
Multi-Session Diversity to Improve User Satisfaction in Web
Applications

Mohammadreza Esfandiari

New Jersey Institute of Technology

Newark, NJ, USA

me76@njit.edu

Ria Mae Borromeo

University of the Philippines

Laguna, Philippines

riamae@gmail.com

Sepideh Nikookar

New Jersey Institute of Technology

Newark, NJ, USA

sn627@njit.edu

Paras Sakharkar

New Jersey Institute of Technology

Newark, NJ, USA

ps863@njit.edu

Sihem Amer-Yahia

CNRS, Univ. Grenoble Alpes

Grenoble, France

sihem.amer-yahia@univ-grenoble-

alpes.fr

Senjuti Basu Roy

New Jersey Institute of Technology

Newark, NJ, USA

senjuti.basuroy@njit.edu

Abstract
In various Web applications, users consume content in a series of

sessions. That is prevalent in online music listening, where a session

is a channel and channels are listened to in sequence, or in crowd-

sourcing, where a session is a set of tasks and task sets are completed

in sequence. Content diversity can be defined in more than one

way, e.g., based on artists or genres for music, or on requesters or

rewards in crowdsourcing. A user may prefer to experience diver-

sity within or across sessions. Naturally, intra-session diversity is

set-based, whereas, inter-session diversity is sequence-based. This
novel multi-session diversity gives rise to four bi-objective prob-

lems with the goal of minimizing or maximizing inter and intra

diversities. Given the hardness of those problems, we propose to

formulate a constrained optimization problem that optimizes inter
diversity, subject to the constraint of intra diversity. We develop an

efficient algorithm to solve our problem. Our experiments with

human subjects on two real datasets, music and crowdsourcing,

show our diversity formulations do serve different user needs, and

yield high user satisfaction. Our large data experiments on real and

synthetic data empirically demonstrate that our solution satisfy the

theoretical bounds and is highly scalable, compared to baselines.

CCS Concepts
• Information systems→ Crowdsourcing.

ACM Reference Format:
Mohammadreza Esfandiari, Ria Mae Borromeo, Sepideh Nikookar, Paras

Sakharkar, Sihem Amer-Yahia, and Senjuti Basu Roy. 2021. Multi-Session

Diversity to Improve User Satisfaction in Web Applications. In Proceedings
of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3442381.3450046

1 Introduction
Online content consumption is usually organized into sessions.

That is prevalent in a variety of applications such as online music

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450046

listening where users organize songs into channels and listen to a

few songs within the same channel before switching to the next

channels to listen to other artists in the same genre, or to experi-

ence different music styles. In crowdsourcing platforms, workers

complete a small set of tasks at a time (session) and sequences of
sessions within a finite time (for example, half a day). Diversifying

content inside (intra) and across (inter) sessions is natural for such

applications to improve user satisfaction and engagement. In this

paper, we definemulti-session diversity and study its impact on user

satisfaction in Web applications. To the best of our knowledge, our
work is the first attempt to combine set and sequence diversities, two
problems extensively studied individually in search and recommen-
dation [3, 7, 12, 17, 22, 23, 26, 29–31, 34, 37–40].

Creating playlists to listen to during a long-drive may need

to minimize both intra and inter-session diversities to generate

songs by the same artist within a channel and similar beats across

channels. Contrarily, designing playlists for a theme party is best

done by composing songs from the same period within a channel

(90’s, 60’s, etc) and different styles across channels (by minimizing

intra diversity on release date within a session andmaximizing inter

diversity on style across sessions). Similarly, in crowdsourcing, it

may be ideal to assign tasks requiring similar skills within a session

and different completion times across sessions. More generally,

applications may require minimization or maximization of intra

and inter diversities. Therefore, multi-session diversity aims to

generate k sessions to a user, with a small number l of relevant
items in each, yielding a total of N = k × l items. Intra and inter-

session diversities can be either minimized or maximized which

gives rise to 4 bi-objective problem variants.

Due to their hardness, we propose to formulate our 4 problems as

a constrained optimization problem, with the goal of obtaining one

point from the Pareto front (Section 2.2). The idea is to optimize
inter diversity, subject to constraining intra diversity. There exists
more than one benefit to this approach. First, in one of the two cases

(i.e., minimization), Intra is tractable and easier to solve. Therefore,
finding the optimal constraint value is computationally efficient.

More importantly, the constrained optimization problem aims at

finding one point in the Pareto front, which is perfectly acceptable,

as the points in the Pareto front are qualitatively indistinguishable.

We design an efficient algorithm to solve this problem. We design

https://doi.org/10.1145/3442381.3450046
https://doi.org/10.1145/3442381.3450046

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Mohammadreza Esfandiari, et al.

algorithms with provable guarantees for intra and inter problems

individually and together (Section 3).
We conduct four large-scale experiments: two with human sub-

jects (music playlist and task recommendation), the other two with

real and simulated data. In music recommendation (Section 4.1),
our results highlight, with statistical significance, that user satisfac-
tion is higher when playlists are recommended considering diversity
and the preferred diversity scenario depends on context. In task recom-

mendation,we show that the benefit of diversity is more prominent for
long sessions (with 5 sets and 10 tasks per set) compared to shorter ses-
sions. In the latter, our algorithms achieve higher quality and worker
satisfaction than a baseline with no diversity. We investigate the

scalability of our algorithms against several non-trivial baselines

(Section 4.2). We observe that in most cases, our algorithms pro-

duce approximation factors that are very close to 1. Finally, we also

observe that our approach is faster and highly scalable when vary-

ing the number of items and the number of sessions considering

different data distributions.

2 Data Model and Diversity Problem
We describe a simple running example in crowdsourcing.

Task Skill Reward Task Skill Reward Task Skill Reward

t1 0.5 0.3 t2 0.51 0.4 t3 0.54 0.49

t4 0.59 0.50 t5 0.6 0.23 t6 0.63 0.4

t7 0.69 0.1 t8 0.7 0.60 t9 0.79 0.36

t10 0.8 0.12 t11 0.89 0.55 t12 0.93 0.34

Table 1: Task Skill and Reward

Example 1. Consider a set of N = 12 tasks, which are most rele-
vant to a specific worker. Table 1 shows two dimensions of these tasks.
The first dimension is the skill requirement of the task as provided by
the requester. The second dimension is the task reward. We want to
generate 4 (=k) sessions, each containing 3 (=l) tasks.

2.1 Data Model
Item. An item has a set of dimensions. tdi represents the d-th di-

mension of the i-th item. Using Example 1, task t1 is represented
by two dimensions, < 0.5, 0.30 >. In the case of a song, examples

of dimensions are artist, vibe, genre, etc.

Session. A session s consists of a set of l items that can be

consumed in any order.

Sequence. A sequence of sessions is an ordering of k sessions

S =< s1, s2, . . . , sk > where sessions are presented to a user one

after another.

Intra-Diversity. Given a dimension d , the diversity of a set of

items in a single session s is referred to as Intra and defined by

capturing how each item in that session deviates from the average,

considering d , and taking an aggregate over l items as follows:

Intrad (s) =
l∑
i=1
(tdi − µ

d
s)

2
(1)

where tdi is the value of dimension d of item ti and µ
d
s is the average

of d values of items in session s . Intra essentially captures variance

of a set of items for a dimension d . Following Example 1, if the

session s1 consists of {t1, t3, t5}, then Intraskill (s1) = 0.005.

Inter-Diversity. The diversity of items between two consecu-

tive sessions is referred to as Inter and is defined for two consecutive
sessions for a dimension d as follows:

Interd (si , si+1) = (µ
d
si − µ

d
si+1)

2
(2)

which captures the difference between the average of two con-

secutive sessions. Given S =< {t1, t3, t5}, {t2, t4, t6}, {t7, t8, t9} >,
InterReward (S) = (0.34 − 0.433)2 + (0.433 − 0.35)2 = 0.015 using

Example 1 .

Other set-based [3] and sequence-based [40] definitions exist

and could be considered in future work.

2.2 Diversity Problem
Given N items, we are interested in finding a sequence S =<
s1, . . . , sk > of k sessions, each consisting of l items. Inter and

intra-session diversities are maximized or minimized leading to

four bi-objective optimization problems. Each one of those prob-

lems is NP-hard. In fact, two ((Min Inter, Max Intra) and (Max

Inter, Max Intra)) out of the four problems are NP-hard on both

objectives.
1
Therefore, we propose to formulate a constrained opti-

mization problem with the goal of obtaining one solution among

all non-dominated ones, i.e., one point from the Pareto front. The
idea is to optimize inter diversity, subject to the constraint of intra
diversity. We hence formulate the following problem:

min(max)

S

k−1∑
i=1
(Interd2 (si , si+1))

s.t.

k∑
i=1
(Intra(si))x <= OPTIntrad1

|S | = k, |si | = l ,N = k × l

(3)

where OPTIntra is the optimal solution of the Intra problem.

Using Example 1, the sequence

S =< {t5, t6, t7}, {t1, t2, t3}, {t9, t10, t11} >

minimizes the IntraSkill score but at the same time maximizes the

InterReward
score whereas

S ′ =< {t1, t2, t3}, {t9, t10, t11}, {t5, t6, t7} >

minimizes the IntraSkill and minimizes the InterReward
.

3 Optimization Algorithms
We design optimization algorithms for the intra and inter prob-

lems individually, following which, we study how to solve the

constrained optimization problem (Equation 3). Table 2 summarizes

our technical results.

3.1 Algorithm Min(Max)-Intra
We study Min Intra where the objective is to generate k sessions,

each of length l , such that their aggregated Intra diversity is mini-

mized. Specifically, if there are l values associated with a dimension

in a session, the intra diversity is the variance of those points. With

an abstract representation, once sorted, the dimension values of

1
Full proofs will be made available in a deanonymized report.

Multi-Session Diversity to Improve User Satisfaction in Web Applications WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm Running Time Approx Factor
Ex-Min-Intra O (NloдN) Exact

Ap-Max-Intra O (NloдN + Nl) 1

2−1/k
Ap-Min-Inter O (NloдN + k2 + loдk) 4 − 2/k
Ap-Max-Inter O (NloдN + k2 + loдk) 1/2

Table 2: Optimization Algorithms and Results

N items, fall on a line. Therefore, if the aggregated variance is to

be minimized, it is intuitive that the sessions need to be formed by

grouping l values that are closest to each other. Thus we propose

algorithm Ex-Min-Intra that first sorts the values of the dimen-

sion of interest. After that, it starts from the smallest value and

finds each consecutive l points to form a session. This algorithm

produces an exact solution.

We now turn to Max Intra, an NP-hard problem.
2
To maximize

the Intra, we need to form the k sessions in such a way that the

means of all the sessions are equal or very close to each other. Al-

gorithm Ap-Max-Intra is iterative and greedy and creates sessions

that satisfy this property. First, it creates l bins, each has k different

slots. Then, these bins are initialized in such a way that each bin

contains a subset of k items from the set of items. The final two

steps run in an iterative manner. In the third step, the algorithm

scores the bins as follows:

d(bi) = max{|µдlobal − argmax

∀j
bi j |, |µдlobal − argmin

∀j
bi j |}

, where µдlobal is the global mean over all items. Finally, it greedily

merges two bins. This process is repeated for l − 1 number of

iterations.

To illustrate the solution further, bi j represents the j-th slot in

bin i , which is kept as a placeholder for j-th session. To initialize the
bins, we first sort the items in an increasing order on the dimension

of interests. Next, in the i-th bin 1 ≤ i ≤ l , we put the sorted items

t(i)∗k+j in bi j . Using Example 1, this amounts to creating 3 bins

of tasks where b1 = {[t1], [t2], [t3], [t4]}, b2 = {[t5], [t6], [t7], [t8]},
and b3 = {[t9], [t10], [t11], [t12]}. In step 3, each bin is scored based

on d(bi). Then two bins i and j are merged that have the largest

and smallest score respectively. Going back to the Example 1, the

scores are calculated as follows d(b1) = 0.18 , d(b2) = 0.08, and

d(b3) = 0.25 and b2 and b3 are merged.

To merge b − i with bj , where b − i has the largest score and bj
has the smallest score, we create a new bin b

merдe
i j that contains the

m-th smallest items of bi andm-th largest items of bj (1 ≤ m ≤ k).

Considering Example 1, the new binb
merдe
23

is created by combining

b2 and b3 , such that

b
merдe
23

= {[t5, t12], [t6, t11], [t7, t10], [t8, t9]}

This process is then repeated until only a single bin is left.

3.2 Algorithm Min(Max)-Inter
Optimization of Inter diversity, both minimization and maximiza-

tion variants, is NP-hard, and they bear remarkable similarity to

each other. Given a set of N items, the Min(Max)-Inter problems

2
Full proofs will be made available in a deanonymized report.

Algorithm 1 Algorithm Ap-Max-Intra

Require: N , Number of sessions k , Length of session l

1: µдlobal ←Mean over all items

2: Initialize l bins each with k slots←

3: bi ← {bi1 = [til+1],bi2 = [til+2, ...,bik = [til+k]]}
4: while number of bins > 1 do
5: pick bi and bj with the largest and smallest scores

6: b
merдe
i j =merge bi and bj

7: Delete bi and bj
8: number of bins← l − 1
9: Return the final merged bin

will try to find an ordering of k sessions, each with l items, such

that the aggregated differences between the means of two consecu-

tive sessions is minimized (maximized). To better understand these

problems, we break them into two steps. We only present these

steps for theMax-Inter problem and note that theMin-Inter version
works analogously, only by inverting the optimization goals inside

the algorithm.

Our proposed solution Ap-Max-Inter for Max-Inter works as
follows: we first find k sessions obtained by running Algorithm

Ap-Min-Intra. This is needed, since it will generate sessions with
means as different from each other as possible. After that, we create

a graph of k nodes, each represents one of the k sessions. The

weight of each edge (si , sj) is defined as w(si , sj) = (µsi − µsj)
2

where µsi (resp. µsj) is the mean of session si (resp. sj). After that,
the goal is to run an algorithm for the Longest path problem for

Max-Inter. Since the graph is complete with positive weights on

the edges, the Longest Path Problem could be solved by replacing

the positive weights with negative values and running a traveling

salesman problem (TSP) over it. In our implementation, we use the

simple yet effective 2-approximation algorithm for TSP in metric

space, described in [25, 28]. The algorithm starts by finding the

Minimum Spanning Tree of the input graph using Prim’s algorithm.

Next, it lists the nodes in Minimum Spanning Tree in a pre-order

walk and adds the edge to the starting vertex to the end. This path

will create an ordering of sessions by following from the starting

vertex si to the ending vertex sj . This algorithm runs in O(k2loдk)
which is dominated by the running time of the Prim’s algorithm.

We further improve this running time by using Fibonacci heaps

and obtain O(k2 + loдk).
Using Example 1 to findMax-Inter of Skill dimension, we first ap-

ply the Ex-Min-Intra to find the following sessions, s1 = {t1, t2, t3},
s2 = {t4, t5, t6}, s3 = {t7, t8, t9}, and s4 = {t10, t11, t12} where
µs1 = 0.516, µs2 = 0.6066, µs3 = 0.726, and µs4 = 0.873. These

sessions will become 4 nodes of a complete graph. The nodes of this

graph are the sessions and the weight of each edge is the Inter value
we get from Equation 2. We solve the longest path problem for this

graph and we get the tour of T = {s1 → s4 → s2 → s3 → s1}.
We remove the edge s2 → s3 since it has the smallest weight. The

solution of Max-Inter is hence the sequence S =< s2, s4, s1, s3 >.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Mohammadreza Esfandiari, et al.

Algorithm 2 Algorithm Ap-Max-Inter

Require: N items, Number of sessions k , Length of session l

1: Sinit ←Min − Intra(N ,k, l)
2: G = (S,E) ← complete graph with k nodes

3: w(si , sj) = (µsi − µsj)
2

4: Run Longest path algorithm on G

5: Longest path contains the ordering of the sessions.

Algorithm Running Time Approximation Factor
Alg-Min-Intra,Min-Inter O(NloдN + k2) (OPT , 4 − 2/k)

Alg-Min-Intra, Max-Inter O(NloдN + k2) (OPT , 1/2)

Alg-Max-Intra, Min-Inter O(NloдN + Nl + k2) heuristic

Alg-Max-Intra, Max-Inter O(NLoдN + Nl + k2) heuristic

Table 3: Optimization Algorithms and Results

3.3 Optimizing Inter with Intra as Constraint
To optimize Inter with Min-Intra as a constraint, we design two

algorithms Alg-Min-Intra, Min-Inter and Alg-Min-Intra, Max-Inter.
For both, we start from the solution of the Min-Intra problem using

algorithm Ex-Min-Intra. This solution is an exact algorithm for

solving Min-Intra and gives a set of k sessions as the the output.

After that, we run Ap-Max-Inter in Alg-Min-Intra, Min-Inter and
Ap-Min-Inter in Alg-Min-Intra, Max-Inter.

On the other hand, to optimize Inter with Max-Intra as a con-

straint, we start from the solution of the Max-Intra using algorithm
Ap-Max-Intra. This solution is an approximation algorithm for

solvingMax-Intra and returns a set of k sessions. After that, we run

Ap-Max-Inter forMax-Intra, Max-Inter and Ap-Min-Inter for the
Max-Intra, Min-Inter.

Table 3 provides the summary of the theoretical guarantees of

these algorithms.

4 Experimental Evaluations
We first conduct experiments involving human subjects on music

playlist recommendation and task recommendation in crowdsourc-

ing to observe the effect of diversity on user satisfaction (in both

applications) and worker performance (in crowdsourcing). Then,

using large scale real data and synthetic data, we examine the qual-

ity of our algorithms in comparison to baselines, and evaluate the

scalability of our approach. Our code and data are available on

GitHub.
3

4.1 Experiments with Human Subjects
We validate how multi-session diversity improves user satisfaction

in two Web applications: music recommendation, where we gener-

ate music channels, and task recommendation in crowdsourcing,

where we generate task sessions.

4.1.1 Music Recommendation. We generate music playlists for

users and consider different contexts namely music for long drive,

theme party, Sunday morning, and learning a new music style, to

observe how diversity affects user satisfaction in different contexts.

3
https://github.com/Multi-Session-Diversity/WWW2021

Dataset. The dataset consists of 727 songs from 54 albums, 47

artists, and 10 genres. The songs are from albums that won the

Grammy Best Album of the Year Award between 1961 and 2020. The

list of albums and their corresponding genres are from Wikipedia

while the other information such as artist, period, popularity, tempo,

and duration are from Spotify.

Experiments Flow.We first collect preferred genres and artists

from users to form their profiles. We then generate 5music playlists

for each user. Each playlist has 5 channels, and each channel has

10 songs. The first 4 playlists are generated using the algorithms in

Table 3, with dimensions specified for each context in Table 4. The

5th playlist represents the baseline with no diversity. It consists

of similar songs randomly selected from one of the dimensions.

In this last experiment, all songs from the period 2000’s. Lastly,

users evaluate the playlists by selecting songs they would actually

listen to, rating how much they like diversity in the sessions, and

providing an overall rating of the playlist. The ratings are based on

a 5-pt Likert scale where 1 is the lowest and 5 is the highest. We

measure user satisfaction using the overall rating provided by users.

We recruit 200 workers (50 per context) from Amazon Mechanical

Turk (AMT). We pay workers $0.10 for profile collection and $1.00

for their evaluations.

Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

Intra tempo period popularity genre

Inter popularity genre genre tempo

Table 4: Diversity dimensions per context

Summary of Results. We observe in Table 5 that user satisfac-

tion in diversified playlists (Scenarios 1 − 4) is higher compared

to the no-diversity baseline. This observation is statistically signifi-

cant at p = 0.10 using a one-way Analysis of Variance (ANOVA)

[32]. The results are consistent with other measures: workers se-

lect the smallest number of songs from the no-diversity playlist

and the no-diversity playlist receives the lowest average diversity

ratings. Moreover, these observations extend to different contexts,

as shown in Table 6. The sample size of 200 workers from the

estimated 200, 000workers in AMT [14] gives our results a 99% con-

fidence level and a 10% error margin (based on the Central Limit

Theorem [33]). In summary, our music experiment clearly shows
that diversity is preferred over no diversity. Additionally, diversity
definitions depend on context, as observed in Table 6.

Scenario
No. of
Selected
Songs

Diversity
Rating

User
Satisfaction

1 Min-Intra, Min-Inter 15.16 3.57 3.54

2 Min-Intra, Max-Inter 15.05 3.66 3.66

3 Max-Intra, Min-Inter 14.71 3.59 3.71
4 Max-Intra, Max-Inter 14.66 3.69 3.71
5 no diversity 12.83 3.35 3.44

Table 5: Average evaluation scores across all contexts

https://github.com/Multi-Session-Diversity/WWW2021

Multi-Session Diversity to Improve User Satisfaction in Web Applications WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 16.58,3.64,3.62 14.86,3.52,3.88 14.76,3.64,3.34 14.42,3.46,3.32

2 Min-Intra, Max-Inter 15.82,3.70,3.76 15.06,3.50,3.72 14.12,3.82,3.66 15.20,3.61,3.50
3 Max-Intra, Min-Inter 16.52,3.70,3.86 13.64,3.54,3.98 14.30,3.58,3.56 14.38,3.54,3.44

4 Max-Intra, Max-Inter 16.24,3.84,3.76 13.96,3.68,3.80 15.04,3.58,3.70 13.40,3.64,3.58
5 no diversity 14.10,3.34,3.60 11.92,3.30,3.42 13.62,3.46,3.46 11.68,3.30,3.28

Table 6: Average number of selected songs, average diversity rating, and average user satisfaction per context

4.1.2 Task Recommendation. In these experiments, we recommend

short and long task sessions to workers in crowdsourcing. The short

sessions consist of 3 sets each with 3 tasks. The long sessions consist

of 5 sets and each set consists of 10 tasks.

Dataset. The dataset consists of 20, 000 tasks from Figure Eight’s

open data library [1]. Each task belongs to one of 10 types such

as tweet classification, image transcription, and sentiment analy-

sis. Each task type is represented as a set of keywords that best

describe required skills. Additionally, each task has a creation date,

an expected completion time (less than a minute), and a reward

that varies between $0.01 - $0.05.

Experiments flow. For each session type (short and long), we

collect 100 user profiles, where workers indicate (from 1 to 5) their

interest in completing tasks, which are described by a given set

of keywords. For each user profile, we generate task sessions us-

ing the algorithms in Table 3 and a combination of the following

dimensions: skill, reward, duration, and creation date. Addition-

ally, we generate a no-diversity baseline session. In this session,

we randomly pick a task type and tasks belonging to that type.

Next, workers complete the recommended sessions. We measure

task throughput, quality of the completed tasks with respect to

a ground truth, and worker satisfaction. Throughput refers to the

average number of tasks completed per minute. Quality refers to

the percentage of correct answers from the tasks completed by a

worker. To measure quality, we use the answers obtained from the

dataset as the ground truth. We use a naïve script that relies on

basic equality to evaluate answer correctness. Satisfaction refers to

how satisfied workers are with the task sessions (a rating from 1

to 5 provided by each worker). We recruit 200 workers, pay each

$0.03 for profile collection and at least $0.35 for task completion.

Scenario
Through

put
Quality

(%)

Worker
Satis-
faction

1

Min-Intra(creation
date), Min-Inter(skill)

6.13,6.95 65.64,68.33 4.47,4.48

2

Min-Intra(skill),
Max-Inter(reward)

5.93,6.96 62.77,69.27 4.43,4.5

3

Max-Intra(skill),
Min-Inter (reward)

5.91,6.96 61.76,70.08 4.44,4.41

4

Max-Intra(duration),
Max-Inter (skill)

5.35,6.98 61.24,67.98 4.46,4.40

5 no diversity 7.53,6.56 64.38,66.04 4.26,4.19

Table 7: Task recommendation for short (first number) and
long sessions (second number)

Summary of Results.We present the average throughput, qual-

ity, and worker satisfaction for short and long sessions in Table 7.

Similar to the music experiments, our sample size (n=200) allows

our results to achieve 99% confidence level with 10% margin of error.

We again used a one-wayANOVA to evaluate statistical significance.

In short sessions, only throughput is statistically significant at

p = 0.05. In long sessions, both quality and worker satisfaction are

statistically significant at p = 0.10.

Our results indicate that short sessions generated by our algo-

rithms do not significantly differ from the no-diversity baseline

in terms of quality and worker satisfaction. On the other hand,

the throughput of no-diversity is significantly higher than sessions

generated by our algorithms. This observation confirms previous

studies where workers get more proficient in completing similar

(and hence not diverse) tasks, allowing them to become faster at

task completion [15]. As the number of tasks per session increases

(long sessions) however, this observation changes. Throughput de-

creases for no-diversity and sessions generated by our algorithms

obtain higher quality and worker satisfaction with statistical signifi-

cance. In summary, our experiments show that the benefit of diversity
in task recommendation is more prominent for sessions comprising
many tasks. Diversity tends to bring positive effect to avoid boredom
which is prominent for sessions with many tasks.

4.2 Large Data Experiments
The goal here is to evaluate our algorithms with appropriate base-

lines (including exact solutions) and compare them qualitatively

(approximation factors, objective function value) and scalability-

wise (running time). All algorithms are implemented in Python

3.6 on a 64-bit Windows server machine, with Intel Xeon Proces-

sor, and 16 GB of RAM. All numbers are presented as the average

of five runs. For brevity we present a subset of results that are

representative.

4.2.1 Data Sets. a. 1-Million Song:Weuse theMillion SongsDataset

[2, 9] that has 1 million songs (please note the Spotify dataset used

in Section 4.1 is small in scale). We have normalized the data to

be between [0, 1]. This dataset also includes artist popularity and

hotness, genre, release date and etc. The presented results are rep-

resentative and consider tempo and loudness as dimensions.

b. Synthetic dataset: The presented results on this are the ones

that vary distributions of the underlying dimensions. We sample

from three distributions: Normal, Uniform, and Zipfian. For Normal

distribution, data is sampled with mean and standard deviation,

µ = 250, σ = 10. For Uniform, dataset is sampled from Uniform

distribution between [0,500], and for Zipfian distribution default

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Mohammadreza Esfandiari, et al.

exponent is set to α = 1.01. We produce a pool of 2
30

items for each

of our three distributions.

4.2.2 Implemented Baselines. In addition to Random where we gen-
erate random sequences, we implement different baselines and

compared the performance of our algorithms.

Optimal. The optimal baseline is based on an Integer Program-

ming (IP) algorithm that solves the problem optimally on small

instances. The rationale behind implementing IP is to verify the

theoretical approximation factors of our algorithms against the

optimal solution. We used Gurobi as the solver
4
.

Baseline-MMR. This baseline is inspired by the MMR algorithm

[10] used in diversifying web search results. MMR takes a search

query and returns relevant and diverse results. Hence, our mapping

to MMR optimizes intra-session diversity only. At each iteration,

Baseline-MMR considers an item to be included or not in the result

and calculates two scores: the Intra score of adding a new item to

a session and themax (resp.,min Inter) score of a new session to

all other sessions in the case of Max-Inter (resp., Min-Inter). It then
picks the highest or the lowest weighted sum of these two scores

based on the Intra part of the problem. The item with that score is

chosen to be added to the session. This process is repeated until

there is no item left.

Clustering Algorithms are not applicable to be used as
baselines since they do not control session size, and they are not

adapted to sequences.

4.2.3 Summary of Results. Overall, for our problems, where both
Intra and Inter diversity are to be optimized, our algorithms are the
unanimous choice considering both quality and scalability. When the

Intra and Inter diversity is studied individually, our algorithms

outperform all the baselines and empirically produce approximation

factors close to 1, across varying k , N , and different distributions.

The only exception to this latter observation is Baseline-MMR,
which performs better in maximizing Inter diversity (while per-

forming very poorly for Intra optimization), which is due to its

focus on optimizing inter-diversity only. Moreover, our algorithms

is highly scalable and is much more efficient than the baselines.

4.2.4 Quality Evaluation. We vary k (the number of sessions), N
(the number of items), and the data distribution. The default values

are N=2
13

and k=27 with a uniform distribution.

Our Scenarios

N=8192 , k=16 N=1024 , k=128

Intra Inter Intra Inter

Min-Intra , Min-Inter 1 1.05 1 1

Min-Intra , Max-Inter 1 0.35 1 0.49

Max-Intra , Min-Inter 0.99 1.06 0.98 1.04

Max-Intra , Max-Inter 0.99 0.58 0.95 0.69

Table 8: Approximation factors on 1-Million Song Dataset

Comparison against Optimal. Table 8 shows the approxima-

tion factors for our algorithms for two default settings: (N = 2
13
,

k = 2
4
) and (N = 2

10
, k = 2

7
) using 1-Million dataset. We can see

that our algorithms produce an approximation factor equal to 1

when Intra diversity is minimized and a factor very close to 1 when

Intra diversity is maximized.

4https://www.gurobi.com/resource/switching-from-open-source/

When Inter diversity is minimized, the resulting approximation

factors are close to 1. However, when Inter diversity is maximized,

the approximation factors are slightly low as our algorithm solves

the Intra part of the problem before ordering the sessions to max-

imize Inter diversity. It is hence bound by the constraints of the

solution to Intra. Nevertheless, the solution formulated by our al-

gorithm for Min-Intra,Max-Inter and Min-Intra,Min-Inter is able
to produce a point on the Pareto Front in the optimal solution re-

gion which meets both the Intra and Inter objectives. The synthetic
dataset mimics this trend as well.

Based on the approximation factor results and the above analysis,
we conclude that our algorithms produce good and in some cases the
best possible solution for the 4 problems we attempt to optimize.

Varying N . Figure 1 shows how Inter scores change as we vary
N from 2

10
to 2

16
for Baseline-MMR, Random and our algorithms.

We have omitted the plots for Synthetic data experiments since

those results closely follow the result for 1-Million Songs dataset.

Figures 1(a)(c) confirms that our algorithm performs best when

Inter diversity is minimized. The objective function improves with

increasing N . On the other hand, as seen in Figures 1(b)(d),when

Inter diversity is maximized, Baseline-MMR outperforms our algo-

rithm with increasing N . This is because our algorithm is subject

to the constraints imposed by optimizing Intra diversity first then

maximizing the Inter diversity, while Baseline-MMR focuses on the

Inter dimension only.

We also compare Intra scores whilst varying N . Table 9 show-

cases the approximation factors of our algorithm’s Intra consid-

ering Optimal for N ≤ 2
13

and N > 2
13
. A ratio of 1 means that

the algorithm produces the best or optimal solution. These results

showcase that our solutions achieve even better bound empirically

compared to the theoretical bounds. Table 9 also shows that al-

though Baseline-MMR performs better in Max-Inter problem, but

it performs poorly for both Min-Intra and Max-Intra problems.

Interestingly, Random produces an approximation factor close

to 1 for N > 2
13

when maximizing Intra. This is because Intra is

maximized when the variance of the sessions are maximized which

is one of the side effects of Random. However, Baseline-MMR and
Random produce very poor approximation factors when minimiz-

ing Intra. Contrarily, our solutions stay close to 1 approximation

factor for both minimization and maximization of Intra diversity.
As N increases, the Intra scores do not see any drastic change in

approximation factors, and always stays close to 1.

Varying k . Figure 2 presents how Inter scores evolve as we

vary k between 2
4
and 2

11
for different baselines compared to our

algorithm. We keep N constant at 2
13
. The synthetic dataset also

mimics this trend. We observe figures 2(a)(c) that our algorithm

performs significantly better than other baselines in minimizing

Inter diversity. For Figures 2(b)(d), our observation is similar to the

case of varying N , Baseline-MMR performs slightly better. Overall,

Inter diversity increases for all 4 scenarios as k increases. This is

because of the fact that when more sessions are present, it allows

for more diversity between each session.

The approximation factors of Intra, hold when varying k (results

omitted for space reasons).

Varying distribution. Figures 3 and 4 present how our algo-

rithm and other baselines perform as we vary data distributions.

We set N to 2
13

and k to 2
7
.

Multi-Session Diversity to Improve User Satisfaction in Web Applications WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Ap-Min-Inter(Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 1: Inter scores with varying N for 1-Million Song dataset

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra) (c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 2: Inter scores with varying k for 1-Million Song dataset

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 3: Synthetic Data: Inter and Intra scores varying distributions

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 4: Synthetic Data: Zipf Distribution

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Mohammadreza Esfandiari, et al.

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter (c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 5: Running times varying k for 1-Million Song dataset

Min-Intra
(Minimizing & Maximizing Inter)

N Algorithms
MMR Random Ours

<= 8192 0.008 6.41E-05 1

>8192 0.002 5.42E-05 1

Max-Intra
(Minimizing & Maximizing Inter)

N Algorithms
MMR Random Ours

<= 8192 0.22 0.98 0.99

>8192 0.021 0.92 0.99

Table 9: Intra approximation factors varying N on 1-Million Song

Considering Intra scores, our algorithm performs the best using

Uniform distribution for all 4 scenarios and using a Zipf distribution

produces a similar trend. However, Normal performs slightly worse

at times with our algorithm when we attempt to maximize Intra.
When we compare Inter scores, our algorithm performs best

with Uniform distribution. In Figures 3(b)(d), Baseline-MMR out-

performs our algorithm due to the same reasons mentioned in the

varying k and N section of this paper.

We also observe that across all 4 scenarios, Zipf produces scores

much larger in magnitude than Normal or Uniform distribution.

This is due to the range of values in Zipf, which results in larger Intra
and Inter scores. Overall, our algorithms stand out to be the best

choice, with its best performance being on Uniform distribution.

4.2.5 Scalability Evaluation. We compare the running time of the

three algorithms for 1-Million dataset.

In Figures 5, we vary k and setN to 2
13
. Naturally, asN increases,

the running time of our algorithms increases. We observe that our

algorithms scale very well but are sometimes slightly slower than

Random. This is unsurprising, as Random does not even have to do

much work to generate sessions (recall that however it performs

poorly qualitatively). However, with increasing values of k , our al-
gorithms are consistently faster. We also observe that as we vary N
with k = 2

7
, our algorithms are the fastest in all diversity scenarios

(plots are omitted for space reasons).

Overall, we find that our algorithms are highly scalable and pro-
duce results within a few seconds for very large values of N and k ,
while some of the baselines take hours to complete.

5 Related Work
Applications.Diversity has been extensively studied in recommen-

dation and search applications [3, 7, 12, 17, 22, 23, 26, 29–31, 34, 36–

40], to return items that are relevant as well as cover full range of

users interests. The goal is to achieve a compromise between rele-

vance and result heterogeneity. Existing works [20, 35] have also

acknowledged the need for diversity and sequence based modeling

in different recommendation applications. Recent works in crowd-

sourcing [18, 27] have demonstrated the importance of diversity in

task recommendation. Task diversity is grounded in organization

theories and has shown to impact themotivation of theworkers [11].

Amer-Yahia et al. [6] propose the notion of composite tasks (CT),

a set of similar tasks that match workers’ profiles, comply with

their desired reward and task arrival rate. Their experiments show

that diverse CTs contribute to improving outcome quality. A recent

work has studied intra and inter-table influence in web table match-

ing [18] involving crowd. Even though completing similar tasks

lead to faster completion time [15], but such composition lead to

fatigue and boredom, and task abandonment [13, 19, 21]. Aipe and

Gadiraju[4] empirically observe that workers who perform simi-

lar tasks achieve higher accuracy and faster task completion time

compared to workers who complete diverse tasks. However, they

find that these workers experience fatigue the most. Alsayasneh et

al. integrate the concept of diversity in composite tasks and empiri-

cally find a positive effect of diversity in outcome quality [5]. For

all of these applications, diversity is studied set-based or sequence

based only.

These applications call for a deeper examination of diversity and a
powerful framework to capture its variants, which is our focus here.

Set and Sequence Diversities. Existing works on diversifica-

tion could be classified as set-based only [3, 17, 26, 29, 30, 34] or

sequence-based only [7, 12, 22, 40]. As an example, in [40], the

authors study sequence-based diversity that is defined as the di-

versity of any permutation of the items. Another example is [7],

in which taxonomies are used to sample search results to reduce

homogeneity. In [3], the authors propose an algorithm with a prov-

able approximation factor to find relevant and diverse news articles.

In the database context, Chen and Li [12] propose to post-process

structured query results, organizing them in a decision tree for eas-

ier navigation. In [8, 24], the notion of diversity is used in the results

of queries to produce closest results such that each answers is dif-

ferent from the rest. In recommender systems, results are typically

post-processed using pair-wise item similarity to generate a list

that achieves a balance between relevance and diversity. For exam-

ple, in [16], recommendation diversity is formulated as a set-cover

problem.

Multi-Session Diversity to Improve User Satisfaction in Web Applications WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

To the best of our knowledge, existing works have focused on achiev-
ing diversity in a single set. We solve set-based and sequence-based
diversities in tandem and develop algorithms with guarantees.

6 Conclusion
We initiate the study of a scalable algorithmic framework and ex-

perimental studies to address multi-session diversity to improve

user satisfaction in Web applications (from song playlists to task

recommendations in crowdsourcing). The combination of Intra and
Inter session diversities gives rise to four bi-objective optimization

problems. We develop algorithms to solve our problems. Our exten-

sive empirical evaluation, conducted using human subjects, as well

as large scale real and simulated data, shows the need for diversity

to improve user satisfaction and the superiority of our algorithms

against multiple baselines.

This work opens up more than one research directions: an im-

mediate extension of our work is to observe users as they consume

items and learn how diversity could be personalized.

Acknowledgments
The work of Mohammadreza Esfandiari, Sepideh Nikookar, Paras

Sakharkar, and Senjuti Basu Roy are supported by the National

Science Foundation, CAREER Award #1942913,IIS #2007935, IIS

#1814595, and by theOffice of Naval ResearchGrant No:N000141812838.

References
[1] [n.d.]. Figure Eight - Data For Everyone. https://www.figure-eight.com/data-

for-everyone/. Accessed 25 January 2019.

[2] [n.d.]. Million Song Database. http://millionsongdataset.com/

[3] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. 2013.

Real-time recommendation of diverse related articles. In 22nd International World
Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013. 1–12.

[4] Alan Aipe and Ujwal Gadiraju. 2018. SimilarHITs: Revealing the Role of Task

Similarity in Microtask Crowdsourcing.. In HT. 115–122.
[5] Maha Alsayasneh, Sihem Amer-Yahia, Eric Gaussier, Vincent Leroy, Julien Pilour-

dault, Ria Mae Borromeo, Motomichi Toyama, and Jean-Michel Renders. 2017.

Personalized and diverse task composition in crowdsourcing. IEEE Transactions
on Knowledge and Data Engineering 30, 1 (2017), 128–141.

[6] Sihem Amer-Yahia, Eric Gaussier, Vincent Leroy, Julien Pilourdault, Ria Mae

Borromeo, and Motomichi Toyama. 2016. Task composition in crowdsourcing. In

Data Science and Advanced Analytics (DSAA), 2016 IEEE International Conference
on. IEEE, 194–203.

[7] Aris Anagnostopoulos, Andrei Z. Broder, and David Carmel. 2006. Sampling

Search-Engine Results. World Wide Web 9, 4 (2006), 397–429.
[8] Albert Angel and Nick Koudas. 2011. Efficient diversity-aware search. In Proceed-

ings of the 2011 ACM SIGMOD International Conference on Management of data.
781–792.

[9] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 2011.

The million song dataset. (2011).

[10] Jaime G Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based

reranking for reordering documents and producing summaries.. In SIGIR, Vol. 98.
335–336.

[11] Dana Chandler and Adam Kapelner. 2012. Breaking Monotony with Meaning:

Motivation in Crowdsourcing Markets. CoRR abs/1210.0962 (2012).

[12] Zhiyuan Chen and Tao Li. 2007. Addressing diverse user preferences in SQL-

query-result navigation. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Beijing, China, June 12-14, 2007. 641–652.

[13] Peng Dai, Jeffrey M. Rzeszotarski, Praveen Paritosh, and Ed H. Chi. 2015. And

Now for Something Completely Different: Improving Crowdsourcing Workflows

with Micro-Diversions. In ACM CSCW. 628–638.

[14] Djellel Difallah, Elena Filatova, and Panos Ipeirotis. 2018. Demographics and

dynamics of mechanical Turk workers. In Proceedings of the eleventh acm inter-
national conference on web search and data mining. ACM, 135–143.

[15] Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, and Philippe Cudré-

Mauroux. 2014. Scaling-up the crowd: Micro-task pricing schemes for worker

retention and latency improvement. In Second AAAI Conference on Human Com-
putation and Crowdsourcing.

[16] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. 2009. Turning

down the noise in the blogosphere. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009. 289–298.

[17] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng. 2015. iCrowd:

An Adaptive Crowdsourcing Framework. In SIGMOD. 1015–1030.
[18] Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, and Meihui Zhang. 2014.

A hybrid machine-crowdsourcing system for matching web tables. In 2014 IEEE
30th International Conference on Data Engineering. IEEE, 976–987.

[19] Lei Han, Kevin Roitero, Ujwal Gadiraju, Cristina Sarasua, Alessandro Checco,

Eddy Maddalena, and Gianluca Demartini. 2019. All Those Wasted Hours: On

Task Abandonment in Crowdsourcing. In Proceedings of the Twelfth ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC,
Australia, February 11-15, 2019. 321–329.

[20] Negar Hariri, Bamshad Mobasher, and Robin Burke. 2012. Context-aware music

recommendation based on latenttopic sequential patterns. In Proceedings of the
sixth ACM conference on Recommender systems. 131–138.

[21] Kenji Hata, Ranjay Krishna, Fei-Fei Li, and Michael S. Bernstein. 2017. A Glimpse

Far into the Future: Understanding Long-term Crowd Worker Quality. In Pro-
ceedings of the 2017 ACM Conference on Computer Supported Cooperative Work
and Social Computing, CSCW 2017, Portland, OR, USA, February 25 - March 1, 2017.
889–901.

[22] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. 2013. Adaptive

Task Assignment for Crowdsourced Classification. In ICML. 534–542.
[23] Chien-Ju Ho and Jennifer Wortman Vaughan. 2012. Online Task Assignment in

Crowdsourcing Markets. In AAAI.
[24] Anoop Jain, Parag Sarda, and Jayant R Haritsa. 2004. Providing diversity in k-

nearest neighbor query results. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 404–413.

[25] Charles Eric Leiserson, Ronald L Rivest, Thomas H Cormen, and Clifford Stein.

2001. Introduction to algorithms. Vol. 6. MIT press Cambridge, MA.

[26] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functionsâĂŤI. Mathematical
programming 14, 1 (1978), 265–294.

[27] Julien Pilourdault, Sihem Amer-Yahia, Dongwon Lee, and Senjuti Roy. 2017.

Motivation-aware task assignment in crowdsourcing. In EDBT.
[28] Abraham Punnen, FrancoiS Margot, and Santosh Kabadi. 2003. TSP heuristics:

domination analysis and complexity. Algorithmica 35, 2 (2003), 111–127.
[29] Shameem A Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. 2016. A

coverage-based approach to recommendation diversity on similarity graph. In

Proceedings of the 10th ACM Conference on Recommender Systems. 15–22.
[30] Lijing Qin and Xiaoyan Zhu. 2013. Promoting diversity in recommendation by

entropy regularizer. In Twenty-Third International Joint Conference on Artificial
Intelligence.

[31] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, SihemAmer-

Yahia, and Gautam Das. 2019. Optimized group formation for solving collabora-

tive tasks. VLDB J. 28, 1 (2019), 1–23.
[32] Michael R Stoline. 1981. The status of multiple comparisons: simultaneous

estimation of all pairwise comparisons in one-wayANOVA designs. The American
Statistician 35, 3 (1981), 134–141.

[33] SurveyMonkey. [n.d.]. Calculating the Number of Respondents You Need.

https://help.surveymonkey.com/articles/en_US/kb/How-many-respondents-do-

I-need.

[34] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. 2014.

Coverage, redundancy and size-awareness in genre diversity for recommender

systems. In Proceedings of the 8th ACM Conference on Recommender systems.
209–216.

[35] Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott

Sanner. 2018. Two-stage model for automatic playlist continuation at scale. In

Proceedings of the ACM Recommender Systems Challenge 2018. 1–6.
[36] Dongjing Wang, Shuiguang Deng, and Guandong Xu. 2018. Sequence-based

context-aware music recommendation. Information Retrieval Journal 21, 2-3
(2018), 230–252.

[37] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It takes variety to

make a world: diversification in recommender systems. In Proceedings of the 12th
international conference on extending database technology: Advances in database
technology. 368–378.

[38] Mi Zhang and Neil Hurley. 2008. Avoiding monotony: improving the diversity of

recommendation lists. In Proceedings of the 2008 ACM conference on Recommender
systems. 123–130.

[39] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua Feng.

2015. QASCA: A Quality-Aware Task Assignment System for Crowdsourcing

Applications. In SIGMOD. 1031–1046.
[40] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005.

Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web, WWW 2005, Chiba, Japan,
May 10-14, 2005. 22–32.

https://www.figure-eight.com/data-for-everyone/
https://www.figure-eight.com/data-for-everyone/
http://millionsongdataset.com/

	Abstract
	1 Introduction
	2 Data Model and Diversity Problem
	2.1 Data Model
	2.2 Diversity Problem

	3 Optimization Algorithms
	3.1 Algorithm Min(Max)-Intra
	3.2 Algorithm Min(Max)-Inter
	3.3 Optimizing Inter with Intra as Constraint

	4 Experimental Evaluations
	4.1 Experiments with Human Subjects
	4.2 Large Data Experiments

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

