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Abstract Heavy quark production provides a unique probe
of the quark-gluon plasma transport properties in heavy ion
collisions. Experimental observables like the nuclear modi-
fication factor RAA and elliptic anisotropy v2 of heavy fla-
vor mesons are sensitive to the heavy quark diffusion coeffi-
cient. There now exist an extensive set of such measurements,
which allow a data-driven extraction of this coefficient. In this
work, we make such an attempt within our recently devel-
oped heavy quark transport modeling framework (Langevin-
transport with Gluon Radiation, LGR). A question of partic-
ular interest is the temperature dependence of the diffusion
coefficient, for which we test a wide range of possibility and
draw constraints by comparing relevant charm meson data
with model results. We find that a relatively strong increase
of diffusion coefficient from crossover temperature Tc toward
high temperature is preferred by data. We also make predic-
tions for Bottom meson observables for further experimental
tests.

1 Introduction

At extremely high temperatures such as those available at
the earliest moments of cosmic evolution, normal matter
turns into a new form of deconfined nuclear matter known as
a quark-gluon plasma (QGP). Such a state of matter once
filled the early universe when the temperature was high
enough. Today the QGP is recreated in laboratories by high
energy nuclear collisions at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC). A lot of
measurements have been performed at RHIC and the LHC,
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allowing the use of empirical data to extract key properties of
the QGP, which are of fundamental interests. The transport
properties (such as the shear and bulk viscosity, jet transport
coefficient, etc) have been found to be particularly informa-
tive for unraveling the dynamical features of QGP, leading
to its identification as the nearly perfect fluid [1–3].

Heavy quark production provides a unique probe of the
quark-gluon plasma in heavy ion collisions [4–9]. Charm and
bottom quarks are very hard to be thermally produced in QGP
and are dominantly produced from the initial hard scatterings.
These rare objects then propagate through the QGP fireball
and encode the medium information during their dynamical
evolution. Experimental observables like the nuclear modifi-
cation factor RAA and elliptic anisotropy v2 of (for heavy
flavor mesons as well as heavy flavor decay leptons) are
sensitive to the heavy quark diffusion coefficient inside the
QGP. There now exist an extensive set of such measurements,
which allow a data-driven extraction/constraint of this coef-
ficient. In this work, we make such an attempt within our
recently developed heavy quark transport modeling frame-
work, Langevin-transport with Gluon Radiation (LGR) [10].

A particularly interesting question about the QGP trans-
port properties is their temperature dependence, especially
how they change in the temperature region from transition
temperature Tc to a few times Tc. This is the region acces-
sible through RHIC and LHC collision experiments. It has
been suggested that such temperature dependence could be
highly nontrivial, especially close to Tc. For example, it was
proposed long ago that the jet-medium interaction strength
(quantified by e.g. normalized jet transport coefficient q̂/T 3)
may rapidly increase from high temperature down toward Tc
and develop a near-Tc peak structure [11]. Such a scenario
appears to be confirmed by many subsequent studies [12–
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17]. Another important transport property, shear viscosity
over entropy density ratio η/s, also seems to have a visible
T -dependence with a considerable increase from Tc toward
higher temperature [18]. Regarding the diffusion and drag
coefficients relevant for heavy quark dynamics, there are also
indications of nontrivial temperature dependence [19]. In this
work we will focus on the diffusion coefficient and test a
wide range of possibility for its temperature dependence. By
comparing modeling results with experimental data of charm
hadrons, we draw constraints on the behavior of this impor-
tant transport property of QGP. Based on that, we further
make predictions for bottom hadron observables.

The rest of this paper is structured as follows. In Sect. 2,
we introduce the detailed setup of the LGR modeling frame-
work and discuss the temperature dependence of diffusion
constant. In Sect. 3, we systematically compare modeling
results with data and extract optimal range of this transport
coefficient based on global χ2 analysis. Direct comparison
of optimized model results with experimental observables as
well as predictions for new measurements are presented in
Sect. 4. Finally we summarize this study in Sect. 5.

2 Methodology

In this section, we present the details of our modeling frame-
work. The heavy quark evolution is described by the fol-
lowing Langevin transport equation that incorporates gluon
radiation [20]:

d �x = �p
E
dt

d �p = ( �FD + �FT + �FG)dt
(1)

where the deterministic drag force reads

�FD = −ηD( �p, T ) · �p, (2)

with ηD( �p, T ) being the drag coefficient . The two-point
temporal correlation of the stochastic thermal force �FT is
given by [21]

< �Fi
T(t) · �F j

T (t ′) >=
[
κ‖( �p, T )Pi j

‖ + κ⊥( �p, T )Pi j
⊥

]

δ(t − t ′),
(3)

indicating the uncorrelated random momentum kicks from
the medium partons. Pi j

‖ = pi p j/p2 and Pi j
⊥ = δi j −

pi p j/p2 are the projection operators for momentum com-
ponents parallel and perpendicular to the direction of the HQ
motion, respectively. Adopting the post-point discretization
scheme of the stochastic integral, the relation between the

drag coefficient (ηD), the longitudinal (κ‖) and transverse
momentum diffusion coefficients (κ⊥) can be written as:

ηD( �p, T ) = κ‖( �p, T )

2T E
− 1

p2

(√
κ⊥( �p, T ) −

√
κ‖( �p, T )

)2

.

(4)

Detailed derivation of the above relation can be found in the
Appendix.

The third term on the right hand side of Eq. (1),

�FG = −
NG∑
j=1

d �p j
G

dt
, (5)

denotes the total recoil force induced by the emitted gluons.
The emission rate of gluons is estimated with the following
Higher–Twist model formula [22]:

dNG

dzdk2⊥dt
= 2αsCAP(z)q̂q

πk4⊥

[
k2⊥

k2⊥ + (zmQ)2

]4

sin2
(
t − t0
2τ f

)
.

(6)

In the above, z denotes the fraction of energy carried away
by the emitted gluon, and P(z) represents the quark splitting
function; αs(k⊥) is the strong coupling constant of QCD
at leading order approximation; τ f = 2z(1 − z)E/[k2⊥ +
(zmQ)2] is the gluon formation time; t0 is the initial time
for gluon radiation and (t − t0) is the time interval between
two inelastic scatterings; q̂q is the quark jet transport coef-
ficient. The recoil force becomes important when the heavy
quark is in the high energy regime E � mQ, where HQ
velocity vQ = √

1 − (mQ/E)2 ∼ 1 and radiative energy
loss becomes significant. In this regime, the q̂q in the above
can be approximated by

q̂q = 2κ⊥
vQ

≈ 2κ⊥ . (7)

As one can see at this point, the key parameters control-
ling all the forces in Eq. (1) are the momentum diffusion
coefficients (κ‖ and κ⊥). It is customary in heavy quark phe-
nomenological modelings [20,20,23–26] to further connect
these parameters to the spatial diffusion constant under rea-
sonable approximations. In the low momentum regime where
diffusion dynamics is most important, one could assume
approximate isotropy for the momentum diffusion coeffi-
cients, i.e. κ‖ = κ⊥ ≡ κ . Thus the Eq. (4) is further reduced
to

ηD = κ

2T E
, (8)
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i.e. the so-called dissipation–fluctuation relation in the non-
relativistic approximation. The connection to the (scaled)
spacial diffusion constant, strictly speaking, is valid at zero-
momentum limit [27], 2πT Ds = 2πT 2/[mQ · ηD(| �p| →
0, T )]. Such relation has been phenomenologically gener-
alized to finite momentum and widely used in heavy quark
modelings [20,25,26], allowing the expressions of both the
drag and the momentum diffusion coefficients (Eq. 8) in
terms of spacial diffusion constant:

ηD( �p, T ) = 1

2πT Ds
· 2πT 2

E

κ(T ) = 1

2πT Ds
· 4πT 3.

(9)

We can see that now there is only one key transport param-
eter, the spatial diffusion constant (2πT Ds) that quantifies
all relevant components: the drag force (Eq. 2), thermal ran-
dom force (Eq. 3) and the recoil force (Eqs. 5, 6) in the
Langevin approach (Eq. 1). Thus, the dynamical interactions
between the heavy quarks and the QGP medium are conve-
niently encoded into 2πT Ds . We note that, in a naive way,
a small/large spatial diffusion corresponds to a short/long
mean-free path and thus strong/weak HQ-medium coupling
strength.

Indeed, many past studies have demonstrated sensitivity
of experimental observables (such as RAA and v2 of heavy
flavor mesons) to this key parameter. It appears that, very
similar to the situation of jet energy loss, the RAA is mainly
controlled by the HQ-medium interaction on average while
the v2 is strongly influenced by the temperature dependence
of the diffusion constant [24,28–30]. In this study, we aim
to investigate such temperature dependence. Let us focus on
the temperature range (1 ∼ 3)Tc and frame the question in a
model-independent way. Consider Ds as an arbitrary function
of temperature T in this range, it can always be expressed via
a series of polynomials (as long as one can include enough
terms): Ds = d0 + d1 · T + d2 · T 2 + · · · without the need
of assuming any theoretically-motivated temperature depen-
dence. In principle, with sufficient experimental data and
adequate computing power, one could exploit data-driven
extraction of all these coefficients term by term. As a first
step, we take only the first two polynomials, i.e. a constant
plus a linear dependence, with the following ansatz (where
we use T and Tc to make dimensionless combinations):

2πT Ds ≈ α

(
T

Tc

)
+ β . (10)

The two dimensionless parameters in Eq. (10), the slope α

and the intercept β, will be explored in a very wide range
without presuming any reasonable value. Our approach is to
compute observables for any given (α, β) and let the large set

of experimental data decide what would be preferred via χ2

analysis. We will then compare so-extracted spatial diffusion
constant with various other results [31].

Finally we describe a few detailed aspects of the numerical
implementation. When solving the Langevin transport equa-
tion (Eq. 1), we need the space-time evolution of the medium
temperature and the fireball velocity field. It is simulated in
terms of a 3 + 1 dimensional relativistic viscous hydrodynam-
ics based on the HLLE algorithm (—see details in [32]).
Concerning the hadronization of HQ, a “dual” approach,
including both fragmentation and heavy-light coalescence
mechanisms, is utilized when the local temperature is below
Tc = 165 GeV. Following our previous work [26,33], the
Braaten fragmentation functions [34] is employed with the
parameter r = 0.1 [35]. Within the instantaneous coales-
cence approach, the momentum distributions of heavy-flavor
mesons (M) composed of a heavy quark (Q) and a light anti-
quark (q̄) reads

dNM

d3 �pM
= gM

∫
d6ξQd

6ξq̄ fQ fq̄

×
1∑

n=0

W
(n)

M (�yM, �kM)δ(3)
(∑

�p
) (11)

where, gM is the spin-color degeneracy factor; d6ξi =
d3 �xi d3 �pi is the phase-space volume for i = Q, q̄; fi (�xi , �pi )
denotes the phase-space distributions; W

(n)

M represents the
coalescence probability for Qq̄ combination to form the
heavy-flavor meson in the nth excited state, and it is defined
as the overlap integral of the Wigner functions for the meson
and Qq̄ pair [36]

W
(n)

M (�yM, �kM) = λn

n! e
−λ, λ = 1

2

( �y 2
M

σ 2
M

+ σ 2
M

�k 2
M

)
. (12)

where �yM = (�xQ − �xq̄) and �kM = (m q̄ �pQ − mQ �pq̄)/(mQ +
m q̄) are the relative coordinate and the relative momentum,
respectively, in the center-of-mass frame of Qq̄ pair. Note
that the parton Wigner functions are defined through the
Gaussian wave-function, while for heavy-flavor meson, it
is quantified by a harmonic oscillator one [37]. The width
parameter σM is expressed as [26]

σ 2
M = K

(eQ + eq̄)(mQ + m q̄)
2

eQm2
q̄ + eq̄m2

Q

〈r2
M〉 (13)

where, K = 2/3 (K = 2/5) for the ground state n = 0 (1st
excited state n = 1); 〈r2

M〉 is the mean-square charge radius
of a given species of D-meson, which is predicted by the
light-front quark model [38]; ei and mi are the charge and
mass of a given parton, respectively. See Ref. [26] for more
details.
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Fig. 1 Comparison of χ2/d.o. f based on the experimental data of a
RAA and b v2. The model predictions are calculated by using various
combinations of parameter α and β (Eq. 10), which are represented as

α (y-axis) and 2πT Ds(T ) obtained at T = 2Tc (x-axis), respectively.
c Comparison of χ2/d.o. f for various models. See the legend and text
for details

3 Constraining diffusion constant

In this section, we focus on constraining diffusion constant
using experimental data. With any given set of parameters
(α, β) in Eq. (10), we can calculate the corresponding final
observable y for the desired species of D-meson. Then, a χ2

analysis can be performed by comparing the model predic-
tions with experimental data

χ2 =
N∑
i=1

(
yData
i − yModel

i

σi

)2

. (14)

In the aboveσi is the total uncertainty in data points, including
the statistic and systematic components which are added in
quadrature. n = N−1 denotes the degree of freedom (d.o. f )
when there are N data points used in the comparison. In this
study, we use an extensive set of LHC data: D0, D+, D∗+
and D+

s collected at mid-rapidity (|y| < 0.5) in the most
central (0–10%) and semi-central (30–50%) Pb–Pb collisions
at

√
sNN = 2.76 TeV [39,40] and

√
sNN = 5.02 TeV [41], as

well as the v2 data in semi-central (30–50%) collisions [42,
43].

We scan a wide range of values for (α, β) in Eq. (10):
0 ≤ α ≤ 9 and −8.5 ≤ β ≤ 4. We note this covers a signifi-
cantly broader span than existing studies and than commonly
conceived reasonable values of (2πT )Ds . It would be highly
unlikely, if not impossible, for the actual QGP diffusion con-
stant to fall outside this range. A total of 25 different com-
binations were computed and compared with experimental
data, and we summarize these in Table 1. The χ2 values were
computed separately for RAA and v2 as well as for all data
combined. To better visualize the results, we also show them
in Fig. 1, with panel (a) for RAA analysis and panel (b) for
v2 analysis. In both panels, the y-axis labels the slope α and
x-axis labels the 2πT Ds value at T = 2Tc: basically y-axis
quantifies a model’s temperature dependence while x-axis
calibrates the average diffusion in that model. The different

points (filled circles) represent the different combinations of
parameters (α, β) in Table 1, with the number near each point
to display the relevant χ2/d.o. f for that model. A num-
ber of observations can be drawn from the comprehensive
model-data comparison. For the RAA, several models achieve
χ2/d.o. f ∼ 1 with widespread values of slope parameter.
This suggests that RAA appears to be more sensitive to the
average diffusion constant while insensitive to the tempera-
ture dependence. For the v2, it clearly shows a stronger sensi-
tivity to the temperature dependence. There also exist several
models with χ2/d.o. f ∼ 1 and it appears that a small value
of (2πT )Ds near Tc is crucial for a better description of v2

data. Taken all together, we are able to identify two particular
models that outperform others in describing both RAA and v2

data simultaneously with χ2/d.o. f ∼ 1. These two will be
the parameter-optimized models from the LGR framework:
the LGR (Model-A) with (α, β) = (3,−1) and the LGR
(Model-B) with (α, β) = (6.5,−5.5). While both models
give similarly nice good description of RAA, the Model-B
has a much stronger temperature dependence and gives a
better description of v2.

Let us make a comparison with various existing model-
ing frameworks, e.g. TAMU [24], PHSD [28], LTB [44],
POWLANG [45], BAMPS (eastic) [46], BAMPS (elas-
tic+radiative) [46] and CUJET3 [47,48]. The published
results from these models for relevant observables are
taken from pertinent references and used to evaluate the
corresponding χ2 for each model. The analysis results
χ2/d.o. f (RAA) and χ2/d.o. f (v2) are then shown and com-
pared in the panel (c) of Fig. 1. One can see that to describe
simultaneously both RAA and v2 data is challenging in gen-
eral. The LGR Model-A and Model-B, featuring a moderate
to strong temperature dependence and a small diffusion con-
stant very close to Tc, demonstrate a successful description
of current measurements.

Finally in Fig. 2 we present the spacial diffusion con-
stant 2πT Ds of charm quark from various phenomenolog-
ical extractions and theoretical calculations. Very close to
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Table 1 Summary of the
adjustable parameters in
Eq. (10), together with the
relevant χ2/d.o. f obtained for
RAA and v2

Model I D α (Slope) β (Intercept) χ2/d.o. f (RAA) χ2/d.o. f (v2) Total

1 1.00 1.00 2.61 0.85 2.37

2 2.00 0.00 1.58 0.87 1.49

3 (A) 3.00 − 1.00 1.09 1.26 1.11

4 4.00 − 2.00 1.03 1.86 1.14

5 0.00 4.00 1.03 2.68 1.26

6 1.00 3.00 1.55 2.64 1.70

7 2.00 2.00 2.58 3.17 2.66

8 3.00 1.00 4.45 4.06 4.40

9 4.00 0.00 6.10 3.76 5.78

10 0.50 0.50 7.61 1.17 6.73

11 1.50 − 0.50 5.77 1.04 5.12

12 2.50 − 1.50 3.95 0.70 3.51

13 3.50 − 2.50 2.68 0.58 2.39

14 4.50 − 3.50 1.84 0.90 1.71

15 5.50 − 4.50 1.44 0.53 1.32

16 (B) 6.50 − 5.50 1.15 0.77 1.10

17 7.50 − 6.50 1.27 1.41 1.29

18 2.00 − 1.50 7.69 1.25 6.81

19 3.00 − 2.50 5.95 1.05 5.28

20 4.00 − 3.50 4.75 0.89 4.22

21 5.00 − 4.50 3.46 0.68 3.08

22 6.00 − 5.50 2.61 0.60 2.34

23 7.00 − 6.50 1.93 0.57 1.74

24 8.00 − 7.50 1.52 0.76 1.42

25 9.00 − 8.50 1.35 0.66 1.26

cT/T
1 2 3

s
TDπ2

0

10

20

30

Charm, Model-ID: 3
Charm, Model-ID: 16
LQCD: Static
LQCD: Static, Continuum
LQCD: Charm
Charm, CUJET3
Charm, LIDO (Bolt.+Bayesian)

2)↔Charm, Bolt. (2
D-meson

Fig. 2 Spatial diffusion constant 2πT Ds of charm quark from various
calculations, including: the LGR Model-A and Model-B, the optimized
parameters, lattice QCD calculations (pink circle [49], red triangle [50]
and blue square [51]), CUJET3 (red region [52]), a Bayesian analysis in
95% CL from LIDO (shadowed gray band [53]) and a LO calculation
with a Boltzmann dynamics (long dashed blue curve [54]). The result
for D-meson (dot dashed green curve [55]) in the hadronic phase is also
shown for comparison

Tc, the results from both LGR Model-A (solid black curve)
and Model-B (dashed orange curve) are compatible with
the LQCD calculations within their significant uncertainties

(pink circle [49], red triangle [50] and blue square [51]) as
well as consistent with other models [54,56,57]. Toward the
higher temperature end, the region spanned by our Model-A
and Model-B compare well with the band from the Bayesian
analysis based on the Duke model (gray region [53]). Comb-
ing various information together, we observe that: (1) a small
value 2πT Ds � (2 ∼ 4) appears to be much preferred in
the vicinity of Tc; (2) a relatively strong increase of its value
toward higher temperature is favored, albeit still with large
uncertainty for T � 2Tc.

4 LGR results for observables

In this section, we present the results for various observables
to be compared with experimental data. Specifically we use
the optimized LGR Model-B based on analysis from the pre-
vious section.

Figure 3 shows the RAA of (a) D0, (b) D+, (c) D∗+
and (d) D+

s in the most central (0–10%) Pb–Pb collisions
at

√
sNN = 2.76 TeV, respectively. The calculations are

done with FONLL initial charm quark spectra and EPS09
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Fig. 3 Comparison between experimental data (red box [39,40]) and
LGR Model-B calculations (solid black curve with green uncertainty
band) for the nuclear modification factor RAA, of a D0, b D+, c D∗+
and d D+

s at mid-rapidity (|y| < 0.5) in the (0–10%) centrality Pb–Pb
collisions at

√
sNN = 2.76 TeV
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Fig. 4 Comparison between experimental data (red box [41]) and LGR
Model-B calculations (solid black curve with green uncertainty band)
for the nuclear modification factor RAA, of a D0, b D+, c D∗+ and
d D+

s at mid-rapidity (|y| < 0.5) in the (0–10%) centrality Pb–Pb
collisions at

√
sNN = 5.02 TeV

NLO parametrization for the nPDF in Pb [26], and the
green band reflects the theoretical uncertainties coming from
these inputs. It can be seen that the model calculations pro-
vide a very good description of the measured pT-dependent
RAA data for various charm mesons. The same conclusion
can be drawn for the comparison in Pb–Pb collisions at√
sNN = 5.02 TeV, as shown in Fig. 4.
Figure 5 presents the elliptic flow coefficient v2 of non-

strange D-meson (averaged D0, D+, and D∗+) in the 30–
50% centrality Pb–Pb collisions at (a)

√
sNN = 2.76 TeV

and (b)
√
sNN = 5.02 TeV. Within the uncertainties of the

experimental data, our model calculations describe well the
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Fig. 5 Comparison between experimental data (red [42], black [43]
and blue boxes [58]) and LGR Model-B calculations (solid black curve
with green uncertainty band) for the elliptic flow v2 of non-strange
D-meson at mid-rapidity (|y| < 0.5) in the 30–50% centrality Pb–Pb
collisions at a

√
sNN = 2.76 TeV and b

√
sNN = 5.02 TeV

anisotropy of the transverse momentum distribution of the
non-strange D-meson. The sizable v2 of these charm mesons,
in particular at intermediate pT ∼ 3 to 5 GeV, suggests that
charm quarks actively participate in the collective expansion
of the fireball.

Given that our model has provided a very good descrip-
tion of charm meson data, it is tempting to further test it with
bottom meson measurements. Here we present LGR Model-
B results for the strange and non-strange bottom mesons. To
do that, one would need the relevant transport coefficient for
bottom quarks. It has been suggested [45,54,61] that the ratio
of bottom quark spacial diffusion constant to that for charm
quark exhibits a weak T -dependence and varies within ∼ 0.8
to 0.9 in the range Tc < T < 4Tc. We therefore use a constant
factor 0.85 to give a temperature dependent spatial diffusion
constant 2πT Ds(bottom) = 0.85 × 2πT Ds(charm) for
calculating the nuclear modification factor of open-bottom
hadrons. Figure 6 shows the obtained results in the 30–50%
centrality Pb–Pb collisions at

√
sNN = 5.02 TeV. It is found

that RAA(B0
s ) is significant larger than RAA(B+), in partic-

ular at pT ∼ 4 to 6 GeV. This difference decreases toward
high pT. Similar to previous results for the open-charm sys-
tems [33], the enhancement behavior is mainly induced by
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Fig. 6 a Comparison of RAA(B+) (long dashed blue curve) and
RAA(B0

s ) (dashed pink curve) in semi-central (30–50%) Pb–Pb col-
lisions at

√
sNN = 5.02 TeV. The experimental data for RAA(B+)

(green circle point [59]) and RAA(B0
s ) (black triangle point [60]) are col-

lected from the minimum-bias events (0–100%). b RAA ratio between
RAA(B0

s ) and RAA(B+)

the heavy-light coalescence effect, which is more pronounced
for the B0

s (b̄s) than for the B+(b̄u). The observation is con-
sistent with the B-meson measurements (0–100%) reported
by the CMS Collaboration [59,60].

5 Summary

In summary we have used a recently developed heavy
quark transport modeling framework (Langevin-transport
with Gluon Radiation, LGR) to study the heavy flavor spatial
diffusion constant in the quark-gluon plasma in a data-driven
approach. In particular we have examined the temperature
dependence of this transport coefficient by systematically
scanning a wide range of possibilities. Our global χ2 analysis
using extensive set of LHC data on charm meson RAA and v2

has allowed us to constrain the preferred range of this param-
eter. It is found that RAA is more sensitive to the average value
in the relevant temperature region while v2 is more sensitive

to the temperature dependence. Taken together, our analysis
suggests that a small value 2πT Ds � (2 ∼ 4) appears to
be much preferred in the vicinity of Tc while a relatively
strong increase of its value toward higher temperature is
favored. The extracted temperature-dependent 2πT Ds curve
is shown in Fig. 2 and consistent with other phenomenologi-
cal analyses as well as lattice calculations. With the optimized
LGR model calculations we have demonstrated a simultane-
ous description of charm meson RAA and v2 observables.
We’ve further made predictions for bottom meson observ-
ables in the same model, for which an enhancement of the
ratio RAA(B0

s )/RAA(B+) is found in the low to intermediate
pT region with its maximum around pT ∼ 4 to 6 GeV.

We end with discussions on a few important caveats in the
present study that deserve emphasis and that call for future
investigations:

• In this work (and in many other studies in literature), the
heavy flavour dynamics is encoded in a single param-
eter, i.e. the spatial diffusion constant 2πT Ds . This is
certainly a simplifying approximation, which neglects
the momentum dependence of the diffusion coefficients
and the distinction between transverse and longitudinal
momentum broadening (Eq. 8), leading to the relations
in Eqs. (7) and (9). Such approximation is valid in the
non-relativistic limit when the heavy quark momentum
is small compared with mass. However, this condition
is often questionable when one compares model results
with experimental data, most of which are available for
charm quarks with moderate to large transverse momen-
tum (pT > mQ). Future measurements on B-mesons at
low pT may help remedy this situation. Future improve-
ments of existing modelings will also be explored by e.g.
introducing momentum dependence and distinguishing
longitudinal/transverse dynamics [62].

• It may be noted that the fluctuation–dissipation relation
Eq. (8) is strictly speaking violated by the additional term
�FG in Eq. (1) from gluon radiation contribution. This

could be partially addressed by imposing a lower cut-
off on the gluon energy (ω � πT [63]) to balance the
gluon radiation and the inverse absorption, as well as
to constrain the evolution of low-energy heavy quarks to
follow the soft scattering scenario, where the detailed bal-
ance is well defined. This issue was discussed in e.g. [63]
which argues that the violation is at a mild level of ∼ 5 to
10% and should not substantially influence the modeling
results. In the future we plan to take the more rigorous
step to further incorporate the missing process for gluon
absorption so that detailed balance could be strictly main-
tained.

• Another important caveat in the present modeling (and
in many other studies as well) is the uncertainty associ-
ated with the hadronization procedure. The in-medium
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hadronization is an intrinsically non-perturbative pro-
cess, which can only be treated with model assump-
tions. Both the fragmentation and heavy-light coales-
cence mechanisms are considered in this work. It was
shown (e.g. in [4,64]) that different hadronization proce-
dures could cause considerable variation of the modeling
results and thus make it more difficult to draw conclu-
sions from theory-experiment comparisons. A systematic
investigation of such uncertainty would be very important
for any effort to extract heavy quark transport coefficients
from experimental data.

• It would be tempting to go beyond the linear ansatz for
2πT Ds (Eq. 10). We plan to further employ a multi-
term nonlinear ansatz and to use Bayesian inference for
efficiently extracting the full temperature dependence.
Another improvement would be the inclusion of RHIC
data in the analysis. Compared with LHC, the RHIC fire-
ball shall be more sensitive to the near-Tc region and
would help further constrain the transport coefficient
there. It has also been noticed that the major uncertainty in
nailing down the temperature dependence lies in the high
temperature end, which has not been well constrained by
current data. One possibility is to explore the extremely
central collisions (e.g. top 1% events of multiplicity) at
the highest LHC energies, which should produce a fire-
ball that has more fraction of its space-time evolution in
the high temperature region and thus becomes more sen-
sitive to the behavior of QGP in that region. We also plan
to explore this idea in the future.
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Appendix: Relation between transport coefficients

The Fokker–Planck transport equation reads [65]

∂ fQ
∂t

= ∂

∂pi

(
Ai fQ

)
+ ∂2

∂pi∂p j

(
Bi j fQ

)
, (A1)

where fQ(t, �p) is the heavy quark phase-space distrubution;
Ai and Bi j (i, j = 1, 2, 3) are the drag and momentum dif-
fusion coefficients, respectively.

Ai ( �p) = A( �p) · pi
Bi j ( �p) = B0( �p)Pi j

⊥ ( �p) + B1( �p)Pi j
‖ ( �p). (A2)

Pi j
⊥ ≡ δi j − pi p j/ �p 2 and Pi j

‖ ≡ pi p j/ �p 2 are the projec-
tion operators for momentum components perpendicular and
parallel to the direction of the heavy quark motion, respec-
tively. To get the Einstien fluctuation–dissipation relation
from Eq. (A1), one can admit a steady solution fQ → feq ∝
exp{−E/T } when the left hand side vanishes. It yields

A · pi = −∂Bi j

∂p j
+ Bi j

T E
· p j

(A2)= B1

T E
· pi − ∂B1

∂pi
− d − 1

�p 2 (B1 − B0) · pi ,
(A3)

where, d denotes the spatial dimension. Equation (A3) can
be further reduced to

A = B1

T E
− ∂B1

p∂p
− d − 1

�p 2 (B1 − B0). (A4)

The momentum diffusion of a single heavy quark can be
quantified by the Langevin equation [65]

dpi = −ηD · pidt + Ci jρ j
√
dt . (A5)

The first and second terms on the right hand side of Eq. (A5)
represent the deterministic drag (Eq. 2) and stochastic ther-
mal components (Eq. 3), respectively. During the numerical
implementation, the stochastic process depends on the spe-
cific choice of the momentum argument of the covariance
matrix,

Ci j → Ci j ( �p + ξd �p) (A6)

via a parameter ξ = 0, 0.5, 1, corresponding to the pre-point
Ito, the mid-point Stratonovic, and the post-point discretiza-
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tion schemes, respectively. Equation (A6) can be further
expressed as

Ci j ( �p + ξd �p) = Ci j ( �p) + ξ
∂Ci j

∂pk
dpk (A7)

by performing a Taylor expansion and keeping the terms up
to the order of dt . The Gaussian noise ρ j in Eq. (A5) follows

a normal distribution P( �ρ) = ( 1
2π

)3/2exp{− �ρ 2

2 }, resulting
in

< ρi >= 0 < ρiρ j >= δi j . (A8)

There is therefore no correlation for the random momentum
kicks between two different time scale (Eq. 3).

We now can consider an arbitrary phase-space funciton of
the heavy quark momentum g = g( �p), and take its variation
in the interval [ �p, �p+d �p], keeping only terms up to the order
of dt . This yields

dg = g( �p + d �p) − g( �p)

= ∂g

∂pi
dpi + 1

2

∂2g

∂p j∂pi
dp j dpi

(A7)=
{

∂g

∂pi
[−ηD · pi + ξ

∂Ci j

∂pk
Cklρlρ j ]

+ 1

2

∂2g

∂pi∂p j
CikC jlρkρl

}
dt + ∂g

∂pi
Ci jρ j

√
dt .

(A9)

Here all momentum arguments in the final step have to be
taken at the argument �p. The expectation value of Eq. (A9)
over the thermal ensembles reads

< dg >
(A8)=

[
∂g

∂pi
(−ηD · pi + ξ

∂Ci j

∂pk
Ckj )

+ 1

2

∂2g

∂pi∂p j
CikC jk

]
dt.

(A10)

In the above the expectation value over the hydrodynamic
evolution time is taken according to the heavy quark phase-
space distribution

< g( �p) >≡
∫

d3 �p g( �p) fQ(t, �p).

The time evolution of the above equation gives the differential
equation

d

dt
< g( �p) > ≡

∫
d3 �p g( �p) ∂

∂t
fQ(t, �p)

(A10)=
∫

d3 �p
[

∂g

∂pi
(−ηD · pi + ξ

∂Ci j

∂pk
Ckj )

+ 1

2

∂2g

∂pi∂p j
CikC jk

]
fQ(t, �p)

=
∫

d3 �pg( �p)
{

∂

∂pi
[(ηD · pi − ξ

∂Ci j

∂pk
Ckj ) fQ]

+ 1

2

∂2

∂pi∂p j
(CikC jk fQ)

}
.

(A11)

Comparing the first and third steps in Eq. (A11), and consid-
ering the fact that g( �p) is arbitrary, one can obtain the time
evolution of fQ(t, �p),

∂ fQ
∂t

= ∂

∂pi

[
(ηD · pi − ξ

∂Ci j

∂pk
Ckj ) fQ

]

+ 1

2

∂2

∂pi∂p j

(
CikC jk fQ

) (A12)

By comparing Eq. (A12) with Eq. (A1), it is found that,

• for the momentum coefficients

Ci j (A2)= √
2B1P

i j
‖ + √

2B0P
i j
⊥ ≡ √

κ‖Pi j
‖ + √

κ⊥Pi j
⊥ ,

(A13)

where, κ‖ = 2B0 and κ⊥ = 2B1 are the longitudinal
and transverse momentum diffusion coefficients in the
framework of Langevin dynamics;

• for the drag coefficients

ηD
(A2)= A + ξ

pi
∂Ci j

∂pk
Ckj

(A4,A13)= κ‖
2T E

+ ξ − 1

2p

∂κ‖
∂p

+ d − 1

2 �p 2

[
ξ(

√
κ⊥ + √

κ‖)2

− (3ξ − 1)κ⊥ − (ξ + 1)κ‖
]
.

(A14)

Taking the post-point Ito scheme (ξ = 1) and d = 3 in the
final step, one can arrive at

ηD = κ‖
2T E

− 1

�p 2

(√
κ⊥ − √

κ‖
)2

. (A15)
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