workers went through
qualification tests. For text creation, a topic (Royal Wed-
ding) was provided and the workers were asked to write
5 sentences related to that topic. For sentence translation,
the qualification test comprised of 5 sample sentences to be
translated from English to Hindi. Completed qualification
tests were evaluated by domain experts and workers with
more than 80% or more qualification scores were retained

12

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

and invited to work on the actual HITs. In Step-2, actual HITs
were deployed for 72 hours and the workers were allotted 2
hours for the tasks. In Step-3, after 72 hours of deployment,
results were aggregated by domain experts to obtain a qual-
ity score. Cost and latency were easier to calculate directly
from the raw data.

Summary of Results: Our first observation is that
worker availability can be estimated and does vary over time
(standard error bars added). We observed that for both task
types, workers were more available during Window 2 (Monday-
Thursday), compared to the other two windows. Detailed
results are shown in Figure 7.

Our second observation is that each deployment param-
eter has a linear relationship with worker availability for text
editing tasks. Quality and cost increase linearly with worker
availability. Latency decreases with increasing worker avail-
ability. This linear relationship could be captured and the
parameters («, f§) could be estimated. Table 6 presents these
results and the estimated («,) always lie within 90% confi-
dence interval of the fitted line.

Our final observation is that SEQ-IND-CRO performs
better than SIM-COL-CRO for both task types. However, this
difference is not statistically significant. On the other hand,
SEQ-IND-CRO has higher latency. Upon further analysis, we
observe that when workers are asked to collaborate and edit
simultaneously, that gives rise to an edit war and an overall
poor quality. Figure 8 presents these results.

Worker Availability and Deployment Parameters
Task-Strategy Parameters | a,f
Quality 0.09, 0.85
Translation SEQ-IND-CRO | Cost 1.00,0.00
Latency —0.98,1.40
Quality 0.09,0.82
Translation SIM-COL-CRO | Cost 0.82,0.17
Latency —-0.63,1.01
Quality 0.10,0.80
Creation SEQ-IND-CRO Cost 1.00,0.00
Latency —1.56,2.04
Quality 0.19,0.70
Creation SIM-COL-CRO Cost 1.00, —0.00
Latency —1.38,1.81

Table 6: «, § Estimation

5.1.2 Validating the Effectiveness of StratRec. We are unable
to ask specific user (task designer’s) satisfaction questions
in this experiment, simply because AMT does not allow to
recruit additional task designers and only workers could
be recruited. For this purpose, we deploy 10 additional sen-
tence translation (translating nursery rhymes from English
to Hindi) and 10 additional text creation tasks considering a
set of 8 strategies.

Research 1: Crowdsourcing and Visualization

4 4

912 g12

£ £

§ 1] ; § 1 —
gos Sos _/

- - |

So6 —/ So6

13 Quality e € Quality e

c>,~0.4 Cost s §0.4 Cost s

= Latency - Latency

o2 o2

g6 06 08 09 1 1 876 06 08 09 1 1

Worker Availability Worker Availability

(a) Translation SEQ-IND-CRO (b) Translation SIM-COL-CRO

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

4 4

912 912

£ £

g’ = g! —
Sos - 5 (.5 p—

- + -

So6 So6

13 Quality e € Quality e

c>,~0.4 Cost s 30.4 Cost s

= Latency - Latency

o2 o2

g7 07 08 09 1 876 07 08 09 09 1

1 X
Worker Availability Worker Availability

(c) Creation SEQ-IND-CRO (d) Creation SIM-COL-CRO

Figure 8: Relationship Between Deployment Parameters and Worker Availability

Sentence Translation Text Creation
% %
80 80
0 0 I
60 60
50 " Quality | gp ¥ Quality
40] ¥ Cost 40] ¥ Cost
30 Latency | 30 Latency
20 20
A il - Emd A
0 0
StratRec Without StratRec StratRec Without StratRec

Figure 9: Average Quality, Cost, Latency Comparison of De-
ployments with and without StratRec

We create 2 mirror deployments for the same task (one
according to StratRec recommendation and the other with-
out) resulting in a total of 40 HITs deployed. For the latter
scenario, the deployments were not recommended any struc-
ture, organization, or style and the workers were given the
liberty to complete the task the way they preferred. Each
HIT was asked to be completed by 7 workers paid $2 each
if the worker spent enough time (more than 10 minutes).
This way, a total of 280 unique workers are hired during this
experiment. The quality, cost, and latency thresholds of each
deployment are set to be 70%, $14, 72 hours.

The worker recruitment, and the rest of the experiment
design, and result aggregation steps are akin to those steps
that are described in Section 5.1.1. Figure 9 represents the
average quality, cost, and latency results of these experiments
with statistical significance.

Summary of Results: We have two primary observa-
tions from these experiments. Our first observation is that
(Figure 9), when tasks are deployed considering recommen-
dation of StratRec, with statistical significance, they achieve
higher quality and lower latency, under the fixed cost thresh-
old on an average compared to the deployments that do not
consult StratRec. These results validate the effectiveness of
deployment recommendations of our proposed framework
and its algorithms.

13

Our second observation (upon further investigating the
Google Docs where the workers undertook tasks), is that the
deployments that do not consider StratRec recommendations
have more edits, compared to that are deployed considering
StratRec. In fact, on average, StratRec deployments have
an average of 3.45 edits for sentence translation, compared
to 6.25 edits on average for those deployed with no recom-
mendations. Indeed, when workers were not guided, they
repeatedly overrode each other’s contributions, giving rise
to an edit war.

5.2 Synthetic Experiments

We aim to evaluate the qualitative guarantees and the scala-
bility. Algorithms are implemented in Python 3.6 on Ubuntu
18.10. Intel Core i9 3.6 GHz CPU, 16GB of memory.

5.2.1 Implemented Algorithms. We describe different algo-
rithms that are implemented.

Batch Deployment Algorithms. Brute Force: An ex-
haustive algorithm which compares all possible combina-
tions of deployment requests and returns the one that opti-
mizes the objective function.

BaselineG: This algorithm sorts the deployment requests
in decreasing order of ‘% and greedily selects requests until
worker availability W is exhausted.

BatchStrat: Our proposed solution described in Section 3.

ADPaR Algorithms. ADPaRB: This is a brute force algo-
rithm that examines all sets of strategies of size k. It returns
the one that has the smallest distance to the task designer’s
original deployment parameters. While it returns the exact
answer, this algorithm takes exponential time to run.
Baseline2: This baseline algorithm is inspired by a related
work [24]. The main difference though, the related work
modifies the original deployment request by just one param-
eter at a time and is not optimization driven. In contrast,
ADPaR-Exact returns an alternative deployment request,
where multiple parameters may have to be modified.

Research 1: Crowdsourcing and Visualization

Baseline3: This one is designed by modifying space par-
titioning data structure R-Tree [3]. We treat each strategy
parameters as a point in a 3-D space and index them using an
R-Tree. Then, it scans the tree to find if there is a minimum
bounding box (MBB) that exactly contains k strategies. If so,
it returns the top-right corner of that MBB as the alternative
deployment parameters and corresponding k strategies. If
such an MBB does not exist, it will return the top right cor-
ner of another MBB that has at least k strategies and will
randomly return k strategies from there.

ADPaR-Exact: Our proposed solution in Section 4.

Summary of Results: Our simulation experiments high-
light the following findings: Observation 1: Our solution
BatchStrat returns exact answers for throughput optimiza-
tion, and the approximation factor for pay-off maximization
is always above 90%, significantly surpassing its theoretical
approximation factor of 1/2. Observation 2: Our solution
BatchStrat is highly scalable and takes less than a second to
handle millions of strategies, and hundreds of deployment re-
quests, and k. Observation 3: Our algorithm ADPaR-Exact
returns exact solutions to the ADPaR problem, and signifi-
cantly outperforms the two baseline solutions in objective
function value. Observation 4: ADPaR-Exact is scalable and
takes a few seconds to return alternative deployment param-
eters, even when the total number of strategies is large and
k is sizable.

5.2.2 Quality Experiment.

Batch Deployment Recommendation. Goal: We val-
idate the following two aspects: (i) how many deployment
requests BatchStrat can satisfy without invoking ADPaR?
(if) How does BatchStrat fare to optimize different platform-
centric goals? We compare BatchStrat with the other two
baselines, as appropriate.

Strategy Generation: The dimension values of a strategy
are generated considering uniform and normal distributions.
For the normal distribution, the mean and standard deviation
are set to 0.75 and 0.1, respectively. We randomly pick the
value from 0.5 to 1 for the uniform distribution.

Worker Availability: For a strategy, we generate a uni-
formly from an interval [0.5, 1]. Then, we set f = 1 — « to
make sure that the estimated worker availability W is within
[0, 1]. These numbers are generated in consistence with our
real data experiments.

Deployment Parameters: Once W is estimated, the qual-
ity, latency, and cost - i.e., the deployment parameters, are
generated in the interval [0.625, 1]. For each experiment, 10
deployment parameters are generated, and an average of 10
runs is presented in the results.

14

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Figure 10 shows the percentage of satisfied requests by
BatchStrat with varying k, m, |S|, W. In general, normal dis-
tribution performs better than uniform. Upon further analy-
sis, we realize that normal distribution has a very small stan-
dard deviation, and is thereby able to satisfy more requests.
As shown in Figure 10(a), the percentage of satisfied requests
decreases with increasing k, which is expected. Contrarily,
the effect of increasing batch size m is less pronounced. This
is because all requests use the same underlying distribution,
allowing BatchStrat to handle more of them. With more
strategies |S|, as Figure 10(c) illustrates, BatchStrat satisfies
more requests, which is natural, because with increasing
|S], it simply has more choices. Finally, in Figure 10(d), with
higher worker availability BatchStrat satisfies more requests.
By default, we set |S| = 10000, m = 10,k = 10, W = 0.5.

Figure 11 shows the results of throughput of BatchStrat
by varying k, m,|S|, compare with the two baselines. Fig-
ure 12 shows the approximation factor of BatchStrat and
BaselineG. BatchStrat achieves an approximation factor of
0.9 most of the time. For both experiments, the default values
are k = 10,m = 5,|S| = 30, W = 0.5 because brute force
does not scale beyond that.

Alternative Deployment Recommendation ADPaR.
The goal here is to measure the objective function. Since
ADPaRB takes exponential time, to be able to compare with
this, we set |S| = 20, k = 5, W = 0.5 for all the quality exper-
iments that has to compare with the brute force. Otherwise,
the default values are |S| = 200, k = 5.

In Figure 13, we vary |S| and k and plot the Euclidean
distance between d and d’ (smaller is better). Indeed, ADPaR-
Exact returns exact solution always. The other two baselines
perform significantly worse, while Baseline 3 is the worst.
That is indeed expected, because these two baselines are not
optimization guided, and does not satisfy our goal. Natu-
rally, the objective function decreases with increasing |S],
because more strategies mean smaller change in d’, making
the distance between d and d’ smaller. As the results depict,
optimal Euclidean distance between d and d’ increases with
increasing k, which is also intuitive, because, with higher k
value, the alternative deployment parameters are likely to
have more distance from the original ones.

5.2.3 Scalability Experiments. Our goal is to evaluate the
running time of our proposed solutions. Running time is
measured in seconds. We present a subset of results that are
representative.

Batch Deployment Recommendation. Since the BaselineG
has the same running time as that of BatchStrat (although
qualitatively inferior), we only compare the running time
between Brute Force and BatchStrat. The default setting
for |S|, k and W are 30, 10 and 0.75, respectively.

Research 1: Crowdsourcing and Visualization

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

212 212
Uniform mm Uniform s g 1 Uniform s g 1 Uniform mm
Normal mess Normal mes s Normal mess = Normal mess
=0.8
2
2o.6
o
0.4
w w w
e 10 100 1000 10000 R0:2 10 100 1000 10000 R0:2 10 100 1000 10000 R02755756 07 08 09
K m IS w
(a) Varying k (b) Varying m (c) Varying S (d) Varying W
Figure 10: Percentage of satisfied requests before invoking ADPaR
o o
3 3
214 =%
5 BruteForce mmmmm Sil.4 BruteForce mmmmm BruteForce mmmmm
51.2 Batch$trat — =1 BatchStrat s BatchStrat m
_g 1 BaselineG mmmm gl-z BaselineG BaselineG mmmm
508 51
£06 08
go4 o6
50-2 10 20 S 10 20 10 20
< K < m IS
(a) Varying k (b) Varying m (c) Varying S
Figure 11: Objective Function for Throughput
w22 £ 2® Brute M. g2t Brute mmm—
021 Brute mmmmm 955 Force mmmm Q 2 Force mmmm
> 0.994 2. >
© 2 Force mmmm © BatchStrat s © BatchStrat
29 0.951 BatchStrat mmm Q4 Q1.9
. el °
%2.3 %1.8
o o
2 g7
) S16
: 221 2
14 10 20 30 13
K ISl
(a) Varying k (b) Varying m (c) Varying S
Figure 12: Objective Function and Approximation Factor for Payoff
108, 10t 10t
- ADPaR-Exact mmmm. @ _ IADPaR-Exact mmmmm [T ADPaR-Exact mmm—m [OR ADPaR-Exact
2o Baseline2 mmmm. £ 1010l Baseline2 mm 2o Baseline2 mmmm 2 T1010 Baseline2 mmmm:
g Tl Baseline3 mmmm’ § T | Baseline3 mmmm R Baseline3 mmmm 8T . o Baseline3 mmmm
32 < 3 510 ADPaRE mmmm 86 B 510 ADPaRB. mmmm
T 5 10° © D5 108 To S5 108 :
5@105 ,géw §§ §§10’
2z B z10° Sz S z10°
S E (T E 52 52
gg10 ST 10 R S 910
- 3 T T T
107200 400 600 800 1000 10 20 30 10 20 30 40 50 5 10 15
IS 1| K K
(a) without Brute Force (b) with Brute Force (c) without Brute Force (d) with Brute Force
Figure 13: Quality Experiments for ADPaR
800
20.015| Bruteforce —— z ADPaR-Exact == 27 \DPaR-Exact ——
-Ex
g BatchStrat ——; £ 600 £ 1200
' 0.01 > >
£ £ 400 £ 800
g g g
000° s g 200 2 400
200 200 600 800 1000 5000 25000 15 50 250
m 1S| K

(a) Batch Deployment Varying m

(b) ADPaR Varying |S|

(c) ADPaR Varying k

Figure 14: Scalability Experiments

15

Research 1: Crowdsourcing and Visualization

The first observation we make is, clearly BatchStrat can
handle millions of strategies, several hundreds of batches,
and very large k and still takes only a few fractions of seconds
to run. It is easy to notice that the running time of this
problem only relies on the size of the batch m (or the number
of deployment requests), and not on k or S. As we can see
in Figure 14a, Brute Force takes exponential time with
increasing m, whereas BatchStrat scales linearly.

Alternative Deployment Recommendation. We vary k and
|S| with defaults set to 5 and 10000 respectively, and eval-
uate the running time of ADPaR-Exact. W is set to 0.5. As
Figures 14b and 14c attest, albeit non-linear, ADPaR-Exact
scales well with k and |S|. We do not present the baselines
as they are significantly inferior in quality.

6 RELATED WORK

Crowdsourcing Deployment: Till date, the burden is en-
tirely on the task requester to design appropriate deploy-
ment strategies that are consistent with the cost, latency,
and quality parameters of task deployment. A very few re-
lated works [1, 35] have started to study the importance
of appropriate deployment strategies but these works do
not propose an algorithmic solution and are limited to em-
pirical studies. A recent work [13] presents the results of
a 10-month deployment of a crowd-powered system that
uses a hybrid approach to fast recruitment of workers, called
Ignition. These results suggest a number of opportunities to
deploy work in the online job market.

Crowdsourcing Applications: A number of interactive
crowd-powered systems have been developed to solve diffi-
cult problems and develop applications [4, 7, 12, 18-20, 23, 28,
31]. For instance, Soylent uses the crowd to edit and proof-
read text [4]; Chorus recruits a group of workers to hold
sophisticated conversations [22]; and Legion allows a crowd
to interact with a Ul-control task [21]. A primary challenge
for such interactive systems is to decrease latency without
having to compromise with the quality. A comprehensive sur-
vey on different crowdsourcing applications could be found
at [34]. All crowd-powered systems share these challenges
and are likely to benefit from StratRec.

Query planning and Refinement: The closest analogy
of deployment strategy recommendation is recommending
the best query plan in relational databases, in which joins,
selections and projections could be combined any number
of times. Typical parametric query optimization problems,
like [15], only focus on one objective to optimize. Afterward,
multi-objective problems have been studied, with a focus on
optimizing multiple objectives at the same time [32]. Our
work borrows inspiration from that and studies the problem
in the deployment context, making the challenges unique
and different from traditional query planning.

16

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

Query reformulation has been widely studied in Informa-
tion Retrieval [11]. In [24], authors take users’ preference
into account and propose an interactive method for seeking
an alternative query which satisfies cardinality constraints.
This is different from ADPaR since it only relaxes one dimen-
sion at a time. Aris et al. [2] proposed a graph modification
method to recommend queries that maximize an overall util-
ity. Mottin et al. [25] develop an optimization framework
where solutions can only handle Boolean/categorical data.
Skyline and Skyband Queries: Skyline queries play an
essential role in computing favored answers from a data-
base [6, 8]. Based on the concepts of skylines, other classes
of queries arise, especially top-k queries and k-skyband prob-
lems which aim to bring more useful information than origi-
nal skylines. Mouratidis et al. [26, 27] study several related
problems. In [26], sliding windows are used to track the
records in dynamic stream rates. In [27], a geometry arrange-
ment method is proposed for top-k queries with uncertain
scoring functions. Because our problem seeks the optimal
group of k strategies, it is similar to the top-k queries problem.
However, unlike Skyband or any other related work, ADPaR
recommends alternative deployment parameters. Thus, these
solutions do not extend to solve ADPaR.

7 CONCLUSION

We propose an optimization-driven middle layer to recom-
mend deployment strategies. Our work addresses multi-faceted
modeling challenges through the generic design of modules
in StratRec that could be instantiated to optimize different
types of goals by accounting for worker availability. We de-
velop computationally-efficient algorithms and validate our
work with extensive real data and synthetic experiments.

This work opens up several important ongoing and future
research directions. As an ongoing investigation, we are de-
ploying additional types of tasks using StratRec to evaluate
its effectiveness. Our future investigation involves adapting
batch deployment to optimize additional criteria, such as
worker-centric goals, or to combine multiple goals inside
the same optimization function. Understanding the computa-
tional challenges of such an interactive system remains to be
explored. Finally, how to design StratRec for a fully dynamic
stream-like setting of incoming deployment requests, where
the deployment requests could be revoked, remains to be an
important open problem.

ACKNOWLEDGMENTS

The work of Dong Wei and Senjuti Basu Roy are supported by
the National Science Foundation, CAREER Award #1942913,
IIS #1814595, and by the Office of Naval Research Grant No:
N000141812838.

Research 1: Crowdsourcing and Visualization

REFERENCES

[1] BJ Allen et al. 2018. Design Crowdsourcing: The Impact on New

(8

[9
[10
[11
[12

(13

(14

(15

(16

(17

[18

[19

—

]

= =

]

—

]

=

[

— =

=

—

Product Performance of Sourcing Design Solutions from the Crowd.
Journal of Marketing (2018).

Aris Anagnostopoulos et al. 2010. An optimization framework for
query recommendation. (2010).

Norbert Beckmann et al. 1990. The R*-tree: an efficient and robust
access method for points and rectangles. In SIGMOD. Acm.

Michael S. Bernstein, Greg Little, Robert C. Miller, Bjérn Hartmann,
Mark S. Ackerman, David R. Karger, David Crowell, and Katrina
Panovich. 2010. Soylent: A Word Processor with a Crowd Inside.
In IN PROC UIST’10.

Ria Mae Borromeo et al. 2017. Deployment strategies for crowdsourc-
ing text creation. Information Systems (2017).

Stephan Borzsony et al. 2001. The skyline operator. In ICDE. IEEE.
Lydia B Chilton, Greg Little, Darren Edge, Daniel S Weld, and James A
Landay. 2013. Cascade: Crowdsourcing taxonomy creation. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1999-2008.

Jan Chomicki et al. 2013. Skyline queries, front and back. SIGMOD
(2013).

Mark De Berg et al. 1997. Computational geometry. In Computational
geometry. Springer.

Michael R Garey and David S Johnson. 2002. Computers and intractabil-
ity. wh freeman New York.

Susan Gauch et al. 1991. Search improvement via automatic query
reformulation. Technical Report. UNC Chapel Hill, Computer Science.
Benjamin M Good and Andrew I Su. 2013. Crowdsourcing for bioin-
formatics. Bioinformatics 29, 16 (2013), 1925-1933.

Ting-Hao Kenneth Huang and Jeffrey P Bigham. 2017. A 10-month-
long deployment study of on-demand recruiting for low-latency crowd-
sourcing. In Fifth AAAI Conference on Human Computation and Crowd-
sourcing.

Oscar H Ibarra et al. 1975. Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the ACM (JACM)
(1975).

Yannis E Ioannidis, Raymond T Ng, Kyuseok Shim, and Timos K Sellis.
1992. Parametric query optimization. In VLDB, Vol. 92. Citeseer, 103—
114.

Wen Jin et al. 2007. The multi-relational skyline operator. In ICDE.
IEEE.

Ouiame Ait El Kadi. [n.d.]. Exploring Crowdsourcing Deployment
Strategies through Recommendation and Iterative Refinement. MS
Research Report ([n. d.]).

Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E Kraut. 2011.
Crowdforge: Crowdsourcing complex work. In Proceedings of the 24th
annual ACM symposium on User interface software and technology.
ACM, 43-52.

Anand Kulkarni, Matthew Can, and Bjérn Hartmann. 2012. Collabo-
ratively crowdsourcing workflows with turkomatic. In Proceedings of

17

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

SIGMOD ’20, June 14-19, 2020, Portland, OR, USA

the acm 2012 conference on computer supported cooperative work. ACM,
1003-1012.

Anand P Kulkarni, Matthew Can, and Bjoern Hartmann. 2011. Turko-
matic: automatic recursive task and workflow design for mechanical
turk. In CHI'11 Extended Abstracts on Human Factors in Computing
Systems. ACM, 2053-2058.

Walter S Lasecki, Raja Kushalnagar, and Jeffrey P Bigham. 2014. Legion
scribe: real-time captioning by non-experts. In Proceedings of the 16th
international ACM SIGACCESS conference on Computers & accessibility.
ACM, 303-304.

Walter S Lasecki, Rachel Wesley, Jeffrey Nichols, Anand Kulkarni,
James F Allen, and Jeffrey P Bigham. 2013. Chorus: a crowd-powered
conversational assistant. In Proceedings of the 26th annual ACM sym-
posium on User interface software and technology. ACM, 151-162.
Christopher H Lin, Mausam Daniel, and S Weld. 2012. Dynamically
switching between synergistic workflows for crowdsourcing. In In Pro-
ceedings of the 26th AAAI Conference on Artificial Intelligence, AAAI'12.
Citeseer.

Chaitanya Mishra et al. 2009. Interactive query refinement. In EDBT.
ACM.

Davide Mottin et al. 2013. A probabilistic optimization framework for
the empty-answer problem. VLDB (2013).

Kyriakos Mouratidis et al. 2006. Continuous monitoring of top-k
queries over sliding windows. In SIGMOD. ACM.

Kyriakos Mouratidis and Bo Tang. 2018. Exact Processing of Uncertain
Top-k Queries in Multi-criteria Settings. PVLDB (2018).

Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan,
and Samuel Madden. 2014. Scaling up crowd-sourcing to very large
datasets: a case for active learning. Proceedings of the VLDB Endowment
8, 2 (2014), 125-136

Julien Pilourdault et al. 2017. Motivation-aware task assignment in
crowdsourcing. In EDBT.

Habibur Rahman et al. 2018. Optimized group formation for solving
collaborative tasks. The VLDB Journal (2018), 1-23.

Klaas-Jan Stol and Brian Fitzgerald. 2014. Two’s company, three’s
a crowd: a case study of crowdsourcing software development. In
Proceedings of the 36th International Conference on Software Engineering.
ACM, 187-198.

Immanuel Trummer and Christoph Koch. 2016. Multi-objective para-
metric query optimization. ACM SIGMOD Record 45, 1 (2016), 24-31.
Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia. 2020. Recom-
mending Deployment Strategies for Collaborative Tasks. arXiv preprint
arXiv:2003.06875 (2020).

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2011. A survey
of crowdsourcing systems. In 2011 IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing. IEEE, 766-773.

Haichao Zheng et al. 2011. Task design, motivation, and participa-
tion in crowdsourcing contests. International Journal of Electronic
Commerce (2011).

	Abstract
	1 Introduction
	2 Framework and Problem
	2.1 Data Model
	2.2 Illustration of StratRec
	2.3 Problem Definitions

	3 Deployment Recommendation
	3.1 Deployment Strategy Modeling
	3.2 Workforce Requirement Computation
	3.3 Optimization-Guided Batch Deployment

	4 ADPaR
	4.1 Algorithm ADPaR-Exact

	5 Experimental Evaluation
	5.1 Real Data Experiments
	5.2 Synthetic Experiments

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

