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ABSTRACT 
Modeling team phenomena from multiparty interactions 
inherently requires combining signals from multiple teammates, 
often by weighting strategies. Here, we explored the hypothesis 
that strategic weighting signals from individual teammates would 
outperform an equal weighting baseline. Accordingly, we explored 
role-, trait-, and behavior-based weighting of behavioral signals 
across team members. We analyzed data from 101 triads engaged 
in computer-mediated collaborative problem solving (CPS) in an 
educational physics game. We investigated the accuracy of 
machine-learned models trained on facial expressions, acoustic-
prosodics, eye gaze, and task context information, computed one-
minute prior to the end of a game level, at predicting success at 
solving that level. AUROCs for unimodal models that equally 
weighted features from the three teammates ranged from .54 to 
.67, whereas a combination of gaze, face, and task context features, 
achieved an AUROC of .73. The various multiparty weighting 
strategies did not outperform an equal-weighting baseline. 
However, our best nonverbal model (AUROC = .73) outperformed 
a language-based model (AUROC = .67), and there were some 
advantages to combining the two (AUROC = .75). Finally, models 
aimed at prospectively predicting performance on a minute-by-
minute basis from the start of the level achieved a lower, but still 

above-chance, AUROC of .60. We discuss implications for 
multiparty modeling of team performance and other team 
constructs. 

CCS CONCEPTS 
Human-centered computing → Collaborative and social 
computing → Empirical studies in collaborative and social 
computing  

KEYWORDS 
Collaborative Problem Solving; Multimodal Multiparty Modeling 

ACM Reference format: 

Shree Krishna Subburaj, Angela E.B. Stewart, Arjun Ramesh Rao and 
Sidney K. D’Mello. 2020. Multimodal, Multiparty Modeling of 
Collaborative Problem Solving Performance. In Proceedings of 2020 ACM 
International Conference on Multimodal Interaction (ICMI’20), October 25–
29, Virtual Event, Netherlands. ACM, New York, NY, USA, 10 pages. 
https://doi.org/10.1145/3382507.3418877 

1  Introduction 
Multiparty interactions are common in everyday life. For example, 
small group work is routine in classrooms, team meetings are 
commonplace in business, and virtual happy hours are 
increasingly prevalent in the age of social distancing. Although 
these activities might seem dissimilar, they all involve coordinated 
behaviors among multiple parties to achieve a desired goal. Here, 
we consider whether automated methods can be trained to predict 
collaborative outcomes (e.g., team performance or rapport), with 
applications to research, assessment, and intervention. 

Just as multimodal modeling entails combining signals from 
various modalities, multiparty modeling of team-level outcomes 
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requires a mechanism to combine signals of individual teammates.  
One way to do this is to concatenate feature sets of each teammate 
by assigning them slots (e.g., features 1 to 4 for participant A, 5 to 
8 for B, etc), but this raises the question of how to assign 
teammates to slots when roles are not pre-defined. Another 
approach is to develop predictive models for each teammate and 
integrate their predictions via decision-level fusion. However, this 
entails using individual features to model a group-level outcome. 

An alternate approach is to weight the features of individual 
teammates, which requires making assumptions about team 
interaction. For example, signals from multiple teammates might 
be considered to be equal, which would support averaging signals 
across the team (e.g. [17]). However, this assumes that all team 
members are in fact equal in terms of their goals, behaviors, and 
contributions, which is often not the case [29,31,32]. Another 
option is to pool occurrences of behaviors regardless of team 
member. For example, [41] combined language products across 
the team independent of speaker. However, this approach 
implicitly gives more weight to the more verbose teammate, 
which may or may not be warranted depending on the 
collaboration context (e.g., collaborative or competitive). 

Consequently, we hypothesize that team-level outcomes are 
influenced by complex group interactions, where the behaviors of 
all teammates do not contribute equally toward the outcome. 
Thus, we explored the hypothesis that strategic weighting signals 
from individual teammates would outperform an equal weighting 
baseline. 

We conduct our research in the context of collaborative 
problem solving (CPS), using mixed-media videoconferencing 
(Zoom). CPS occurs when two or more people engage in a 
coordinated attempt to construct a solution to a problem [43,47]. 
We specifically model CPS task performance, which is a common 
objective CPS outcome [40,41,61], though our methods could be 
applied to other outcomes as well, such as shared knowledge 
building [11] or rapport [53]. 

We leverage multimodal data of 101 triads  collaboratively 
playing  Physics Playground, an educational game [58]. We focus 
on nonverbal signals, which have been shown to index constructs 
important for communication and team functioning [2,9,33]. 
Further, we focus on nonverbal signals, as they will likely 
generalize better than linguistic information, which encodes 
information specific to the task at hand [57]. In particular, we 
include facial expressions and acoustic-prosodic information to 
index emotional states [16,18], eye gaze as a measure of social 
visual attention [46], and high-level task context information as it 
provides insight into the unfolding problem solving process [56]. 
Our central goal is to investigate the effectiveness of various 
multiparty weighting schemes in predicting team-level 
performance from nonverbal signals of individual team members 
to adjudicate the strategic- vs. equal- weighting hypotheses. 

1.1 Related Work 
The existing research on group behavior and outcomes is vast 
[39,49,51]. Group dynamics and collaborative constructs, such as 
task performance [61], focus of attention [23], agreeableness [37], 
and so on, have been modeled from behavioral cues like head pose 

[44], eye gaze [60], acoustics and prosody [40,41], and language 
[21]. Several studies have focused on analyzing behavior of teams 
in online game environments [4,34] and how team behavior 
relates to task performance [34,36]. We scope our review to 
methods for combining behavioral features in multiparty 
scenarios as this is most relevant to our research goals. 

Multimodal signals of teammates have been combined using 
feature-level fusion in convolutional neural networks [44] or by 
calculating aggregate statistics of behaviors across the group 
(mean, range, standard deviation) [40,54]. For example, Miura and 
Okada [40] used utterance counts, speaking length, head 
movement, acoustic-prosodic cues, and language features to 
predict expert-rated metrics of quality of group discussions as a 
measure of task performance. They obtained team-level features 
by first averaging features across each teammate’s utterances and 
then averaging across the team, effectively weighting the 
teammates’ contributions equally. The researchers also computed 
descriptives (maximum, standard deviation) of each teammate’s 
features and used these as additional features to capture 
teammate-level influences better than the equally-weighted 
features alone. Their best-performing model achieved a Spearman 
correlation of .76 between predicted and expert coded group 
performance scores. 

Related, Murray and Oertel [41] predicted CPS task 
performance  from acoustic-prosodic and language features. Data 
was combined across the team by calculating features from pooled 
utterances regardless of speaker, effectively weighting more 
verbose speakers higher. Their best performing models achieved 
a mean squared error of 64.4, compared to a baseline of 79.3.  

Task context features are commonly used in multiparty 
modeling as they are inherently at the team-level. Vrzakova et. al., 
[59] extracted  change (and lack thereof) in areas of interest on 
the screen as high-order measures of a CPS programming task 
(e.g., idling, generating code, executing code). They also 
considered face/body movements and speech rate and combined 
these across teammates at the feature-level. They found that 
unimodal patterns of screen activity change were correlated with 
task scores, and that, while some combinations of modalities 
improved the correlation, others reduced or even eliminated it. 

Finally, an individual’s role on the team has long been 
considered in multiparty modeling, specifically in emergent leader 
identification tasks, which aim to predict dominant teammates 
[5,27,50]. Avici and Aran [3] leveraged teammate dominance 
when predicting group performance with SVMs and coupled 
Hidden Markov Chain models. Their model used a dominance 
score along with audio, video, and gaze features to achieve an 
accuracy of .91, beating a baseline of .60. 

1.2 Contribution, Novelty, & Research 
Questions 

Multiparty models of team-level outcomes require a mechanism 
to combine signals from individual teammates. Existing research 
in modeling multiparty outcomes makes inherent assumptions 
about each teammate’s contribution to the task by either equally 
weighting or weighting dominant members more [17,26,40,41,56]. 
Here, we investigated the strategic weighting hypothesis by 



 

exploring three strategic weighting strategies, two static and one 
behavior-based. The first strategy statically weights multimodal 
signals based on a team member’s assigned role due to inherent 
differences in affordances offered by assigned role (contributor vs. 
collaborator). Additionally, we investigate static weighting based 
on individual differences, including prior experience, personality 
and attitudes towards teamwork, which have been theoretically 
and empirically linked to group outcomes [35]. For example, 
personality predicts collaboration quality [55] and prior domain 
experience predicts task performance [42]. We also investigate 
methods weighting signals based on behaviors that occur during 
team interaction, such as verbosity, eye gaze, facial expressions, 
which index emotional states, social visual attention and other 
constructs important for communication and team functioning 
(e.g. a team member’s dominance in terms of verbal contributions 
or level of joint attention with teammates). To our knowledge, this 
is the first study to jointly investigate methods for combining 
multimodal signals from multiple participants. 

We address four research questions.  
RQ1. How accurately do unimodal and multimodal non-verbal 

behavioral signals predict task performance? Given that verbal 
contributions are principal in the context of CPS, it is an open 
question as to whether nonverbal signals can yield models of 
sufficient accuracy in predicting task performance. This is an 
essential first step before we can examine multiparty 
methodologies for combining signals. In the present study, we 
examine whether nonverbal signals 60s prior to the end of a game 
level predict success (i.e., whether or not they solved the level). 

RQ2: How do role-based, individual difference-based, and 
behavior-based approaches to combining multiparty features 
compare to an equal-weighting baseline?  Here, we explore 
different approaches for combining signals across the team and 
compare them to an equally weighting baseline.  

RQ3: How do nonverbal and language models compare and does 
combining the two improve performance? Language models utilize 
utterances that are specific to the task, which may result in 
improved prediction accuracies at the cost of generalizability.  

 RQ4. How accurately can we prospectively predict task 
performance? Here we examine how our models can be used in 
real-time to support effective team performance, for example, by 
providing dynamic interventions. Whereas the models used to 
address the first three RQs focused on multimodal signals 60s 
before the end of a trial, for RQ4, we tested models that analyze 
the data in 60s intervals from the start of the trial. These models 
are expected to have lower accuracy due to the greater temporal 
distance between the signals and outcomes, but the pertinent 
question is whether accuracy is above chance. 

2  Data Collection 
The data were collected as part of a larger study on CPS [58]; only 
details pertinent to the present study are reported here. 

2.1  Participants 
Participants were 303 students (56% female, average age = 22 
years) from two large public universities (38.5% from University 

1). Based on self-reported demographics, participants were 47% 
Caucasian, 28% Hispanic/Latino, 18% Asian, 2% Black or African 
American, 1% American Indian or Alaska Native, and 4% reported 
“other”. Students were assigned to 101 teams of three based on 
scheduling constraints. Thirty students from 18 teams (26%) 
indicated they knew at least one person from their team prior to 
participation. Participants were compensated monetarily with a 
$50 Amazon gift card (95.8%) or with course credit (4.2%). 

2.2  Physics Playground 
We used Physics Playground (Figure 1) as our problem-solving 
environment. Physics Playground is a two-dimensional 
educational game that aims to teach students basic Newtonian 
physics concepts (e.g., Newton’s laws, energy transfer, and 
properties of torque) through gameplay [1,62]. Students complete 
levels by using mouse input to draw simple machines (ramps, 
levers, pendulums, and springboards) that guide a green ball to a 
red balloon. All objects in the game (including ones that students 
draw) obey the laws of physics. A trophy is earned upon 
completion of a level, which involves navigating a ball to a red 
balloon via the simple machines and other objects (e.g., weights). 
Students may choose to restart, exit, or change levels at any time 
during gameplay. The game is organized into multiple 
playgrounds (a playground has several levels) and students are 
free to navigate the levels as they please. No hints or other support 
mechanisms were provided to students, with the exception of a 
tutorial on game mechanics, which could be viewed at any time. 

 

 

Figure 1: A triad using a lever and weight to navigate the 
green ball to the red balloon in the Physics Playground 
environment. 

2.3 At-home Surveys 
At least 24 hours prior to their scheduled lab session, students 
were emailed a survey that assessed a variety of individual 
difference measures, such as demographics, academic 
background, and personality. Students self-reported their formal 
physics coursework (e.g. none, high school, introductory college 
courses, or multiple college courses). We also used a validated 
measure of physics self-efficacy [65] to assess personal beliefs in 
their  ability to succeed in physics. We used the validated short 
version of the Big Five inventory [22] to assess personality 
dimensions of extraversion, agreeableness, conscientiousness, 



 

 

emotional stability, and openness to experience. We assessed 
leadership self-efficacy (self-belief of leadership capability), with 
the Leadership Domain Identification Measure [25] and 
collectivism (willingness to work in teams) and teamwork self-
efficacy (personal perception of ability to work in teams) with the 
Individual Satisfaction with the Team Scale [35]. Leadership and 
teamwork self-efficacy were correlated (Pearson’s r = .57), so we 
combined them by z-scoring each, and averaging the z-scores. 
Finally, students completed an expert-created ten-item physics 
pretest that assessed knowledge of two focal physics concepts 
used in gameplay: energy transfer and properties of torque. 

After completing the survey measures, students completed a 
short tutorial on how to use Physics Playground, such as how to 
draw simple machines like ramps and springboards. After 
completing the tutorial, students were given 15 minutes to 
complete five easy levels to familiarize themselves with the game. 

2.4 In-lab Procedure 
The in-lab session took place after the at-home surveys were 
completed. Students were individually assigned to one of three 
computer-enabled workstations that were either partitioned in 
the same room or located in different rooms depending on the 
school where data was collected. There were no face-to-face 
interactions. All computers were equipped with a webcam and 
headset for video conferencing and screen sharing via Zoom 
(https://zoom.us). Each computer was also equipped with a 
separate webcam to record video of the participant’s face and 
upper body at 10 frames per second. A separate audio stream 
(48000 Hz) was recorded for each participant using the same 
headset used for Zoom.  Additionally, each computer was 
equipped with a Tobii 4C eye gaze tracker, which recorded eye 
gaze at a variable sampling rate, up to 90 Hz. 

Teams collaborated in Physics Playground for three 15-minute 
blocks (total of 45-minutes of collaborative gameplay). For each 
block, one randomly assigned teammate was given the role of 
controller and the other two were assigned as observers. The 
controller was in charge of all mouse interaction with Physics 
Playground, while the observers viewed the controller’s screen 
(through screen share) and were tasked with contributing to the 
solution and gameplay. A different teammate was the controller 
for each block, such that each student controlled the interaction 
for one block. An on-screen warning was displayed when there 
was ten and five minutes left in each block. 

3  Data Processing and Machine Learning  
We developed machine-learned models to predict whether or not 
a team successfully earned a trophy on a given level attempt (trial) 
from a combination of nonverbal signals.  

3.1  Level Attempt Segmentation 
Level attempts were segmented from the Physics Playground logs, 
which keep track of when a team enters a given level or earns a 
trophy. An attempt begins when the team enters a level and ends 
under three possible conditions:  1) the team earns a trophy; 2) the 

team begins a different level; or 3) time runs out in the block. We 
pooled across experimental blocks, resulting in 1220 total level 
attempts, of which 55.4% yielded a trophy (the positive class). 

3.2  Feature Processing 
We computed features for facial expression, gaze, acoustic-
prosodic, and task context. Because sampling rate varied per 
modality, we aggregated features across non-overlapping 1s 
windows, which was deemed an appropriate unit of analysis since 
conversational turns, defined as spoken utterances, were in this 
range (median of 1.4s). The averaging also served as a smoothing 
filter. Given our relatively small number of instances, we 
strategically selected a small number of features per modality. 

Facial Features. Facial expressions have been shown to index 
emotion in communication [16], and have been linked to task 
performance [40,41]. We used the videos of teammate’s faces, 
sampled at 10 Hz, to extract face features for each frame in the 
video. We used Emotient [38], which produces a binary value for 
whether the face could be tracked in a given frame, estimates of 
face width and height in the frame, and likelihood estimates of the 
presence of 20 action units [16]. Width and height were converted 
to face area, which served as a proxy for how close a teammate’s 
face was to the screen, a proxy for engagement [14]. We used the 
action unit estimates to compute positive and negative valence 
according to mappings in [13]. We also computed expressivity, a 
measure of the overall activity in a given frame as the mean value 
across the action units. Finally, we computed face/upper body 
motion, a measure of arousal [14], using a validated motion 
estimation algorithm [7]. We mean aggregated these frame-level 
features across 1s windows. All features were then z-scored per 
individual and then per block, to account for differences. 

Gaze Features. Eye gaze provides information into social 
visual attention [52], an important aspect of CPS. We computed 
gaze features using raw data from the Tobii4C. First, we computed 
the proportion of samples in a given second where both eyes were 
successfully tracked (validity). We then computed fixation 
dispersion as the mean Euclidean distance of each raw gaze point 
in a 1s window from the centroid.  We computed fixations, which 
are points where gaze is maintained on a location (maximum of 
25 pixels apart) for at least 50ms [15]. Fixations longer than 1s 
were trimmed to 1s whereas fixations that overlapped second 
boundaries were assigned to the majority second. Fixations were 
then aggregated over 1s windows by computing the number of 
fixations and mean fixation duration in that second. We also 
computed mean saccade amplitude, which is the pixel distance of 
eye movement between fixations, across the 1s window. These 
measures provide a broad index into the spatial and temporal 
patterns of visual attention and index a variety of cognitive states, 
such as cognitive load, mind wandering, and distraction [20]. 
Finally, we computed the mean distance between the centroid of 
each teammate’s gaze and their two partners (in a given second), 
which is a proxy for joint attention [60].  

Acoustic-Prosodic features. Acoustic-prosodic information 
is important in modeling task performance as they index 
emotional states in communication and conversational dynamics 
[16]. We used the individual audio files to extract acoustic-



 

prosodic features over 10ms windows. We used OpenSmile [19] 
to compute fundamental frequency (pitch), loudness (energy), 
center frequency and amplitude of the first through third formants, 
harmonics to noise ratio, jitter, and shimmer. Using this small set of 
features, we accounted for the acoustic-prosodic information 
without representing spoken content. These features were mean 
aggregated over 1s windows. Similar to facial features, acoustic-
prosodic features were z-scored per individual and by block to 
account for individual- and block-level differences.  

Task-Context features. Task context is crucial in modeling 
task performance as they provide insights into the unfolding 
problem-solving process [56]. We extracted high-level task 
context features that represent overall patterns of interaction with 
the CPS environment, without encoding task-specific information 
(for generalizability). Specifically, we extracted (on a frame-by-
frame basis) changes on the Physics Playground (PP) area of the 
screen (see Figure 1) using the same motion estimation algorithm 
used for face motion. This was then aggregated across 1s windows 
by taking the mean. This provides a measure of screen activity to 
distinguish moments of deliberation (or silence) from action. We 
computed time spent on level attempt as the difference between the 
start of the interval that is selected (as discussed in Section 3.3) 
and the start of the level attempt. Finally, we computed visit 
number (see Section 3.1) as the attempt number for a level. 

3.3  Instance Creation 
We created an instance for each level attempt. First, we adjusted 
the end time of the level-attempt by 10s in order to avoid peeking 
into the behaviors that occurred when the team wins the trophy 
or quits the level (e.g. celebration of level completion or clicking 
to exit the level). We deemed 10s to provide a sufficient buffer by 
analyzing level attempts from 20 teams at random. End times were 
not adjusted if time ran out in the block. We then selected data 
from 60s prior to the end time. We chose a 60s interval after 
comparing model performance (Section 4) on intervals of different 
sizes (15, 30, 45, 60, 90s), which all yielded similar performance. 
Level attempts under 60s (431 instances out of 1220) were not 
considered germane for modeling purposes since they reflect 
exceedingly easy levels or cases where the team entered a level 
and immediately exited. This resulted in 789 instances, of which 
53.2% were successfully solved. 

Aggregation & missing data treatment. In order to yield a 
single value for each feature and each teammate for a level 
attempt, we aggregated the feature values by taking the mean 
over the 60s interval (e.g. the mean of expressivity over the 60s 
interval for a given individual). If the data was missing for a given 
60s interval, we applied mean-imputation by replacing the 
missing value with the mean value of that feature for the block. 
This strategy has been previously used for up to 10% of missing 
data [10]. In our data, we mean-imputed 1.4% and 3.2% of the total 
data for the facial expression, and gaze modalities, respectively 
(mean-imputed instances for the other modalities were 
negligible). We applied zero-imputation (replacing a feature value 
with zero) for the fewer than 1% of cases when the data for all 
three teammates was missing over the block. Task context 

features (excluding PP screen motion) were computed at the 
interval-level and therefore were not aggregated. 

3.4  Multiparty weighting strategies 
We explored a variety of weighting strategies to aggregate 
multimodal features across the triad. Each strategy is a weighted 
mean with different methods for weighing individual teammates. 
The strategies do not apply to task context features as they are 
inherently at the team-level so no aggregation is needed. If the 
data for weighting each teammate was missing, we discarded that 
instance. This resulted in a dataset ranging from 718 instances (for 
individual difference weighting since some teammates did not 
complete the at-home survey) to 789 instances (complete dataset).  

Role-based weighting (static). The different role-based 
weighting strategies were as follows: Equally weighted - Each 
teammate is weighted equally; Controller only - Consider only the 
controller’s signals (observers weights are set to 0); Observers only 
- Consider only the observer’s signals and weight them equally; 
Controller + Observers - Include controller’s features and 
separately include the mean of the observer’s features (doubles 
the number of features). Controller weighted twice - Weight the 
controller’s signals twice as much as the observers.  

Individual difference-based weighting (static). We 
weighted teammates based on the following individual difference 
measures: attitude towards teammates (collectivism, leadership 
and teamwork self-efficacy), prior physics experience (prior 
physics courses, pretest score, physics self-efficacy), and the Big 
Five Inventory personality measures (extraversion, agreeableness, 
conscientiousness, emotional stability and openness). Specifically, 
for a given individual difference measure value 𝑚, and teammates 
A, B and C, the weight 𝑤𝐴, 𝑤𝐵 , 𝑤𝐶 applied to their feature values 
would be as follows (𝑤𝐴 =  𝑚𝐴/(𝑚𝐴 + 𝑚𝐵 + 𝑚𝐶)).  For example, 
if A, B, and C have an extraversion value of 1, 2, and 3, 
respectively, then 𝑚𝐴 = 1, 𝑚𝐵 = 2,  𝑚𝐶 = 3  and all features are 

weighted (𝑤𝐴, 𝑤𝐵 , 𝑤𝐶) as 
1

6
,

1

3
,

1

2
 for A, B, and C, respectively. 

Behavior-based weighting. We weighted each teammate’s 
features based on how they displayed certain behaviors during the 
collaboration as opposed to the previous static weights. The 
weights are computed by first averaging the signal over the 60s 
interval for each teammate and then averaging across teammates. 
We weighted based on the following features: verbosity - total 
words spoken over the 60s interval; mean loudness for the 60s 
interval; mean expressiveness for the 60s interval; partner’s 
distance - how far a teammate’s gaze is from the other two 
teammates. Unlike the other three measures, lower gaze distance 
suggests coordination, so we inversely weighted the distance as 
1 − 𝑤 . Thus, higher verbosity, louder voices, greater facial 
expressivity, and more gaze coordination are weighted higher. 

3.5  Supervised Classification and Validation 
We considered Random Forest classifiers (from sci-kit learn [45]) 
as our primary machine learning model to predict successful or 
unsuccessful level attempts. We used team-level nested five-fold 
cross validation, where all level attempts of a team were either in 
the training set or testing set, but never both. Within each of the 



 

 

five iterations, the training set was split into three folds for 
hyperparameter tuning, where we used grid search to tune the 
number of trees in the forest (150, 200, 250, 350, 400 or 500) and 
maximum depth of the trees (no maximum depth, 10, 20 or 50).  

4  Results  
We used AUROC as the performance metric for the main results 
and hyperparameter tuning as it assesses true positive and false 
positive tradeoff across prediction thresholds [24]. 

4.1  (RQ1) Accuracy of non-verbal models 
Our first research question investigates feasibility of using 
nonverbal signals to predict task performance. These analyses 
used an equal weighting scheme where the mean of each feature 
computed across the three teammates was used for modeling. We 
compared the accuracy of our models trained on different 
unimodal and multimodal behavioral signals with chance 
(AUROC = .50), as well as a shuffled baseline, where we randomly 
shuffled outcomes within a team. This essentially eliminated 
temporal dependencies between the behavioral signals and 
outcomes, while preserving concurrent behavioral signals and 
outcome base rates within a team.  

As indicated in Figure 2, the face, gaze, and task context 
models consistently outperformed the shuffled baseline (AUROC 
= .56), whereas the acoustic-prosodic model did not. Importantly, 
a feature-level fusion of these four modalities yielded an additive 
effect in that the combined model (AUROC = .71) outperformed 
the best unimodal model (task context with an AUROC of .67).  

 

 
Figure 2: Performance comparison of model trained on 
different features sets and their multimodal combinations. 
 
In order to identify the most informative modalities, we trained 
additional models that predicted task performance from various 
combinations of the three most predictive feature sets: gaze, task 
context and facial expressions. The combination of all three 
modalities achieved the best performance (AUROC = .73) which 
was higher than that achieved by including acoustic-prosodic 
features (AUROC = .71). Whereas the gaze-context and context-
face models achieved similar accuracy (AUROCs of .72 and .71), 
accuracy of the gaze and facial expression model was lower 
(AUROC = .67), suggesting the importance of considering top-
down context information with bottom-up gaze features. 

We also experimented with decision-level fusion to combine 
modalities. Compared to feature-level fusion, when all four 
modalities were combined, decision-level fusion yielded a slight 
performance improvement (AUROC .72 vs. 71). However, the 
performance was the same (AUROC .73) for the best performing 
modalities (gaze, task context and facial expression).  

Finally, in an attempt to understand which of the individual 
features in the modalities were most predictive of task 
performance, we investigated Random Forest importance scores 
[8] for each feature in the face + gaze+ task context model. The 
time spent on a level attempt and PP motion (both task context 
features) and overall body movement were most predictive (.11, 
.09, .10 importance). The other features excluding visit number 
(least predictive with .02 importance) had moderate (.06-.08) 
importance. Thus, a multimodal combination was essential. 

4.2  (RQ2) Comparison of weighting schemes 
To address this question, we explored approaches to multiparty 
weighting by using our best performing feature set: a feature-level 
fusion of gaze, task context and facial expressions. We compare 
our static and behavior-based multiparty weighting strategies to 
a baseline of equally weighting teammates (Section 4.1, AUROC = 
.73). As illustrated in Figure 3, all of the role-based weighting 
strategies performed slightly worse (average of -2.75%) than the 
baseline model. Interestingly, the most notable decrease in 
accuracy occurred when considering only the controller’s or 
observers’ signals (decrease of 4.1% from baseline), compared to 
other role-based models (average decrease of 1.4% from baseline). 
This suggests that task performance is best predicted when 
behaviors of teammates with multiple roles are considered. That 
said, all role-based models were still moderately accurate (AUROC 
> .70), even when omitting signals from one or more teammates 
(e.g. controller only or observers only). 

We also examined weighting based on three individual 
difference measures (attitudes towards teamwork, prior physics 
experience, and personality, see Section 2.3). We found that none 
of the individual difference-based weightings outperformed the 
baseline (AUROCs of .69-.73), but there were also no notable 
decrements apart from weighting based on prior physics 
coursework (AUROC = .69). This result is consistent with findings 
from similar research analyzing task performance [48] in that 
difference measures did not influence task performance.   

 

 
Figure 3: Comparison of multiparty weighting strategies on 
models trained on facial, gaze, context features. 



 

Finally, we examined weighting based on behavior that 
occurred during the 60s interval. Weighting based on facial 
expressiveness yielded lower performance than the other 
behavior-based strategies (on average 6% lower). Weighting based 
on loudness, and inversely weighting based on gaze distance from 
partners performed slightly better (on average 3.4% better) than 
other behavior-based weighting strategies, but were similar to the 
baseline, suggesting no added value to behavior-based weighting. 

4.3  (RQ3) Comparing nonverbal and language-
based models 

We compare our nonverbal models to language-based models, 
which directly index the content of the collaboration (i.e. the task 
was primarily verbal). We use the gaze, task context and facial 
expression models with teammates weighted equally as our 
comparison as it consistently outperformed the others (Section 
4.2). To construct the language models, we first obtained 
automated transcriptions from IBM Watson [64]. Each word was 
assigned to the second in which it occurred, and words that 
overlapped seconds were assigned to the second in which they 
started. We concatenated utterances across all speakers in the 60s 
interval, from which we extracted n-gram [28] counts using 
NLTK’s tokenizer [6]. In addition, we computed verbosity as the 
total number of words spoken and inter-turn duration as the mean 
duration between utterances. We also computed the proportion of 
utterances that overlapped across speakers. 

We trained a Random Forest language model on these features 
and tuned two hyperparameters in addition to those listed in 
Section 3.5. First, we tuned whether to use unigrams, bigrams, tri-
grams, or a combination (e.g., unigrams & bigrams). Second, we 
tuned pointwise mutual information (from 2 to 4) [12], which is 
used to filter and include only relevant n-grams. The language-
based model yielded an AUROC of .67, which was lower than the 
AUROC of .73 obtained from the nonverbal model. 

We also experimented with a transfer learning approach using 
state-of-the-art pre-trained Bidirectional Encoder Representations 
from Transformers (BERT) model [30] from [63]. This model was 
fine-tuned on utterances from our dataset over four epochs with 
a batch size of 32 and sequences were padded or truncated to have 
a fixed length of 300 words (hyper-parameters were chosen based 
on recommendations while fine-tuning BERT [30]). We found that 
the Random Forest model trained with language features alone 
outperformed the equivalent BERT model by 24% (AUROCs of .67 
and .54 for Random Forest and BERT respectively). 

Finally, we combined language along with gaze, task context 
and facial features using feature-level fusion to predict task 
performance. The multimodal feature-level combination of all 
four models yielded an AUROC of .75, reflecting a small 
improvement over the nonverbal models (AUROC = .73).  

4.4  (RQ4) Prospectively predicting 
performance 

In a real-time application, we do not have information on the 
timing of the end of a level attempt. Therefore, we cannot model 
task performance with the final 60s of data as in previous models. 

Therefore, we trained models analogous to a real-time application. 
We split level attempts that were at least 60s long (789 out of 1220) 
into 60s intervals from the start of the attempt. We considered 
each 60s interval as an instance (3156 instances) and aggregated 
gaze, task context and facial features across those 60s intervals 
using the equal weighting scheme. We labeled instance outcomes 
as the final outcome of the level attempt (i.e., whether or not a 
trophy was earned for that level attempt). This resulted in 44.2% 
of the instances being labelled as positive. The Random Forest 
model trained on these data using similar settings as above yielded 
an AUROC of .60, which was lower than the AUROC of .73 
obtained when the final 60s interval were alone considered 
(Section 4.2). However, this could be expected since we are 
analyzing data early into the level to prospectively predict 
outcomes several minutes later (level attempts ranged from 1-15 
mins with a mean of 4.6-min and a standard deviation of 3.4-min). 

5  Discussion 
We contrasted a strategic- with an equal- weighting alternative in 
combining behavioral features from three teammates to predict 
team-level performance on a CPS task. Specifically, we examined 
role-, trait-, and behavior-based strategies for combining facial 
expression, acoustic-prosodic eye gaze, and task context across 
the teammates, and also compared multimodal to unimodal and 
language-based approaches. 

5.1  Main Findings 
We found that a multimodal combination of gaze, task context and 
facial features best predicted task performance compared to other 
combinations of features including models that used all features 
and unimodal models. Task context features provide information 
on patterns of interaction in the collaboration environment, such 
as time spent on the level and high-level behaviors as defined by 
changes to the screen. It is important to note that we intentionally 
used a restricted set of three task context features that are likely 
applicable in other CPS environments. Further, gains can be 
expected in model accuracy as features more specific to the task 
(e.g., difficulty of individual levels, specific problem-solving 
strategies) are considered. 

In addition to task context, eye gaze indexes attention to the 
task as well as coordination amongst teammates [51], which are 
presumably important for task performance. Facial expressions 
index emotional states [16] that are critical for communication 
and team functioning, and are therefore important cues into task 
performance. Thus, a combination of behavioral signals that index 
different constructs (attention, interaction patterns, emotion) 
work best for predicting task performance.  

We compared role-, trait-, and behavior-based strategies for 
combining individual signals across the team. All aggregation 
strategies yielded similar performance to a baseline where all 
teammate’s signals were weighted equally. It might be the case 
that teams form collaborative patterns independent of pre-
existing traits or specified roles on the team. This is in line with 
previous research [58] that found that team makeup measures did 
not predict task performance (though they did predict subjective 



 

 

perceptions of the collaboration). We also examined behavior-
based weighting using verbosity, loudness, expressiveness and 
distance from partners’ gaze, to account for changes in 
teammates’ behaviors during the task. However, this approach 
also failed to outperform the baseline. Further research is needed 
to investigate the conditions when these (or alternate) weighting 
strategies might outperform equal-weighting. 

We focused on nonverbal models because they likely 
generalize better to new contexts than language models which can 
focus on verbal cues specific to the task [57]. Surprisingly, our 
nonverbal models that combined facial expression, gaze, and task 
context performed better than language-only models (9% increase 
in AUROC). That said, a combination of language and nonverbal 
features yielded slightly better (2.7%) performance overall, 
suggesting some merit to combining the two within a single task.  

We also found that the accuracy of models that predict task 
performance a minute prior to the end of the level was moderate 
(AUROC of .73 without language; .75 with language) and higher 
than AUROCs for models that predicted accuracy prospectively 
on a minute-by-minute basis from the start of the level (AUROCs 
of .60). The lower, but above-chance, accuracies for the latter 
models are expected since the models are essentially predicting 
further into the future (a challenging task no doubt).  

It is also notable that the role-based weighting approaches 
yielded reasonable accuracies (AUROCs of .70) even when we 
considered signals for a subset of teammates (e.g., controller or 
observers only), suggesting that models can be robust even when 
entire signals are missing from someone on the team.  

5.2  Applications 
Our approach is applicable to other CPS contexts, though the 
models would need to be retrained based on data collected in new 
contexts. Further, although we focused on modeling task 
performance, our approach can be used to model other team-level 
constructs including team cohesion, rapport, or subjective 
perceptions of the collaboration. It is likely that precisely what 
multiparty combination strategy will be effective might depend 
on the construct being modeled and thus the weighting strategy 
should be adjusted accordingly. 

In the particular case of modeling CPS performance, our 
model could be used to monitor remote virtual collaborations. A 
real-time system could intervene when the model predicts a low 
likelihood of success at the task. For example, an intelligent CPS 
interface could provide a hint or suggest an alternate strategy 
when the current approach seems unlikely to yield success. The 
CPS task performance model could also be combined with related 
models that monitor effective CPS processes, such as construction 
of shared knowledge, negotiation/coordination, and maintaining 
of team function [57], such that interventions could be sensitive 
to both CPS processes and outcomes. 

5.3  Limitations and Future Work 
Our study has limitations that must be addressed in the future. 
First, we chose to use nonverbal behavioral signals because they 
are ostensibly generalizable to different tasks (compared to 
language-based models). However, we did not test this hypothesis 

and only used data from a single task. Additionally, we focused on 
a single team-level construct (task performance), but did not 
investigate how the various multiparty weighting strategies 
might affect modeling of other constructs (e.g. turn-taking, team 
cohesion, subjective perceptions).  

Second, we only included standard classifiers in the present 
work. We did conduct preliminary investigations with deep 
learning architectures (LSTMs in our case) using an equal 
weighting strategy. Whereas these models did not outperform the 
present Random Forest models (and are not reported here), this 
could be due to the fact that the deep learning models were not 
fully optimized and there was insufficient training data. It is likely 
that a comprehensive exploration of appropriate deep learning 
model architectures and inclusion of multiparty weighting in 
these architectures could result in improvements in model 
accuracy. Expanding the dataset by including additional and more 
diverse teams is also warranted in future work. 

Third, our study was conducted in a controlled lab 
environment. We can expect patterns to change as models are 
deployed in real-world scenarios, where the signals are noisier 
and interaction dynamics might differ. We are in the process of 
analyzing an additional CPS dataset in real-world classrooms, 
which we will use to test the robustness of our models. 

Fourth, we considered simple weighting strategies that only 
used singular metrics (e.g., expressiveness, extraversion). Perhaps 
a sophisticated weighting approach based on a combination of 
these metrics might improve model accuracy.  

Fifth, although we explored a large set of nonverbal signals 
(facial expression, eye gaze, acoustics and prosody, task context), 
we did not include measures of physiological arousal. Therefore, 
future work can incorporate physiology signals, such as 
electrodermal response, which might improve model accuracy. 
Additionally, since coordination is an important aspect of 
collaboration, incorporating additional measures of coordination, 
for example expression mirroring, beyond gaze coordination 
considered here is an item for future work. 

5.4  Concluding remarks  
We investigated methods for combining nonverbal signals from 
multiple teammates during multiparty interactions in the context 
of triadic collaborative problem solving. We were moderately 
successful in predicting team performance using multimodal 
nonverbal signals and found that the simplest strategy of equally 
weighting signals of all teammates yielded the best performance. 
Our results have implications for the emergent field of 
multimodal, multiparty modeling and interaction. 
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