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ABSTRACT

Collaborative problem solving (CPS) in virtual environments is an
increasingly important context of 21st century learning. However,
our understanding of this complex and dynamic phenomenon is
still limited. Here, we examine unimodal primitives (activity on the
screen, speech, and body movements), and their multimodal
combinations during remote CPS. We analyze two datasets where
116 triads collaboratively engaged in a challenging visual
programming task using video conferencing software. We
investigate how Ul-interactions, behavioral primitives, and
multimodal patterns were associated with teams’ subjective and
objective performance outcomes. We found that idling with
limited speech (i.e., silence or backchannel feedback only) and
without movement was negatively correlated with task
performance and with participants’ subjective perceptions of the
collaboration. However, being silent and focused during solution
execution was positively correlated with task performance.
Results illustrate that in some cases, multimodal patterns
improved the predictions and improved explanatory power over
the unimodal primitives. We discuss how the findings can inform
the design of real-time interventions for remote CPS.

CCS CONCEPTS

Human-centered computing ~ Collaborative Content Creation;
Computer Supported Cooperative Work; Empirical studies in
collaborative and social computing.

KEYWORDS
Multimodal Learning Analytics; Interpretability; CSCL; CSCW

ACM Reference format:

Hana Vrzakova, Angela Stewart, Mary Jean Amon, Nicholas Duran,
Sidney K. D’Mello. 2020. Focused or Stuck Together: Multimodal Patterns
Reveal Triads’ Performance in Collaborative Problem Solving. LAK
'20, March 23-27, 2020, Frankfurt, Germany. ©2020 Association for

Computing Machinery. ACM ISBN 978-1-4503-7712-6/20/03...$15.00
https://doi.org/10.1145/3375462.3375467

Mary Jean Amon

University of Central Florida
Orlando, USA
mamon(@ist.ucf.edu

Angela Stewart
University of Colorado Boulder
Boulder, USA
angela.stewart@colorado.edu

Sidney K. D’Mello
University of Colorado Boulder
Boulder, USA
sidney.dmello@colorado.edu

1 Introduction

“What shall we do about it?” The question was followed by
uncomfortable silence. Nobody moved. Clearly the team was
stuck on the problem and nobody had a clue how to move
forward. “How about if you run the simulation again and check the
code step-by-step? You will easily spot your mistake” is what a
teacher might suggest. However,, no teacher was there. The team
was alone and the clock was ticking.

Although remote collaborative problem solving (CPS) is less
dramatic than described above, it shares many aspects of this
situation. First, a teacher or facilitator is rarely present and, when
they are present, they cannot attend to all students. Consequently,
students working in remote teams on a given task cannot raise
questions as in a traditional classroom and, thus, have to rely on
available materials and other teammates. In addition, this already
challenging situation is accentuated by the affordances of virtual
environment, which are subpar compared to collocated
interaction. Therefore, the team’s success strongly depends not
only on students’ problem-solving skills but also on students’
ability to collaborate with (often) strangers.

In addition, large-scale remote CPS sessions are challenging to
assess from the perspective of learning analytics. Although it
might be simple to characterize students’ performance by concise
measures such as time-to-task-completion and task score, these
measures cannot describe the rich multimodal dynamic processes
and interactions between teammates [6]. Therefore, it remains
challenging to automatically pinpoint which team’s actions and
behaviors underline good performance and which reveal their
shortcomings.

Prior research on understanding collaborative learning have
relied on expert coding of video data [18,28]. However, expert
coding is time-consuming, especially with large sample sizes.
Consequently, current research has explored the potential of
bottom-up data-driven approaches to complement expert coding
and has expanded to the field of multimodal learning analytics [2].
Data-driven understanding of collaborative learning has advanced
from the analyses of unimodal primitives, such as keystrokes and
clickstreams, to the analyses of data streams obtained from the
multiple sensors [39]. The main motivation has been that the use
of multiple sensors and resources allows for holistic
understanding of collaborative processes [29,41,53].
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However, multimodal modeling often suffers from the lack of
model interpretability [19,32,55]. That is, it is challenging to
identify which behaviors, signals, patterns, or model parameters
contribute to model predictions since model predictions are a
result of all factors. To address this, we aim to identify
interpretable patterns in teams’ verbal and nonverbal behaviors
that correlate with meaningful outcomes during remote CPS.

1.1 Contribution and research questions

We study students’ performance in remote CPS through the lens
of teams’ interaction in a virtual environment and their verbal and
non-verbal behaviors. Concretely, we investigate how unimodal
primitives (i.e. interaction in the virtual environment, students’
speech, and the team’s body movement) and multimodal
combinations of these primitives are associated with both the
team’s objective task score and the self-assessed subjective
perceptions of the collaboration. In addition, we answer the
theoretical question of whether “more is better” and compare
whether the multimodal patterns are more predictive of these
outcomes compared to the unimodal primitives. We address the
following specific research questions (RQs):

e RQ1: What behavioral patterns (in terms of the team’s
interaction, speech, and body movement) emerge during
remote collaborative problem solving?

e RQ2: How do these patterns predict subjective and objective
outcomes?

e RQ3: What is the advantage of multimodal patterns over
unimodal primitives?

We address these questions in a novel research context. Whereas

prior research has largely investigated dyads [36,42] or teams

working in collocated settings [38,54], we use two large-scale
datasets (348 students in total) [8,43] of triads who collaborated
remotely over a shared virtual environment.

2 Background & Related Work

2.1 Process Gain and Loss during CPS

CPS occurs when two or more people engage in a coordinated
attempt to solve a problem [37,59]. Intuitively, we may expect that
multiple people working together on a task might achieve better
outcomes, compared to an individual (this is called process gain
[25]). However, that is often not the case. Groups often perform
worse than they should because they engage in faulty CPS
processes, a phenomenon known as process loss [16,25]. Process
loss has been attributed to multiple factors, the most common
being coordination losses, such as production blocking during
collective ideation [31], the common-knowledge effect where
there is an overemphasis on shared versus individual knowledge
[13], and group-think where individual members converge to the
dominant view [21]. Further, motivation losses, such as social-
loafing [23], evaluation apprehension [5] and free-rider effect
[24], further contribute to groups’ underperformance.

Process loss gets amplified in remote collaborations, where
collaborators do not have the rich of social signals available in
face-to-face interactions [40]. Lagged, low quality, or non-existent

H. Vrzakova et al.

audio and video channels dampen basic social signals [40]. Thus,
process loss might be more severe in remote CPS.

2.2 Modeling Behavioral Patterns during
Collaborations

Considerable work has been dedicated to data-driven modeling of
collaboration. Data-driven approaches have mainly aimed to
model low-level behaviors, such as turn-taking [3], joint attention
[14,33], or synchrony and coordination [4,44]. Such behaviors
have been modeled from speech [3,44], interaction patterns [3],
eye gaze [33], physiology [34], and face or head pose [14,33].
Recent efforts have extended beyond low-level signals to model
high-level collaborative behavioral patterns. For example, team
management dialog has been modeled from eye gaze [22], social
regulation from features of computer interaction [9], gender
dynamics from language features [27], and collaboration quality
from discourse features [17]. Specific to CPS, language-based
features have been used to model facets of CPS (e.g. negotiating
ideas) [15,45] and their corresponding behavioral indicators (e.g.
asking for clarification) [10].

Unimodal features presumably cannot richly capture complex
social interactions. Thus, multimodal signals have been
increasingly used in modeling high-level collaborative patterns
[1,44] as well as on students’ states and traits, such as empathy
[20], engagement [52], workload [26], and learning gains [35]. For
example, Yoo and Kim [56] modeled project grades of long-term,
online discussion groups using multimodal behavioral and
linguistic patterns [56]. Follow-up analyses provided added
interpretability to their results, providing the insight that acting
as an information giver, using positive emotion words, and
collaborating further in advance of the deadline (i.e. not
procrastinating) positively related to project grades.

For CPS specifically, Murray and Oertel [30] modeled expert-rated
task performance on a discussion-based CPS task. They trained a
Random Forest classifier to predict task performance from
acoustic-prosodic and linguistic features with a mean-squared
error of 64.4 (baseline = 79.3). While a multimodal feature set did
yield the best performance, it remained unclear which features
precisely were the predictive. Other data-driven approaches, such
as recurrence quantification analysis, have investigated
collaborative learning from multiple modalities [1,7,8]. Despite
these analyses work with complex systems of signals, the
contribution of individual signals and modalities cannot be
isolated from the results.

In summary, preliminary work has demonstrated the feasibility
and utility of leveraging multimodal signals to predict team
performance, more research is needed to understand the
contribution of each modality to team processes and outcomes.

3 Data Collection

We used data from sources that were previously published
elsewhere (dataset I [46]; dataset II [8]). The task in both datasets
was similar with several nuances which we summarize below.
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3.1 Participants

In dataset I, participants were 111 undergraduate students from a
medium-sized private Midwestern university (63.1% female,
average age = 19.4). Students were 74.8% Caucasian, 9.9%
Hispanic/Latino, 8.1% Asian, 0.9% Black, 0.9% American
Indian/Native Alaskan, 2.7% other, and 2.7% did not report
ethnicity. Students were compensated with two hours of course
credit. Prior to participation, students were asked to confirm that
they had no previous experience with computer programming,
which was the only inclusion criteria for this study. Students were
assigned to 37 teams of three based on scheduling constraints.
Thirty students from 10 teams indicated they knew at least one
person in their team prior to participation.

In dataset II, participants consisted of 303 students from two large
public universities (56% female, average age = 22 years). Students
were 47% Caucasian, 28% Hispanic/Latino, 18% Asian, 2% Black or
African American, 1% American Indian or Alaska Native, and 4%
other. Students were compensated either with a $50 gift card or
with 3.5 hours of course credit. Prior to participation, students
were asked to confirm that they met three inclusion criteria: 1)
they spoke English, 2) they had no significant vision impairments,
and 3) they had no prior experience with a physics game
(unrelated to this study). Students were assigned to 101 teams of
three based on scheduling constraints. Thirty students from 18
teams (26%) indicated they knew at least one person from their
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team prior to participation. Here, we use data from 116 teams —
32 teams from dataset I and 84 teams from dataset II.

3.2 Task Environment and CPS Task

We employed code.orgs’s Minecraft-themed Hour of Code
(Studio, 2014) as our CPS environment. Hour of Code is an online
resource for students of all ages to learn basic computer
programming principles in an hour. It employs a visual
programming language, called Blockly [11], that represents lines
of code (e.g. loops) as blocks that only interlock with other blocks
in a syntactically correct manner. In Hour of Code, students use
code to build structures and navigate around obstacles. At any
point during code construction, students can run their solution
and visualize the results in a preview window (see Figure 1).

3.3 Procedure

Students were randomly assigned to one of three separate,
computer-enabled workstations in a lab. The workstations were
either in separate rooms or partitioned in the same room with
dividers. Each computer was equipped with a webcam and
headset microphone for video conferencing with screen-sharing
through Zoom (https://zoom.us). The headset microphone
recorded student speech at either 16000 Hz (dataset I) or a variable
frame rate (dataset II). An additional webcam was used to record
the student’s face and upper body at 10 Hz (dataset I) or a variable

Partners' view

Figure 1 User interfaces in Minecraft’s Hour of Code. Students first constructed the code using
the interlocking blocks of code (orange) and execute the code which ran the simulation in the
Minecraft world (green). Students were equipped with microphones and headphones and could
see each other in the partners’ view (grey).
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framerate (dataset II). Screen content was recorded using Zoom’s
built-in features at 25 Hz (dataset I) or at 5 Hz with custom screen
recording software (dataset II).

Prior to engaging in the CPS task, students trained as a team in
the lab (dataset I) or individually at home (dataset II) on how to
use the Hour of Code environment. In this training, students
completed five levels and viewed three accompanying videos that
taught basic computer programming principles, such as loops and
if statements.

The team was tasked with constructing a code that satisfied five
criteria: 1) build a four-by-four brick building, 2) use at least one
if-statement, 3) use at least one repeat loop, 4) build at least three
bricks of the building over water, and 5) use 15-blocks of code or
less. One randomly chosen student controlled interaction with the
environment using the mouse and the other two students
contributed to the solution. The task was time-constrained to 20
minutes for dataset I and 15 minutes for dataset II.

After completing the task, students individually rated their
perception of the team. In dataset I, students were asked to rate
their team’s performance, communication, cooperation, and
agreeableness using a six-point Likert scale (1 = very dissatisfied,
6 = very satisfied). In dataset II, students used a six-item
questionnaire that assessed the quality of CPS processes. The
questionnaire was based on a validated competency model of CPS
[48] and assessed perception of the following CPS subfacets:
sharing understanding of problems and solutions, establishing
common ground, responding to others’ questions and ideas
thoughtfully, monitoring execution, fulfilling individual roles on
the team, and taking initiative to advance the collaboration
process. This was followed by a three-item inclusiveness and team
norms questionnaire that assessed how inclusive the team was
and whether the team worked towards task-related or socially-
oriented goals [12]. Both the perceived CPS quality measures and
the inclusiveness and team norms questionnaire were rated on a
seven-point Likert scale (1 = disagree strongly, 7 = agree strongly).
There were other CPS activities and assessments not germane to
the present study and are not discussed further.

3.4 Outcome Measures

Each team’s final solution was scored based on the five task
criteria. Each criterion was worth one point, with final scores
ranging from zero to five (M = 2.88, SD = 1.16).

In addition to objective performance (task score), we calculated a
measure of subjective perception of the task (subjective score). For
dataset I, we used individual self-reports of the team’s
performance, communication, cooperation, and agreeableness.
We averaged measures of communication, cooperation, and
agreeableness because ratings were highly correlated (Cronbach’s
alpha = .89). The averages were first computed per individual and,
then, averaged across the three team members to obtain one score
per team. Since perceptions of performance and collaboration
were correlated (Spearman’s r = 0.51), we averaged these two
measures to yield a single subjective measure.

In dataset II, a subjective score was aggregated from the CPS
quality and inclusiveness and team norms measures. We averaged
six CPS items to yield a single score. This was also done for the
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inclusiveness and team norms measure. These two measures were
highly correlated (Pearson’s r=.79), so we combined them by first
z-scoring each measure and, then, by averaging the z-scores. This
was done first per individual and, then, averaged to the team level.

4 Identifying Unimodal Primitives and
Multimodal Patterns

We analyze three modalities: 1) interaction in the virtual
environment, 2) face and upper body movements, and 3) speech
rate. We first preprocessed and unified sampling rates of all
signals. Since the turns between students were quite short
(median of 1.4 seconds) [8], we resampled the signals to 1Hz.

4.1 Behavioral Signals

We used the screen recording to extract a high-level measure of
activity in the virtual environment since log files were
unavailable. We focused on two areas of interest (AOI): solution
construction and solution execution (Figure 1). We used a
validated motion estimation algorithm [51] to compute the
proportion of screen change in each AOIL Change in the solution
construction AOI indicates solution edits, whereas change in the
solution execution AOI indicates a team’s attempt to test their
code. We downsampled these time series to 1 Hz to ensure the
same frequency across modalities. This was done by computing
the mean of each AOI time series across non-overlapping 1-sec
windows. The active AOI in each 1-sec window was identified as
the one with the maximal proportion of pixels changed.

We computed a frame-level measure of face and upper body
movement using the same validated motion estimation algorithm
used for the screen AOIs. For data set I, the 10 Hz time series was
transformed to a 1 Hz time series by taking the mean over non-
overlapping 1-sec windows. For dataset II, face and upper body
videos were recorded at a variable frame rate. We converted them
to a constant frame rate of 10 frames per second using FFMPEG.
We then converted the video to a 2 Hz time series by taking the
mean over non-overlapping 0.5 second time windows. Finally, we
converted the data to a 1 Hz time series by taking the mean over
1-second windows.

We computed speech rate as a measure of verbal participation in
the task. We used the IBM Watson Speech to Text service [58] to
generate transcriptions of individual audio recordings. IBM
Watson provides start and stop times for each word spoken during
the collaboration. For each second of the recording, we counted
the number of words spoken during that second to yield speech
rate (words per second). If a word spanned multiple seconds, we
assigned it to the second in which it started.

4.2 Identifying Unimodal Primitives

For each modality, we defined and extracted three basic patterns
of activity (unimodal primitives). First, we identified three
primitives based on activity in the virtual environment.
Specifically, Solution construction corresponded to the activity in
the code region, whereas Solution execution represented activity
in the Minecraft simulation region, in which students were
running the assembled code. If changes occurred in both areas, we
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Figure 2 Overview of unimodal primitives and their bimodal and multimodal patterns.

selected the one with the most change as the dominant AOI for
that second. A third primitive called Idling measured students’
inactivity in the virtual environment. We identified idling based
on a threshold (¢ = 0.001%) [1], which accounted for small changes
not associated with the students’ actions (e.g., an icon randomly
blinked in the Minecraft simulation).

Next, we computed three primitives for the team’s speech activity.
Controller speaking reflects instances when the student who was
controlling the Minecraft environment was speaking. Contributors
speaking reflects when either of the other two students were
speaking. Silence/Back channeling represents the periods of
interaction when the controller’s and contributors’ speech rate
was below their median. In the case of the controller, the median
was equal to 0. In the case of the contributors, the median often
varied between 0 and 3 words, corresponding to either silence or
back channeling (i.e., “uh-huh”, “okay”, “right”). To account for
individual differences, the speech rate signals were first z-score
standardized for each student. In addition, the two contributors’
speech rates were averaged since it is not theoretically interesting
to distinguish among the two. Then, we binarized the controller’s
and contributors’ data streams based on their medians and
identified which of three speech primitives occurred in each 1-
second segment.

Finally, body-movement primitives were identified from the
students’ proportions of pixel changes in the video recording of
facial expressions and upper body movements. The data stream of
students’ body movements was the noisiest of the three modalities
considered. Even though a student might appear to be calm and
focused, they could still exhibit small movements and gestures,
such as scratching their chin with a pencil or fidgeting on the
chair. Thus, we opted for two simple primitives at the team level.
Some movement represented the moments when anybody in the

team exhibited movement above their median, whereas low
movement reflected the collective lack of body movement. As with
speech rate, the body movement data streams were first z-score
standardized for each student in the team separately, and
averaged contributors’ data streams after that. Next, two data
streams (controller’s and contributors’) were binarized based on
their median and then each second was classified as Low
movement (all <= median) or Some movement (either controller’s
or contributors’ values > median).

4.3 Combining Primitives into Multimodal
Patterns

We hypothesized that combining modalities would provide added
insights on the team’s collaborative outcomes. Thus, we combined
the unimodal primitives to generate multimodal patterns, as
illustrated in Figure 2. First, we combined the interaction
primitives with speech to yield nine bimodal patterns (3 for
interaction x 3 speech). Then, we combined these with the body-
movement primitives to yield 18 multimodal patterns (3 for
interaction x 3 speech x 2 body movement). It should be noted
that we consider bodily movements a secondary channel,
compared to speech and interaction, because the task is dependent
on speech and interaction. Therefore, we proceeded in the manner
described to ascertain if there were any added benefits of
including secondary signals to more basic ones.

4.4 Aggregation & Standardization by Dataset
and School
We separately calculated the proportion of bimodal and

multimodal patterns within each team by averaging across the 1-
sec segments. In total, the pool of patterns comprised proportions
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of seven unimodal primitives, nine bimodal, and 18 multimodal
patterns. We z-score standardized the proportional occurrences of
each primitive/pattern separately within dataset I and II. In
dataset II, the primitives/patterns were also standardized based on
the school to account for differences between two schools. We
similarly z-score standardized two outcome variables (task score
and the subjective perceptions score).

5 RESULTS

We present the results with respect to our three research
questions.

5.1 RQ1. Behavioral Patterns Emerging during
Remote CPS

We found that inactivity in the user interface and speech
represented the major unimodal primitives. On average, idling
occurred 48.37% of the time (SD = 12.1) and silence/back
channeling occurred 39.06% of the time (SD = 8.2). With respect to
activity in the user interface, solution construction was the second
most frequent (M = 32.67%, SD = 8.7%) followed by the solution
execution (M = 18.96%, SD = 6.3). With respect to team’s speech,
contributors speaking (M = 29.77%, SD = 6.8) was more frequent
than the controller speaking (M = 18.85%, SD = 7.4), which may

Idling E— —
Construction
Execution e
0.2 0.4 0.6
Proportion of the patterns
a) Interaction in the Ul
Silence/Back channeling .
Contributors Speaking .
Controller Speaking

0.2 0.4 06
Proportion of the patterns
b) Speech
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indicate that the controller was often following the suggestions of
the contributors. These data are shown in Figure 3. Since
proportion of teams’ body movements were equal because of the
median split, they were omitted from the figure.

The bimodal and multimodal patterns provide a more detailed
picture (Figure 4). For example, solution construction while
silence/back channeling and without movement occurred more
frequently (M = 10.45%, SD = 3.2) than the equivalent combination
with the contributors (M = 6.03%, SD = 2.5) or the controller
speaking (M = 3.96%, SD = 2.3). While it would be interesting to
explore particular multimodal patterns in an of themselves, we
mainly focus on the ones associated with the team’s performance,
which we analyzed next.

5.2 RQ2. Correlations with Team-level
Outcomes

We first correlated the unimodal patterns with the objective task
score and subjective score using Spearman correlation to address
nonnormal distributions. We did not apply a correction for
multiple significance tests due to the exploratory nature of this
research and because false positives can be easily detected. For
example, a significant correlation with a bimodal pattern where
the corresponding unimodal or multimodal correlations were

Idling + Contributors Speaking + Some Movement

Construction + Silence/Back channeling + Low Movement

Idling + Silence/Back channeling + Some Movement

Execution + Silence/Back channeling + Low M nt

Idling + Silence/Back channeling + Low Movement

Idling + Controller Speaking + Some M nt
Idling + Contributors Speaking + Low M nt .
Construction + Contributors Speaking + Low M nt

Construction + Contributors Speaking + Some Movement
Construction + Silence/Back channeling + Some Movement
Execution + Silence/Back channeling + Seme Movement
Idling + Controller Speaking + Low Movement

Construction + Controller Speaking + Low Movement
Construction + Controller Speaking + Some Movement

Execution + Conltributors Speaking + Low Movement f -

Execution + Contributors Speaking + Some Movement +
Execution + Controller Speaking + Some Movement f -

Execution + Controller Speaking + Low Movement

0.00 0.0 0.10 0.15 0.20
Proportion of the patterns

Figure 3 and 4 Distribution of unimodal primitives (left) and multimodal patterns (right). Proportions have
been sorted in the descending order according to pattern’s average.
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non-significant is likely a false positive. Tables 1 and 2 illustrate
correlations between performance and the interaction primitives
(the speech primitives were uncorrelated with performance and
shown) along with corresponding bimodal
(speech+interaction) and multimodal patterns.

We found that task score was positively correlated with solution
execution (r = 0.334, p < 0.001), suggesting that teams’ efforts to
try various solutions was positively related to their performance.

are not

When examining this primitive further, the bimodal and
multimodal patterns revealed that solution execution during
silence/back channeling (r = 0.329, p < 0.001) and with less
movement (r = 0.340, p < 0.001) was similarly correlated with the
task score. However, inclusion of some other primitives reduced
the correlation (e.g., silence/back
channeling, but with some movement; r = 0.203, p = 0.029) and

solution execution in
some others eliminated it altogether (e.g., solution execution
when contributors speaking with some movement; r = 0.106, p =
0.260). The results suggest that even small changes in the context,
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such as contributors speaking or somebody moving, lowered the
correlation of the pattern with the task score.

Results also suggest that inactivity was generally negatively
associated with task score. Specifically, idling, as a unimodal
primitive, was negatively correlated with the task score (r=-0.204,
p = 0.028) as was idling in silence/back channeling (r = -0.208, p =
0.025). More importantly, the negative correlation was notably
stronger when a lack of movement was added to the mix (r = -
0.351, p < 0.001 for idling + silence/back channeling + low
movement).

A similar picture unfolded with respect to the subjective score.
The primitive pattern of solution execution was positively
correlated with the subjective score (r = 0.205, p = 0.027). This
correlation was strengthened when the contributors were
speaking (r = 0.273, p = 0.003) and the team remained still (r =
0.299, p = 0.001). Similar to above, both idling (r =-0.092, p = 0.326)
and idling in silence/back channeling (r = -0.130, p = 0.165) were

Table 1 and 2 Spearman's correlation of unimodal primitives, bimodal and multimodal patterns with
team's task score (top) and subjective score (bottom). The asterisks indicate significance at the level of
0.05, 0.01 and 0.001 respectively.

Primitives score score score
Idling + Silence/Back channeling -0.21%* Idling + Silence/Back channeling + Low Movement -0.35%**
Idling + Silence/Back channeling + Some Movement -0.06
Idling 0.20% Idling + Controller Speaking -0.09 Idling + Controller Speaking + Low Movement -0.15
Idling + Controller Speaking + Some Movement -0.04
Idling + Contributors Speaking -0.11 Idling + Contributors Speaking + Low Movement -0.11
Idling + Contributors Speaking + Some Movement -0.1

Construction + Silence/Back channeling -0.07

Construction + Silence/Back channeling + Low Movement -0.03

Construction + Silence/Back channeling + Some Movement -0.13

Construction 0.01 Construction + Controller Speaking 0

Construction + Controller Speaking + Low Movement 0.01

Construction + Controller Speaking + Some Movement 0.01

Construction + Contributors Speaking 0.02

Construction + Contributors Speaking + Low Movement  0.07

Construction + Contributors Speaking + Some Movement  -0.05

Execution + Silence/Back channeling ~ 0.33%** Execution + Silence/Back channeling + Low Movement 0.34%**
Execution + Silence/Back channeling + Some Movement  0.20%
— - r—— F—
Execution 03355+ Execution + Controller Speaking 0.17 Execun‘on Controller Speaang Low Movement 0.16
Execution + Controller Speaking + Some Movement 0.15
Execution + Contributors Speaking 0.18 Execution + Contributors Speaking + Low Movement 0.21*
Execution + Contributors Speaking + Some Movement 0.11
Unimodal Subjective Bimodal Patterns Subjective Multimodal Patterns Subjective
Primitives score score score
- - - 025+
Idling + Silence/Back channeling 2013 Idl%ng + S%lence/Back Channel{ng + Low Movement 0.25
Idling + Silence/Back channeling + Some Movement -0.04
Idling -0.09 Idling + Controller Speaking -0.01 ldl%ng + Controller Speak'mg + Low Movement -0.06
Idling + Controller Speaking + Some Movement 0.02
Idling + Contributors Speaking 001 ldl%ng + Contr¥butors Speak{ng + Low Movement -0.03
Idling + Contributors Speaking + Some Movement 0.05

Construction + Silence/Back channeling -0.05

Construction + Silence/Back channeling + Low Movement 0

Construction + Silence/Back channeling + Some Movement -0.15

Construction -0.04 Construction + Controller Speaking -0.06

Construction + Controller Speaking + Low Movement -0.04

Construction + Controller Speaking + Some Movement -0.04

Construction + Contributors Speaking 0.05

Construction + Contributors Speaking + Low Movement  0.13

Construction + Contributors Speaking + Some Movement  -0.01

Execution + Silence/Back channeling  0.12

Execution  0.20% Execution + Controller Speaking 0.07

Execution + Silence/Back channeling + Low Movement 0.12
Execution + Silence/Back channeling + Some Movement  0.08
Execution + Controller Speaking + Low Movement 0.02
Execution + Controller Speaking + Some Movement 0.11

Execution + Contributors Speaking 0.27**

Execution + Contributors Speaking + Low Movement 0.30%*

Execution + Contributors Speaking + Some Movement 0.18
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negatively correlated with the subjective score (r = -0.254, p =
0.006).

There was also a notable lack of correlations. Specifically, none of
the speech primitives correlated with team performance nor was
solution construction and its associated bimodal and multimodal
patterns. The action appears to lie in execution and idling.

5.3 RQ3. Contribution of Multimodal Patterns
over Unimodal Primitives

We assessed whether the bimodal and multimodal patterns were
more strongly correlated with the outcomes compared to the
unimodal primitives. In case of the task score, the best correlation
of 0.340 (p < 0.001) obtained with the Execution + Silence/Back
channeling + Low movement multimodal pattern was similar to
the correlation of 0.334 (p < 0.001) obtained via the unimodal
primitive Execution. Zou’s test of the difference between two
overlapping dependent correlations [57] with one common
variable (i.e. Execution) indicated that two correlation coefficients
were statistically equivalent at p < 0.05 (CI [-0.10, 0.12]; i.e., the
confidence interval overlaps with 0). Similarly for the subjective
score, the best correlation of 0.205 (p = 0.027) obtained via the
unimodal primitive Execution was statistically equivalent to the
0.299 correlation (p = 0.001) obtained from Execution +
Contributors speaking + Low movement (CI [-0.08, 0.27]). The
same trend was observed between unimodal and bimodal
patterns. Thus, with respect to the solution execution, there was
no added advantage of the bimodal or multimodal patterns over
the unimodal primitives.

However, the patterns related to idling suggested a different
conclusion. With respect to task score, the strongest negative
correlation of -0.351 obtained with the multimodal pattern (Idling
+ Silence/Back channeling + Low movement) was statistically
larger than the correlation of -0.204 (p = 0.028) from the unimodal
primitive (Idling) ([-0.29, -0.00045]; CI does not overlap 0). This
result was also found for the correlations with the subjective
score. Specifically, the strongest negative correlation of -0.254 (p
= 0.006), obtained with the same multimodal pattern, was
statistically different ([-0.31, -0.01]) from the -0.092 (p = 0.326)
correlation obtained with Idling alone. This finding suggests that
not all idling is negatively associated with CPS. Idling while
speaking and moving was not significantly related to the
outcomes, but idling in silence or back channeling with little
movement negatively predicted both objective and subjective
outcomes.

6 Discussion

Multimodal learning analytics is gaining prominence in the field
of collaborative learning. Researchers have typically explored
data-driven approaches and multimodal modeling in an attempt
to understand the rich and complex processes involved in
collaboration. Despite the technical advances in machine learning,
multimodal modeling often suffers from problems with model
interpretability. In this work, we aimed to unveil complex, but
interpretable, interaction and behavioral patterns that emerge
during remote collaborative problem solving among triads.
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6.1 Main Findings and Implications

We started with interaction patterns that emerged during CPS and
gradually included primitives from speech and body movement
with the goal of exploring how these patterns are associated with
teams’ subjective and objective performance. We found that
certain patterns including code execution were positively
correlated with teams’ task and subjective score. Interestingly, the
highest correlations were observed when the code execution
occurred during periods of silence (or back channeling) and with
little body movement, perhaps suggesting focused concentration.
In contrast, idling with little speech and movement was negatively
associated with both outcomes. This pattern might indicate that
the team was stuck or experiencing a tense moment.
Surprisingly, the more infrequent unimodal primitive (code
execution) was the one that was most strongly correlated with
performance. Code execution was also correlated with task score
when it was accompanied with silence or back channeling and
little body movement. But even small changes in the context, such
as teammates speaking or moving, weakened this association or
eliminated it altogether. One possibility is that team’s silence and
stillness could indicate team’s anticipation of a successful
execution or their focused attention on the code itself as it was
being executed. Additional “behavioral disturbances”, such as
teammates commenting on the code or fidgeting in their chairs,
probably reduced teams’ focus. Conversely, in the case of idling
in the virtual environment, the negative correlation was stronger
when idling was observed in the context of silence/back
channeling and with less body movement and disappeared in the
presence of speech.

These results lead us to question: are the multimodal patterns
better than the unimodal primitives? As illustrated above, we
found evidence for both sides of the argument. In the case of code
execution, the answer is no, but it is a yes in the case of idling.
However, it is important to go beyond the significant correlations
as there is an informative signal in the non-significant ones as
well. For example, consider idling once again. By itself, this
pattern is negatively correlated with the task score (r =-.21) and
the correlation is even more negative when idling is accompanied
by silence/back channeling and little movement (r = -.35).
However, there are many other configurations where idling is
weak or negligible predictor of task score. For example, idling
occurring in the context of the contributors speaking with some
movement is more weakly correlated with task score (r=-.11) and
the correlation is essentially null when idling is accompanied with
the controller speaking and some movement (r = -.06). Thus, even
when they do not improve predictive power, multimodal patterns
help contextualize and reveal nuances in the unimodal primitives.
This supports the overall idea of multimodal learning analytics in
which the additional modalities (speech and body movement in
our case) help to understand unclear patterns such as idling.

This finding is interesting from two perspectives. From the
perspective of deeper understanding of collaborations , the
multimodal patterns might be a preferable approach since they
allow to identify contextual nuances in the collaborative process
and, thus, increase interpretability. However, from the
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perspective of real-time interventions, the unimodal primitives
represent a valuable source of information in and of themselves.
In the design of learning interventions, one needs to compromise
interpretability in favor of other factors, such as computational
demands and intervention latency. As we further anticipate the
advances in the field of multimodal modeling and pattern
recognition, future research will need to investigate the trade-offs
between the patterns’ interpretability and usability for real-time
use.

6.2 Limitations and Future Work

Like all studies, ours have limitations. First, we purposefully
selected modalities that are already available at current PC setups
(speech via a microphone, body movements via a webcam,
interaction via a screen recording) and simplified their data
streams into binary or ternary unimodal primitives. Although this
approach greatly helps with interpretability, this comes at the cost
of losing fine-grained detail. We also did not consider other
modalities that might aid in interpretation (e.g., facial
expressions).

Second, with respect to analyses, we opted for simpler approaches
such as counting patterns that occurred simultaneously. However,
additional approaches such as multi-dimensional recurrence
quantification analyses [50] can be used to investigate the
temporal dynamics of these patterns [1,8,49]. On that note, we
also used zero-order Spearman correlations to study associations
of the patterns with CPS outcomes. Although these analyses
allowed us to highlight differences between patterns, they do not
control for additional factors that could influence team
performance. Future research should include factors such as the
team’s demographic composition, personality differences, prior
knowledge effects, and task-related aspects (i.e., establishing
common grounds, setting goals, or getting familiar with
teammates) in order to study the incremental predictive validity
of the patterns over these more stable factors.

Future work should also explore the patterns in relation to the
theory of process loss. Although we did not directly test for
specific effects, we hypothesized that process loss is an inevitable
part of collaboration and would be reflected in some patterns. For
example, a silent teammate could signal a lack of engagement and
presumably signal a free rider effect. Similarly, increased speech
could indicate a dominant teammate potentially blocking others.
Further analyses could examine whether unimodal and
multimodal patterns reflect these effects.

Finally, we explored the interaction and behavioral patterns in
one task in a lab study. However, further research could examine
generalizability of the constructs to other CPS tasks with data
collected in more authentic environments.

6.3 Concluding Remarks

Remote collaborative problem solving is composed of rich
multimodal dynamic processes and interactions between
teammates that characterize team performance. Our work
provides in-detailed insights on interaction patterns and
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behaviors observed in the large-scaled datasets and has
implications for the design of real-time interventions.
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