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Abstract 19 

The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the 20 

ocean. During the 87-day release, scientists used oceanographic tools to collect wellhead oil and gas 21 

samples, interrogate microbial community shifts and activities, and track the chemical composition of 22 

dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations 23 

studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role 24 

of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of 25 

combined oil, gas and dispersants on the flora and fauna of the deep-sea and the coastal environments. 26 

The multi-faceted, multi-disciplinary scientific response to the released oil, gas and dispersants 27 

culminated in better understanding of the environmental factors that influence the short- and long-term 28 
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fate and transport of oil in marine settings. In this Review, we summarize the unique aspects of the 29 

Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted 30 

from novel applications of emerging technologies. We end with an outlook on the applicability of these 31 

findings to possible future oil releases in future deep-sea drilling locations and newly-opened high-32 

latitude shipping lanes. 33 

Key points 34 

 The Deepwater Horizon disaster was the largest single accidental release of oil and gas to the 35 

ocean. Over 87 days, oil, gas and dispersants impacted 11,000 square kilometers of ocean surface 36 

and 2000 km of coastline.  37 

 Subsurface dispersant application was a unique characteristic of the DWH disaster. Empirical 38 

observations, laboratory data and modeling efforts offer conflicting conclusions as to whether 39 

dispersants reduced the sea surface expression of released oil.  40 

 The DWH disaster was the first environmental application of emerging systems biology tools 41 

based on microbial gene analysis. These tools included meta- and single-cell genomics, 42 

metatranscriptomics, microarrays, and stable-isotope probing enrichments. They provided 43 

unprecedented insights into the identity, structure, growth dynamics, succession, and overall 44 

response of microbial communities to oil, gas and dispersant substrates released to marine 45 

ecosystems. 46 

 Advanced analytical chemistry technologies including ultra-high resolution Fourier-transform 47 

ion cyclotron resonance mass spectrometry and comprehensive two-dimensional gas 48 

chromatography provided novel information regarding source oil composition, biodegradation, 49 

photochemical oxidation, water-column processes, accurate measurements of biomarkers, and 50 

identification of oil weathering products irrespective of boiling point. 51 

 The Gulf of Mexico coastline and deep ocean were contaminated with oil, gas and dispersants to 52 

differing degrees. In many cases, coastal ecosystems recovered as predicted from previous oil 53 

release studies, while in others, the disaster combined with other stressors to deleterious effect. 54 

Examination of the disaster’s impacts on the deep sea, and its ongoing recovery, continue. 55 

 Insights from the first decade of DWH-related research underscore the need for integrated 56 

analytical platforms and data synthesis to understand the complexities of the environmental 57 

responses to oil, gas and dispersant release. Although conclusions from the DWH disaster may 58 

not be fully applicable to the next spill, the spill science community should be ready to work 59 
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collaboratively across academia, industry and government during possible future oil releases in 60 

the deep sea and high latitudes.  61 

Table of contents summary  62 

The Deepwater Horizon disaster was the largest accidental discharge of oil into the environment, and 63 

was intensely studied during and after the event. In this Review, the subsequent advances made in oil 64 

chemistry, dispersant application, and microbiology are discussed.  65 
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[H1] Introduction  66 

The explosion of the Deepwater Horizon (DWH) drilling rig in the northern Gulf of Mexico on April 20, 67 

2010 caused the deaths of 11 crew members and marked the onset of an uncontrolled oil and natural gas 68 

release from the damaged Macondo Well, located 80 km off the coast of Louisiana in the United States’ 69 

(US) Bureau of Ocean Energy Management’s Mississippi Canyon lease block 252 (MC-252) at a water 70 

depth of 1,500 meters (Fig. 1). The well was finally capped on July 15, 2010, by a team of academic and 71 

industrial engineers. Over the 87-day period, the uncapped well released 5.3×1011 g of oil (defined as 72 

hydrocarbons with  6 carbons that are liquid at 1 atm; REF1) and 1.7×1011 g of natural gas (hydrocarbons 73 

with ≤ 5 carbons that are gases at 1 atm; REF1) at high pressure (1.5 ×104 kPa) into the overlying water 74 

column, leading to extensive dissolution of hydrocarbons in the deep sea2,3, referred to as the subsurface 75 

intrusion. The remainder of the hydrocarbons traveled to the sea surface, where 1.4-2.0×1011 g of 76 

the volatile compounds (≤ n-C16 compounds) evaporated into the atmosphere within 3-10 h of surfacing4-6 77 

and 3.3-3.6×1011g of the less-volatile compounds (> n-C16 compounds4-6) spread over 11 ± 5 ×103 km2 78 

(REF7), reaching a total of 2 ×103 km of coastline along five Gulf of Mexico states8 (Fig. 1). Approximately 79 

2-20% of the total released hydrocarbons were deposited on the seafloor9, primarily as oil residue. In 80 

response to the disaster, 2.9 ×106 and 4.1×106 L of chemical dispersants [G] were applied at the wellhead 81 

and to the sea surface, respectively10, in efforts to reduce surface oil slicks and sequester oil in the deep 82 

sea, more than any other known application in history. In total, the DWH spill was unprecedented by 83 

almost any metric of marine oil discharge disasters, including volume and scale of hydrocarbon release, 84 

depth of the discharge, and application of surface and sub-surface dispersants.  85 

The DWH disaster posed several scientific and logistical challenges, including where the oil and gas 86 

would travel after irruption from the wellhead, whether chemical dispersants could alter the oil and gas 87 

fate and transport without significant environmental impact and how affected ecosystems and their 88 

inhabitants—from the deep-sea to the coastal marshes— would respond to discharged oil and gas and 89 

the applied dispersants. The unique location (deep-sea) and oil-and-gas volume-spilled of this disaster 90 

rendered previous models and predictions of oil and gas fate poorly applicable, thus requiring a rapid 91 

shift in response planning and execution. Within weeks of the DWH explosion, researchers and 92 

responders realized that four zones would need to be examined for released oil, gas and dispersants: the 93 

subsurface where dissolved oxygen anomalies indicated a large intrusion of hydrocarbons was degraded 94 

by oxygen-consuming bacteria3,11,12; the surface where oil sheens and emulsions extended over 11,000 km2 95 
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(REF7); the atmosphere where volatilized oil and gas were rapidly transported away from the crippled oil 96 

rig13, and the sea floor, where oil might sink due to weathering or ballasting14,15.  97 

These overarching challenges required observing and sampling the earliest stages of the oil discharge, 98 

which is difficult as such disasters progress faster than most research can be mobilized16. Furthermore, 99 

these challenges could not be addressed with the standard technologies at the time, which were mostly 100 

prescribed by the Oil Pollution Act of 1990 (legislated partly in response to the 1989 Exxon Valdez spill) 101 

and were obsolete because academic research on oil spills had stagnated. Nevertheless, the scientific 102 

community responded quickly to the DWH disaster by altering field plans, and as a result, research 103 

expeditions in the Gulf of Mexico were the first to detect17,18 and map12,19 the subsurface intrusions of oil 104 

and gas travelling away from the wellhead. Academic and government scientists mobilized tools and 105 

techniques repurposed from basic science uses, such as those used when studying natural oil and gas 106 

seeps and the biogeochemical cycling of methane and other gases20-23 (Fig. 2). Oceanographic 107 

instrumentation was deployed to track and sample oil and gas flowing from the damaged well1 and to 108 

measure oil droplet sizes24 and dissolved low-molecular weight components within the subsurface 109 

plume19,25. During the DWH event, additional research expeditions collected surface and deep water to 110 

assess microbial community dynamics3,11, explore chemical transformations in oil and gas components2 111 

and track the fate of chemical dispersants26. Government scientists at the US National Oceanic and 112 

Atmospheric Administration (NOAA) mobilized overflights to assess air quality and hydrocarbons that 113 

had volatilized to the atmosphere13. While early analyses of these samples and the follow-up field, 114 

laboratory and modelling studies were funded initially by a combination of BP, the US National Science 115 

Foundation (NSF; “RAPID” grants), the US Department of Energy (DOE) and the US National Oceanic 116 

and Atmospheric Administration (NOAA), BP and other responsible parties paid $19 billion US towards 117 

post-disaster research and recovery27, including $500M for the Gulf of Mexico Research Initiative 118 

(GoMRI). Scientific investigation following the DWH disaster has collectively culminated in over 5000 119 

publications to date (January 2020, based on Google Scholar search with “Deepwater Horizon” and “oil 120 

spill”), with research still ongoing. The breadth and diversity of scientific inquiry into the DWH disaster 121 

enabled significant advances in oil chemistry and microbiology, but also shifted perceptions in these 122 

fields about the knowledge gained from integration of complementary datasets to understand the 123 

complexity of environmental perturbations.  124 

In this Review, scientific questions raised by and results from the DWH disaster are discussed, with a 125 

focus on the chemical and microbiological aspects of the disaster and ongoing recovery. The irruption, 126 
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dissolution, and microbial degradation of oil and gas in the deep-sea, which is inaccessible to typical oil 127 

response procedures3,5,12,19, are detailed. We then explore the impact of subsurface dispersant applications 128 

on oil composition, the extent of hydrocarbon biodegradation and deep-water ecosystems, which were 129 

previously unpredictable because prior usage was solely on the sea surface. Finally, we review 130 

environmental factors that led to extensive weathering of the oil and gas over the 87-day duration of the 131 

discharge, the broader environmental impacts of the spill, and future directions for oil disaster science.  132 

[H1]  Subsurface oil, gas and dispersants 133 

During a deep-sea oil well blowout like the DWH disaster, 100°C hydrocarbon gas and oil irrupts at high 134 

pressure into 4°C water1. Components of the released oil and gas follow different paths from the 135 

wellhead, with some rising to the surface, and the remainder forming a deep-sea intrusion of oil and gas 136 

at 1100 m water depth due to natural buoyancy17,19. Predicting the partitioning of irrupted oil and gas 137 

between the subsurface intrusion layer and the sea surface is very difficult, as the distance and speed of 138 

the transport depends on the physical properties of the surrounding seawater (which were known), the 139 

oil-to-gas ratio and flow dynamics at the release point, and oil composition, droplet size, and buoyancy. 140 

Existing models of oil droplet size distribution were based on surface water models and lab experiments, 141 

and thus did not reflect deep-sea conditions; as a result, in situ observations were needed to constrain the 142 

oil’s fate. In one example, holographic imaging equipment developed for studying the morphologies and 143 

distributions of marine micro- and mesozooplankton (the Video Plankton Recorder and the Holocam28-30) 144 

was adapted. Starting in early June (approximately six weeks after the DWH well blowout), oil droplets 145 

and plankton at depth were successfully imaged with this equipment a few km away from the Macondo 146 

well24,30,31, providing oil droplet size distribution data that was previously unattainable and highlighting a 147 

technology that can be used in future deep-sea spills27. Imaging data did not capture the oil droplet size 148 

distribution at the wellhead, and thus subsequent modeling32,33 and laboratory34,35 efforts have focused on 149 

understanding the role of oil-to-gas ratio, source geometry conditions and dispersant application on 150 

release trajectories and droplet-size distributions.  151 

Oil droplets can be categorized into three size categories, each with different buoyancies, but with 152 

overlapping chemical compositions5. The largest oil droplets (greater than 0.3 mm diameter) exhibited 153 

sufficient buoyancy to rise to the ocean surface, with rise times below four hours5, transporting a mixture 154 

of soluble and insoluble compounds to the sea surface where some volatilized into the atmosphere13,36 155 

(Fig. 3). The medium-sized droplets (0.1 – 0.3 mm) ascended more slowly (rise times below 10 hrs), and 156 
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their composition was very sensitive to initial oil composition and release dynamics. For example, 157 

moderately soluble hydrocarbons such as toluene, xylene, naphthalene and (methyl)cyclopentane 158 

partitioned to the aqueous phase from all droplet sizes as a function of the droplet exposure time and 159 

surface area-to-volume ratio, as well as their relative concentration in the source oil5. In contrast, the 160 

smallest droplets (smaller than 0.1 mm) and soluble gases (methane, ethane, propane) lacked the 161 

buoyancy to rise after being emplaced in deep-sea intrusions, although the degree of hydrocarbon 162 

dissolution could not be measured due to challenges in separating oil droplets from the surrounding 163 

waters5. The bulk of the released oil and gas (by mass) was retained in the deep-sea intrusions because of 164 

the relatively high proportion of gases in the DHW irruption. However, reducing the sea surface 165 

expression of released oil was a high priority during DWH mitigation efforts and thus responders were 166 

motivated to disrupt the larger, faster-rising size classes of oil droplets into small droplets that would 167 

remain in the deep-sea. At the same time, reducing droplet sizes and maximizing dissolution should 168 

make oil and gas more accessible to microbial degradation37.  169 

Chemical dispersants were used by the DWH disaster responders to decrease the size of oil droplets37. 170 

Dispersants (such as Corexit 9500, the primary formulation used in the DWH disaster) are a mixture of 171 

nonionic surfactants (~30% Tween and Span surfactants), an anionic surfactant (~20% dioctyl sodium 172 

sulfosuccinate or DOSS) and solvent carriers (~50% petroleum distillates38). However, prior to the DWH 173 

disaster, dispersants had been applied only to surface oil spills37 with their use determined by wind 174 

speed, wave height, and oil age and composition. Dispersants were used on the sea surface during the 175 

DWH disaster, but they were also applied directly at the wellhead in the first deep-sea dispersant 176 

application. The fate of these added dispersants was a public and scientific concern; after all, 7×106 L 177 

dispersant were added to the deep-sea with unknown consequences. Because dispersants are a complex 178 

mixture, specific components had to be analyzed separately to ascertain the lability and persistence of the 179 

dispersants during and after the spill. After the disaster, DOSS was used to track the fate of the deep-sea 180 

dispersants because it comprised a large and relatively constant fraction of Corexit and other dispersant 181 

formulations and it was amenable to existing analytical protocols. Samples taken during and a few 182 

months after the spill indicated that DOSS persisted in the subsurface intrusion and was not degraded26, 183 

contrary to expectations based on laboratory experiments performed at surface conditions39. These data 184 

suggest that the chemical dispersants were not degraded appreciably in the deep sea in the aftermath of 185 

the DWH disaster. Subsequent laboratory work showed that DOSS was less labile than the solvent 186 

carriers in the dispersants under deep-sea conditions39, and others have found minimal degradation of 187 
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DOSS at low temperatures40. Other surfactant components have been more challenging to detect and 188 

quantify due to their isomeric diversity and amphiphilic [G] properties41, but recent studies have shown 189 

that these components were present in the subsurface intrusion layers (typically below 15 μg/L42) and are 190 

degraded at deep-sea (4°C) temperatures43.  191 

Once it appeared that deep-sea dispersants were retained in the subsurface intrusion, the primary 192 

question was whether this intervention had indeed shifted the oil-droplet size distributions as intended. 193 

Unfortunately, empirical observations, laboratory data and modeling efforts offer conflicting conclusions 194 

as to the efficacy of the dispersants in this regard. Operational tests during the DWH disaster noted oil 195 

reduction at the sea surface during “on/off” experiments44. Modeling results are equivocal on whether 196 

dispersants entrained additional oil and gas into the subsurface intrusion layers, with one group arguing 197 

that they did4 and another arguing that they did not32,33. The inconsistency of the modeling results may be 198 

due to the challenges of accurately parameterizing the complex physics of the outflow at the wellhead, 199 

including the impacts of initial droplet size distribution, churn flow45, source pressure, orifice geometry, 200 

and dispersant applicator type. Nevertheless, dispersant addition in the subsea appeared to impact sea 201 

surface expression, fulfilling the first motivation of the response teams. Whether dispersants shifted the 202 

droplet size distribution or enhanced oil degradation in the subsurface intrusion layer remains a matter of 203 

debate.  204 

 [H1]  Microbial degradation of oil, gas and dispersants 205 

During and after the DWH disaster, most microbiology research focused on the subsurface intrusion 206 

layer because of its novelty. Comparatively little data was collected on the microbes responding to oil in 207 

surface waters in part because microbial degradation was a minor loss term, relative to the natural 208 

processes of evaporation and photochemical weathering46 and the responder oil mitigation efforts of 209 

skimming and burning. The surface Gulf of Mexico has low concentrations of nutrients which prevented 210 

bloom formation, although some biodegradation was observed during the spill47. Limited data indicated 211 

an enrichment of Cycloclasticus, with minor contributions from organisms including Alteromonas, 212 

Colwellia, and Pseudoalteromonas in the surface slick48. Enrichments showed that Cycloclasticus and 213 

Colwellia were dominant phenanthrene-degraders, whereas Alteromonas dominated the naphthalene-214 

degrading community49,50. Some of these organisms were observed in pre-DWH studies in surface Gulf 215 

waters51,52.  216 
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Unlike surface waters, nutrients are abundant at depth in the Gulf of Mexico, setting the stage for 217 

microbial blooms driven by the entrainment of hydrocarbon substrates defining the subsurface intrusion 218 

layers. Microbial degradation was the only option available for oil mitigation in this environment because 219 

perpetual darkness prevents photo-oxidation [G], and meaningful recovery of dilute oil from depth is 220 

technically infeasible. The sudden influx of oil, gas, and dispersants enriched a community of 221 

hydrocarbon-degrading organisms11, the composition of which was influenced by the physical forms and 222 

chemical composition of the oil-gas-dispersant mixtures. As the hydrocarbon composition in droplets and 223 

dissolved phases changed53, different microbes bloomed54,55 following the succession pattern of 224 

Oceanspirillales - Colwellia - Cycloclasticus - Methylophaga and Methylococcaceae - Flavobacteriaceae and 225 

Rhodobacteriaceae11,54,55 (Fig. 4). This succession was captured in groundbreaking detail through the first 226 

effective application of combined systems biology tools to an environmental event, something was 227 

previously prohibitively expensive and computationally unfeasible56. The use of metagenomics [G], 228 

metatranscriptomics, [G] and other molecular biology tools on hundreds of samples offered a view into 229 

the response of the hydrocarbon-degrading microbial community to released oil and gas over 230 

environmentally relevant spatial (meters to kilometers) and temporal (days to weeks) scales56. 231 

In addition to enabling the rapid assessment of the identities of the responding microorganisms, the 232 

biological data (including stable isotope probing [G], or SIP) provided insight into the microbial potential 233 

for degradation of hydrocarbons in the hydrocarbon-contaminated deep sea (reviewed in REF52). Field-234 

based microbial community composition assessments11 combined with metagenomics57 and 235 

transcriptome microarray data11 noted a rapid enrichment of Oceanospirillales spp. (Gamma-236 

proteobacteria) within the subsurface intrusion. These organisms were the first to bloom and likely 237 

degraded highly labile n-alkanes and cycloalkanes57, based on metabolic potential reconstructed from 238 

DNA sequences within field populations (metagenomes and single-cell amplified genomes)57 and 239 

incubations with 13C-naphthalene49.  Similarly, SIP incubations and single cell-amplified genome data 240 

suggested that Cycloclasticus and Colwellia degraded the dissolved gases, propane and ethane58,59, and 241 

Marinobacter and Alcanivorax degraded n-hexadecane49,50. Cycloclasticus populations likely also 242 

mineralized less labile hydrocarbons, such as the aromatic compounds of benzene, toluene, ethylbenzene, 243 

and xylenes (BTEX)58, based on the presence of genes encoding aromatic hydrocarbon degradation in SIP 244 

incubations with 13C-benzene. Lastly, Cycloclasticus collected from the deep sea contained the genetic 245 

potential for various divergent monooxygenases, which are enzymes that oxidize alkyl functional groups 246 

on hydrocarbons59, and expressed those genes at high abundance in DWH-contaminated waters60.  247 



 10 

By late May and early June 2010, genes for methane oxidation were enriched in the subsurface intrusion, 248 

suggesting an increase in methane- and methyl-degrading bacteria, such as Methylomonas, Methylococcus, 249 

and Methylophaga, in the subsurface intrusions2,55,60,61. Finally, in late August and September 2010, bacterial 250 

clades with scavenging members such as Flavobacteriaceae and Rhodobacteriaceae bloomed in the 251 

subsurface intrusion, with likely roles in degrading residual hydrocarbons and complex organic matter 252 

released by earlier microbial blooms55. The increase in transcript abundance was also higher than the 253 

relative increase in bacterial cell numbers (factor of 2-3 cell number increase in subsurface intrusion 254 

samples versus unaffected samples11), suggesting a broad ability of indigenous deep-sea Gulf of Mexico 255 

bacteria to degrade hydrocarbons. In total, few bacteria were inhibited by the presence of oil and gas 256 

(~5% of taxa showed decreased transcript expression in the intrusion layer relative to uncontaminated 257 

samples60) and many common non-hydrocarbon degrading deep-sea bacteria, such as SAR11, did not 258 

respond to the oil, gas, or dispersants62.   259 

The metabolic map and succession of hydrocarbon-degrading communities described above was 260 

developed with gene-based analyses, including meta- and single-cell genomics, metatranscriptomics, and 261 

microarrays. These tools were applied to field samples, stable-isotope probing enrichments, and cultured 262 

isolates. Converting these data to rates of hydrocarbon degradation, however, is not straightforward. 263 

Instantaneous rate measurements were possible for selected DWH components, most notably 264 

methane3,60,63, the largest component by mass1, but most substrate degradation rates remain unknown64.  265 

Rate assays with chemical monitoring of substrates are challenging experiments, particularly when 266 

microbial consortia (rather than monocultures) work synergistically to degrade released oil and gas, and 267 

when the hydrocarbon substrates are present in complex mixtures, rather than in single additions. 268 

Selecting microbes65 (or groups of microbes) and their substrates66 (or groups of substrates) is fraught 269 

with potential artifacts; yet these experiments are critically needed to support predictive modeling of oil 270 

degradation under different environmental scenarios. While indirect geochemical referencing provided 271 

long-term degradation rates for some compounds67, a fundamental challenge for future oil spills will be 272 

to connect the intricacy of hydrocarbon-degrading metabolism, inferred from gene-based data, with the 273 

complexity of the petroleum substrate.  274 

The addition of chemical dispersants like Corexit 9500 impacted the response of the microbial community 275 

to the DWH disaster, though the type and magnitude of the impact is unresolved27, and the effects of the 276 

dispersants depend on the specific oil compounds and on the bacterial species present68-71. Current 277 

evidence indicates that the dispersant Corexit 9500 is effective at decreasing oil droplet size, leading to 278 
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increased microbial degradation of hydrocarbons relative to untreated oil, especially at higher 279 

temperatures (such as 25°C) and/or when oil concentrations are in the low to sub-ppm range40,72-76. 280 

Investigators established mesocosms with uncontaminated deep Gulf seawater to explore the microbial 281 

responses to oil, Corexit or both additions. Colwellia spp. were likely consumers of ethane and propane58, 282 

but were also enriched with oil and dispersed oil treatments, and dominated flocs, in mesocosms39. Other 283 

mesocosms reported enrichment of Colwellia spp. within Corexit 9500 and dispersed oil treatments, but 284 

not in oil-only treatments, where Marinobacter spp. were enriched instead66. This evidence is consistent 285 

with results from dispersed oil enrichments yielding Colwellia spp. strain RC254, an isolate that could 286 

degrade DOSS and oil in pure culture39,68. However, the initial microbial community influenced 287 

enrichment outcomes. Mesocosms using surface water GOM inocula containing mostly Vibrio spp. did 288 

not enrich Colwellia spp. with Corexit or dispersed oil73. Mesocosms in the same study using a deep GOM 289 

water column community inoculum for Corexit 9500-only enrichments saw a marked increase in Colwellia 290 

activity and an increase in Winogradskyella spp. abundance73. When similar experiments were repeated 291 

with other inocula and alternative oil sources, Marinobacter spp., Alcanivorax spp., Cycloclasticus spp., and 292 

Alteromonas spp. 72,77,78 were enriched in treatments with Corexit 9500 or dispersed oil. Regardless of the 293 

specific organisms enriched, many of these mesocosm experiments showed distinct and repeatable 294 

differences between microbial responses to oil and dispersed oil, suggesting phylogenetic or metabolic 295 

differences manifesting between the two substrate mixtures.  296 

Some incubation studies showed enhanced oil degradation40,73 with Corexit while others observed no 297 

enhancement74,75 or suppressed66 hydrocarbon biodegradation in the presence of Corexit (reviewed in 298 

REF79). Where enhanced biodegradation occurred, degradation followed the typical pattern in which 299 

lower molecular weight hydrocarbons, and those in more labile forms like alkanes, were preferentially 300 

degraded relative to larger molecules or those with aromatic structures such as polycyclic aromatic 301 

hydrocarbons (PAHs)67. Thus, while Corexit 9500 can sometimes improve biodegradation at low oil 302 

concentrations and/or higher temperatures, it has a range of effects that include inhibition of 303 

biodegradation, at least in limited laboratory studies. Such experiments are challenging to design and 304 

interpret due to the uncertainties associated with complex initial microbial communities, disparate oil 305 

sources, the physical form of the oil and dispersants, and the difficulty of mimicking partitioning and 306 

dilution that occur in the environment. Nevertheless, the release of oil and dispersant chemicals applied 307 

during the DWH disaster provided an opportunity to link basic microbial concepts with the real-world 308 

complexity of marine ecosystems, providing insight to the interplay of petroleum’s physical and chemical 309 
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behavior with seed populations, metabolic specificity, nutrient availability and growth dynamics, and 310 

interaction with the non-microbial components of the deep-sea ecosystems.  311 

[H1]  Oil weathering at the sea surface  312 

Oil is an exceedingly complex mixture, comprised of millions of compounds containing primarily carbon 313 

and hydrogen, and sometimes oxygen, nitrogen and sulfur1 (Figure 5). Each of these molecules has 314 

different physical-chemical properties and reactivities towards light and biology, and on the ocean 315 

surface, they are subjected to environmental weathering processes, including evaporation, dissolution, 316 

biodegradation, and photo-oxidation5. Weathering physically fractionates the initial oil composition 317 

between phases (such as oil residue, water, and air) and chemically alters the original oil molecules1,80-83. 318 

Evaporation from the sea surface removes low-boiling (“light”) compounds, whereas dissolution 319 

removes remaining 1-3 ring aromatics with few alkyl groups81,84 and highly polar species, such as 320 

naphthenic acids and alcohols85; however the extent of one process over the other depends on the the 321 

physical-chemical properties of each compound. Prior to the DWH disaster, few studies (e.g., REF86) were 322 

able to comprehensively apportion the relative importance of these processes due to under-sampling in 323 

time and space, and analytical barriers to assess compositional differences between oil types87. The oil 324 

released during the disaster was a light crude oil dominated by saturated hydrocarbons1 [G] (~74%) and 325 

as a result, up to 60% of its mass was lost to evaporation within hours to days of surfacing81. Due to the 326 

subsurface oil release, though, dissolution played a larger role in the DWH disaster than in prior surface 327 

spills where evaporation was dominant88. The physical changes and mass losses resulting from 328 

evaporation and dissolution increases the viscosity of the remaining oil and the relative proportion of 329 

surfactants present89,90. The enrichment of these naturally-occurring surfactants, and the physical mixing 330 

of seawater into oil, can lead to emulsion formation. During the DWH disaster, thick emulsions were 331 

formed from the oil that reached the sea surface, hampering oil recovery efforts and resisting most 332 

microbial degradation47,91,92.  333 

However, the observed emulsions (also referred to as mousses) did not form solely from the result of oil-334 

derived surfactants or mass loss. They were also due to in situ photo-chemical changes, which modified 335 

some oil components to products with more oxygen and increased surfactant-like properties (that is, they 336 

were interfacially active and displayed both oil and water partial solubility)93-96. Specifically, photo-337 

oxidative weathering97-99, the dominant weathering process acting on DWH surface oil46,80, increased the 338 

oxygen content of surface oil80,83,100 and added ketone, hydroxyl, and carboxylic acid functionalized 339 
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(singly and in combination) hydrocarbons that were either lost to the air36 or remained on the sea 340 

surface101. The weathering changed the surface oil’s physical properties, and reduced the effectiveness of 341 

surface-applied dispersants to <45% at 2-4 days transit time on surface91. Further oxidation of 342 

interfacially-active molecules yielded water soluble species that move from the oil into seawater as photo-343 

solubilized bioavailable carbon102.  Indeed, as determined through ultrahigh resolution mass 344 

spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry; FT-ICR MS) , elemental 345 

assignments for tens-of-thousands of molecules within each crude oil fraction (oil-soluble non-346 

interfacially active, oil-soluble interfacially active, and water soluble) indicate that (decreasing) carbon 347 

and (increasing) oxygen number determined the progression of molecules from oil-soluble to water-348 

soluble103. Both the oil- and water-soluble photo-transformed species span aliphatic to highly aromatic 349 

structures80,101, indicating that these products originate from both aliphatic and aromatic hydrocarbon 350 

precursors104. This suggests that both direct and indirect photo-oxidation contribute to the generation of 351 

transformation products.   352 

The use of novel analytical chemistry technologies developed in academic settings enabled detailed 353 

quantitative estimation of photochemical oxygenation100,104 and exploration of photochemical mechanisms 354 

and rates46,91,105 unattainable during previous oil disasters, such as the Exxon Valdez spill. In parallel, 355 

advanced characterization of the molecules within the emulsions provided new insights into remediation 356 

efforts aimed at these compound types103.  Ultra-high resolution FT-ICR MS equipped with ionization 357 

sources, such as electrospray-ionization (ESI) or atmospheric pressure photoionization (APPI) allowed 358 

researchers to analyze oil (and oil weathering products) irrespective of boiling point.  Thus, it provided 359 

access to important molecular information on the changes induced by weathering for oil, interfacially 360 

active species, and ultimately water soluble compounds that affect the fate, transport, toxicity, and 361 

viscosity of surface oil80,83,102,106,107. 362 

Similarly, comprehensive two-dimensional gas chromatography (GCxGC) increased the chemical 363 

resolution, assessment of chemical ordering, and capacity to model weathering processes achievable 364 

through GC analyses, giving new understanding into source oil composition, biodegradation, 365 

photochemical oxidation, water-column processes, and accurate measurements of biomarkers104,108-366 

111.  These research efforts advanced the collective understanding of weathering and its effect on the initial 367 

oil composition, which previously was characterized by conventional gas chromatography (GC)-based 368 

techniques. The GCxGC approach is now scientifically mature and is used to examine changes in the 369 

abundance of compounds and/or compound classes in the parent oil, which are then ascribed to various 370 
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categories of physical and chemical weathering84,87,88,109,110,112-117. However, even with the expanded 371 

compositional information104 through GCxGC, GC-based techniques are unable to detect many oxidative 372 

transformation products, notably those that are highly oxidized with boiling points outside of the GC 373 

range118.  374 

Although predicting the fate of discharged oil is extremely challenging on a molecular level and requires 375 

knowledge of the original oil composition, new technologies facilitated substantial advances during the 376 

DWH disaster. The complexity of oil requires a suite of analytical tools to comprehensively explore the 377 

weathering mechanisms and products. In addition to the GC-based and FT-ICR MS tools highlighted 378 

here, thin-layer chromatography flame-ionization detection (TLC-FID)100 and Fourier transform infrared 379 

spectroscopy (FT-IR)119 provided quantitative and informative estimates of functional group changes 380 

from weathering processes. Together, this suite of technologies provided a greater understanding of the 381 

reaction mechanisms and impacts of weathering processes such as photo-oxidation and the identity of its 382 

transformation products, as well as their impacts on physical properties, bioavailability and toxicity of 383 

the discharged oil. This expanded understanding, combined with application of complementary 384 

analytical platforms, will inform real-time responses in future oil spills.  385 

[H1]  Broader environmental impacts 386 

The magnitude and duration of the Deepwater Horizon event, as well as its occurrence at depth, led to 387 

impacts over a wide area that encompassed different types of ecosystems (Fig. 6). Coastal marshes and 388 

beaches received oil washed ashore from the oil well discharge approximately 80 km away, while deep-389 

sea sediments120 and corals121 received fallout oil from the surface and intrusion layers in the form of oil-390 

associated detritus and mineral aggregates. Pelagic fish and cetaceans swam through surface and deep-391 

sea oil, and thus were exposed to the oil, gas and dispersant mixtures present in these areas122-124.  While 392 

the general impacts of oil on coastal organisms and environments were known prior to the DWH 393 

disaster125, the duration, magnitude, and scope of the discharge posed challenges to assessing the overall 394 

impact and recovery, particularly in the deep-sea where baseline studies are rare to nonexistent. In many 395 

cases, the ecosystems recovered as predicted from previous oil discharge studies, while in others, the oil 396 

discharge combined with other stressors to cause larger impacts than expected121,126,127. 397 

Oil contaminated over 2000 km of Gulf Coast shoreline, half of which was located in Louisiana8. The 398 

oiling was patchy in both quantity and location, and impacted predominantly marsh ecosystems128 and 399 

beaches129. For marshes, instances of heavy oiling (such as seen in Barataria Bay, LA) led to substantial 400 
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grass die-off at the marsh edge and subsequent enhanced shoreline erosion127 led to permanent damage to 401 

the marshes. In marshes that were less oiled, grass re-growth was evident after two years128. On oiled 402 

beaches, oil-contaminated sands hosted blooms of hydrocarbon-degrading bacteria (such Alcanivorax, a 403 

genus within the Oceanspirallales130, and Candidatus Macondimonas diazotrophica131) within days of 404 

oiling, followed by a succession to bacteria (such as Rhodobacteriaceae) that likely degraded more 405 

recalcitrant oil compounds over the course of the disaster130. Despite the removal of large quantities of 406 

oiled materials during the response phase132, oiled sand patties were found years after the spill on 407 

beaches in the states of Florida, Alabama, Mississippi and Louisiana100,133. Many of these oil-sand patties 408 

are impervious to water and have few nutrients, thus they are not effectively degraded by bacteria134. 409 

However, other than being unsightly, no significant problems or concerns have been identified with these 410 

oil residues, although for unknown reasons, the pathogen Vibrio vulnificus was enriched on these ‘tar 411 

balls’ compared to sand and seawater135. Continued monitoring of the oil content in marshes and beaches 412 

is necessary to understand long-term impacts and recovery of these ecosystems to pre-DWH conditions. 413 

Compared to the relatively well-understood nearshore ecosystems, the impact of oil from DWH on the 414 

deep-sea was unprecedented and unknown136. A unique aspect of the DWH disaster was the observation 415 

of significant flocculated material in sediments near the site of the blowout. This material was determined 416 

to be aggregates of phytoplankton detritus, mineral aggregates, and microbial extracellular polymeric 417 

substances (EPS), commonly referred to as “marine snow”. During the DWH disaster, marine snow 418 

captured oil and then sank to the seafloor, transporting oil through the water column in a transport 419 

process dubbed Marine Oil Snow Sedimentation and Flocculent Accumulation, or MOSSFA137-139. Surface 420 

dispersant applications appear to enhance floc [G] formation in experimental systems39,66,140,141 due to 421 

interactions of EPS and dispersants that form quickly-sedimenting material142.  MOSSFA-derived oil on 422 

the seafloor is estimated to be between 0.5-14% of the total oil released14,15, and two regions of the sea 423 

floor with heavy marine oil snow suggest that the spatial extent of MOSSFA deposition is between 12,805 424 

and 35,425 km2 (REF143). Sediment microbial communities responded to the influx of hydrocarbons to the 425 

seafloor, including the enrichment of Colwellia and uncultured gamma-proteobacterial strains that were 426 

similar to strains observed in the subsurface intrusion layer144. In heavily-oiled sediments, genes from 427 

anaerobic microbes such as Desulfovibrionales, Desulfomonodales, and Desulfobacterales in the 428 

Deltaproteobacteria145 and from anaerobic metabolism such as denitrification [G] 144 were observed. Even 429 

after 4 years, significant oil residue was still present in sediments within 40km of the DWH blowout, with 430 

biodegradation most inhibited in concentrated seafloor oil deposits67.   431 
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Sedimented oil harmed deep-sea benthic organisms, causing decreases in sediment macro- and 432 

meiofauna diversity120,146 and high mortality rates of benthic foraminifera147,148. Coral communities were 433 

also impacted, where octocorals were damaged or dead after being covered in flocculent material 434 

containing oil and dispersant from the spill and response activities136,149,150. Recovery of the corals after 435 

two years was mixed, with the average overall visible impact to corals on decreasing over time151. In some 436 

instances, the tissue on the impacted corals had died and the remaining skeletons were colonized by 437 

hydrozoa151, indicative of coral deterioration. Colonization of corals by brittle stars, however, was a sign 438 

of recovery as brittle stars are hypothesized to deter hydroid larvae from settling on coral branches152. As 439 

recently as 2018, heavily oiled areas near the DWH blowout hosted lower biological diversity of deep-sea 440 

megafauna, although with higher numbers of arthropods (such as crabs and shrimp) in many sites153, 441 

underscoring the long term impact of the DWH disaster on benthic communities.  442 

[H1] Outlook 443 

The needs and opportunities following the Deepwater Horizon disaster led to a renaissance in oil spill 444 

science, with numerous breakthroughs on the transport and behavior, fate, and short- and long-term 445 

effects of acute releases of oil and gas in the marine environment. Scientists and engineers from outside 446 

oceanography fields were engaged; a generation of scientists was trained; new chemical and biological 447 

methods were developed, often with novel technology or modified from other scientific fields; highly 448 

detailed insights were gained on the rates, specificity, mechanisms, and products of abiotic and biotic 449 

processes; and case studies, lessons learned, and recommendations on mechanical and chemical response 450 

technologies were proposed and presented27,154.  451 

In the 10 years since the disaster, detailed monitoring and observations have yielded the most 452 

comprehensive oceanographic investigation of the northern Gulf of Mexico. The collective scientific effort 453 

identified what was unknown before the DWH (photo-oxidation of surface oil, MOSSFA, deep-sea 454 

dispersant use and fate) and prioritized new knowledge that was necessary to change the scientific or 455 

practical response to the spill. There is now a deeper understanding of the microbial degradation of 456 

petroleum hydrocarbons and whether nutrient stimulants can or should be applied to offset potential 457 

nutrient limitation during bioremediation (while being mindful to avoid full oxygen depletion, which 458 

would shut down efficient aerobic degradation)56. There have been several paradigm shifts in our 459 

understanding of oil weathering, most notably regarding the onset and rates of oil photo-oxidation46, and 460 

the molecular specificity of its transformation products. In particular, we learned that oxygenated 461 
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products from oil photo-oxidation are polyfunctional101, impact the efficacy of surface applications of 462 

dispersants91, and have very complex roles in emulsion formation103. With the ability to isolate and 463 

characterize these transformation products, new mitigation strategies can be developed. 464 

How the results from the DWH disaster can be applied to future of oil spills must be considered, as 465 

drilling and recovery technologies are implemented and deep-sea oil drilling is expanded, wider and 466 

multi-seasonal shipping lanes in northern latitudes are opened, above and below ground pipelines near 467 

aquatic environments are installed, and oil recovery in remote locations is increased155. The response and 468 

continued studies of the DWH disaster benefited from the relatively accessible location for a deep-water 469 

well (80 km offshore) and nearly-optimal weather (favorable summer currents, mild winds and calm 470 

seas). Along the relatively populated Gulf Coast, responders and scientists used existing infrastructure 471 

for shipping, housing, and land and water access. A more remote location with limited infrastructure, 472 

such as in the high-latitudes would prohibit a commensurate response, and would effectively exclude 473 

academic scientists. A further complication would be the uncertain impact of temperature and different 474 

oil composition on the processes observed in the DWH disaster, such as microbial biodegradation, floc 475 

formation, and weathering. For example, dispersants seem to be less effective at stimulating 476 

biodegradation at colder temperatures40,73. In addition, heavier crude oils in high-latitude reservoirs are 477 

more polar and contain more oxygen, nitrogen, and sulfur than those discharged during DWH; 478 

consequently they will be more viscous, harder to disperse, and less bioavailable156. Lastly, some studies 479 

have implicated the polar components of oil in higher ecotoxicity to resident fish populations157, with 480 

implications for local fisheries and tourism. All of these factors inhibit simple extension of DWH results 481 

to a high-latitude spill.  482 

A critical area for additional research lies at the nexus of systems biology and analytical chemistry in the 483 

context of oil degradation. Metabolic databases are relatively complete for the degradation of simple 484 

hydrocarbons and aromatic compounds like BTEX but they are missing information on the metabolic 485 

pathways that degrade heteroatom-containing hydrocarbons158. In other words, we can detect 486 

degradation products but do not know which genes or microbes are responsible for producing them from 487 

the source oil. Moreover, as there could be substantial functional redundancy between different oil-488 

degrading communities60,78,159-161, identifying the members of the microbial community may not matter in 489 

assessing degradation potential if the functional genes are present and expressed similarly. Ideally, 490 

chemical or biological markers will be identified that allow assessment of the “state” of an oil discharge 491 

event, supporting response strategies that increase oil degradation rates. Inexpensive portable long-read 492 
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sequencing technology, like that from Oxford Nanopore, might provide near real-time microbial 493 

functional gene expression measurements, enabling adaptive responses and mitigation strategies tuned 494 

to microbial functionality56. As high-throughput approaches for reconstructing microbial genomes, 495 

monitoring chemical transformations, and combining biological and chemical characterizations mature, 496 

this problem is poised to be solved.  497 

One of the biggest open questions after the DWH disaster concerns the use of dispersants and their 498 

complicated cost-benefit calculations.  A primary goal of dispersant application during DWH was 499 

reduction in oil droplet size to enhance sequestration of oil in the deep sea37. The potential to enhance 500 

biodegradation was a secondary consideration and although dispersants potentially improve 501 

hydrocarbon degradation, they could also prevent or delay this desirable impact, depending on 502 

environmental and biological circumstances27. Interdisciplinary teams of chemists, biologists, ecologists 503 

and geochemists must work to ascertain the conditional tradeoffs in dispersant use, particularly in deep-504 

sea environments where degradation potential is greater but oxygen is finite and megafauna such as 505 

pelagic fish and sessile corals have much longer generation times and slower recovery 506 

times.  Importantly, tradeoffs with dispersant use are not binary, adding another layer of complexity to 507 

the decision process. For example, if the subsurface dispersant to oil ratio effectively modulates droplet 508 

size, it is possible to envision a scenario in which dispersant applications could be used dynamically to 509 

control the extent, rate and location of oil reaching the surface.  510 

Between the Exxon Valdez and the DWH disaster, expertise in the academic community on oil spill 511 

response and oil degradation dwindled due to lack of funding and the effectiveness of the Oil Pollution 512 

Act of 1990 to assign blame and assess fines. Although the scientific community was able to re-tool 513 

quickly to respond to DWH, we are now at a similar crossroads with the ending of the GoMRI research 514 

program and the fading memory of the 2010 event. A substantial cohort of graduate students, 515 

postdoctoral researchers, and early career scientists have been trained in oil chemistry and microbiology, 516 

but their future interests, job prospects in this field, and funding portfolios for federal and private 517 

agencies are uncertain. The DWH disaster benefited from the expertise of scientists and responders who 518 

were involved in the Exxon Valdez and the Ixtoc spills (1979, in the Gulf of Mexico), but many of these key 519 

knowledge-holders are retiring. Even if they are replaced, there will be a loss in critical mass of talented 520 

individuals that can apply and interpret the new chemical and biological technologies. We are concerned 521 

about future funding for known knowledge gaps, particularly in the usage of dispersants. A consortium 522 

of academics, government scientists and industrial partners must continue to explore these chemicals and 523 
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their short- and long-term impacts on marine environments. While there have been great strides with 524 

academia developing and collaborating with government and industry, these relationships should be 525 

fostered and clear channels of communication between these different groups must be strengthened162. 526 

These relationships will allow for trust building and recognition that while the interests of academia are 527 

not always lockstep with the response community, overlapping interests can provide key opportunities 528 

for future funding and collaborative research162.  529 

As we look back on the past decade, a few signals rise from the collective noise and provide a framework 530 

for planning effective responses to future oil spills. First, scientific findings and recommendations should 531 

influence policy and regulators, with a strategic embrace of complex biological and chemical data as 532 

diagnostics of environmental processes. Second, the intricacies of interacting microbes and environmental 533 

factors make understanding the oceans before, during, and after oil spills extraordinarily challenging, 534 

requiring a plan for interacting and complementary analytical platforms across molecular biology and 535 

chemistry. We cannot retreat again to one or two analytical methods as they unintentionally blind us to 536 

the interdependent cascade of environmental processes, some of which are likely to be more important in 537 

the next spill than they were in the DWH disaster. Finally, response teams and research collaborations 538 

with common purpose are capable of working together to understand the impact of this spill on affected 539 

ecosystems such as the Gulf of Mexico; in so doing, they are responding to a critical societal need. 540 

  541 
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Figures  981 

Figure 1. (a) Map of oiled area between April and July 2010 with surface dispersant application, adapted 982 

from ERMA. Research expeditions to assess the extent of the subsurface intrusion occurred between May 983 

and July 2010, within the region denoted by the (color) circle. (b) The time-line of sampling from research 984 

vessels, aerial surveys and the IGT subsurface sampler. Adapted from REF5.  985 

Figure 2. Integration of technologies used in Deepwater Horizon oil spill response. Numerous 986 

oceanographic tools were deployed to assess surface and deep expressions of oil, gas and dispersants 987 

between April and July 2010. These included autonomous vehicles, water and sediment sampling 988 

equipment, and aerial assets. Adapted from REF163.  989 

Figure 3. Distribution of DWH hydrocarbons in three primary reservoirs in the Gulf of Mexico: the 990 

atmosphere (A), the ocean surface (B) and the subsurface intrusion (C). During the spill, oil and gas were 991 

partitioned among these reservoirs (D). Adapted from REF5. 992 

Figure 4. Schematic of subsurface intrusion, microbial succession and flocculent material. A typical depth 993 

profile of hydrocarbon concentrations near the MC-252 wellhead (left) shows the location and vertical 994 

extent of the subsurface intrusion. Microbes degraded oil and gas, with different microbes blooming at 995 

different times. Dispersants were present in both the subsurface intrusion and the surface slicks, while 996 

flocculent material (or MOSSFA) was deposited on the sediment floor.  997 
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Figure 5.  Analysis of DWH oil and field samples (sand/oil patties collected from GoM beaches) with four 998 

different techniques that captures collective effects of abiotic and biotic weathering, which are manifested 999 

in changes of: (A) GC-FID chromatograms, (B) TLC-FID chromatograms, (C) FT-IR absorbance, and (D) 1000 

broadband FT-ICR-MS spectra. Overall, weathering lead to degradation of saturated and aromatic 1001 

compounds leaving behind recalcitrant compounds in the unresolved complex mixtures, to an increase in 1002 

OxHC fractions relative to saturated and aromatic compounds, and to increases in hydroxyl and 1003 

carbonyls. The (-)ESI FT-ICR-MS revealed a complexity increase in the number of peaks (from m/z 200–1004 

1000) and the appearance of oxygenated species (red peaks) in a mass-scale expanded 400 mDA segment. 1005 

Of note, similar molecular information is available for all other nominal masses in the mass spectrum. 1006 

Panels A-C modified from REF100. Credit: C. Aeppli, C. Reddy, R. Rodgers 1007 

Figure 6. Comparison of oiled (right) and non-oiled (left) marine ecosystems, during the DWH disaster. 1008 

Primary impacts included the subsurface intrusion, oiled beaches and marshes, and oiled sediments and 1009 

corals. 1010 
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 1012 

Glossary terms  1013 

Amphiphilic: a chemical compound that has both hydrophilic and hydrophobic properties 1014 

Denitrification: a multi-step microbial process that reduces nitrate to molecular nitrogen  1015 

Dispersants: chemical mixtures used during oil spill response to break up and decrease the size of oil 1016 

slicks or oil droplets so that they can be more easily mixed with water  1017 

Floc: a mass of loosely-associated particles formed from the aggregation of minerals and organic particles 1018 

suspended in water  1019 

Metagenomics: the study of the genes (DNA) present in a mixed community, provide an assessment of 1020 

metabolic potential in that community 1021 

Metatranscriptomics: the study of the transcripts (RNA) present in a community, provides a snapshot of 1022 

the genes being expressed at that time 1023 

Photo-oxidation: a chemical modification reaction resulting from the absorption of light in the presence of 1024 

oxygen 1025 

Saturated hydrocarbons: chemical compounds that are comprised of carbon and hydrogen 1026 

(hydrocarbons) in which all carbon-carbon bonds are single bonds. 1027 

Stable isotope probing: a technique to trace the microbial consumption of a substrate through the 1028 

examination of the stable isotopic composition of the substrate and the resulting biomass of the consumer 1029 


