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Abstract

In various Web applications, users consume content in a series of
sessions. That is prevalent in online music listening, where a session
is a channel and channels are listened to in sequence, or in crowd-
sourcing, where a session is a set of tasks and task sets are completed
in sequence. Content diversity can be defined in more than one
way, e.g., based on artists or genres for music, or on requesters or
rewards in crowdsourcing. A user may prefer to experience diver-
sity within or across sessions. Naturally, intra-session diversity is
set-based, whereas, inter-session diversity is sequence-based. This
novel multi-session diversity gives rise to four bi-objective prob-
lems with the goal of minimizing or maximizing inter and intra
diversities. Given the hardness of those problems, we propose to
formulate a constrained optimization problem that optimizes inter
diversity, subject to the constraint of intra diversity. We develop an
efficient algorithm to solve our problem. Our experiments with
human subjects on two real datasets, music and crowdsourcing,
show our diversity formulations do serve different user needs, and
yield high user satisfaction. Our large data experiments on real and
synthetic data empirically demonstrate that our solution satisfy the
theoretical bounds and is highly scalable, compared to baselines.
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1 Introduction

Online content consumption is usually organized into sessions.
That is prevalent in a variety of applications such as online music
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listening where users organize songs into channels and listen to a
few songs within the same channel before switching to the next
channels to listen to other artists in the same genre, or to experi-
ence different music styles. In crowdsourcing platforms, workers
complete a small set of tasks at a time (session) and sequences of
sessions within a finite time (for example, half a day). Diversifying
content inside (intra) and across (inter) sessions is natural for such
applications to improve user satisfaction and engagement. In this
paper, we define multi-session diversity and study its impact on user
satisfaction in Web applications. To the best of our knowledge, our
work is the first attempt to combine set and sequence diversities, two
problems extensively studied individually in search and recommen-
dation [3, 7, 12, 17, 22, 23, 26, 29-31, 34, 37-40].

Creating playlists to listen to during a long-drive may need
to minimize both intra and inter-session diversities to generate
songs by the same artist within a channel and similar beats across
channels. Contrarily, designing playlists for a theme party is best
done by composing songs from the same period within a channel
(90’s, 60’s, etc) and different styles across channels (by minimizing
intra diversity on release date within a session and maximizing inter
diversity on style across sessions). Similarly, in crowdsourcing, it
may be ideal to assign tasks requiring similar skills within a session
and different completion times across sessions. More generally,
applications may require minimization or maximization of intra
and inter diversities. Therefore, multi-session diversity aims to
generate k sessions to a user, with a small number [ of relevant
items in each, yielding a total of N = k x [ items. Intra and inter-
session diversities can be either minimized or maximized which
gives rise to 4 bi-objective problem variants.

Due to their hardness, we propose to formulate our 4 problems as
a constrained optimization problem, with the goal of obtaining one
point from the Pareto front (Section 2.2). The idea is to optimize
inter diversity, subject to constraining intra diversity. There exists
more than one benefit to this approach. First, in one of the two cases
(i.e., minimization), Intra is tractable and easier to solve. Therefore,
finding the optimal constraint value is computationally efficient.
More importantly, the constrained optimization problem aims at
finding one point in the Pareto front, which is perfectly acceptable,
as the points in the Pareto front are qualitatively indistinguishable.
We design an efficient algorithm to solve this problem. We design
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algorithms with provable guarantees for intra and inter problems
individually and together (Section 3).

We conduct four large-scale experiments: two with human sub-
jects (music playlist and task recommendation), the other two with
real and simulated data. In music recommendation (Section 4.1),
our results highlight, with statistical significance, that user satisfac-
tion is higher when playlists are recommended considering diversity
and the preferred diversity scenario depends on context. In task recom-
mendation, we show that the benefit of diversity is more prominent for
long sessions (with 5 sets and 10 tasks per set) compared to shorter ses-
sions. In the latter, our algorithms achieve higher quality and worker
satisfaction than a baseline with no diversity. We investigate the
scalability of our algorithms against several non-trivial baselines
(Section 4.2). We observe that in most cases, our algorithms pro-
duce approximation factors that are very close to 1. Finally, we also
observe that our approach is faster and highly scalable when vary-
ing the number of items and the number of sessions considering
different data distributions.

2 Data Model and Diversity Problem

We describe a simple running example in crowdsourcing.

Task Skill Reward Task Skill Reward Task Skill Reward
t1 0.5 0.3 ty 0.51 0.4 i3 0.54 0.49
ts 059 050 ts 0.6 0.23 ts  0.63 0.4
ty 0.69 0.1 tg 0.7 0.60 tg 0.79 0.36

tip 08 0.12 tiy 089 055 tiz 093  0.34
Table 1: Task Skill and Reward

ExAMPLE 1. Consider a set of N = 12 tasks, which are most rele-
vant to a specific worker. Table 1 shows two dimensions of these tasks.
The first dimension is the skill requirement of the task as provided by
the requester. The second dimension is the task reward. We want to
generate 4 (=k) sessions, each containing 3 (=) tasks.

2.1 Data Model

Item. An item has a set of dimensions. t;i represents the d-th di-
mension of the i-th item. Using Example 1, task t; is represented
by two dimensions, < 0.5,0.30 >. In the case of a song, examples
of dimensions are artist, vibe, genre, etc.

Session. A session s consists of a set of [ items that can be
consumed in any order.

Sequence. A sequence of sessions is an ordering of k sessions
S =< s1,82,...,5¢ > where sessions are presented to a user one
after another.

Intra-Diversity. Given a dimension d, the diversity of a set of
items in a single session s is referred to as Intra and defined by
capturing how each item in that session deviates from the average,
considering d, and taking an aggregate over [ items as follows:

1
Intrad(s) = Z(tld —,ug)2 (1)
i=1

where tld is the value of dimension d of item ¢; and ,uf is the average
of d values of items in session s. Intra essentially captures variance
of a set of items for a dimension d. Following Example 1, if the
session s consists of {t1, f3, t5}, then IntraSki”(sl) = 0.005.
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Inter-Diversity. The diversity of items between two consecu-
tive sessions is referred to as Inter and is defined for two consecutive
sessions for a dimension d as follows:

Inter®(si.sivn) = (ud, =, )? (2)
which captures the difference between the average of two con-
secutive sessions. Given S =< {t1, 3, t5}, {f2, ta, ts }, {t7, t3, to } >,
InterReward(s) = (0.34 — 0.433)2 + (0.433 — 0.35)? = 0.015 using
Example 1.

Other set-based [3] and sequence-based [40] definitions exist
and could be considered in future work.

2.2 Diversity Problem

Given N items, we are interested in finding a sequence S =<
$1,...,Sk > of k sessions, each consisting of I items. Inter and
intra-session diversities are maximized or minimized leading to
four bi-objective optimization problems. Each one of those prob-
lems is NP-hard. In fact, two ((Min Inter, Max Intra) and (Max
Inter, Max Intra)) out of the four problems are NP-hard on both
objectives.! Therefore, we propose to formulate a constrained opti-
mization problem with the goal of obtaining one solution among
all non-dominated ones, i.e., one point from the Pareto front. The
idea is to optimize inter diversity, subject to the constraint of intra
diversity. We hence formulate the following problem:

k-1
min(max) Z (Interdz (si,Si+1))
S i=1
s.t.

k
Z(Intra(si))x <= OPTy,4rad:
i=1
|S| =k, |sil =1,LN=kxI
where OPTyy 14 is the optimal solution of the Intra problem.
Using Example 1, the sequence

S =< {ts, t6, t7}, {t1, t2, 13}, {to, t10, t11} >

minimizes the IntraS*i! score but at the same time maximizes the

InterReward gcore whereas

S" =< {t1,t2, 13}, {to, t10, t11}, {t5, b. t7} >

Skill Reward.

minimizes the Intra and minimizes the Inter

3 Optimization Algorithms

We design optimization algorithms for the intra and inter prob-
lems individually, following which, we study how to solve the
constrained optimization problem (Equation 3). Table 2 summarizes
our technical results.

3.1 Algorithm Min(Max)-Intra

We study Min Intra where the objective is to generate k sessions,
each of length [, such that their aggregated Intra diversity is mini-
mized. Specifically, if there are [ values associated with a dimension
in a session, the intra diversity is the variance of those points. With
an abstract representation, once sorted, the dimension values of

IFull proofs will be made available in a deanonymized report.
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Algorithm Running Time Approx Factor
Ex-Min-Intra O(NlogN) Exact
Ap-Max-Intra O(NlogN + NI) ﬁ
Ap-Min-Inter O(NlogN +k? + logk) 4-2/k

Ap-Max-Inter O(NlogN +k? +logk) 1/2

Table 2: Optimization Algorithms and Results

N items, fall on a line. Therefore, if the aggregated variance is to
be minimized, it is intuitive that the sessions need to be formed by
grouping [ values that are closest to each other. Thus we propose
algorithm Ex-Min-Intra that first sorts the values of the dimen-
sion of interest. After that, it starts from the smallest value and
finds each consecutive [ points to form a session. This algorithm
produces an exact solution.

We now turn to Max Intra, an NP-hard problem.? To maximize
the Intra, we need to form the k sessions in such a way that the
means of all the sessions are equal or very close to each other. Al-
gorithm Ap-Max-Intra is iterative and greedy and creates sessions
that satisfy this property. First, it creates [ bins, each has k different
slots. Then, these bins are initialized in such a way that each bin
contains a subset of k items from the set of items. The final two
steps run in an iterative manner. In the third step, the algorithm
scores the bins as follows:

d(bi) = max{|pgiopar — argmax bijl, ligrobar — argmin byj|}
vj vj

, where 14104 is the global mean over all items. Finally, it greedily

merges two bins. This process is repeated for [ — 1 number of

iterations.

To illustrate the solution further, b;; represents the j-th slot in
bin i, which is kept as a placeholder for j-th session. To initialize the
bins, we first sort the items in an increasing order on the dimension
of interests. Next, in the i-th bin 1 < i < [, we put the sorted items
t(i)+k+j in bjj. Using Example 1, this amounts to creating 3 bins
of tasks where by = {[t1], [2], [3], [ta]}, b2 = {[5], [56], [17], [£8]},
and b3 = {[t9], [t10], [t11], [t12]}. In step 3, each bin is scored based
on d(b;). Then two bins i and j are merged that have the largest
and smallest score respectively. Going back to the Example 1, the
scores are calculated as follows d(b;) = 0.18 , d(bz) = 0.08, and
d(b3) = 0.25 and b, and b3 are merged.

To merge b — i with bj, where b — i has the largest score and b;
has the smallest score, we create a new bin b:;l erge
m-th smallest items of b; and m-th largest items of b; (1 < m < k).

that contains the

Considering Example 1, the new bin bgerq ¢ is created by combining
by and b3 , such that

merge
by 7€ = {[ts. tr2). [te. t11]. [£7. tro]. [£s. to]}

This process is then repeated until only a single bin is left.

3.2 Algorithm Min(Max)-Inter

Optimization of Inter diversity, both minimization and maximiza-
tion variants, is NP-hard, and they bear remarkable similarity to
each other. Given a set of N items, the Min(Max)-Inter problems

2Full proofs will be made available in a deanonymized report.

Algorithm 1 Algorithm Ap-Max-Intra

Require: N, Number of sessions k, Length of session [

: Hglobal < Mean over all items

. Initialize [ bins each with k slots «

o bi — {bi1 = [tigg1] biz = [tiggas - bi = [tirx 11}

: while number of bins > 1 do

pick b; and b; with the largest and smallest scores
bg.wrge:merge b; and b;
Delete b; and b;
number of bins « [ — 1
: Return the final merged bin

W ® 3 Dok Wy

will try to find an ordering of k sessions, each with [ items, such
that the aggregated differences between the means of two consecu-
tive sessions is minimized (maximized). To better understand these
problems, we break them into two steps. We only present these
steps for the Max-Inter problem and note that the Min-Inter version
works analogously, only by inverting the optimization goals inside
the algorithm.

Our proposed solution Ap-Max-Inter for Max-Inter works as
follows: we first find k sessions obtained by running Algorithm
Ap-Min-Intra. This is needed, since it will generate sessions with
means as different from each other as possible. After that, we create
a graph of k nodes, each represents one of the k sessions. The
weight of each edge (s, sj) is defined as w(s;,sj) = (us; — ,usj)z
where 5, (resp. pis;) is the mean of session s; (resp. sj). After that,
the goal is to run an algorithm for the Longest path problem for
Max-Inter. Since the graph is complete with positive weights on
the edges, the Longest Path Problem could be solved by replacing
the positive weights with negative values and running a traveling
salesman problem (TSP) over it. In our implementation, we use the
simple yet effective 2-approximation algorithm for TSP in metric
space, described in [25, 28]. The algorithm starts by finding the
Minimum Spanning Tree of the input graph using Prim’s algorithm.
Next, it lists the nodes in Minimum Spanning Tree in a pre-order
walk and adds the edge to the starting vertex to the end. This path
will create an ordering of sessions by following from the starting
vertex s; to the ending vertex s;. This algorithm runs in O(k%logk)
which is dominated by the running time of the Prim’s algorithm.
We further improve this running time by using Fibonacci heaps
and obtain O(k? + logk).

Using Example 1 to find Max-Inter of Skill dimension, we first ap-
ply the Ex-Min-Intra to find the following sessions, s; = {t1, 2, 3},
s2 = {ta,t5,t6}, s3 = {t7,43,t9}, and sg = {t10, 11, t12} where
Hs, = 0.516, ps, = 0.6066, s, = 0.726, and 5, = 0.873. These
sessions will become 4 nodes of a complete graph. The nodes of this
graph are the sessions and the weight of each edge is the Inter value
we get from Equation 2. We solve the longest path problem for this
graph and we get the tour of T = {s; — s4 — s2 — s3 — s1}.
We remove the edge s — s3 since it has the smallest weight. The
solution of Max-Inter is hence the sequence S =< sy, s4, 51,53 >.
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Algorithm 2 Algorithm Ap-Max-Inter

Require: N items, Number of sessions k, Length of session [

1: Sinit < Min — Intra(N, k,[)

2: G = (S, E) « complete graph with k nodes

3 wisinsj) = (us; — pis; )

4: Run Longest path algorithm on G

5: Longest path contains the ordering of the sessions.
Algorithm Running Time Approximation Factor
Alg-Min-Intra,Min-Inter ~ O(NlogN + k?) (OPT,4 - 2/k)
Alg-Min-Intra, Max-Inter  O(NlogN + k?) (OPT,1/2)

Alg-Max-Intra, Min-Inter  O(NlogN + NI + k%) heuristic
Alg-Max-Intra, Max-Inter  O(NLogN + NI + k%)  heuristic

Table 3: Optimization Algorithms and Results

3.3 Optimizing Inter with Intra as Constraint

To optimize Inter with Min-Intra as a constraint, we design two
algorithms Alg-Min-Intra, Min-Inter and Alg-Min-Intra, Max-Inter.
For both, we start from the solution of the Min-Intra problem using
algorithm Ex-Min-Intra. This solution is an exact algorithm for
solving Min-Intra and gives a set of k sessions as the the output.
After that, we run Ap-Max-Inter in Alg-Min-Intra, Min-Inter and
Ap-Min-Inter in Alg-Min-Intra, Max-Inter.

On the other hand, to optimize Inter with Max-Intra as a con-
straint, we start from the solution of the Max-Intra using algorithm
Ap-Max-Intra. This solution is an approximation algorithm for
solving Max-Intra and returns a set of k sessions. After that, we run
Ap-Max-Inter for Max-Intra, Max-Inter and Ap-Min-Inter for the
Max-Intra, Min-Inter.

Table 3 provides the summary of the theoretical guarantees of
these algorithms.

4 Experimental Evaluations

We first conduct experiments involving human subjects on music
playlist recommendation and task recommendation in crowdsourc-
ing to observe the effect of diversity on user satisfaction (in both
applications) and worker performance (in crowdsourcing). Then,
using large scale real data and synthetic data, we examine the qual-
ity of our algorithms in comparison to baselines, and evaluate the
scalability of our approach. Our code and data are available on
GitHub.?

4.1 Experiments with Human Subjects

We validate how multi-session diversity improves user satisfaction
in two Web applications: music recommendation, where we gener-
ate music channels, and task recommendation in crowdsourcing,
where we generate task sessions.

4.1.1 Music Recommendation. We generate music playlists for
users and consider different contexts namely music for long drive,
theme party, Sunday morning, and learning a new music style, to
observe how diversity affects user satisfaction in different contexts.

3https://github.com/Multi-Session-Diversity/WWW2021
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Dataset. The dataset consists of 727 songs from 54 albums, 47
artists, and 10 genres. The songs are from albums that won the
Grammy Best Album of the Year Award between 1961 and 2020. The
list of albums and their corresponding genres are from Wikipedia
while the other information such as artist, period, popularity, tempo,
and duration are from Spotify.

Experiments Flow. We first collect preferred genres and artists
from users to form their profiles. We then generate 5 music playlists
for each user. Each playlist has 5 channels, and each channel has
10 songs. The first 4 playlists are generated using the algorithms in
Table 3, with dimensions specified for each context in Table 4. The
5th playlist represents the baseline with no diversity. It consists
of similar songs randomly selected from one of the dimensions.
In this last experiment, all songs from the period 2000’s. Lastly,
users evaluate the playlists by selecting songs they would actually
listen to, rating how much they like diversity in the sessions, and
providing an overall rating of the playlist. The ratings are based on
a 5-pt Likert scale where 1 is the lowest and 5 is the highest. We
measure user satisfaction using the overall rating provided by users.
We recruit 200 workers (50 per context) from Amazon Mechanical
Turk (AMT). We pay workers $0.10 for profile collection and $1.00
for their evaluations.

Long Theme Sunday Learn

Drive Party Morning  Music
Intra tempo period  popularity genre
Inter popularity genre genre tempo

Table 4: Diversity dimensions per context

Summary of Results. We observe in Table 5 that user satisfac-
tion in diversified playlists (Scenarios 1 — 4) is higher compared
to the no-diversity baseline. This observation is statistically signifi-
cant at p = 0.10 using a one-way Analysis of Variance (ANOVA)
[32]. The results are consistent with other measures: workers se-
lect the smallest number of songs from the no-diversity playlist
and the no-diversity playlist receives the lowest average diversity
ratings. Moreover, these observations extend to different contexts,
as shown in Table 6. The sample size of 200 workers from the
estimated 200, 000 workers in AMT [14] gives our results a 99% con-
fidence level and a 10% error margin (based on the Central Limit
Theorem [33]). In summary, our music experiment clearly shows
that diversity is preferred over no diversity. Additionally, diversity
definitions depend on context, as observed in Table 6.

No. of . .
. Diversity User
Scenario Selected . . .
Rating  Satisfaction
Songs
1 Min-Intra, Min-Inter 15.16 3.57 3.54
2 Min-Intra, Max-Inter 15.05 3.66 3.66
3 Max-Intra, Min-Inter 14.71 3.59 3.71
4 Max-Intra, Max-Inter 14.66 3.69 3.71
5 no diversity 12.83 3.35 3.44

Table 5: Average evaluation scores across all contexts
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. Long Theme Sunday Learn
Scenario . . .
Drive Party Morning Music
Min-Intra, Min-Inter ~ 16.58,3.64,3.62  14.86,3.52,3.88 14.76,3.64,3.34 14.42,3.46,3.32
Min-Intra, Max-Inter 15.82,3.70,3.76  15.06,3.50,3.72 14.12,3.82,3.66  15.20,3.61,3.50

Max-Intra, Min-Inter

16.52,3.70,3.86

13.64,3.54,3.98

14.30,3.58,3.56

14.38,3.54,3.44

Max-Intra, Max-Inter

16.24,3.84,3.76

13.96,3.68,3.80

15.04,3.58,3.70

13.40,3.64,3.58

G| WD =

no diversity

14.10,3.34,3.60

11.92,3.30,3.42

13.62,3.46,3.46

11.68,3.30,3.28

Table 6: Average number of selected songs, average diversity rating, and average user satisfaction per context

4.1.2  Task Recommendation. In these experiments, we recommend
short and long task sessions to workers in crowdsourcing. The short
sessions consist of 3 sets each with 3 tasks. The long sessions consist
of 5 sets and each set consists of 10 tasks.

Dataset. The dataset consists of 20, 000 tasks from Figure Eight’s
open data library [1]. Each task belongs to one of 10 types such
as tweet classification, image transcription, and sentiment analy-
sis. Each task type is represented as a set of keywords that best
describe required skills. Additionally, each task has a creation date,
an expected completion time (less than a minute), and a reward
that varies between $0.01 - $0.05.

Experiments flow. For each session type (short and long), we
collect 100 user profiles, where workers indicate (from 1 to 5) their
interest in completing tasks, which are described by a given set
of keywords. For each user profile, we generate task sessions us-
ing the algorithms in Table 3 and a combination of the following
dimensions: skill, reward, duration, and creation date. Addition-
ally, we generate a no-diversity baseline session. In this session,
we randomly pick a task type and tasks belonging to that type.
Next, workers complete the recommended sessions. We measure
task throughput, quality of the completed tasks with respect to
a ground truth, and worker satisfaction. Throughput refers to the
average number of tasks completed per minute. Quality refers to
the percentage of correct answers from the tasks completed by a
worker. To measure quality, we use the answers obtained from the
dataset as the ground truth. We use a naive script that relies on
basic equality to evaluate answer correctness. Satisfaction refers to
how satisfied workers are with the task sessions (a rating from 1
to 5 provided by each worker). We recruit 200 workers, pay each
$0.03 for profile collection and at least $0.35 for task completion.

Worker
Th h lit
Scenario r(:tlg Qu(;)l y Satis-
P ° faction
Min-Intra(creation
1 .13,6.9 65.64,68.33 447,44
date), Min-Inter(skill) 6.13,6.95 3.64,68.3 7:448
Min-Intra(skill),
2 5.93,6.96 62.77,69.27  4.43,4.5
Max-Inter(reward)
Max-Intra(skill),
5 Maxlntra(skill) 591,696 61.7670.08 4.44,4.41
Min-Inter (reward)
Max-Intra(duration),
4 X .9 1.24,67. 4.46,4.4
Max-Inter (skill) 3.356.98 6 67.98 6,4.40
5  no diversity 7.53,6.56 64.38,606.04 4.26,4.19

Table 7: Task recommendation for short (first number) and
long sessions (second number)

Summary of Results. We present the average throughput, qual-
ity, and worker satisfaction for short and long sessions in Table 7.

Similar to the music experiments, our sample size (n=200) allows
our results to achieve 99% confidence level with 10% margin of error.
We again used a one-way ANOVA to evaluate statistical significance.
In short sessions, only throughput is statistically significant at
p = 0.05. In long sessions, both quality and worker satisfaction are
statistically significant at p = 0.10.

Our results indicate that short sessions generated by our algo-
rithms do not significantly differ from the no-diversity baseline
in terms of quality and worker satisfaction. On the other hand,
the throughput of no-diversity is significantly higher than sessions
generated by our algorithms. This observation confirms previous
studies where workers get more proficient in completing similar
(and hence not diverse) tasks, allowing them to become faster at
task completion [15]. As the number of tasks per session increases
(long sessions) however, this observation changes. Throughput de-
creases for no-diversity and sessions generated by our algorithms
obtain higher quality and worker satisfaction with statistical signifi-
cance. In summary, our experiments show that the benefit of diversity
in task recommendation is more prominent for sessions comprising
many tasks. Diversity tends to bring positive effect to avoid boredom
which is prominent for sessions with many tasks.

4.2 Large Data Experiments

The goal here is to evaluate our algorithms with appropriate base-
lines (including exact solutions) and compare them qualitatively
(approximation factors, objective function value) and scalability-
wise (running time). All algorithms are implemented in Python
3.6 on a 64-bit Windows server machine, with Intel Xeon Proces-
sor, and 16 GB of RAM. All numbers are presented as the average
of five runs. For brevity we present a subset of results that are
representative.

4.2.1 Data Sets. a. 1-Million Song: We use the Million Songs Dataset
[2, 9] that has 1 million songs (please note the Spotify dataset used
in Section 4.1 is small in scale). We have normalized the data to
be between [0, 1]. This dataset also includes artist popularity and
hotness, genre, release date and etc. The presented results are rep-
resentative and consider tempo and loudness as dimensions.

b. Synthetic dataset: The presented results on this are the ones
that vary distributions of the underlying dimensions. We sample
from three distributions: Normal, Uniform, and Zipfian. For Normal
distribution, data is sampled with mean and standard deviation,
u = 250, o = 10. For Uniform, dataset is sampled from Uniform
distribution between [0,500], and for Zipfian distribution default
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exponent is set to & = 1.01. We produce a pool of 230 items for each
of our three distributions.

4.2.2  Implemented Baselines. In addition to Random where we gen-
erate random sequences, we implement different baselines and
compared the performance of our algorithms.

Optimal. The optimal baseline is based on an Integer Program-
ming (IP) algorithm that solves the problem optimally on small
instances. The rationale behind implementing IP is to verify the
theoretical approximation factors of our algorithms against the
optimal solution. We used Gurobi as the solver?.

Baseline-MMR. This baseline is inspired by the MMR algorithm
[10] used in diversifying web search results. MMR takes a search
query and returns relevant and diverse results. Hence, our mapping
to MMR optimizes intra-session diversity only. At each iteration,
Baseline-MMR considers an item to be included or not in the result
and calculates two scores: the Intra score of adding a new item to
a session and the max (resp., min Inter) score of a new session to
all other sessions in the case of Max-Inter (resp., Min-Inter). It then
picks the highest or the lowest weighted sum of these two scores
based on the Intra part of the problem. The item with that score is
chosen to be added to the session. This process is repeated until
there is no item left.

Clustering Algorithms are not applicable to be used as
baselines since they do not control session size, and they are not
adapted to sequences.

4.2.3  Summary of Results. Overall, for our problems, where both
Intra and Inter diversity are to be optimized, our algorithms are the
unanimous choice considering both quality and scalability. When the
Intra and Inter diversity is studied individually, our algorithms
outperform all the baselines and empirically produce approximation
factors close to 1, across varying k, N, and different distributions.
The only exception to this latter observation is Baseline-MMR,
which performs better in maximizing Inter diversity (while per-
forming very poorly for Intra optimization), which is due to its
focus on optimizing inter-diversity only. Moreover, our algorithms
is highly scalable and is much more efficient than the baselines.

4.2.4 Quality Evaluation. We vary k (the number of sessions), N
(the number of items), and the data distribution. The default values
are N=213 and k=27 with a uniform distribution.

N=8192, k=16 | N=1024, k=128

Our Scenarios

Intra | Inter Intra | Inter
Min-Intra , Min-Inter 1 1.05 1 1
Min-Intra , Max-Inter 1 0.35 1 0.49

Max-Intra , Min-Inter | 0.99 1.06 0.98 1.04
Max-Intra , Max-Inter | 0.99 0.58 0.95 0.69
Table 8: Approximation factors on 1-Million Song Dataset

Comparison against Optimal. Table 8 shows the approxima-
tion factors for our algorithms for two default settings: (N = 213,
k =2*) and (N = 21°, k = 27) using 1-Million dataset. We can see
that our algorithms produce an approximation factor equal to 1
when Intra diversity is minimized and a factor very close to 1 when
Intra diversity is maximized.

4 https://www.gurobi.com/resource/switching-from-open-source/
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When Inter diversity is minimized, the resulting approximation
factors are close to 1. However, when Inter diversity is maximized,
the approximation factors are slightly low as our algorithm solves
the Intra part of the problem before ordering the sessions to max-
imize Inter diversity. It is hence bound by the constraints of the
solution to Intra. Nevertheless, the solution formulated by our al-
gorithm for Min-Intra,Max-Inter and Min-Intra,Min-Inter is able
to produce a point on the Pareto Front in the optimal solution re-
gion which meets both the Intra and Inter objectives. The synthetic
dataset mimics this trend as well.

Based on the approximation factor results and the above analysis,
we conclude that our algorithms produce good and in some cases the
best possible solution for the 4 problems we attempt to optimize.

Varying N. Figure 1 shows how Inter scores change as we vary
N from 210 to 21 for Baseline-MMR, Random and our algorithms.
We have omitted the plots for Synthetic data experiments since
those results closely follow the result for 1-Million Songs dataset.
Figures 1(a)(c) confirms that our algorithm performs best when
Inter diversity is minimized. The objective function improves with
increasing N. On the other hand, as seen in Figures 1(b)(d),when
Inter diversity is maximized, Baseline-MMR outperforms our algo-
rithm with increasing N. This is because our algorithm is subject
to the constraints imposed by optimizing Intra diversity first then
maximizing the Inter diversity, while Baseline-MMR focuses on the
Inter dimension only.

We also compare Intra scores whilst varying N. Table 9 show-
cases the approximation factors of our algorithm’s Intra consid-
ering Optimal for N < 213 and N > 213, A ratio of 1 means that
the algorithm produces the best or optimal solution. These results
showcase that our solutions achieve even better bound empirically
compared to the theoretical bounds. Table 9 also shows that al-
though Baseline-MMR performs better in Max-Inter problem, but
it performs poorly for both Min-Intra and Max-Intra problems.

Interestingly, Random produces an approximation factor close
to 1 for N > 2!® when maximizing Intra. This is because Intra is
maximized when the variance of the sessions are maximized which
is one of the side effects of Random. However, Baseline-MMR and
Random produce very poor approximation factors when minimiz-
ing Intra. Contrarily, our solutions stay close to 1 approximation
factor for both minimization and maximization of Intra diversity.
As N increases, the Intra scores do not see any drastic change in
approximation factors, and always stays close to 1.

Varying k. Figure 2 presents how Inter scores evolve as we
vary k between 2* and 2!! for different baselines compared to our
algorithm. We keep N constant at 213, The synthetic dataset also
mimics this trend. We observe figures 2(a)(c) that our algorithm
performs significantly better than other baselines in minimizing
Inter diversity. For Figures 2(b)(d), our observation is similar to the
case of varying N, Baseline-MMR performs slightly better. Overall,
Inter diversity increases for all 4 scenarios as k increases. This is
because of the fact that when more sessions are present, it allows
for more diversity between each session.

The approximation factors of Intra, hold when varying k (results
omitted for space reasons).

Varying distribution. Figures 3 and 4 present how our algo-
rithm and other baselines perform as we vary data distributions.
We set N to 213 and k to 27
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N Algorithms
Min-Intra MMR | Random | Ours
(Minimizing & Maximizing Inter) | <= 8192 | 0.008 | 6.41E-05 1
>8192 0.002 5.42E-05 1
N Algorithms
Max-Intra MMR | Random | Ours
(Minimizing & Maximizing Inter) | <= 8192 | 0.22 0.98 0.99
>8192 0.021 0.92 0.99

Table 9: Intra approximation factors varying N on 1-Million Song

Considering Intra scores, our algorithm performs the best using
Uniform distribution for all 4 scenarios and using a Zipf distribution
produces a similar trend. However, Normal performs slightly worse
at times with our algorithm when we attempt to maximize Intra.

When we compare Inter scores, our algorithm performs best
with Uniform distribution. In Figures 3(b)(d), Baseline-MMR out-
performs our algorithm due to the same reasons mentioned in the
varying k and N section of this paper.

We also observe that across all 4 scenarios, Zipf produces scores
much larger in magnitude than Normal or Uniform distribution.
This is due to the range of values in Zipf, which results in larger Intra
and Inter scores. Overall, our algorithms stand out to be the best
choice, with its best performance being on Uniform distribution.
4.2.5 Scalability Evaluation. We compare the running time of the
three algorithms for 1-Million dataset.

In Figures 5, we vary k and set N to 23, Naturally, as N increases,
the running time of our algorithms increases. We observe that our
algorithms scale very well but are sometimes slightly slower than
Random. This is unsurprising, as Random does not even have to do
much work to generate sessions (recall that however it performs
poorly qualitatively). However, with increasing values of k, our al-
gorithms are consistently faster. We also observe that as we vary N
with k = 27, our algorithms are the fastest in all diversity scenarios
(plots are omitted for space reasons).

Overall, we find that our algorithms are highly scalable and pro-
duce results within a few seconds for very large values of N and k,
while some of the baselines take hours to complete.

5 Related Work

Applications. Diversity has been extensively studied in recommen-
dation and search applications [3, 7, 12, 17, 22, 23, 26, 29-31, 34, 36—
40], to return items that are relevant as well as cover full range of

users interests. The goal is to achieve a compromise between rele-
vance and result heterogeneity. Existing works [20, 35] have also
acknowledged the need for diversity and sequence based modeling
in different recommendation applications. Recent works in crowd-
sourcing [18, 27] have demonstrated the importance of diversity in
task recommendation. Task diversity is grounded in organization
theories and has shown to impact the motivation of the workers [11].
Amer-Yahia et al. [6] propose the notion of composite tasks (CT),
a set of similar tasks that match workers’ profiles, comply with
their desired reward and task arrival rate. Their experiments show
that diverse CTs contribute to improving outcome quality. A recent
work has studied intra and inter-table influence in web table match-
ing [18] involving crowd. Even though completing similar tasks
lead to faster completion time [15], but such composition lead to
fatigue and boredom, and task abandonment [13, 19, 21]. Aipe and
Gadiraju[4] empirically observe that workers who perform simi-
lar tasks achieve higher accuracy and faster task completion time
compared to workers who complete diverse tasks. However, they
find that these workers experience fatigue the most. Alsayasneh et
al. integrate the concept of diversity in composite tasks and empiri-
cally find a positive effect of diversity in outcome quality [5]. For
all of these applications, diversity is studied set-based or sequence
based only.

These applications call for a deeper examination of diversity and a
powerful framework to capture its variants, which is our focus here.

Set and Sequence Diversities. Existing works on diversifica-
tion could be classified as set-based only [3, 17, 26, 29, 30, 34] or
sequence-based only [7, 12, 22, 40]. As an example, in [40], the
authors study sequence-based diversity that is defined as the di-
versity of any permutation of the items. Another example is [7],
in which taxonomies are used to sample search results to reduce
homogeneity. In [3], the authors propose an algorithm with a prov-
able approximation factor to find relevant and diverse news articles.
In the database context, Chen and Li [12] propose to post-process
structured query results, organizing them in a decision tree for eas-
ier navigation. In 8, 24], the notion of diversity is used in the results
of queries to produce closest results such that each answers is dif-
ferent from the rest. In recommender systems, results are typically
post-processed using pair-wise item similarity to generate a list
that achieves a balance between relevance and diversity. For exam-
ple, in [16], recommendation diversity is formulated as a set-cover
problem.
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To the best of our knowledge, existing works have focused on achiev-
ing diversity in a single set. We solve set-based and sequence-based
diversities in tandem and develop algorithms with guarantees.

6 Conclusion

We initiate the study of a scalable algorithmic framework and ex-
perimental studies to address multi-session diversity to improve
user satisfaction in Web applications (from song playlists to task
recommendations in crowdsourcing). The combination of Intra and
Inter session diversities gives rise to four bi-objective optimization
problems. We develop algorithms to solve our problems. Our exten-
sive empirical evaluation, conducted using human subjects, as well
as large scale real and simulated data, shows the need for diversity
to improve user satisfaction and the superiority of our algorithms
against multiple baselines.

This work opens up more than one research directions: an im-
mediate extension of our work is to observe users as they consume
items and learn how diversity could be personalized.

Acknowledgments

The work of Mohammadreza Esfandiari, Sepideh Nikookar, Paras
Sakharkar, and Senjuti Basu Roy are supported by the National
Science Foundation, CAREER Award #1942913,IIS #2007935, IIS

#1814595, and by the Office of Naval Research Grant No:N000141812838.

References

[1] [n.d.]. Figure Eight - Data For Everyone. https://www.figure-eight.com/data-

for-everyone/. Accessed 25 January 2019.

] [n.d.]. Million Song Database. http://millionsongdataset.com/

[3] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. 2013.
Real-time recommendation of diverse related articles. In 22nd International World
Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013. 1-12.

[4] Alan Aipe and Ujwal Gadiraju. 2018. SimilarHITs: Revealing the Role of Task
Similarity in Microtask Crowdsourcing.. In HT. 115-122.

[5] Maha Alsayasneh, Sihem Amer-Yahia, Eric Gaussier, Vincent Leroy, Julien Pilour-
dault, Ria Mae Borromeo, Motomichi Toyama, and Jean-Michel Renders. 2017.
Personalized and diverse task composition in crowdsourcing. IEEE Transactions
on Knowledge and Data Engineering 30, 1 (2017), 128-141.

[6] Sihem Amer-Yahia, Eric Gaussier, Vincent Leroy, Julien Pilourdault, Ria Mae
Borromeo, and Motomichi Toyama. 2016. Task composition in crowdsourcing. In
Data Science and Advanced Analytics (DSAA), 2016 IEEE International Conference
on. IEEE, 194-203.

[7] Aris Anagnostopoulos, Andrei Z. Broder, and David Carmel. 2006. Sampling
Search-Engine Results. World Wide Web 9, 4 (2006), 397-429.

[8] Albert Angel and Nick Koudas. 2011. Efficient diversity-aware search. In Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management of data.
781-792.

[9] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 2011.
The million song dataset. (2011).

[10] Jaime G Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries.. In SIGIR, Vol. 98.
335-336.

[11] Dana Chandler and Adam Kapelner. 2012. Breaking Monotony with Meaning:

Motivation in Crowdsourcing Markets. CoRR abs/1210.0962 (2012).

Zhiyuan Chen and Tao Li. 2007. Addressing diverse user preferences in SQL-

query-result navigation. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, Beijing, China, June 12-14, 2007. 641-652.

[13] Peng Dai, Jeffrey M. Rzeszotarski, Praveen Paritosh, and Ed H. Chi. 2015. And

Now for Something Completely Different: Improving Crowdsourcing Workflows

with Micro-Diversions. In ACM CSCW. 628-638.

Djellel Difallah, Elena Filatova, and Panos Ipeirotis. 2018. Demographics and

dynamics of mechanical Turk workers. In Proceedings of the eleventh acm inter-

national conference on web search and data mining. ACM, 135-143.

Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, and Philippe Cudré-

Mauroux. 2014. Scaling-up the crowd: Micro-task pricing schemes for worker

retention and latency improvement. In Second AAAI Conference on Human Com-

putation and Crowdsourcing.

[12

[14

[15

[16

(17]

(18]

[19

[20

[21

[26

[27

[28

[29

[30

[31

[32

(33]

[34

[35

[36

@
=)

[38

[39

[40

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. 2009. Turning
down the noise in the blogosphere. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009. 289-298.

JuFan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng. 2015. iCrowd:
An Adaptive Crowdsourcing Framework. In SIGMOD. 1015-1030.

Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, and Meihui Zhang. 2014.
A hybrid machine-crowdsourcing system for matching web tables. In 2014 IEEE
30th International Conference on Data Engineering. IEEE, 976-987.

Lei Han, Kevin Roitero, Ujwal Gadiraju, Cristina Sarasua, Alessandro Checco,
Eddy Maddalena, and Gianluca Demartini. 2019. All Those Wasted Hours: On
Task Abandonment in Crowdsourcing. In Proceedings of the Twelfth ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC,
Australia, February 11-15, 2019. 321-329.

Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-aware music
recommendation based on latenttopic sequential patterns. In Proceedings of the
sixth ACM conference on Recommender systems. 131-138.

Kenji Hata, Ranjay Krishna, Fei-Fei Li, and Michael S. Bernstein. 2017. A Glimpse
Far into the Future: Understanding Long-term Crowd Worker Quality. In Pro-
ceedings of the 2017 ACM Conference on Computer Supported Cooperative Work
and Social Computing, CSCW 2017, Portland, OR, USA, February 25 - March 1, 2017.
889-901.

Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. 2013. Adaptive
Task Assignment for Crowdsourced Classification. In ICML. 534-542.

Chien-Ju Ho and Jennifer Wortman Vaughan. 2012. Online Task Assignment in
Crowdsourcing Markets. In AAAL

Anoop Jain, Parag Sarda, and Jayant R Haritsa. 2004. Providing diversity in k-
nearest neighbor query results. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 404-413.

Charles Eric Leiserson, Ronald L Rivest, Thomas H Cormen, and Clifford Stein.
2001. Introduction to algorithms. Vol. 6. MIT press Cambridge, MA.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functionsAATI. Mathematical
programming 14, 1 (1978), 265-294.

Julien Pilourdault, Sthem Amer-Yahia, Dongwon Lee, and Senjuti Roy. 2017.
Motivation-aware task assignment in crowdsourcing. In EDBT.

Abraham Punnen, FrancoiS Margot, and Santosh Kabadi. 2003. TSP heuristics:
domination analysis and complexity. Algorithmica 35, 2 (2003), 111-127.
Shameem A Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. 2016. A
coverage-based approach to recommendation diversity on similarity graph. In
Proceedings of the 10th ACM Conference on Recommender Systems. 15-22.

Lijing Qin and Xiaoyan Zhu. 2013. Promoting diversity in recommendation by
entropy regularizer. In Twenty-Third International Joint Conference on Artificial
Intelligence.

Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-
Yahia, and Gautam Das. 2019. Optimized group formation for solving collabora-
tive tasks. VLDB 7. 28, 1 (2019), 1-23.

Michael R Stoline. 1981. The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs. The American
Statistician 35, 3 (1981), 134-141.

SurveyMonkey. [n.d.]. Calculating the Number of Respondents You Need.
https://help.surveymonkey.com/articles/en_US/kb/How-many-respondents-do-
I-need.

Saul Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. 2014.
Coverage, redundancy and size-awareness in genre diversity for recommender
systems. In Proceedings of the 8th ACM Conference on Recommender systems.
209-216.

Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott
Sanner. 2018. Two-stage model for automatic playlist continuation at scale. In
Proceedings of the ACM Recommender Systems Challenge 2018. 1-6.

Dongjing Wang, Shuiguang Deng, and Guandong Xu. 2018. Sequence-based
context-aware music recommendation. Information Retrieval Journal 21, 2-3
(2018), 230-252.

Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It takes variety to
make a world: diversification in recommender systems. In Proceedings of the 12th
international conference on extending database technology: Advances in database
technology. 368-378.

Mi Zhang and Neil Hurley. 2008. Avoiding monotony: improving the diversity of
recommendation lists. In Proceedings of the 2008 ACM conference on Recommender
systems. 123-130.

Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua Feng.
2015. QASCA: A Quality-Aware Task Assignment System for Crowdsourcing
Applications. In SIGMOD. 1031-1046.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web, WWW 2005, Chiba, Japan,
May 10-14, 2005. 22-32.


https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
http://millionsongdataset.com/

	Abstract
	1 Introduction
	2 Data Model and Diversity Problem
	2.1 Data Model
	2.2 Diversity Problem

	3 Optimization Algorithms
	3.1 Algorithm Min(Max)-Intra
	3.2 Algorithm Min(Max)-Inter
	3.3 Optimizing Inter with Intra as Constraint

	4 Experimental Evaluations
	4.1 Experiments with Human Subjects
	4.2 Large Data Experiments

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

