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ABSTRACT

Modeling team phenomena from multiparty interactions
inherently requires combining signals from multiple teammates,
often by weighting strategies. Here, we explored the hypothesis
that strategic weighting signals from individual teammates would
outperform an equal weighting baseline. Accordingly, we explored
role-, trait-, and behavior-based weighting of behavioral signals
across team members. We analyzed data from 101 triads engaged
in computer-mediated collaborative problem solving (CPS) in an
educational physics game. We investigated the accuracy of
machine-learned models trained on facial expressions, acoustic-
prosodics, eye gaze, and task context information, computed one-
minute prior to the end of a game level, at predicting success at
solving that level. AUROCs for unimodal models that equally
weighted features from the three teammates ranged from .54 to
.67, whereas a combination of gaze, face, and task context features,
achieved an AUROC of .73. The various multiparty weighting
strategies did not outperform an equal-weighting baseline.
However, our best nonverbal model (AUROC = .73) outperformed
a language-based model (AUROC = .67), and there were some
advantages to combining the two (AUROC = .75). Finally, models
aimed at prospectively predicting performance on a minute-by-
minute basis from the start of the level achieved a lower, but still
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above-chance, AUROC of .60. We discuss implications for
multiparty modeling of team performance and other team
constructs.
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1 Introduction

Multiparty interactions are common in everyday life. For example,
small group work is routine in classrooms, team meetings are
commonplace in business, and virtual happy hours are
increasingly prevalent in the age of social distancing. Although
these activities might seem dissimilar, they all involve coordinated
behaviors among multiple parties to achieve a desired goal. Here,
we consider whether automated methods can be trained to predict
collaborative outcomes (e.g., team performance or rapport), with
applications to research, assessment, and intervention.

Just as multimodal modeling entails combining signals from
various modalities, multiparty modeling of team-level outcomes
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requires a mechanism to combine signals of individual teammates.
One way to do this is to concatenate feature sets of each teammate
by assigning them slots (e.g., features 1 to 4 for participant A, 5 to
8 for B, etc), but this raises the question of how to assign
teammates to slots when roles are not pre-defined. Another
approach is to develop predictive models for each teammate and
integrate their predictions via decision-level fusion. However, this
entails using individual features to model a group-level outcome.

An alternate approach is to weight the features of individual
teammates, which requires making assumptions about team
interaction. For example, signals from multiple teammates might
be considered to be equal, which would support averaging signals
across the team (e.g. [17]). However, this assumes that all team
members are in fact equal in terms of their goals, behaviors, and
contributions, which is often not the case [29,31,32]. Another
option is to pool occurrences of behaviors regardless of team
member. For example, [41] combined language products across
the team independent of speaker. However, this approach
implicitly gives more weight to the more verbose teammate,
which may or may not be warranted depending on the
collaboration context (e.g., collaborative or competitive).

Consequently, we hypothesize that team-level outcomes are
influenced by complex group interactions, where the behaviors of
all teammates do not contribute equally toward the outcome.
Thus, we explored the hypothesis that strategic weighting signals
from individual teammates would outperform an equal weighting
baseline.

We conduct our research in the context of collaborative
problem solving (CPS), using mixed-media videoconferencing
(Zoom). CPS occurs when two or more people engage in a
coordinated attempt to construct a solution to a problem [43,47].
We specifically model CPS task performance, which is a common
objective CPS outcome [40,41,61], though our methods could be
applied to other outcomes as well, such as shared knowledge
building [11] or rapport [53].

We leverage multimodal data of 101 triads collaboratively
playing Physics Playground, an educational game [58]. We focus
on nonverbal signals, which have been shown to index constructs
important for communication and team functioning [2,9,33].
Further, we focus on nonverbal signals, as they will likely
generalize better than linguistic information, which encodes
information specific to the task at hand [57]. In particular, we
include facial expressions and acoustic-prosodic information to
index emotional states [16,18], eye gaze as a measure of social
visual attention [46], and high-level task context information as it
provides insight into the unfolding problem solving process [56].
Our central goal is to investigate the effectiveness of various
multiparty weighting schemes in predicting team-level
performance from nonverbal signals of individual team members
to adjudicate the strategic- vs. equal- weighting hypotheses.

1.1 Related Work

The existing research on group behavior and outcomes is vast
[39,49,51]. Group dynamics and collaborative constructs, such as
task performance [61], focus of attention [23], agreeableness [37],
and so on, have been modeled from behavioral cues like head pose

[44], eye gaze [60], acoustics and prosody [40,41], and language
[21]. Several studies have focused on analyzing behavior of teams
in online game environments [4,34] and how team behavior
relates to task performance [34,36]. We scope our review to
methods for combining behavioral features in multiparty
scenarios as this is most relevant to our research goals.

Multimodal signals of teammates have been combined using
feature-level fusion in convolutional neural networks [44] or by
calculating aggregate statistics of behaviors across the group
(mean, range, standard deviation) [40,54]. For example, Miura and
Okada [40] used utterance counts, speaking length, head
movement, acoustic-prosodic cues, and language features to
predict expert-rated metrics of quality of group discussions as a
measure of task performance. They obtained team-level features
by first averaging features across each teammate’s utterances and
then averaging across the team, effectively weighting the
teammates’ contributions equally. The researchers also computed
descriptives (maximum, standard deviation) of each teammate’s
features and used these as additional features to capture
teammate-level influences better than the equally-weighted
features alone. Their best-performing model achieved a Spearman
correlation of .76 between predicted and expert coded group
performance scores.

Related, Murray and Oertel [41] predicted CPS task
performance from acoustic-prosodic and language features. Data
was combined across the team by calculating features from pooled
utterances regardless of speaker, effectively weighting more
verbose speakers higher. Their best performing models achieved
a mean squared error of 64.4, compared to a baseline of 79.3.

Task context features are commonly used in multiparty
modeling as they are inherently at the team-level. Vrzakova et. al.,
[59] extracted change (and lack thereof) in areas of interest on
the screen as high-order measures of a CPS programming task
(e.g., idling, generating code, executing code). They also
considered face/body movements and speech rate and combined
these across teammates at the feature-level. They found that
unimodal patterns of screen activity change were correlated with
task scores, and that, while some combinations of modalities
improved the correlation, others reduced or even eliminated it.

Finally, an individual’s role on the team has long been
considered in multiparty modeling, specifically in emergent leader
identification tasks, which aim to predict dominant teammates
[5,27,50]. Avici and Aran [3] leveraged teammate dominance
when predicting group performance with SVMs and coupled
Hidden Markov Chain models. Their model used a dominance
score along with audio, video, and gaze features to achieve an
accuracy of .91, beating a baseline of .60.

1.2 Contribution, Novelty, & Research
Questions

Multiparty models of team-level outcomes require a mechanism
to combine signals from individual teammates. Existing research
in modeling multiparty outcomes makes inherent assumptions
about each teammate’s contribution to the task by either equally
weighting or weighting dominant members more [17,26,40,41,56].
Here, we investigated the strategic weighting hypothesis by



exploring three strategic weighting strategies, two static and one
behavior-based. The first strategy statically weights multimodal
signals based on a team member’s assigned role due to inherent
differences in affordances offered by assigned role (contributor vs.
collaborator). Additionally, we investigate static weighting based
on individual differences, including prior experience, personality
and attitudes towards teamwork, which have been theoretically
and empirically linked to group outcomes [35]. For example,
personality predicts collaboration quality [55] and prior domain
experience predicts task performance [42]. We also investigate
methods weighting signals based on behaviors that occur during
team interaction, such as verbosity, eye gaze, facial expressions,
which index emotional states, social visual attention and other
constructs important for communication and team functioning
(e.g. a team member’s dominance in terms of verbal contributions
or level of joint attention with teammates). To our knowledge, this
is the first study to jointly investigate methods for combining
multimodal signals from multiple participants.

We address four research questions.

RQ1. How accurately do unimodal and multimodal non-verbal
behavioral signals predict task performance? Given that verbal
contributions are principal in the context of CPS, it is an open
question as to whether nonverbal signals can yield models of
sufficient accuracy in predicting task performance. This is an
essential first step before we can examine multiparty
methodologies for combining signals. In the present study, we
examine whether nonverbal signals 60s prior to the end of a game
level predict success (i.e., whether or not they solved the level).

RQ2: How do role-based, individual difference-based, and
behavior-based approaches to combining multiparty features
compare to an equal-weighting baseline? Here, we explore
different approaches for combining signals across the team and
compare them to an equally weighting baseline.

RQ3: How do nonverbal and language models compare and does
combining the two improve performance? Language models utilize
utterances that are specific to the task, which may result in
improved prediction accuracies at the cost of generalizability.

RQ4. How accurately can we prospectively predict task
performance? Here we examine how our models can be used in
real-time to support effective team performance, for example, by
providing dynamic interventions. Whereas the models used to
address the first three RQs focused on multimodal signals 60s
before the end of a trial, for RQ4, we tested models that analyze
the data in 60s intervals from the start of the trial. These models
are expected to have lower accuracy due to the greater temporal
distance between the signals and outcomes, but the pertinent
question is whether accuracy is above chance.

2 Data Collection

The data were collected as part of a larger study on CPS [58]; only
details pertinent to the present study are reported here.

2.1 Participants

Participants were 303 students (56% female, average age = 22
years) from two large public universities (38.5% from University

1). Based on self-reported demographics, participants were 47%
Caucasian, 28% Hispanic/Latino, 18% Asian, 2% Black or African
American, 1% American Indian or Alaska Native, and 4% reported
“other”. Students were assigned to 101 teams of three based on
scheduling constraints. Thirty students from 18 teams (26%)
indicated they knew at least one person from their team prior to
participation. Participants were compensated monetarily with a
$50 Amazon gift card (95.8%) or with course credit (4.2%).

2.2 Physics Playground

We used Physics Playground (Figure 1) as our problem-solving
environment. Physics Playground is a two-dimensional
educational game that aims to teach students basic Newtonian
physics concepts (e.g., Newton’s laws, energy transfer, and
properties of torque) through gameplay [1,62]. Students complete
levels by using mouse input to draw simple machines (ramps,
levers, pendulums, and springboards) that guide a green ball to a
red balloon. All objects in the game (including ones that students
draw) obey the laws of physics. A trophy is earned upon
completion of a level, which involves navigating a ball to a red
balloon via the simple machines and other objects (e.g., weights).
Students may choose to restart, exit, or change levels at any time
during gameplay. The game is organized into multiple
playgrounds (a playground has several levels) and students are
free to navigate the levels as they please. No hints or other support
mechanisms were provided to students, with the exception of a
tutorial on game mechanics, which could be viewed at any time.

@

® 0

0022 [uTc: (:45:21] éreen Apple

Objecks Lefe 3 Wi

Figure 1: A triad using a lever and weight to navigate the
green ball to the red balloon in the Physics Playground
environment.

2.3 At-home Surveys

At least 24 hours prior to their scheduled lab session, students
were emailed a survey that assessed a variety of individual
difference measures, such as demographics, academic
background, and personality. Students self-reported their formal
physics coursework (e.g. none, high school, introductory college
courses, or multiple college courses). We also used a validated
measure of physics self-efficacy [65] to assess personal beliefs in
their ability to succeed in physics. We used the validated short
version of the Big Five inventory [22] to assess personality
dimensions of extraversion, agreeableness, conscientiousness,



emotional stability, and openness to experience. We assessed
leadership self-efficacy (self-belief of leadership capability), with
the Leadership Domain Identification Measure [25] and
collectivism (willingness to work in teams) and teamwork self-
efficacy (personal perception of ability to work in teams) with the
Individual Satisfaction with the Team Scale [35]. Leadership and
teamwork self-efficacy were correlated (Pearson’s r = .57), so we
combined them by z-scoring each, and averaging the z-scores.
Finally, students completed an expert-created ten-item physics
pretest that assessed knowledge of two focal physics concepts
used in gameplay: energy transfer and properties of torque.

After completing the survey measures, students completed a
short tutorial on how to use Physics Playground, such as how to
draw simple machines like ramps and springboards. After
completing the tutorial, students were given 15 minutes to
complete five easy levels to familiarize themselves with the game.

2.4 In-lab Procedure

The in-lab session took place after the at-home surveys were
completed. Students were individually assigned to one of three
computer-enabled workstations that were either partitioned in
the same room or located in different rooms depending on the
school where data was collected. There were no face-to-face
interactions. All computers were equipped with a webcam and
headset for video conferencing and screen sharing via Zoom
(https://zoom.us). Each computer was also equipped with a
separate webcam to record video of the participant’s face and
upper body at 10 frames per second. A separate audio stream
(48000 Hz) was recorded for each participant using the same
Additionally, each computer was
equipped with a Tobii 4C eye gaze tracker, which recorded eye
gaze at a variable sampling rate, up to 90 Hz.

Teams collaborated in Physics Playground for three 15-minute
blocks (total of 45-minutes of collaborative gameplay). For each
block, one randomly assigned teammate was given the role of
controller and the other two were assigned as observers. The
controller was in charge of all mouse interaction with Physics
Playground, while the observers viewed the controller’s screen
(through screen share) and were tasked with contributing to the
solution and gameplay. A different teammate was the controller
for each block, such that each student controlled the interaction
for one block. An on-screen warning was displayed when there
was ten and five minutes left in each block.

headset used for Zoom.

3 Data Processing and Machine Learning

We developed machine-learned models to predict whether or not
a team successfully earned a trophy on a given level attempt (trial)
from a combination of nonverbal signals.

3.1 Level Attempt Segmentation

Level attempts were segmented from the Physics Playground logs,
which keep track of when a team enters a given level or earns a
trophy. An attempt begins when the team enters a level and ends
under three possible conditions: 1) the team earns a trophy; 2) the

team begins a different level; or 3) time runs out in the block. We
pooled across experimental blocks, resulting in 1220 total level
attempts, of which 55.4% yielded a trophy (the positive class).

3.2 Feature Processing

We computed features for facial expression, gaze, acoustic-
prosodic, and task context. Because sampling rate varied per
modality, we aggregated features across non-overlapping 1s
windows, which was deemed an appropriate unit of analysis since
conversational turns, defined as spoken utterances, were in this
range (median of 1.4s). The averaging also served as a smoothing
filter. Given our relatively small number of instances, we
strategically selected a small number of features per modality.

Facial Features. Facial expressions have been shown to index
emotion in communication [16], and have been linked to task
performance [40,41]. We used the videos of teammate’s faces,
sampled at 10 Hz, to extract face features for each frame in the
video. We used Emotient [38], which produces a binary value for
whether the face could be tracked in a given frame, estimates of
face width and height in the frame, and likelihood estimates of the
presence of 20 action units [16]. Width and height were converted
to face area, which served as a proxy for how close a teammate’s
face was to the screen, a proxy for engagement [14]. We used the
action unit estimates to compute positive and negative valence
according to mappings in [13]. We also computed expressivity, a
measure of the overall activity in a given frame as the mean value
across the action units. Finally, we computed face/upper body
motion, a measure of arousal [14], using a validated motion
estimation algorithm [7]. We mean aggregated these frame-level
features across 1s windows. All features were then z-scored per
individual and then per block, to account for differences.

Gaze Features. Eye gaze provides information into social
visual attention [52], an important aspect of CPS. We computed
gaze features using raw data from the Tobii4C. First, we computed
the proportion of samples in a given second where both eyes were
successfully tracked (validity). We then computed fixation
dispersion as the mean Euclidean distance of each raw gaze point
in a 1s window from the centroid. We computed fixations, which
are points where gaze is maintained on a location (maximum of
25 pixels apart) for at least 50ms [15]. Fixations longer than 1s
were trimmed to 1s whereas fixations that overlapped second
boundaries were assigned to the majority second. Fixations were
then aggregated over 1s windows by computing the number of
fixations and mean fixation duration in that second. We also
computed mean saccade amplitude, which is the pixel distance of
eye movement between fixations, across the 1s window. These
measures provide a broad index into the spatial and temporal
patterns of visual attention and index a variety of cognitive states,
such as cognitive load, mind wandering, and distraction [20].
Finally, we computed the mean distance between the centroid of
each teammate’s gaze and their two partners (in a given second),
which is a proxy for joint attention [60].

Acoustic-Prosodic features. Acoustic-prosodic information
is important in modeling task performance as they index
emotional states in communication and conversational dynamics
[16]. We used the individual audio files to extract acoustic-



prosodic features over 10ms windows. We used OpenSmile [19]
to compute fundamental frequency (pitch), loudness (energy),
center frequency and amplitude of the first through third formants,
harmonics to noise ratio, jitter, and shimmer. Using this small set of
features, we accounted for the acoustic-prosodic information
without representing spoken content. These features were mean
aggregated over 1s windows. Similar to facial features, acoustic-
prosodic features were z-scored per individual and by block to
account for individual- and block-level differences.
Task-Context features. Task context is crucial in modeling
task performance as they provide insights into the unfolding
problem-solving process [56]. We extracted high-level task
context features that represent overall patterns of interaction with
the CPS environment, without encoding task-specific information
(for generalizability). Specifically, we extracted (on a frame-by-
frame basis) changes on the Physics Playground (PP) area of the
screen (see Figure 1) using the same motion estimation algorithm
used for face motion. This was then aggregated across 1s windows
by taking the mean. This provides a measure of screen activity to
distinguish moments of deliberation (or silence) from action. We
computed time spent on level attempt as the difference between the
start of the interval that is selected (as discussed in Section 3.3)
and the start of the level attempt. Finally, we computed wvisit
number (see Section 3.1) as the attempt number for a level.

3.3 Instance Creation

We created an instance for each level attempt. First, we adjusted
the end time of the level-attempt by 10s in order to avoid peeking
into the behaviors that occurred when the team wins the trophy
or quits the level (e.g. celebration of level completion or clicking
to exit the level). We deemed 10s to provide a sufficient buffer by
analyzing level attempts from 20 teams at random. End times were
not adjusted if time ran out in the block. We then selected data
from 60s prior to the end time. We chose a 60s interval after
comparing model performance (Section 4) on intervals of different
sizes (15, 30, 45, 60, 90s), which all yielded similar performance.
Level attempts under 60s (431 instances out of 1220) were not
considered germane for modeling purposes since they reflect
exceedingly easy levels or cases where the team entered a level
and immediately exited. This resulted in 789 instances, of which
53.2% were successfully solved.

Aggregation & missing data treatment. In order to yield a
single value for each feature and each teammate for a level
attempt, we aggregated the feature values by taking the mean
over the 60s interval (e.g. the mean of expressivity over the 60s
interval for a given individual). If the data was missing for a given
60s interval, we applied mean-imputation by replacing the
missing value with the mean value of that feature for the block.
This strategy has been previously used for up to 10% of missing
data [10]. In our data, we mean-imputed 1.4% and 3.2% of the total
data for the facial expression, and gaze modalities, respectively
(mean-imputed instances for the other modalities were
negligible). We applied zero-imputation (replacing a feature value
with zero) for the fewer than 1% of cases when the data for all
three teammates was missing over the block. Task context

features (excluding PP screen motion) were computed at the
interval-level and therefore were not aggregated.

3.4 Multiparty weighting strategies

We explored a variety of weighting strategies to aggregate
multimodal features across the triad. Each strategy is a weighted
mean with different methods for weighing individual teammates.
The strategies do not apply to task context features as they are
inherently at the team-level so no aggregation is needed. If the
data for weighting each teammate was missing, we discarded that
instance. This resulted in a dataset ranging from 718 instances (for
individual difference weighting since some teammates did not
complete the at-home survey) to 789 instances (complete dataset).

Role-based weighting (static). The different role-based
weighting strategies were as follows: Equally weighted - Each
teammate is weighted equally; Controller only - Consider only the
controller’s signals (observers weights are set to 0); Observers only
- Consider only the observer’s signals and weight them equally;
Controller + Observers - Include controller’s features and
separately include the mean of the observer’s features (doubles
the number of features). Controller weighted twice - Weight the
controller’s signals twice as much as the observers.

Individual difference-based weighting (static). We
weighted teammates based on the following individual difference
measures: attitude towards teammates (collectivism, leadership
and teamwork self-efficacy), prior physics experience (prior
physics courses, pretest score, physics self-efficacy), and the Big
Five Inventory personality measures (extraversion, agreeableness,
conscientiousness, emotional stability and openness). Specifically,
for a given individual difference measure value m, and teammates
A, B and C, the weight w,, wg, w( applied to their feature values
would be as follows (w, = my/(my4 + mp + m¢)). For example,
if A, B, and C have an extraversion value of 1, 2, and 3,
respectively, thenm, = 1, mp = 2, m¢; = 3 and all features are
weighted (wy, wg, we) as %%é for A, B, and C, respectively.

Behavior-based weighting. We weighted each teammate’s
features based on how they displayed certain behaviors during the
collaboration as opposed to the previous static weights. The
weights are computed by first averaging the signal over the 60s
interval for each teammate and then averaging across teammates.
We weighted based on the following features: verbosity - total
words spoken over the 60s interval; mean loudness for the 60s
interval; mean expressiveness for the 60s interval;, partner’s
distance - how far a teammate’s gaze is from the other two
teammates. Unlike the other three measures, lower gaze distance
suggests coordination, so we inversely weighted the distance as
1 —w. Thus, higher verbosity, louder voices, greater facial
expressivity, and more gaze coordination are weighted higher.

3.5 Supervised Classification and Validation

We considered Random Forest classifiers (from sci-kit learn [45])
as our primary machine learning model to predict successful or
unsuccessful level attempts. We used team-level nested five-fold
cross validation, where all level attempts of a team were either in
the training set or testing set, but never both. Within each of the



five iterations, the training set was split into three folds for
hyperparameter tuning, where we used grid search to tune the
number of trees in the forest (150, 200, 250, 350, 400 or 500) and
maximum depth of the trees (no maximum depth, 10, 20 or 50).

4 Results

We used AUROC as the performance metric for the main results
and hyperparameter tuning as it assesses true positive and false
positive tradeoff across prediction thresholds [24].

4.1 (RQ1) Accuracy of non-verbal models

Our first research question investigates feasibility of using
nonverbal signals to predict task performance. These analyses
used an equal weighting scheme where the mean of each feature
computed across the three teammates was used for modeling. We
compared the accuracy of our models trained on different
unimodal and multimodal behavioral signals with chance
(AUROC = .50), as well as a shuffled baseline, where we randomly
shuffled outcomes within a team. This essentially eliminated
temporal dependencies between the behavioral signals and
outcomes, while preserving concurrent behavioral signals and
outcome base rates within a team.

As indicated in Figure 2, the face, gaze, and task context
models consistently outperformed the shuftled baseline (AUROC
=.56), whereas the acoustic-prosodic model did not. Importantly,
a feature-level fusion of these four modalities yielded an additive
effect in that the combined model (AUROC = .71) outperformed
the best unimodal model (task context with an AUROC of .67).

Facial
acia _ Randomized baseline:
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= Gaze, context, facial
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Task context 87

Acoustic-prosodic

All features

Feature set

Gaze, context, facial 73

Gaze, context 12
Context, facial

Gaze, facial

0.45 0.50 0.55 0.60 0.65 0.70 0.75
AUROC

Figure 2: Performance comparison of model trained on
different features sets and their multimodal combinations.

In order to identify the most informative modalities, we trained
additional models that predicted task performance from various
combinations of the three most predictive feature sets: gaze, task
context and facial expressions. The combination of all three
modalities achieved the best performance (AUROC = .73) which
was higher than that achieved by including acoustic-prosodic
features (AUROC = .71). Whereas the gaze-context and context-
face models achieved similar accuracy (AUROCs of .72 and .71),
accuracy of the gaze and facial expression model was lower
(AUROC = .67), suggesting the importance of considering top-
down context information with bottom-up gaze features.

We also experimented with decision-level fusion to combine
modalities. Compared to feature-level fusion, when all four
modalities were combined, decision-level fusion yielded a slight
performance improvement (AUROC .72 vs. 71). However, the
performance was the same (AUROC .73) for the best performing
modalities (gaze, task context and facial expression).

Finally, in an attempt to understand which of the individual
features in the modalities were most predictive of task
performance, we investigated Random Forest importance scores
[8] for each feature in the face + gaze+ task context model. The
time spent on a level attempt and PP motion (both task context
features) and overall body movement were most predictive (.11,
.09, .10 importance). The other features excluding visit number
(least predictive with .02 importance) had moderate (.06-.08)
importance. Thus, a multimodal combination was essential.

4.2 (RQ2) Comparison of weighting schemes

To address this question, we explored approaches to multiparty
weighting by using our best performing feature set: a feature-level
fusion of gaze, task context and facial expressions. We compare
our static and behavior-based multiparty weighting strategies to
a baseline of equally weighting teammates (Section 4.1, AUROC =
.73). As illustrated in Figure 3, all of the role-based weighting
strategies performed slightly worse (average of -2.75%) than the
baseline model. Interestingly, the most notable decrease in
accuracy occurred when considering only the controller’s or
observers’ signals (decrease of 4.1% from baseline), compared to
other role-based models (average decrease of 1.4% from baseline).
This suggests that task performance is best predicted when
behaviors of teammates with multiple roles are considered. That
said, all role-based models were still moderately accurate (AUROC
> .70), even when omitting signals from one or more teammates
(e.g. controller only or observers only).

We also examined weighting based on three individual
difference measures (attitudes towards teamwork, prior physics
experience, and personality, see Section 2.3). We found that none
of the individual difference-based weightings outperformed the
baseline (AUROCs of .69-.73), but there were also no notable
decrements apart from weighting based on prior physics
coursework (AUROC = .69). This result is consistent with findings
from similar research analyzing task performance [48] in that
difference measures did not influence task performance.

Participants equally weighted 73 } Baseline
Controller alone 7
Observers alone
~ Role
. Controller + Observers
=
g Controller weighted twice
o =
#  Attitude towards teamwork
o
g . - | Difference
£ Prior physics experience Meastres
2 Personality B
2 =
Verbosity
Loudness 73
= Dynamic
Expressiveness
Partners distance 73
0.50 0.55 0.60 0.65 0.70 0.75

AUROC
Figure 3: Comparison of multiparty weighting strategies on
models trained on facial, gaze, context features.



Finally, we examined weighting based on behavior that
occurred during the 60s interval. Weighting based on facial
expressiveness yielded lower performance than the other
behavior-based strategies (on average 6% lower). Weighting based
on loudness, and inversely weighting based on gaze distance from
partners performed slightly better (on average 3.4% better) than
other behavior-based weighting strategies, but were similar to the
baseline, suggesting no added value to behavior-based weighting.

4.3 (RQ3) Comparing nonverbal and language-
based models

We compare our nonverbal models to language-based models,
which directly index the content of the collaboration (i.e. the task
was primarily verbal). We use the gaze, task context and facial
expression models with teammates weighted equally as our
comparison as it consistently outperformed the others (Section
4.2). To construct the language models, we first obtained
automated transcriptions from IBM Watson [64]. Each word was
assigned to the second in which it occurred, and words that
overlapped seconds were assigned to the second in which they
started. We concatenated utterances across all speakers in the 60s
interval, from which we extracted n-gram [28] counts using
NLTK’s tokenizer [6]. In addition, we computed verbosity as the
total number of words spoken and inter-turn duration as the mean
duration between utterances. We also computed the proportion of
utterances that overlapped across speakers.

We trained a Random Forest language model on these features
and tuned two hyperparameters in addition to those listed in
Section 3.5. First, we tuned whether to use unigrams, bigrams, tri-
grams, or a combination (e.g., unigrams & bigrams). Second, we
tuned pointwise mutual information (from 2 to 4) [12], which is
used to filter and include only relevant n-grams. The language-
based model yielded an AUROC of .67, which was lower than the
AUROC of .73 obtained from the nonverbal model.

We also experimented with a transfer learning approach using
state-of-the-art pre-trained Bidirectional Encoder Representations
from Transformers (BERT) model [30] from [63]. This model was
fine-tuned on utterances from our dataset over four epochs with
a batch size of 32 and sequences were padded or truncated to have
a fixed length of 300 words (hyper-parameters were chosen based
on recommendations while fine-tuning BERT [30]). We found that
the Random Forest model trained with language features alone
outperformed the equivalent BERT model by 24% (AUROCs of .67
and .54 for Random Forest and BERT respectively).

Finally, we combined language along with gaze, task context
and facial features using feature-level fusion to predict task
performance. The multimodal feature-level combination of all
four models yielded an AUROC of .75, reflecting a small
improvement over the nonverbal models (AUROC = .73).

4.4 (RQ4) Prospectively predicting
performance
In a real-time application, we do not have information on the

timing of the end of a level attempt. Therefore, we cannot model
task performance with the final 60s of data as in previous models.

Therefore, we trained models analogous to a real-time application.
We split level attempts that were at least 60s long (789 out of 1220)
into 60s intervals from the start of the attempt. We considered
each 60s interval as an instance (3156 instances) and aggregated
gaze, task context and facial features across those 60s intervals
using the equal weighting scheme. We labeled instance outcomes
as the final outcome of the level attempt (i.e., whether or not a
trophy was earned for that level attempt). This resulted in 44.2%
of the instances being labelled as positive. The Random Forest
model trained on these data using similar settings as above yielded
an AUROC of .60, which was lower than the AUROC of .73
obtained when the final 60s interval were alone considered
(Section 4.2). However, this could be expected since we are
analyzing data early into the level to prospectively predict
outcomes several minutes later (level attempts ranged from 1-15
mins with a mean of 4.6-min and a standard deviation of 3.4-min).

5 Discussion

We contrasted a strategic- with an equal- weighting alternative in
combining behavioral features from three teammates to predict
team-level performance on a CPS task. Specifically, we examined
role-, trait-, and behavior-based strategies for combining facial
expression, acoustic-prosodic eye gaze, and task context across
the teammates, and also compared multimodal to unimodal and
language-based approaches.

5.1 Main Findings

We found that a multimodal combination of gaze, task context and
facial features best predicted task performance compared to other
combinations of features including models that used all features
and unimodal models. Task context features provide information
on patterns of interaction in the collaboration environment, such
as time spent on the level and high-level behaviors as defined by
changes to the screen. It is important to note that we intentionally
used a restricted set of three task context features that are likely
applicable in other CPS environments. Further, gains can be
expected in model accuracy as features more specific to the task
(e.g., difficulty of individual levels, specific problem-solving
strategies) are considered.

In addition to task context, eye gaze indexes attention to the
task as well as coordination amongst teammates [51], which are
presumably important for task performance. Facial expressions
index emotional states [16] that are critical for communication
and team functioning, and are therefore important cues into task
performance. Thus, a combination of behavioral signals that index
different constructs (attention, interaction patterns, emotion)
work best for predicting task performance.

We compared role-, trait-, and behavior-based strategies for
combining individual signals across the team. All aggregation
strategies yielded similar performance to a baseline where all
teammate’s signals were weighted equally. It might be the case
that teams form collaborative patterns independent of pre-
existing traits or specified roles on the team. This is in line with
previous research [58] that found that team makeup measures did
not predict task performance (though they did predict subjective



perceptions of the collaboration). We also examined behavior-
based weighting using verbosity, loudness, expressiveness and
distance from partners’ gaze, to account for changes in
teammates’ behaviors during the task. However, this approach
also failed to outperform the baseline. Further research is needed
to investigate the conditions when these (or alternate) weighting
strategies might outperform equal-weighting.

We focused on nonverbal models because they likely
generalize better to new contexts than language models which can
focus on verbal cues specific to the task [57]. Surprisingly, our
nonverbal models that combined facial expression, gaze, and task
context performed better than language-only models (9% increase
in AUROC). That said, a combination of language and nonverbal
features yielded slightly better (2.7%) performance overall,
suggesting some merit to combining the two within a single task.

We also found that the accuracy of models that predict task
performance a minute prior to the end of the level was moderate
(AUROC of .73 without language; .75 with language) and higher
than AUROCs for models that predicted accuracy prospectively
on a minute-by-minute basis from the start of the level (AUROCs
of .60). The lower, but above-chance, accuracies for the latter
models are expected since the models are essentially predicting
further into the future (a challenging task no doubt).

It is also notable that the role-based weighting approaches
yielded reasonable accuracies (AUROCSs of .70) even when we
considered signals for a subset of teammates (e.g., controller or
observers only), suggesting that models can be robust even when
entire signals are missing from someone on the team.

5.2 Applications

Our approach is applicable to other CPS contexts, though the
models would need to be retrained based on data collected in new
contexts. Further, although we focused on modeling task
performance, our approach can be used to model other team-level
constructs including team cohesion, rapport, or subjective
perceptions of the collaboration. It is likely that precisely what
multiparty combination strategy will be effective might depend
on the construct being modeled and thus the weighting strategy
should be adjusted accordingly.

In the particular case of modeling CPS performance, our
model could be used to monitor remote virtual collaborations. A
real-time system could intervene when the model predicts a low
likelihood of success at the task. For example, an intelligent CPS
interface could provide a hint or suggest an alternate strategy
when the current approach seems unlikely to yield success. The
CPS task performance model could also be combined with related
models that monitor effective CPS processes, such as construction
of shared knowledge, negotiation/coordination, and maintaining
of team function [57], such that interventions could be sensitive
to both CPS processes and outcomes.

5.3 Limitations and Future Work

Our study has limitations that must be addressed in the future.
First, we chose to use nonverbal behavioral signals because they
are ostensibly generalizable to different tasks (compared to
language-based models). However, we did not test this hypothesis

and only used data from a single task. Additionally, we focused on
a single team-level construct (task performance), but did not
investigate how the various multiparty weighting strategies
might affect modeling of other constructs (e.g. turn-taking, team
cohesion, subjective perceptions).

Second, we only included standard classifiers in the present
work. We did conduct preliminary investigations with deep
learning architectures (LSTMs in our case) using an equal
weighting strategy. Whereas these models did not outperform the
present Random Forest models (and are not reported here), this
could be due to the fact that the deep learning models were not
fully optimized and there was insufficient training data. It is likely
that a comprehensive exploration of appropriate deep learning
model architectures and inclusion of multiparty weighting in
these architectures could result in improvements in model
accuracy. Expanding the dataset by including additional and more
diverse teams is also warranted in future work.

Third, our study was conducted in a controlled lab
environment. We can expect patterns to change as models are
deployed in real-world scenarios, where the signals are noisier
and interaction dynamics might differ. We are in the process of
analyzing an additional CPS dataset in real-world classrooms,
which we will use to test the robustness of our models.

Fourth, we considered simple weighting strategies that only
used singular metrics (e.g., expressiveness, extraversion). Perhaps
a sophisticated weighting approach based on a combination of
these metrics might improve model accuracy.

Fifth, although we explored a large set of nonverbal signals
(facial expression, eye gaze, acoustics and prosody, task context),
we did not include measures of physiological arousal. Therefore,
future work can incorporate physiology signals, such as
electrodermal response, which might improve model accuracy.
Additionally, since coordination is an important aspect of
collaboration, incorporating additional measures of coordination,
for example expression mirroring, beyond gaze coordination
considered here is an item for future work.

5.4 Concluding remarks

We investigated methods for combining nonverbal signals from
multiple teammates during multiparty interactions in the context
of triadic collaborative problem solving. We were moderately
successful in predicting team performance using multimodal
nonverbal signals and found that the simplest strategy of equally
weighting signals of all teammates yielded the best performance.
Our results have implications for the emergent field of
multimodal, multiparty modeling and interaction.
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