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Abstract

The purpose of this paper is to study holomorphic approximation and approximation of 9-
closed forms in complex manifolds of complex dimension n > 1. We consider extensions of
the classical Runge theorem and the Mergelyan property to domains in complex manifolds
for the C*-smooth and the L? topology. We characterize the Runge or Mergelyan property
in terms of certain Dolbeault cohomology groups and some geometric sufficient conditions
are given.
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1 Introduction

Holomorphic approximation is a fundamental subject in complex analysis. The Runge the-
orem asserts that, if K is a compact subset of an open Riemann surface X such that X\ K
has no relatively compact connected components, then every holomorphic function on a
neighborhood of K can be approximated uniformly on K by holomorphic functions on X.

If K is a compact subset of an open Riemann surface X, we denote by A(K) the space of
continuous functions on K, which are holomorphic in the interior of K. Then the Mergelyan
theorem asserts that, if K is such that X\ K has no relatively compact connected components,
then every function in .A(K) can be approximated uniformly on K by holomorphic functions
on X.
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Holomorphic approximation in one complex variable has been studied and well under-
stood, while the analogous problems in several variables are much less understood with many
open questions. An up-to-date account of the history and recent development of holomorphic
approximation in one and several variables can be found in the paper by Fornaess et al. [4].

In this paper we will consider holomorphic approximation in complex manifolds of higher
complex dimension and also approximation of d-closed forms for different topologies like
the uniform or the smooth topology on compact subsets or the L2 topology. The aim is to
characterize different types of holomorphic or d-closed approximation in a subdomain of a
complex manifold using properties of the Dolbeault cohomology with compact or prescribed
support in the domain or using properties of the Dolbeault cohomology of the complement
of the domain with respect to some family of support.

If M is a complex manifold, we denote by HZ? (M) the Dolbeault cohomology group
with compact support of bidegree (p, ¢) in M. Let D CC X be relatively compact domain
in a complex manifold X, for any neighborhood V of X\D the family & of supports in
V consists of all closed subsets F of V such that F U D is a compact subset of X. For
0 < p,q <n, HY?(X\D) = 0 means that for any neighborhood V of X\ D and for any
d-closed (p, q)-form f € C , (V) with supp f € ®, there exist a neighborhood U C V' of

X\D and a (p,q — 1)- formg € Cooq 1(U) with supp g C F € ® such that dg=fonU.
In the first part, in the spirit of the Runge theorem, we get the following result:

Theorem 1.1 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact domain in X with connected complement, then the following assertions
are equivalent

(i) D is pseudoconvex and any holomorphic function on D can be approximated by holo-
morphic functions in X uniformly on compact subsets of D;
(i) H!" (D) =0,for2 <r < n—1, and the natural map H!"" (D) — H!""(X) is injective;
(iii) Hy?(X\D)=0forall1 <q <n—1.

More generally, we obtain a sufficient geometric condition for the approximation of 3-closed
forms.

Theorem 1.2 Let X be a non-compact complex manifold of complex dimensionn > 2, D CC
X a relatively compact domain in X and q a fixed integer such that 0 < g < n — 2. Assume
that, for any neighborhood V of X\ D, there exists a domain Q such that X\V C Q C D
and X is a (g + 1)-convex extension of Q. Then, for any 0 < p < n, the space Z5(X) of
d-closed smooth (p, q)-forms on X is dense in the space ZE? (D) of 3-closed (p, q)-forms
on D for the topology of uniform convergence of the form and all its derivatives on compact
subsets of D.

We also give an alternative proof of the Oka—Weil theorem.

Theorem 1.3 Let X be a Stein manifold of complex dimensionn > 2 and K a compact subset
of X. Assume K is O(X)-convex, then every holomorphic function on a neighborhood of K
can be approximated uniformly on K by holomorphic functions on X.

In the second part we use the solution of the d equation with prescribed support and the
associated Serre duality to study the holomorphic approximation of holomorphic functions
on a relatively compact domain D of a complex manifold X, which are smooth up to the
boundary orin L? (D), by holomorphic functions in X (in the spirit of the Mergelyan theorem)
or in a neighborhood of D (Mergelyan property) for the associated topology.

In particular, in the L? setting, we prove the following characterization:
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Theorem 1.4 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact domain in X with Lipschitz boundary such that X\ D is connected. Then
the following assertions are equivalent:

(i) D is pseudoconvex and L* holomorphic functions in D can be approximated by holo-
morphic functions in X for the L? topology on D;
(ii) H%”VLZ (X) =0, for2 < r < n — 1, and the natural map H%”"LZ(X) — H'"(X) is
injective;
(iii) H('I’Di‘évl(X\D) =0,foralll <qg<n-—1.
We also get the following L? version of the Oka-Weil theorem:

Theorem 1.5 Let X be a Stein manifold of complex dimension n > 2 and let D CC X be a
relatively compact pseudoconvex domain with Lipschitz boundary in X. Assume the closure
D of D has a O(X)-convex neighborhood basis, then L* holomorphic functions in D can be
approximated by holomorphic functions in X for the L? topology on D.

We will give an example of a strictly pseudoconvex domain €2 with smooth boundary in
C?, whose closure fails to be a Runge compact subset in C2. In fact, 2 is also not Runge.
Example: Consider the domain

Q= {(zm) € C Iz + (2 -2 < %} :
It is easy to see that the domain €2 is a bounded strictly pseudoconvex domain with smooth
boundary in C2. But Q is not O(C?)-convex. The O(C?)-convex hull of Q is the union of €
and the bidisc A(0, 1) x A(0, v2).
We first show that its closure €2 is not a Runge compact subset in C2. To see this consider
the function

22

Then g is holomorphic in a neighborhood of €2, but g cannot be approximated by functions
in O(C?) uniformly on Q. Note that the domain 2 fails to be Runge in C? also.

Thus strict pseudoconvexity is not enough to guarantee the Runge property. This example
illustrates the subtle nature of holomorphic approximation in several variables. In comparison,
holomorphic approximation in one complex variable is much easier to describe. Our results
can also be applied to the one complex variable case, which we summarize at the end of the

paper.

2 About Runge domains in complex manifolds

Let X be a complex manifold of complex dimension n > 1 and D CC X a relatively
compact domain in X. Recall that the domain D is Runge in X if and only if the space O(X)
of holomorphic functions on X is dense in the space O(D) of holomorphic functions on D
for the topology of uniform convergence on compact subsets of D. We will extend the Runge
property to d-closed (p, ¢)-forms.

Definition 2.1 Let ¢ be a fixed integer such that 0 < ¢ < n. A relatively compact domain D
in X is called a g-Runge domain in X if and only if, for any 0 < p < n, the space Z57 (X) of
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d-closed smooth (p, g)-forms on X is dense in the space Z5;? (D) of 3-closed (p, ¢)-forms
on D for the topology of uniform convergence of the form and all its derivatives on compact
subsets of D.

Note that, forany 0 < p <n, zlM (D) = C;fn (D), so any domain D CC X is n-Runge.
Ifq =0,forany 0 < p < n, zZP4(D) is the space of holomorphic p-forms and in this
case the smooth topology coincides with the uniform convergence on compact subsets, so
0-Runge domains coincide with classical Runge domains.

2.1 Characterization of Runge domains using Dolbeault cohomology groups

Theorem 2.2 Let X be a non-compact complex manifold of complex dimension n > 1,
D CC X a relatively compact domain in X and q a fixed integer such that 0 < g <n — 1.
Assume that, for any 0 < p < n, H' """ 9(X) and H! """ 1(D) are Hausdorff. Then D
is a q-Runge domain in X if and only if, for any 0 < p < n, the natural map

H7PD) - HETPT(X).

is injective.

Proof Assume D is g-Runge in X and let f € Za, "~ 9(D) with compact support in D.
We assume that the cohomological class [ f] of f vanishes in H!'™7"79(X), which means
that there exists g € D"~7"~4~1(X) such that f = dg. Since H!™P"79(D) is Hausdorff,
then [f] = 0in H;~ """ (D) if and only if, for any 0-closed (p. q)-form ¢ € Z&? (D), we
have fD ¢ A f =0.But, as D is g-Runge in X, there exists a sequence (¢x)ren of d-closed
(p, g)-form in X which converges to ¢ uniformly on compact subsets of D, in particular on
the support of f. So

/(pAf:lim/(pk/\leim/wk/\5g
D k—o0 Jx k—o00 Jx
==+ lim | 9 Ag=0.
k—o00 Jx

Conversely, by the Hahn-Banach theorem, it is sufficient to prove that, for any 9-closed
(p, q)-form g € Z5;7(D) and any (n — p, n — q)-current T with compact support in D such
that < T, f >= 0 for any d-closed (p, q)-form f € Z&?(X), we have < T, g >= 0. Since
H!'"?"79(X) is Hausdorff, the hypothesis on 7 implies that there exists an (n — p, n—q —1)-
current S with compact support in X such that T = 35. The injectivity of the natural map
H!™P" (D) — H!™P""71(X) implies that there exists an (n — p, n — ¢ — 1)-current U
with compact support in D such that 7 = dU. Hence, for any g € Z2? (D), we get

<T,g>=<dU,g>=+<U,dg >=0.
[}

Corollary 2.3 Let X be a non-compact complex manifold of complex dimension n > 1 and
D CC X a relatively compact domain in X such that both H!"(X) and H!" (D) are
Hausdorff. Then D is a Runge domain in X if and only if the natural map

H'""(D) — H""(X).

is injective.
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It follows from the Serre duality that H. "~ 9(X) and H! """ "?(D) are Hausdorff if
and only if H? 4+1(X) and HP2t1(D) are Hausdorff. The latter condition holds in particular
if these groups are finite dimensional. From the Andreotti—Grauert theory (see e.g. [6]), for
a complex manifold M, we get that H”9+1 (M) is finite dimensional if M is either an r-
convex complex manifold, 1 < r < ¢ + 1, or an r-concave complex manifolds, 1 < r <
n —q — 2. Moreover, by the Andreotti—Vesentini theorem (see e.g. [6], Sect. 19), HP*4 (M)
is Hausdorff if M is r-concave with r = n —¢g — 1. Finally for a r-convex-s-concave complex
manifold M,ifr — 1 <g <n—s — 1, then HP-9t1 (M) is Hausdorff, for any 0 < p <n.

Corollary 2.4 Let X be a complex manifold of complex dimensionn > 1 and D CC X a
relatively compact domain in X such that both H*'(X) and H%'(D) are Hausdorff (in
particular, it is true for n > 2, if X and D are either pseudoconvex or 1-convex-(n — 1)-
concave). Then D is a Runge domain in X if and only if the natural map H!" (D) — H"(X)
is injective.

Using the characterization of pseudoconvexity in Stein manifolds by means of the Dol-
beault cohomology with compact support, we get the following result.

Corollary 2.5 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact domain in X. Then D is pseudoconvex and Runge in X if and only if
H!" (D) =0, for2 <r <n— 1, and the natural map H!"" (D) — H""(X) is injective.

Proof The necessary condition is a consequence of the characterization of pseudoconvex
domains in Stein manifolds by means of the Dolbeault cohomology with compact support
via the Serre duality and of Corollary 2.3. For the sufficient condition, we have only to prove
that the injectivity of the map H"" (D) — H"(X) implies that H"" (D) is Hausdorff.
Let f be a smooth (n, n)-form with compact support in D such that [ p Jo = 0 for any
holomorphic function ¢ on D. In particular f x fo = 0 for any holomorphic function ¢
on X and X being Stein, H/""(X) is Hausdorff and therefore f = du for some smooth
(n, n — 1)-form u with compact support in X, i.e. [ f] = 0 in H" (X). By the injectivity of
the map H"" (D) — H/""(X), we get that f = dg for some smooth (1, n — 1)-form g with
compact support in D, which ends the proof. O

2.2 Some cohomological properties of the complement of a g-Runge domain

Let us now relate the Runge property of the domain D with some cohomological properties
of X\ D. For any neighborhood V of X\ D, we denote by ® the family of supports in V,
which consists of all closed subsets F of V such that F U D is a compact subset of X. For
0 < p,q < n, we will say that Hg’q(X\D) = 0 if and only if for any neighborhood V
of X\ D and for any d-closed (p, ¢)-form f e C;f’q(V) with supp f € &, there exist a
neighborhood U C V of X\D and a (p,gq — 1)-form g € C;f’q_l(U) withsuppg C F € &

such that 9g = fon U.

Theorem 2.6 Let X be a non-compact complex manifold of complex dimension n > 2,
D CC X a relatively compact domain in X and q a fixed integer such that 0 < g <n — 2.
Assume that, for any 0 < p < n, H' """ 9X) and H! """ (D) are Hausdorff and
HY 7" 7Y (X) = 0. Then D is a q-Runge domain in X if and only if, for any 0 < p < n,
Hy PN (x\D) = 0.
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Proof Assume D is a ¢g-Runge domain in X and consider a neighborhood V of X\ D and a
d-closed (n — p,n —q — 1)-form f € cee g 1 (V) with supp f € ®. Let x be a positive
smooth function with support in V and equal to 1 on a neighborhood W of X\D. Then
x f defines a form f such that 9 f has compact support in D and the cohomological class
[0 f]=0in H' 7" "%(X). Then by Theorem 2.2, [ f] = 0in H" 7" ~9(D), which means
that there exists a smooth (n — p,n —g —1)-formu € C° g 1 (X) with compact support
in D such that 9u = 0 f. Set h = f — u, then h = f on a neighborhood U of X\ D and
9h = 0 on X. Since H' 7" 7971 (X) = 0, there exists g € C g
support in X such that 3¢ = & on X, which implies supp gu C F e ®and 5g|U = fonU.

Conversely we will prove that the natural map H. 7" 9(D) — H; """9(X) is
injective, which, by Theorem 2.2, implies that D is a Runge domain in X. Let f be a
smooth (n — p,n — g)-form with compact support in D such that f = dg for a smooth
(n — p,n—q — 1)-form with compact support in X. Then dg = 0 on some neighborhood V
of X\ D and supp g|,, € ® and by hypothesis there exist a neighborhood U C V of X\ D and
an(n —p,n—q—2)-formh € C° P 2(U) with supp i C F € ® such that 32 = g on
U. Let x be positive smooth function Wlth support in U and equal to 1 on an neighborhood
W of X\D. Then xh defines a smooth (n — p,n — g — 2)-form Hon X withh =hon W
andifu =g — 9h, then du = dg = f and the support of u is a compact subset of D. O

»(X) with compact

Note that the hypothesis H,' ” =gl (X) = 0 s only used to prove the necessary condi-
tion, i.e. if D is a g-Runge domain in X, then forany 0 < p <n, Hg_p’”_q_l (X\D) =0.

Lemma 2.7 Let X be a Stein manifold of complex dimensionn > 2 and D a relatively compact
domain in X. Then, forany0 < p <nand1 < g <n —2, Hg;p’nqul(X\D) =0ifand
only if H'=P"=4=1(X\D) = 0. Moreover lan P l(X\D) = 0 for some (O < p <n
then H"~P"~Y(X\D) is Hausdorff.

Proof Let us prove the necessary condition in the first assertion. Since X is a Stein manifold,
there exists a relatively compact strictly pseudoconvex set with C2 boundary U in X such
that D C U. It follows that H”4(U) = 0, forany 0 < p <nand 1 < g <n — 1, hence,
by Proposition 1.1 in [10], H""""‘q_l(X\ﬁ) =0,forany0 < p<nandl <g <n-2,
and H”’p’”’l(X\U) is Hausdorff, for any 0 < p < n. First assume that f is a smooth,
d-closed (n — p,n — g — 1)-form on a neighborhood of X\ D, then there exists a smooth
(n — p,n —q —2)-form X\U such that f = dg on X\U. Let x be a smooth function equal
to 1 on X\V for some neighborhood V CC X of U and with support in X\U, then the
support of f — d(xg) belongs to ®. Since Hg "7 "X\D) =0, f —9xg = duona
neighborhood of X\D andso f = d(xg + u).

Conversely, we will prove that the natural map H:II)_P’n_q_l (X\D) — H" P"=4-1(X\D)
is injective for any 0 < p < nand 1 < ¢ < n — 1. Therefore H"~P"~4-1(X\D) = 0
will imply Hg,_p’”_q_](X\D) =0forany0 < p<nandl1 <qg <n—2.Let fbea
smooth, d-closed (n — p,n — g — 1)-form on a neighborhood V of X\ D and whose sup-
port belongs to ®. Assume there exists a smooth (n — p,n — g — 2)-form g defined on a
neighborhood W C V of X\ D and such that f = dg on W. Consider a function x with
compact support in X such that x = 1 on a neighborhood of D Usuppf. Weset 3 = xg.
Then 33 = dx A g+ xdg = dx A g + f and the form dx A g can be extended by O to
a d-closed (n — p,n — g — 1)-form with compact support in X. Since X is Stein, there is
an h € D""P"~972(X)such that 31 = dx A g on X and it follows that 3¢ = dh + f on
W. Then the support of u = g — & belongs to ® because i has compact support in X and
du=fonW.
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For the second assertion, let f be a smooth, d-closed (n—p, n—1)-formona neighborhood
V of X\ D such that [ f A ¢ = 0 for any d-closed smooth (p, 1)-form with compact support
in a neighborhood W C V of X\D. Let U be as at the begining of the proof, then since
H"~P"=1(X\U) is Hausdorff and X\U C X\D, there exists a smooth (n — p,n —q — 1)-
form on X\U such that f = dg on X\U. Then we can repeat the proof as before for the
necessary condition. O

Proposition 2.8 Let X be a Stein manifold of complex dimension n > 2 and D a rela-
tively compact domain in X. Then, for any 1 < q < n —2, H"'(D) = 0 if and only if
H™7~1(X\D) = 0. Moreover ing’"fl(X\D) =0, then H"" (D) is Hausdorff.

Proof Assume H.'?(D) = 0 and consider a neighborhood V of X\ D and a 3-closed (1, g —

I)-form f € Cr‘f?q_l (V). Let x be a positive smooth function with supportin V and equal to 1

on a neighborhood W of X\ D. Then yx f defines a form fsuch that 5fhas compact support
in D. Since H."? (D) = 0, there exists a smooth (n — p, n —g — 1)-formu € Crfip n—q—1 (X)
with compact supportin D such that du = 8 f.Seth= f—u,thenh = f ona neighborhood

U of X\D and dh = 0 on X. Since X is Stein, there exists g € Cy?o—p,n—q—2 (X) such that

dg = h on X, which implies dg|, = f on U.

Conversely assume H m4=1(X\D) = 0. Let f be a smooth (n, ¢)-form with compact
support in D, then f = dg for a smooth (1, ¢ — 1)-form g with compact support in X, since
X is Stein. Then g = 0 on some neighborhood V of X\ D and by hypothesis there exists
a neighborhood U C V of X\D andan (n — p,n — q — 2)-form h € Cr?ofp,nfq72(U) such

that 3k = g on U. Let x be positive smooth function with support in U and equal to 1 on an
neighborhood W of X\ D. Then yh defines a smooth (n — p, n — g — 2)-form J on X with
h=honW andifu = g— oh, then du = dg = f and the support of u is a compact subset
of D.

Assume Hg’"_l(X\D) = 0. Let f be a smooth (n, n)-form with compact support in
D, which is orthogonal to any holomorphic function on D. In particular [, f¢ = 0 for
any holomorphic function ¢ on X and X being Stein, H."" (X) is Hausdorff and therefore
f = dg for some smooth (n, n — 1)-form g with compact support in X. Then 9g = 0 on
some neighborhood V of X\ D and the support of g, belongs to ®. By hypothesis there
exists a neighborhood U C V of X\ D and an (n, n —2)-formh € Cﬁf’n_z(U ) whose support
is included in some F which belongs to ® and such that 32 = g on U. Repeating the same
arguments, the proposition is proved. O

The next corollary follows directly from Theorem 2.6, Proposition 2.8, Lemma 2.7 and
the characterization of pseudoconvexity in Stein manifolds by means of the Dolbeault coho-
mology with compact support.

Corollary 2.9 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact domain in X such that X\ D is connected. Then D is pseudoconvex and
Runge in X if and only ing’q(X\D) =0foralll <g<n-—1.

Let us end with geometric conditions to ensure the Runge density properties.

We say that the manifold X is an r-convex extension of a domain 2 C X if the boundary
of Q is compact and there exists a C2 real valued function p defined on a neighborhood
U of X\, whose Levi form admits at least (n — r + 1) positive eigenvalues, such that
QNU ={z € U| p(z) < 0} and for any real number 0 < ¢ < sup,y p(z), the set
{ze U |0 < p(z) <c}iscompact.
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1034 C. Laurent-Thiébaut, M.-C. Shaw

Using Theorem 16.1 in [6], the next corollary follows from Theorem 2.6 since ina (¢ +1)-
convex manifold M, for any 0 < p < n, H'™?""9(M) is Hausdorff .

Corollary 2.10 Let X be a non-compact complex manifold of complex dimension n > 2,
D CC X a relatively compact domain in X and q a fixed integer such that0 < g <n — 2.
Assume that, for any neighborhood V of X\ D, there exists a domain 2 such that X\V C
Q C Dand X is a (q + 1)-convex extension of Q2. Then D is a q-Runge domain in X.

Let us consider the special case when p = g = 0. If X is a Stein manifold of complex
dimension n > 2, it follows from the Hartogs extension phenomenon for holomorphic
functions that we have only to consider domains D such that X\ D has no relatively compact
connected component, i.e. X\D is connected. If X is 1-convex-(n — 1)-concave, we can
consider independently the connected component of X\ D which contain the 1-convex end
of X and the connected components of X\ D which contain the (n — 1)-concave ends of X.

Corollary 2.11 Let X be a complex manifold of complex dimensionn > 2 and D CC X a
relatively compact domain in X such that X\ D has no relatively compact connected com-
ponent. For any connected component D¢ of X\ D, assume that there exists a neighborhood
V of D€, which does not meet any other connected component of X\D, and a domain Q
such that D¢ C X\2 C V and either V is a 1-convex extension of 2 or an (n — 1)-concave
extension of 2, then D is a Runge domain in X.

Proof The hypothesis implies that X is either a 1-convex or a 1-convex-(n — 1)-concave
complex manifold and hence H/"" (X) is Hausdorff.

Under the assumptions on the connected components of X\ D which contain the (n — 1)-
concave ends of X, any holomorphic function on VN D, where Visa neighborhood of such
a component, extends holomorphically to V (see the last section of [11]). For the connected
component D¢ which contain the 1-convex end of X, we can apply Theorem 16.1 in [6] to
get that Hy? (D) = 0. The conclusion follows then from Theorem 2.6. u]

2.3 Runge density property for germs of holomorphic functions on a compact set

Definition 2.12 A compact subset K of a non-compact complex manifold X of complex
dimension n > 1 is Runge in X if and only if the space O(X) of holomorphic functions
on X is dense in the space O(K) of holomorphic functions in a neighborhood of K for the
topology of C*°(K).

Let K be a compact subset in a complex manifold X and g a positive integer, we will say
that H%9(K) = 0 if any d-closed (0, ¢)-current defined on a neighborhood of K is 9-exact
on a possibly smaller neighborhood of K.

Theorem 2.13 Let X be a Stein manifold of complex dimensionn > 1 and K a compact subset
of X with connected complement. Assume that for any V belonging to a neighborhood basis
of K the natural map H!" (V) 0 (Ei)""(X) — H""(X) is injective, then K is Runge in
X. If moreover n > 2, H*'(K) = 0 and K is Runge in X, then, for any neighborhood V of
K, the natural map H!" (V) N ()" (X) — H!"(X) is injective.

Proof We will use the Hahn-Banach theorem. Let 7 be an (n, n)-current with support in
K such that < T, f > = 0 for any holomorphic function f € O(X). Since H'"(X) is
Hausdorff, there exists an (1, n — 1)-current S with compact support in X such that T = 35.
Let ¢ € O(K), then there exists a neighborhood V of K such that ¢ € O(V). Using the
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injectivity hypothesis there exists an (7, n — 1)-current R with compact support in V' such
that T = 9 R, therefore

<T,¢g>=<0dR, ¢ >=+ <R, dp >=0.

By the Hahn-Banach theorem, we get the density property.

Now assume H%1(K) = 0.Let T € (S}()”’” (X) suchthat T = 3S foran (n, n—1)-current
S with compact support in X. We first prove that for any ¢ € O(K), wehave < T, ¢ >=0.
Since O(X) is dense in the space O(K) for the topology of C*°(K), there exists a sequence
(¢r)ken of holomorphic functions in X which converges for the smooth topology on K to

¢.So _
<T,¢p>=1lim <T,¢>= lim <3S, ¢ >
k—o00 k—00

=4 lim < S, d¢; >=0.
k—o00

Since the support of T is contained in K, the current S is d-closed in X\ K. Recall that
if HO1(K) = 0, then H”'"_I(X\K) is Hausdorff (see Proposition 1.1 in [10]). Therefore
to prove that S is d-exact in X\ K, it is sufficient to prove that for any smooth, d-closed
(0, 1)-form 6 with compact support in X\ K, we have < §,6 >= 0. Using that X is Stein
6 = dw for some smooth function o with compact support in X, moreover  is holomorphic
in some neighborhood of K. So

<S0>=<S,0w>=+<dS,0>=<T,0>=0

and S = 3R for an (n, n — 2)-current R in X\ K.

Let V be some neighborhood of K and x be a smooth positive function on X such that
x = 1 on X\V and vanishing on a neighborhood of K. Set Sy = S — dx R, then Sy has
compact supportin V and T = 3Sy. O

Let K be a compact subset of a complex manifold of complex dimension n. Let us denote
by @ the family of all closed subset F' of X\ K such that F U K is a compact subset of X.
We will say that Hy/ (X\K) = 0 for some 0 < p <nand 1 < g < n — 1 if and only if for
any extendable d-closed (p, ¢)-current 7 on X\ K, whose support belongs to &, there exists
a (p,q — -current S on X\ K, whose support belongs to ®, such that T = 35 on X\K.

Theorem 2.14 Let X _be a Stein manifold of complex dimension n > 2 and K a compact
subset of X. Assume Hg‘"_l (X\K) = 0, then for any neighborhood V of K the natural map
H" (V) N (ER)™™M(X) — H"(X) is injective.

Proof Firstlet T be an (n, n)-current on X with support contained in K such that T = 3. for
some (n, n — 1)-current § with compact support in X. Then S, , is an extendable 9-closed
(n,n — 1)-current on X\ K, whose support belongs to ®. Since Hg " 1(X\K) = 0, there
exists an (n, n — 2)-current U on X\ K, whose support belongs to ®, such that § = dU. Let
V be a neighborhood of K and x a positive smooth function with support in X\ K and equal
to 1 on a neighborhood of X\ V. Set U = xU,then S — 39U has compact support in V and
S —3U)=T. O

Lemma 2.15 Let X be a non-compact complex manifold X of complex dimensionn > 2, K
a compact subset of X, U a relatively compact neighborhood of K. We assume that

0 H" 0 =0,
(ii) the natural map H:""(U) N ()" (X) — H!"(X) is injective.
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For any extendable, d-closed (n,n — 1)-current T on X\K vanishing outside a compact
subset of X, there is an (n, n — 2)-current S on X\U vanishing outside a compact subset of
X such that S =T on X\U.

Proof Let T be an extendable, d-closed (n,n — 1)-current on X \K vanishing outside a
compact subset of X and T an extension of T to X, then T defines an (n,n — 1)-current
with compact support in X and the support of 97T is contained i in K. So by ii) there is an
(n, n— 1)-current R with compact support in U such that 3R = 9T on X. The current T — R
is 9-closed and compactly supported in X. Hypothesis i) then implies the existence of an
(n, n — 2)-current S with compact support in X such that T — R = 3S. The restriction of S
to X\U is then the form we seek because T—R=Ton X\U. O

Theorem 2.16 Let X be a Stein manifold of complex dimension n > 2, K a compact subset
of X. We assume that K admits a decreasing Stein neighborhood basis (Uy)ren such that
ﬂkeNUk = K and, for any k € N, X\Uy is connected and H!" (Uy) N (5 (X)) —

“"(X) is injective. Then H:ll, "~LX\K) = 0.

Proof Let T be an extendable, 3-closed (n, n — 1)-current on X \ K, whose support belongs
to ®. Since X is a Stein manifold, the hypotheses of Lemma 2.15 are fulfilled. Hence for each
k € N, there exists an (1, n — 2)-current S; on X\U} vanishing outside a compact subset of
X such that 3S; = T on X\Uy.

If n = 2, the distribution Si| — Sk is then holomorphic on X\ U and vanishes outside a
compact subset of X . By analytic continuation, X \ U being connected, we get Sy4+1 — Sy = 0
on X\Uy. The distribution S defined by S = S; on X\ Uy satisfies supp S € ® and 95 = T
on X\K.

Now we suppose n > 3. We proceed by induction. We set 50 = Sz‘ X\To and we assume

that, for I < k </, we have already construct Sk vanishing outside a compact subset of X
and such that 9 Sk T on X \U k+2 and Sk 7, Sk 1. We construct Sl+1 in the following

way. The current S — ;43 is d-closed on X \U 1+2. Without loss of generality we may assume
that each Uy is a strictly pseudoconvex domain with c? boundary and Uy4+1 CC Uy. The
strict pseudoconvexity of Uy implies that H*!(U;) = 0 and by Proposition 1.1 in [10],
H™" 2(X\Uk) = 0. Therefore there exists R such that 9R = Sl — Si+3 on X\U;41. Let
x be a smooth function on X such that x = lona nelghborhood of X\U; and x = O on
a neighborhood of Ujy1. We set SZ+1 = S43 + xR, then BSIH T on X\U;43 and
SH'”X\U = Sl The current S on X\K defined by § = Sk on X\U satisfies supp S € @

and 3§ = T on X\K. O

A compact subset K in acomplex manifold X is called holomorphically convex if and only
if H%9(K) = Oforany 1 < g < n—1andis a Stein compactum if and only if it admits a Stein
neighborhood basis. Note that any Stein compactum is clearly holomorphically convex. We
deduce from the previous theorems the following characterization of Runge compact subset
of a Stein manifold.

Corollary 2.17 Let X be a Stein manifold of complex dimension n > 2 and K a holomorphi-
cally convex subset of X. Consider the following assertions:

(i) K is Runge in X;
(ii) for any neighborhood V of K, the natural map H:" (V) N ()" (X) — H!"(X) is
injective.
(i) HL" '(X\K) = 0.
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Then (i) is equivalent to (ii) and (iii) implies (ii). If moreover K is a Stein compactum, then
(ii) is equivalent to (iii).

To end this section, we will give some sufficient conditions on the compact subset K to
ensure the stronger condition Hg™" -l (X\K) = 0tohold. The Dolbeault cohomology groups
qu)),q (X\K) = 0 are directly related to the study of removable singularities for CR forms or
functions defined on a part of the boundary of a domain (see [3,9,11,14]).

In the same way we proved Theorem 2.16, we get the following result.

Theorem 2.18 Let X be a Stein manifold of complex dimension n > 2, K a compact subset
of X and q a fixed integer such that 0 < q < n — 2. We assume that K admits a decreas-
ing neighborhood basis (Uy)kenN consisting of (g + 1)-convex g-Runge domains such that
NkenUx = K. Then Hg_p’”_q_l (X\K) =0, forany0 < p <n.

Remark 2.19 Let us notice that if p = g = 0, then the hypothesis in Theorem 2.18 becomes:
there exists a decreasing neighborhood basis (Uy)reny of K consisting of pseudoconvex
domains which are Runge in X such that NyenUy = K. But this property characterizes
the compact subsets of the Stein manifold X which are O(X)-convex, i.e. K = K x, Where
I?X ={z € X|Vf € OX),|f(@)] < supseg [F(OI}. In fact if K is O(X)-convex,
then, by Theorem 8.17 from Chapter VII in [9], K admits a decreasing neighborhood basis
(Uk)ken consisting of pseudoconvex domains which are Runge in X. If U is a pseudoconvex
neighborhood of K which is a Runge domain in X, then

Kx =Ky CcCU,
which proves the converse.

Following this remark, as a corollary of Corollary 2.17 and Theorem 2.18 we recover the
Oka-Weil theorem.

Corollary 2.20 Let X be a Stein manifold of complex dimension n > 2 and K a compact
subset of X. Assume K is O(X)-convex, then K is Runge in X.

Moreover using once again Theorem 8.17 from Chapter VII in [9] and Corollary 2.10,
we can also get that if K is an O(X)-convex compact subset of the Stein manifold X, the
hypothesis of Theorem 2.18 is fulfilled forall 0 < g <n — 2.

3 Some new Runge density properties

Let X be a complex manifold of complex dimensionn > 1 and D CC X arelatively compact
domain in X.

In this section we will always assume that the boundary of D is Lipschitz to be able to
use Serre duality. Lipschitz boundary ensures that the space of (p, g)-currents in D, which
extend as a current to X and the space D%fp 74 (X) of smooth (n — p, n — g)-forms with

support contained in the closure of D are dual to each other and the space C}°, (D) of smooth
(p, g)-forms in D and the space &’ %_ P4 Xy of (n — p,n — g)-currents with support

contained in the closure of D are dual to each other (see [12]).

Moreover, let us consider the densely defined operators 3 from Li’ 7(D) into L?x g+1 (D)
whose domain is the subspace of (p, g)-forms f suchthat f € L%,q (D)andd f e Li,rﬁl (D)
and 9z from Lf,,q (D) into Liqu (D) whose domain is the subspace of (p, ¢g)-forms f such
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that f € L3 (X),supp f C Dand df € L; 4+1(X). If the boundary of D is Lipschitz,
then the associated complexes are dual to each other (see lemma 2.4 in [12]).

3.1 The C*°-Runge density property and the C°°-Mergelyan property

Definition 3.1 A relatively compact domain D in X is C*° g-Rungein X, for0 < g <n—1,
if and only if, for any 0 < p < n, the space ZZ?(X) of smooth d-closed (p, ¢)-forms in
X is dense in the space ZE:9 (D) of 9-closed (p, g)-forms in D, which are smooth on the
closure of D, for the smooth topology on the closure of D.

For ¢ = 0, we will simply say that the domain is C°°-Runge in X, which means that
the space O(X) of holomorphic functions in X is dense in the space O(D) N C®(D) of
holomorphic functions in D, which are smooth on the closure of D, for the smooth topology
on the closure of D.

If D CC X is arelatively compact domain in X, we denote by Hy LS X the Dolbeault

cohomology groups of currents with prescribed supportin D and by Hg 5 (X \D) the Dolbeault

cohomology groups of extendable currents in X\ D vanishing outside a compact subset of
X.

Theorem 3.2 Let X be a non-compact complex manifold of complex dimension n > 1,
D CC X a relatively compact domain with Lipschitz boundary in X and q a fixed inte-
ger such that 0 < q < n — 1. Assume that, for any 0 < p < n, H'"?""%(X) and
HEP"=49(X) are Hausdorff. Then D is a C* q-Runge domain in X if and only if the natural

D,cur
map H% P4 (xy — HYTP"TU(X) is injective.
,cur

Proof Since D has a Lipschitz boundary, the space C}°, (D) of smooth functions in D and

the space £ % P4 (XY of (n — p, n — g)-currents Wlth support contained in the closure of
D are dual to each other, consequently the proof follows the same arguments as in the proof
of Theorem 2.2. O

Proposition 3.3 Ler X be a non-compact complex manifold of complex dimension n > 2,
D CC X arelatively compact domain in X and q be a fixed integer such that0 < g <n—2.
Assume that, for some 0 < p < n, H' 7" l(X) = 0. Then H” pnma= 1(X\B) =0if
and only if the natural map H%’Cl;r" 1X) — H! P"79(X) is injective.

Proof We first consider the necessary condition. Let T € (£’ )%_p "9 (X) suchthat T =98
with § € (&))"~ P"=9=1(X). Since the support of T is contained in D, we have 95 = 0
on X \5 Therefore the vanishing of the group H. o7~ (X (\D) implies that there exists

U € (D’)” p-n=q- 2(X\D) such that 3U = S on X\D Let U be an extension of U to X,
weset R =S — 90U, then R is a current on X, T = 9 R and supp R C D.

Conversely, let Sbea d-closed, extendable (n— p,n—q—1)-currenton X\ D with compact
support and S a smooth extension of S to X, then S has compact support in X and 7 = s
is an element of (£’ )E P74 (X). By the injectivity of the natural map H% C’; r" “xX) -

H™P"9(X), there exists U € (€)Y "" 7! (X) such that U = T. We set R = § — U,
R is then a smooth d-closed (n — p, n — ¢ — 1)-current with compact support in X such that
Rjy, = S. Since HY 7" (X) = 0, we have R = 9W with W with compact support in
X. Finally we get S = R|X\E = 3W|X\5. O
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Note that the hypothesis H” 7" 97'(X) = 0 is only used to prove the sufficient
condition, i.e. if the natural map H%_Ci ‘r"_q(X) — H!7?""71(X) is injective, then

HY PN (x\D) = 0.
In the spirit of Corollary 2.10, we can derive the next corollary from Theorem 16.1 in [6]
and Theorem 4 in [16].

Corollary 3.4 Let X be a non-compact complex manifold of complex dimension n > 2,
D CC X arelatively compact domain in X with smooth boundary and q a fixed integer such
that 0 < q < n — 2. Assume that X is a (q + 1)-convex extension of D. Then D is a C*®
q-Runge domain in X.

In particular, if p = q = 0, n > 2 and X is a 1-convex extension of D, then D is
C*-Runge in X.

In the case when g = 0, we derive the following result:

Corollary 3.5 Let X be a Stein manifold of complex dimension n > 2 and D CC X a rela-
tively compact pseudoconvex domain with Lipschitz boundary in X. Consider the following
assertions:

(1) the domain D is C*°-Runge in X,
(ii) the natural map H%"ZW (X) — H"(X) is injective,

(i) Hy""'(X\D) =0,

Then (iii) is equivalent to (ii) and (ii) implies (i). If moreover D has smooth boundary, then
(i) implies (ii).

Proof Since X is Stein, we have H™" 1 (X) = 0 and H""(X) is Hausdorff. The domain D
being relatively compact, pseudoconvex, with smooth boundary in X, we have ch’,l (D) =0
by Kohn’s classical result on solving d smoothly up to the boundary in pseudoconvex domains
with smooth boundary. Then the Serre duality implies that H%"L'w (X) is Hausdorff. The

corollary follows then from Theorem 3.2 and Proposition 3.3. O

Corollary 3.6 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact domain with smooth boundary in X such that X\D is connected. Then D
is pseudoconvex and C*°-Runge in X if and only ing’q (X\D)=0foralll <g<n-—1.

Proof Following the arguments in the proof of Lemma 2.7, we can prove that if I-}g’q(X \D) =
Oforall<g <n—1,then H"4(X\D) =0, forany 1 <g <n —2and H*"1(X\D) =
0 is Hausdorff. Moreover, Theorem 3.11 in [5] implies that H%’ch (X) = 0 if and only

if f]"’q’l(X\D) = 0, forany 1 < ¢ < n — 1. Proposition 3.7 in [5] implies that if
H™"~1(X\D) = 0, then H%"Z ,,(X) is Hausdorff. Therefore the corollary follows from
Corollary 3.12, Theorem 3.13 in [5] and Corollary 3.5. ]

Definition 3.7 A relatively compact domain D in X has the C*° g-Mergelyan property, for
0 < ¢ <n —1,if and only if, for any 0 < p < n, any form in the space Z5;? (D) of smooth
d-closed (p, q)-forms in D can be approximated, for the smooth topology on the closure of
D, by smooth 9-closed forms defined on a neighborhood of D.

If p = g = 0, this means the space O(D) of germs of holomorphic functions on D is
dense in the space O(D) N C*®(D) of holomorphic functions on D, which are smooth on
D, for the smooth topology on the closure of D. In that case we will say that D has the
C*>-Mergelyan property.
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Note that, for a relatively compact domain D in a complex manifold X to have the C*
g-Mergelyan property, it is sufficient that D admits a neighborhood V such that D is C*
g-Runge in V. So it comes from Corollary 3.4 that

Proposition 3.8 Let D be a relatively compact domain in a complex manifold X of complex
dimension n > 2. Assume D has smooth boundary and D admits a neighborhood V which
is a (q + 1)-convex extension of D, then D has the C*° g-Mergelyan property.

If ¢ = 0, Proposition 3.8 could be compare to Theorem 24 in the survey paper [4],
where the authors study the C¥-Mergelyan property. They assume the domain D to be strictly
pseudoconvex in a Stein manifold. Here we only need the domain D to be extendable in a
1-convex way to some 1-convex neighborhood.

To end this section, let us relate the C°°-Mergelyan property with the solvability of the
d-equation with prescribed support.

Theorem 3.9 Let X be a complex manifold of complex dimensionn > 1, D CC X arelatively
compact domain with Lipschitz boundary in X. Assume D admits a neighborhood basis of
1-convex open subsets. Assume that for all (n, n)-currents T with support in D such that,
for any sufficiently small neighborhood V of D, T = 98y for some (n,n — 1)-current Sy
with compact support in V, there exists an (n, n — 1)-current S with support in D satisfying
T = 35S, then D has the C*°-Mergelyan property.

Proof Assume the cohomological condition holds. Let T be an (n, n)-current with support
in D such that < T, f >= 0 for any f € O(D). For any 1-convex neighborhood V of D,
H!"" (V) is Hausdorff. Hence there exists an (1, n — 1)-current Sy with compact support in
V such that T = Sy . Using the hypothesis, we get that T = 9. for some (1, n — 1)-current
S with support in D. Let g € O(D) N C*(D), then

<T,g>=<dS,g>==+<S,3g >=0.
We apply now the Hahn—Banach theorem to get the density property. O

Conversely we get the next theorem.

Theorem 3.10 Let X be a complex manifold of complex dimension n > 1, D CC X a

relatively compact domain with Lipschitz boundary in X. Assume H%’ZW (X) is Hausdorff

and D has the C*°-Mergelyan property, then if T is an (n, n)-current with support in D such
that, for any neighborhood V of D, T = 3Sy for some (n,n — 1)-current Sy with compact
support in 'V, there exists an (n,n — 1)-current S with support in D satisfying T = 95S.

Proof Assume D has the C*°-Mergelyan property, then for any g € O(D) N C®(D), any
£ > 0 and any integer N, there exists a neighborhood W of D and a function fy € O(W)
such that ||g — fN||CN(5) <.

Let T be an (n, n)-current with support in D such that, for any neighborhood V of D,
there exists an (n, n — 1)-current Sy with compact supportin V satisfying 7 = 8Sy. Since T
has compact support, it is of finite order N. Let g € O(D) N C*®(D), the density hypothesis
implies that for any & > 0, there exists f € O(V) for some neighborhood V of D such that
lg — f”cN(E) <é€.

Therefore

|<T,g>|§|<T,g—f>|+|<T,f>|§C£+|<5SV,f>|
<Cs+|<S8y,0f >|<Cs.
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So for any g € O(D) N C*®(D), < T, g >= 0 and since H%"ZW(X) is Hausdorft, we get

T = 3 for some (n, n — 1)-current S with support in D. O

Corollary 3.11 Let X be a complex manifold of complex dimension n > 1, D CC X a
relatively compact domain with smooth boundary in X. Assume D admits a neighborhood
V which is a 1-convex extension of D, then if T is an (n, n)-current with support in D such
that, for any neighborhood V of D, T = dSy for some (n,n — 1)-current Sy with compact
support in 'V, there exists an (n, n — 1)-current S with support in D satisfying T = 9.

3.2 The L2 Runge density property

Definition 3.12 A relatively compact domain D with Lipschitz boundary in X is L2 ¢-Runge,

for0 < g <n — 1, if and only if, for any 0 < p < n, the space Z{f (X) of L}, d-closed

loc
(p. ¢)-forms in X is dense in the space Z¥37(D) of L* 9-closed (p, g)-forms in D for the
L? topology on D.
For ¢ = 0, we will simply say that the domain is L? Runge, which means that the space
O(X) of holomorphic functions in X is dense in the space H>(D) = O(D) N L*(D) of L?
holomorphic functions in D, for the L? topology on D.

If D CC X is a relatively compact domain in X, we denote by H=" , (X) the Dolbeault
cohomology groups of L? forms with prescribed support in D and by H(;SW, (X\D) the

Dolbeault cohomology groups of W' forms in X\ D vanishing outside a compact subset of
X.

Theorem 3.13 Let X be a non-compact complex manifold of complex dimension n > 1,
D CC X a relatively compact domain with Lipschitz boundary in X and q be a fixed
integer such that 0 < g < n — 1. Assume that, for any 0 < p < n, H' """ 9(X) and

H%—Lpz,n—q (X) are Hausdorff. Then D is an L* q-Runge domain in X if and only if the

natural map H%_Li’n_q (X) — H!"P"(X) is injective.
Proof Assume D is L> Runge in X and let f € Lﬁ_ p.n—q(X) with support contained in
D be such that the cohomological class [ f] of f vanishes in H; 7"~ 9(X) , which means

that there exists g € Lﬁ7 po— qil(X) with compact support in X such that f = dg. Since
H%—Lpz,n—q (X) is Hausdorff, then [ f] = 0 in H%—Lpz,n—q (X) if and only if, for any form
(NS ZZ’Zq (D), we have fD @ A f =0.But, as D is L? g-Runge in X, there exists a sequence

(r)ren of L120c d-closed (p, ¢)-forms in X which converges to ¢ in L*(D). So

/ga/\f lim/‘gak/\f: 1im/<pk/\5g
D k—o0 Jx k—o0 Jx

=+ lim A Ag=0.
k—o0 Jx

Conversely, by the Hahn—Banach theorem, it is sufficient to prove that, for any form

g € Zi’zq(D) and any (n — p,n — g)-form ¢ in L?(D) such that [pe A f =0 for any

form f € ZZ’zq (X), we have fD o A g = 0. We still denote by ¢ the extension of ¢ as an

loc
L? form on X with compact support in D. Since H,'~ """ (X) is Hausdorff, the hypothesis
on ¢ implies that there exists an L2 (n — p,n — g — 1)-form ¥ with compact support in

@ Springer



1042 C. Laurent-Thiébaut, M.-C. Shaw

X such that ¢ = 3. The injectivity of the natural map H%_L’;’"_q (X) - H!7P"9(Xx)

implies that there exists an L% (n — p,n — g — 1)-form @ with compact support in D such
that ¢ = 9z6. Hence since the boundary of D is Lipschitz, for any g € Z}5(D), we get

/(p/\g:/%é/\g::l:/@A?g:O.
D D D

Proposition 3.14 Let X be a non-compact complex manifold of complex dimension n > 2,
D CC X arelatively compact domain in X with Lipschitz boundary and q be a fixed integer
such that 0 < g < n — 2. Assume that, for some 0 < p < n, chfp’"qul(X) = 0. Then
H"_p’"_q_l(X\D) = 0 if and only if the natural map H= """ 1(X) — H! """ 1(X) is

[m}

o,W! D,L2
injective.
Proof We first consider the necessary condition. Let f € L2 (X) be a d-closed

o5 n—p,n—q
form with support contained in D such that the cohomological class [f] of f vanishes
in H!'~P"79(X), by the Dolbeault isomorphism and the interior regularity of the @ operator,

there exists g € W,L p—g—1 (X) and compactly supported such that f = dg. Since the sup-

port of f is contained in D, we have dg = 0 on X\ D. Therefore the vanishing of the group

H;_vf;;"_q_] (X\D) implies that there exists u € Wr:_p n—g—2(X\D) such that du = gon

X\D. Since the boundary of D is Lipschitz there exists # a w! extension of u to X, we set
v=g—0u,thenv € erl—p,n—q—l(X) satisfies f = dv and supp v C D.

Conversely, let g be a 8-closed (n — p,n — g — 1)-form in W,:_p’n_q_l(X\D) which
vanishes outside a compact subset of X and % a W! extension of g to X, then g has compact
support in X and f = g is a form in L,Z,_p,n_q (X) with support in the closure of D.
By the injectivity of the natural map H%lpz’"*q (X) — H!"P"79(X), there exists u €
L%_p’n_q_l(X) with support contained in D and such that du = f. Weset v =5 — u, v is
then an L2 3-closed (n — p, n — g — 1)-form with compact support in X such that Vpp = &

Since H!™? n=q=l (X) = 0, by the Dolbeault isomorphism and the interior regularity of the
d operator, we have v = dw with w € Wnt P qu(X ) with compact support in X. Finally

we get g = Vyop = 5”")(\5'
Corollary 3.15 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact pseudoconvex domain with Lipschitz boundary in X. Then the following
assertions are equivalent:

() the domain D is L* Runge,

(ii) the natural map HLDl’”Lz (X) — HM'™M(X) is injective,

iii) Hgi’;‘;l (X\D) = 0.

Proof Since X is Stein, we have H”"'(X) = 0 and H""(X) is Hausdorff. The domain
D being relatively compact, pseudoconvex in X, we have HS’ZI(D) = 0 by the classical
Hormander L2 theory (see [7,8]). Since the boundary of D is Lipschitz, the Serre duality

implies that H%’"Lz (X) is Hausdorff. The corollary follows then from Theorem 3.13 and
Proposition 3. 14. O
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Finally using the characterization of pseudoconvexity by means of L> cohomology and
L? Serre duality, we can prove the following corollary.

Corollary 3.16 Let X be a Stein manifold of complex dimension n > 2 and D CC X a
relatively compact domain in X with Lipschitz boundary such that X\ D is connected. Then
the following assertions are equivalent:

(i) the domain D is pseudoconvex and L*-Runge in X;

(i) HD L2(X) =0, for2 <r < n — 1, and the natural map H%:an(X) — HM(X) is
injective;
(iii) Hg W (X\D) =0, forall1 <q <n—1

Proof Using Hérmander’s L? theory for the necessary condition and Theorem 5.1 in [5] for
the sufficient one, we get that a domain D, such that interior(D) = D, is pseudoconvex if
and only if Hg’zq (D) =0forall 1 <g¢ <n— 1. Applying L? Serre duality (see [1]), we get
that if D has a Lipschitz boundary, then D is pseudoconvex if and only if H%’iz (X) =0 for

all2 < g <n—1and HY Lz(X) is Hausdorff.

To get the equ1valence between (i) and (ii), it remains to prove that the injectivity of
the natural map HX L2 (X) — H!"(X) implies that HY nn 2(X ) is Hausdorff and to apply
Theorem 3.13.

Let f be an Ll e (n, n)-form with support in D such that f p fo = 0 for any L? holo-
morphic function ¢ on D. In particular f x Jo = 0 for any L? foc | holomorphic function ¢ on
X and X being Stein, H"" (X) is Hausdorff and therefore f = du for some leo o (nn—1)-
form u with compact support in X, i.e. [f] = 0 in H" "(X ). By the injectivity of the map
H%’,'Zz (X) — H”"(X), we get that f = dg for some L? (n,n — 1)-form g with support

in D, which ends the proof.
Let us prove now the equivalence between (ii) and (iii). It follows from Theorem 4.7 in

[5] that, forall2 <g <n—1, HX (X)) _OlfandonlylfH"q 1(X D) = 0. It remain to
D,L?

prove that, forall 1 < g <n-2, H<1> WI(X\D) = Oif and only 1fH q (X\D) = 0 and that

[ oc

Hy' '(X\D) = 0, implies HY 1=l x\ D) is Hausdorff. Using the Dolbeault isomorphism,

thls can be done in the same way as for Lemma 2.7. Then we apply Proposition 3.14 to get
the result. o

lnC

Definition 3.17 A relatively compact domain D in X has the L% -Mergelyan property if and
only if the space O(D) of germs of holomorphic functions on D is dense in the space
O(D) N L*(D) of holomorphic functions on D for the L topology in D.

Let us consider now the case when the closure of D is a Stein compactum. We prove the
following result on the L?-Mergelyan property, which is slightly stronger than Theorem 26
in the survey paper [4].

Theorem 3.18 Let X be a complex manifold of complex dimension n and let D CC Xua
relatively compact pseudoconvex domain with Lipschitz boundary in X whose closure D has
a Stein neighborhood basis. Then O(D) is dense in H2(D) = L*(D) N O(D).

Proof Let (D)) be a Stein neighborhood basis of D. Leth € H 2(D). Since bD is Lipschitz,
using Friedrichs’ Lemma (see (i) in Lemma 4.3.2 in [2]), there exists a sequence of functions
h, € L>(D,) such that h, — hin L?(D) and

10kl 2¢p,) — O
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Each D, is pseudoconvex. From the Hormander’s L? existence theorem, there exists u, €
LZ(D,,) such that du,, = dh, on D, with

luvll2p,y < Clléhvlle(Dv) -0

where C is independent of v.
Let H, = hy, — u,. Then H, — hin L?>(D) and H, € H*(D,) C O(D,). The theorem
is proved. O

From the Oka-Weil theorem associated to Theorem 3.18, it is easy to derive the following
sufficient geometric condition for a pseudoconvex domain to be L?-Runge in X.

Theorem 3.19 Let X be a Stein manifold of complex dimension n > 2 andlet D CC X be a
relatively compact pseudoconvex domain with Lipschitz boundary in X. Assume the closure
D of D has a O(X)-convex neighborhood basis, then D is L*>-Runge in X.

Proof Since the closure D of D has a O(X)-convex neighborhood basis, it admits in particular
a Stein neighborhood basis and we can apply Theorem 3.18. therefore if f € O(D) N L?*(D)
and & > 0 is a real number, there exists a neighborhood V of D and a holomorphic function
g € O(V)suchthat || f —gllz2py < % By hypothesis there exists U CC V aneighborhood
of D such that U is O(X)-convex. So we can apply the Oka-Weil theorem (see Corollary 2.20)
and then there exists a function 2 € O(X) such that

| ™

lg —hll2w) = Cllg — hlloo <
Finally

If=nl2py = I f —gll2py + I8 — hll2wy < e

[m}

The next result on the d problem with mixed bondary conditions in an annulus is a direct
consequence of Theorem 3.19 and the characterization of L?-Runge domains in a Stein
manifold of Corollary 3.15.

Corollary 3.20 Let X be a Stein manifold of complex dimensionn > 2 and let D CC X be a
relatively compact pseudoconvex domain with Lipschitz boundary in X. Assume the closure
D of D has a O(X)-convex neighborhood basis, then H:I;";V_ll (X\D) =0.

As for the C*°-Mergelyan property, we can relate the L?-Mergelyan property with the
solvability of the d-equation with prescribed support.

Theorem 3.21 Let X be a complex manifold of complex dimension n > 1, D CC X a
relatively compact domain with Lipschitz boundary in X. Assume D admits a neighborhood
basis of 1-convex open subsets. Assume that for all (n, n)-form f in L*(X) with support in D
such that, for any sufficiently small neighborhood V of D, f = dgy for some (n, n —1)-form
gy in L%(X) with compact support in 'V, there exists an (n,n — 1)-form g in L2(X) with
support in D satisfying f = 0g, then D has the L*-Mergelyan property.

Proof Assume the cohomological condition holds, we apply the Hahn-Banach theorem. Let
fbean (n, n)-form f in L2(X) with supportin D such that fD fo = 0forany ¢ € O(D).For
any 1-convex neighborhood V of D, H"" (V') is Hausdorff. Hence there exists an (1, n — 1)-
form gy in L2(X) with compact support in V such that f = dgy. Using the hypothesis, we
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get that f = g for some (n, n — 1)-form g in L?(X) with support in D. Let € H>*(D),

then
/wa=/D<5g>w=i/DgA5w=o.

Conversely we get the next theorem.

Theorem 3.22 Let X be a complex manifold of complex dimension n > 1, D CC X a
relatively compact pseudoconvex domain with Lipschitz boundary in X. Assume D has the
L2-Mergelyan property, then if f is an (n, n)-form in L*(X) with support in D such that, for
any neighborhood V of D, f = dgy for some (n,n — 1)-form gy in L*(X) with compact
supportin V., there exists an (n, n — 1)-form g in L>(X) with support in D satisfying f = 0g.

Proof Assume D has the LZ—Mergelyan property, then for any ¢ € H>(D) and any & > 0,
there exists a neighborhood W of D and a function ¢ € O(W) such that l¢ — Y[l .2(py < &.
Since D is pseudoconvex with Lipschitz boundary, H%‘”Lz (X) is Hausdorff.

Let f be an (n, n)-form in L2(X) with support in D such that, for any neighborhood V
of D, there exists an (n,n — 1)-form gy in L?(X) with compact support in V satisfying
f = 0gy. Let ¢ € H?(D), the density hypothesis implies that for any ¢ > 0, there exists
¥ € O(V) for some neighborhood V of D such that ||¢ — Vil <&

Therefore

|/f¢|§|/f(w—lﬁ)l-H/f1//|§C€+|/(5gV)¢/|
D D D D
§C8+|/gv/\5W|SC£.
D

So forany ¢ € H*(D), < f, ¢ >= 0 and since H%’"Lz (X) is Hausdorff, we get f = dg for
some (n, n — 1)-form g in L?(X) with support in D. O

As a direct consequence of Theorems 3.22 and 3.18, we obtain the following result.

Corollary 3.23 Let X be a complex manifold of complex dimensionn > 1, D CC X a
relatively compact pseudoconvex domain with Lipschitz boundary in X, whose closure D
has a Stein neighborhood basis. Then if f is an (n, n)-form in L*(X) with support in D
such that, for any neighborhood V of D, f = dgy for some (n,n — 1)-form gy in LZ(X)
with compact support in 'V, there exists an (n,n — 1)-form g in L2(X) with support in D

satisfying f = dg.

4 The 1-dimensional case

In this section we consider more precisely the case when X is a Riemann surface. In particular
we will relate the classical 1-dimensional Runge’s theorem with some properties of some
Dolbeault cohomology groups and see that in Riemann surfaces the different notions Runge,
C>-Mergelyan and L?-Mergelyan in X are all equivalent for a domain D with sufficiently
smooth boundary.

The classical Oka-Weil theorem (see Corollary 2.20), asserts that, in a Stein manifold X
of complex dimension n > 2, a sufficient condition for a compact subset K to be Runge in X
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is to be O(X)-convex. It follows from the maximum principle that, if a compact subset K is
O(X)-convex, then X\ K has no relatively compact connected components. This topological
property is the key point of the study of holomorphic approximation in Riemann surfaces.

The results of the next sections are reformulations in terms of Dolbeault cohomology
groups of the classical results in Riemann surfaces. The ideas of the proofs have already
appear in [15] and in the proof of Theorem 1.3.1 in [8].

4.1 Runge’s theorem

Let X be a connected Riemann surface and K CC X be a compact subset of X. We denote by
HY! (X) the Dolbeault cohomology group with prescribed supportin K for (1, 1)-currents

K, cur
and by HC};O(X \K) the set of holomorphic (1, 0)-forms 4 on X\ K, vanishing outside some
compact subset of X and such that 2 = §|x\ g for some (1, 0)-current S on X. For references
in this case, we refer to the survey paper [4].

Theorem 4.1 Let X be a connected Riemann surface and K CC X be a compact subset of

X. Then the following assertions are equivalent:
- prl.0
(1) Hg (X\K) =0;
.. 1,1
(ii) the natural map HK,CW
(iii) K is Runge in X;
(iv) X\K has no relatively compact connected components.

Proof We first prove that (i) implies (ii). Assume I-VI;;O(X \K) = 0 and let T be a d-closed
(1, 1)-current on X with support contained in K such that T = 3 for some (1, 0)-current
with compact support in X, then h = S)x\ g belongs to I:I<}>’O(X \K) and hence 7 = 0 on
X\ K, which means that the support of S is contained in K.

Note that if the natural map H 1,1 X)) — HL.I’ ! (X) is injective, then for any V belonging

K, cur
to a neighborhood basis of K the natural map H.*' (V)N EDMX) — H}'(X) is injective.
Then it remains to apply Theorem 2.13 the get that (ii) implies (iii).

It follows from the maximum principle that (iii) implies (iv).

Assume (iv) is satisfied, therefore if & € fVIé’O(X \K), then h vanishes on an open subset
of each connected component of X\ K and by analytic continuation # = 0 on X\ K, which
implies (i). ]

(X) — HY(X) is injective;

Note that the equivalence between (iii) and (iv) in Theorem 4.1 is exactly the classical
Runge’s theorem.

4.2 Mergelyan properties

As mentioned in previous sections, holomorphic approximation is directly related to the
solvability of the d-equation with compact or prescribed support in top degree. But if the
manifold X is 1-dimensional, this means bidegree (1, 1), which is very special.

Following Sect. 1 in [13], we have:

Proposition 4.2 Let X be a complex manifold and T be a d-exact (1, 1)-current on X. If Q€
denotes a connected component of X\supp T and if S is a (1, 0)-current on X such that
0S = T, then either supp S N Q¢ = @ or Q° C supp S.

Assume the complex manifold X is non-compact, then from Proposition 4.2, we get that,
if T is a (1, 1)-current with compact support in X such that the cohomology class [T'] of T
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in Hcl’l()i ) vanishes, the support of the unique solution S with compact support in X of the
equation 3§ = T is contained in the union of the support of T and the relatively compact
connected components of X \supp 7. Moreover using the regularity of the d operator, we get

Proposition 4.3 Let X be a connected, non-compact, complex manifold and D a relatively
compact domain in X such that X\ D has no relatively compact connected component in X.
Then injectivity holds for all the natural maps

(1) HEL (X) > H(),
(2) Hg',(X) — H'(X).

Using Theorems 3.2 and 3.13, we then obtain:

Corollary 4.4 Let X be a connected non-compact complex manifold of complex dimension 1
and D CC X a relatively compact domain with Lipschitz boundary in X. Assume X\ D has
no relatively compact connected component in X, then D is C* and L*>-Runge in X.
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