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ABSTRACT

Automated debugging techniques, including fault localization and
program repair, have been studied for over a decade. However, the
only existing connection between fault localization and program re-
pair is that fault localization computes the potential buggy elements
for program repair to patch. Recently, a pioneering work, ProFL,
explored the idea of unified debugging to unify fault localization
and program repair in the other direction for the first time to boost
both areas. More specifically, ProFL utilizes the patch execution
results from one state-of-the-art repair system, PraPR, to help im-
prove state-of-the-art fault localization. In this way, ProFL not only
improves fault localization for manual repair, but also extends the
application scope of automated repair to all possible bugs (not only
the small ratio of bugs that can be automatically fixed). However,
ProFL only considers one APR system (i.e., PraPR), and it is not
clear how other existing APR systems based on different designs
contribute to unified debugging. In this work, we perform an exten-
sive study of the unified-debugging approach on 16 state-of-the-art
program repair systems for the first time. Our experimental results
on the widely studied Defects4] benchmark suite reveal various
practical guidelines for unified debugging, such as (1) nearly all
the studied 16 repair systems can positively contribute to unified
debugging despite their varying repairing capabilities, (2) repair
systems targeting multi-edit patches can bring extraneous noise
into unified debugging, (3) repair systems with more executed/plau-
sible patches tend to perform better for unified debugging, and (4)
unified debugging effectiveness does not rely on the availability of
correct patches in automated repair. Based on our results, we further
propose an advanced unified debugging technique, UniDebug++,
which can localize over 20% more bugs within Top-1 positions than
state-of-the-art unified debugging technique, ProFL.
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1 INTRODUCTION

With the rapid development of information technology, software
systems have been widely adopted in almost all aspects of modern
society. However, software bugs (also called software faults in this
paper) are inevitable because of the complexity of modern software
systems. Software faults can cause software systems to crash or
perform unexpected behaviors, both scenarios resulting in disas-
ter, e.g., costing trillions of dollars in financial loss and affecting
billions of people [1]. In practice, software debugging is essential
for removing bugs from existing faulty software systems. Manual
debugging, however, can be extremely challenging, tedious, and
costly. Such impediments consume over 50% of the development
time/effort [48] and cost the global economy billions of dollars [7].

To date, a huge body of research effort has been dedicated to
automated debugging to relieve developer burdens, investigating
both fault localization [4, 15, 21, 23, 38, 40, 54, 59, 62, 64] and auto-
mated program repair [9, 13, 14, 25, 26, 28-32, 35, 36, 43, 51, 57, 61]
techniques. Fault localization aims to precisely localize buggy el-
ements within a buggy system based on dynamic and/or static
program analysis, and can automatically produce a ranked list of
suspicious code elements for developers, reducing their effort for
manual bug checking. Classic spectrum-based fault localization
(SBFL) techniques [4, 15, 23] mainly analyze the statistical correla-
tion between code coverage and test outcomes to infer potential
buggy locations. For example, a code element primarily executed
by failed tests are likely to be more suspicious. However, using only
coverage information may not be precise enough. Therefore re-
searchers further propose mutation-based fault localization (MBFL)
techniques [22, 38, 40, 63] by further considering the impact infor-
mation between mutated code elements and tests (simulated via
mutations). Recently, machine learning techniques have been used
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to combine various dimensions of debugging information for more
powerful fault localization [6, 21, 22, 60].

While fault localization still requires manual repair, automated
program repair (APR) aims to directly fix software bugs automati-
cally with minimal human intervention. A typical test-driven APR
technique takes a faulty program and its test suite as input and gen-
erates program patches with the end goal to find a patch passing all
tests. Due to its promising future, various APR techniques have been
proposed, including search-based, semantics-driven, and learning-
based techniques [14, 20, 35, 59, 61]. For more details, please refer
to recent surveys on fault localization [56] and APR [37].

Despite extensive research on automated debugging over the past
decades, we still lack practical automated debugging techniques.
Current fault localization techniques has limited effectiveness in
practice — they either require massive training data that may not
always be available [21, 49] or are ineffective for debugging real-
world systems [18, 41]. Furthermore, it is rather challenging for
APR techniques to fix all possible bugs — even state-of-the-art APR
techniques [10, 14, 46] can only fix a small ratio of real bugs (i.e.,
<20% for Defects4] [16]) automatically.

To enable more practical debugging, the unified debugging ap-
proach, ProFL, was recently proposed to unify fault localization and
APR to boost both areas [33, 34]. While both fault localization and
APR have been studied for over a decade, their only prior connec-
tion is that fault localization is leveraged as a supplier for pointing
out potentially buggy locations for APR to fix. The unified debug-
ging approach ProFL unifies the two areas in the other direction
for the first time, i.e. leveraging large number of patch execution re-
sults generated during APR (even when APR fails to fix the bug) to
further boost fault localization. The basic intuition is that if a patch
passes some originally failing test(s), the patched location is very
likely to have some close relationship with the real buggy location
(e.g., sharing the same method or even same line), since otherwise
the patch cannot mute the bug impact and pass the originally fail-
ing test(s). Using the recent PraPR [10] APR system, ProFL is able
to substantially boost/outperform state-of-the-art SBFL [3, 15, 23],
MBFL [22, 38, 40, 63], and unsupervised/supervised learning based
fault localization [21, 49, 64].

In this way, given any buggy project, ProFL not only directly
returns the patches when automated repair works, but also provides
improved fault localization hints for manual repair for all other
cases. That is, ProFL not only significantly improves fault localiza-
tion for manual repair, but also extends the application scope of
automated repair to all possible bugs (not only the small portion of
bugs that can be automatically fixed).

Despite this promising direction, the ProFL work only considers
one APR system (i.e., PraPR), while there are many other available
APR systems based on different designs and it is not clear how
other APR systems contribute to unified debugging. Therefore,
to bridge this gap, we conduct the first extensive study of unified
debugging on 16 state-of-the-art APR systems. These 16 systems
represent recent public Java APR systems that execute without
requiring specialized data or infrastructure. These selected systems
utilize constraint-based [9, 36, 58], heuristic-based [14, 35, 61], and
template-based [19, 24, 25] repair approaches seen in recent repair
literature. Furthermore, we use the Defects4] benchmark suite for
our evaluation since it is the most widely used benchmark in recent
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fault localization and APR work (including the unified debugging
work [33]). Our experimental results reveal various practical guide-
lines for further advancing unified debugging and even software
debugging in general. To summarize, this paper makes the follow-
ing main contributions:

o Study. This paper presents the first extensive study of uni-
fied debugging using 16 state-of-the-art APR systems.

e Dataset. Our detailed experimental data (including patch
execution information, experimental script, and result analy-
sis for fault localization, APR, and unified debugging) on the
studied Defects4] subjects are publicly available online [2].

e Guidelines. Our study reveals various practical guidelines,
including: (1) nearly all the studied 16 APR tools can pos-
itively contribute to unified debugging despite their vary-
ing repairing capabilities, (2) APR tools targeting multi-edit
patches bring noise and degrade performance for unified de-
bugging, (3) APR tools with more executed/plausible patches
tend to perform better for unified debugging, and (4) uni-
fied debugging effectiveness does not exclusively rely on the
availability of correct patches from APR.

e Technique. Based on our study results, we further pro-
pose an advanced unified debugging technique, UniDebug++,
which can localize 21% more bugs within Top-1 than state-
of-the-art unified debugging technique, ProFL.

2 STUDIED APPROACH

In this section, we first briefly discuss the traditional fault localiza-
tion and program repair process (Section 2.1) to motivate unified
debugging. Then, we present the basic process for the studied uni-
fied debugging process (Section 2.2). Lastly, we present a real-world
example to further motivate our study in this paper (Section 2.3).

2.1 Fault Localization and Program Repair

Given a buggy program and its failing test suite, test-based fault
localization computes each code element’s probability to be buggy
based on various techniques [4, 5, 21, 40, 65]. For example, the
widely studied spectrum-based fault localization (SBFL) [4, 15, 23]
will collect the dynamic coverage information for each failing/pass-
ing test to compute each code element’s suspiciousness value. In
this way, developers can choose to directly start manual repair with
the help of such suspiciousness information.

Alternatively, developers can also choose to directly perform au-
tomated program repair (APR) [14, 35, 61]. Typical APR techniques
leverage fault localization techniques to compute the potential
buggy locations for patching, e.g., the Ochiai SBFL technique has
been widely used in recent APR work, such as PraPR [10], Sim-
Fix [14], and CapGen [55]. After the patch generation and validation,
all the plausible patches (i.e., the patches that can pass all tests) are
returned for manual inspection to find the final correct patches (i.e.,
the patches semantically equivalent to developer patches). In this
way, the final correct patches are the only useful outcome from APR;
in fact, even plausible but incorrect patches are treated as harmful
in traditional APR work [58], since they require time-consuming
and tedious manual inspection. However, to date, even state-of-
the-art APR can only produce correct patches for a small ratio of
real-world bugs, making APR a waste of resources for all the other
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Figure 1: Unified debugging

cases. For example, the current most effective APR work [10, 26, 46]
cannot even fix 20% of bugs from the widely studied Defects4] [16].

2.2 Unified Debugging

To further boost both the fault localization and APR areas, unified
debugging [33, 34] aims to unify these two areas from the other
direction for the first time. The basic insight of unified debugging is
that the massive patch execution information from APR (even ones
that do not lead to correct patches) can further help substantially
improve fault localization to facilitate manual repair. In this way,
unified debugging can report correct patches when possible, and
more importantly can also return refined fault localization for all
cases (even the cases without correct patches). Unified debugging
not only extends the application scope of APR to all possible bugs
(not only the bugs that can be directly automatically fixed), but also
provides more precise fault localization. For example, ProFL [33],
the first unified debugging technique based on the recent PraPR
APR system, significantly improves/outperforms various state-of-
the-art fault localization techniques (e.g., SBFL [4, 15, 23], MBFL [22,
38, 40, 63], and even learning-based techniques [21, 64]).

The basic assumption of unified debugging is that if a patch can
pass some originally failing tests, its patch location may be closely
related to the actually buggy locations (e.g., sharing the same code
element, such as method). Similarly, if a patch fails some originally
passing tests, its patch location may be closely related to correct
locations since otherwise the passing tests would have been failed
before patching [34]. In this way, all the generated patches can
be categorized into the following categories according to execu-
tion information automatically collected during patch validation
for unified debugging: (1) CleanFix Patches: patches passing on at
least one originally failed test and not failing on any originally
passed test, (2) NoisyFix Patches: patches passing on at least one
originally failed tests but also failing on some originally passed
tests, (3) NoneFix Patches: patches not impacting the outcome for
any originally failed or passed test, (4) NegFix Patches: patches not
passing any originally failed test but failing on some originally
passed tests. Note that all such patch validation information can
be directly obtained from the studied test-based APR tools. Unified
debugging simply leverages such existing information to classify
each patch into the aforementioned categories.

Developer
4
]
Table 1: Example of Math-32

Suspicious Method SBFL PraPR Kali-A TBar UniDebug+
PolyhedronsSet.<init> 1.0 NoneFix | Unmodified | Unmodified NoneFix
PolygonsSet.compute. . . 1.0 NoneFix | CleanFix NoneFix CleanFix
PolygonsSet.followLoop 1.0 NoneFix NoneFix Unmodified NoneFix
AVLTree.getNotSmaller 1.0 NoneFix NoneFix NoneFix NoneFix

The overall approach of unified debugging is presented in Fig-
ure 1. Given any buggy program and its test suite, unified debugging
first applies off-the-shelf APR systems to generate and execute var-
ious possible patches. Then, while existing APR work only returns
the correct patches to the developers, unified debugging further
utilizes the execution information for all patches and categorizes
them into relevant categories discussed in the previous paragraph.
Then, for each code element (e.g., method), unified debugging then
adopts the best category from its corresponding patches according
to this predefined order (i.e., CleanFix > NoisyFix > NoneFix > Neg-
Fix) [34]. Finally, all the elements are re-ranked first according to
their patch categories, e.g., all elements with the CleanFix category
are ranked higher than all elements with the NoisyFix category;
after that, the elements within the same category are then further
re-ranked in the descending order by their initial suspiciousness
scores computed by any existing fault localization technique (i.e.,
Ochiai [4] by default). In this way, the developers will obtain largely
refined fault localization for all possible bugs (even including the
case where no correct or plausible patch is found).

2.3 Motivating Example

While the existing unified debugging technique ProFL has demon-
strated promising results, in this section, we use Math-32 from De-
fects4] (V1.0.0) [16], a widely used real-world Java bug benchmark,
to motivate our study. Math-32 denotes the 32nd buggy version
of Apache Commons Math project. The bug is located in method
computeGeometricalProperties of Class PolygonsSet.

Table 1 shows 4 example suspicious methods including the ac-
tual buggy method shown in gray. Please note that we disregard
the arguments since the class and method names can sufficiently
distinguish them.

In the table, Column “SBFL” indicates the suspiciousness score
of each method according to the state-of-the-art SBFL technique
Ochiai [4] with aggregation strategy [49], which aggregates the
maximum suspiciousness values from statements to methods and
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protected void computeGeometricalProperties() {

if (v.length == 0) {

final BSPTree<Euclidean2D> tree = getTree(false); _

- if ((Boolean) tree.getAttribute()) {

+ if (false) {
// the instance covers the whole space
setSize(Double.POSITIVE_INFINITY);
setBarycenter (Vector2D.NaN);
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protected void computeGeometricalProperties() {

if (v.length == 0) {
final BSPTree<Euclidean2D> tree = getTree(false);
if ((Boolean) tree.getAttribute()) {
if (tree.getCut() == null && (Boolean) tree.getAttribute()) {
// the instance covers the whole space
setSize (Double.POSITIVE_INFINITY);
setBarycenter (Vector2D.NaN)

Figure 2: Generated patch of Kali-A and developer patch for Math-32

has been demonstrated to substantially outperform raw method-
level SBFL. Columns "PraPR", "Kali-A", and "TBar" represent the
unified debugging approaches using the patch-execution informa-
tion from APR systems PraPR, Kali-A, and TBar, respectively. The
patch category information for each method is included in the table.
Unmodified, hereby referred to as Non-Modify, represents a new
patch category implying that these code elements are never patched
by an APR tool. Lastly, Column "UniDebug+" presents the tech-
nique simply using all patches from the prior three APR systems.
From the motivating example, we have the following interesting
findings:

First, unified debugging using other APR systems can have
promising fault localization results even when the PraPR system
used by ProFL cannot help improve the performance. For example,
Kali-A can directly rank the buggy method at the 1st location, while
both SBFL and ProFL with PraPR rank the bug at the 4th location.
Figure 2 represents the patch generated by Kali-A (left side) and the
correct patch provided by developers (right side). From the patches,
we found that Kali-A generates a patch by changing the buggy
conditional statement into if (false) which is useless for fixing
the real bug; however, this patch does help pinpoint the actual bug
location, demonstrating the generality of unified debugging for
all possible APR systems. This finding motivates us to perform an
extensive study to investigate the effectiveness of different APR
systems for unified debugging. Second, different APR systems have
different unified debugging performances and combining them may
potentially result in even more powerful unified debugging. Shown
in the last column of Table 1, simply combining all patches gen-
erated by different APR systems can also localize the bug within
Top-1.

3 STUDY DESIGN

3.1 Research Questions

In this study, we aim to investigate the following research questions:

e RQ1: How does unified debugging perform with all studied
APR systems?

e RQ2: How do unmodified code elements during APR impact
unified debugging?

e RQ3: How does unified debugging correlate with program
repair effectiveness?

e RQ4: How do we further advance state-of-the-art unified
debugging with all studied APR systems?

Tool Category | Tools
Constraint-based | ACS, Cardumen, Dynamoth
Heuristic-based | Arja, GenProg-A, jGenProg, jKali,
jMutRepair, Kali-A, RSRepair-A, Simfix
Template-based | AVATAR, FixMiner, kPar, PraPR, TBar
Table 2: Repair systems studied

Project || Name # Bugs | # Tests | LOC
Chart || JFreeChart 26 2,205 96K
Lang || Apache Lang 65 2,245 22K
Math Apache Math 106 3,602 85K
Time Joda-Time 27 4,130 28K

Total 224 12,362 | 231K
Table 3: Studied bugs from Defects4] v1.0.0

3.2 Experimental Setup

For this study, we considered all the 16 program repair systems
accessible from a recent study [27]. Furthermore, we also consid-
ered the recent PraPR repair system [10] which the initial unified
debugging work is based on. Table 2 shows the breakdown of all
the APR systems studied, including: heuristic-based - Arja [61],
GenProg-A [61], jGenProg [35], jKali [35], jMutRepair [35], Kali-A
[61], RSRepair-A [61], and Simfix [14]; constraint-based - ACS [58],
Cardumen [36], and Dynamoth [9]; and template-based - AVATAR
[25], FixMiner [19], kPar [24], TBar [26], and PraPR [10]. We man-
ually modified all studied APR systems to collect the detailed patch
execution information required by unified debugging, and ensured
that our modified version did not impact the tool functionality. !
Each system used original time settings suggested by the original
papers.

Most of the studied APR systems have been implemented to
target version 1.0.0 (and older) of the widely used Defects4] bench-
mark [16], which includes 357 real-world bugs from five real-world
software systems. Meanwhile, in our evaluation process, we found
that many of the studied tools (e.g., CapGen, ACS, Arja, GenProg-A,
etc.) do not support or cannot successfully execute Closure from
Defects4] 1.0.0 (according to their original publications). Therefore,
for fair comparison, all of our experiments are performed on the
remaining four subjects from Defects4] 1.0.0; the Chart, Time, Lang,
and Math projects. Detailed statistics are shown in Table 3.

Each tool was executed using each the same JDK version found
in the tool’s original publication, allowing us to obtain repair exe-
cution results as close as possible to the tool’s original results. Thus,

!Note that we fail to get the our modified version of Nopol functional due to the
specific design of Nopol. Nevertheless, we believe that excluding one specific tool does
not impact the general findings and contributions of this study (especially we also
have many other constraint-based APR systems studied).
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in our experiments, we ultimately utilized two JDK versions, JDK
1.8.0.242 (hereby referred to as JDK 1.8) and JDK 1.7.0.80 (hereby
referred to as JDK 1.7). Systems Simfix and Dynamoth executed
using JDK 1.8 exclusively. Systems Cardumen, jGenProg, jKali, and
jGenProg executed using JDK 1.8 and validated system test suites
with JDK 1.7. All other systems executed using JDK 1.7 exclusively.

All our experiments were conducted within the following en-
vironment: 36 3.0GHz Intel Xeon Platinum Processors, 60GBs of
memory, and Ubuntu 18.04.4 LTS operating system.

3.3 Implementation Details

3.3.1 ProFL Configuration. Although unified debugging can be
used to refine any existing fault localization technique, by default,
the original unified debugging work, ProFL, utilizes APR to re-
fine state-of-the-art SBFL technique, Ochiai [3] with aggregation
strategy [49]. Actually, the original ProFL work demonstrates that
unified debugging has consistent performance for refining different
state-of-the-art fault localization techniques. Therefore, in this pa-
per, we also focus on using Ochiai (with aggregation) to investigate
the impact of different repair systems. Furthermore, following the
original ProFL work, this study also focuses on method-level fault lo-
calization (i.e., localizing potential buggy methods), as researchers
have demonstrated that class-level fault localization can be too
coarse-grained [18] while statement-level fault localization can be
too fine-grained and miss necessary contextual information [41].

3.3.2  Non-Modify Category. For the original ProFL work, the used
PraPR repair system [10] is extremely fast due to the bytecode-level
manipulation and can generate patches for almost all the possible
suspicious methods, i.e., methods executed by failed tests (since
methods not executed by failed tests should not be responsible for
the current test failures). However, for all other APR tools, there
may exist many suspicious methods without any patch, since it
is expensive for APR tools to generate patches for every method.
Therefore, besides the four categories of methods mentioned in
Section 2.2, we create a new category, Non-Modify, to represent the
methods that do not receive any patch for a specific APR system.
It is unclear how this new category compares with the other four
categories studied in the original unified debugging work. There-
fore, we explore the impact of the ranking this new Non-Modify
category within the existing four ProFL categories in Section 4.2.
Note that as the default setting, we put Non-Modify alongside the
NegFix category since the plurality of all patches fall into the NegFix
category (thus the majority of Non-Modify methods may also fall
into the NegFix category if they had been generated with patches).

3.3.3  Repair Tool Integration with ProFL. The original ProFL tool
has been implemented as a publicly available Maven plugin. We ob-
tained the original ProFL source code from the authors and analyzed
the interface between ProFL and its underlying APR system. Then,
we modified all the 16 studied APR systems to produce detailed
patch execution information consistent with the original ProFL
interface (e.g., regarding the patch location, failing and passing
tests for each patch). In this way, we can safely replace the original
PraPR system with any other studied APR systems for our study.
Please note that we also augment the original ProFL code to handle
the new Non-Modify method category.
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3.4 Evaluation Metrics

Following prior work [21, 49, 64], we measure the number of bugs
localized within Top-1, Top-3, and Top-5 positions as the primary
metrics for this study. The reason is that researchers have observed
that most developers will abort automated debugging tools if they
cannot return the actual buggy elements within the Top-5 posi-
tions [18]. Specifically, given a set of methods which tie for the
same rank, each method is assigned the worst rank of the tied
methods, following prior work [21, 22, 33]. Furthermore, we also
present the mean first rank (MFR) and mean average rank (MAR)
results widely used in prior fault localization [21, 22] and unified
debugging [33] work. More specifically, for precise localization of
all buggy elements of each bug, we compute the average ranking
of all the buggy elements for each bug; MAR is simply the mean of
the average ranking of all bugs. Similarly, for a bug with multiple
buggy elements,the localization of the first buggy element is crit-
ical since the rest buggy elements may be directly localized after
that; therefore, we use MFR to compute the mean of the first buggy
element’s rank for each bug.

4 RESULT ANALYSIS

4.1 RQ1 - Performance of Unified Debugging
with Different APR systems

In this research question, we first investigate the effectiveness of
unified debugging on all the 16 studied APR systems. Figure 3 shows
the fault localization results on all the studied subjects (i.e., Lang,
Chart, Time, and Math from the Defects4] benchmark) in terms of
the Top-1, Top-3, Top-5, MFR, and MAR metrics. The upper sub-
figure represents the Top-N results and bottom sub-figure indicates
the MFR/MAR results. Each bar in both sub-figures represents dif-
ferent APR systems. Note that we use the default treatment for
the Non-Modify category which inserts such methods alongside
the NegFix category, i.e., CleanFix > NoisyFix > NoneFix > NegFix
= Non-Modify (discussed in Section 3.3.2). Also note that the 16
repair systems in this figure are ordered chronologically with re-
spect to the date for each publication, following the existing APR
study [27]. We also include the result of state-of-the-art SBFL (i.e.,
Ochiai with aggregation) and the first unified debugging technique
(i.e., ProFL with PraPR) in the last for comparison (Note that ProFL
has been demonstrated to outperform/improve all state-of-the-art
fault localization [33, 34]). From the figure, we have the following
observations. First, unified debugging with most APR systems per-
forms better than state-of-the-art SBFL! For example, in terms of
Top-1, 15 out of 16 tools can help improve SBFL and only Arja fails
to meet the initial SBFL results. That said, Arja can still localize 73
faults within Top-1 which is fairly close to the SBFL result. This
finding indicates the broad applicability of the unified debugging
approach. Second, even though existing APR study [27] has ob-
served that more recent APR systems can fix more bugs than earlier
systems, there is no obvious trend showing that unified debugging
with more recent (i.e., chronologically later) APR systems can help
localize more bugs than earlier ones. This finding demonstrates that
APR systems’ capability to produce correct patches is not highly
correlated to the unified debugging effectiveness in fault localiza-
tion. Lastly, different results of the 16 APR systems indicate that
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Figure 3: Unified debugging results with all studied APR systems

each APR system has its own advantages and disadvantages for
unified debugging. The potential reason is that some tools have
exclusive abilities to repair various classes of bugs by leveraging
different algorithms to generate patches, incurring various levels of
effectiveness for fault localization. This finding further motivates
us to combine multiple APR systems to advance state-of-the-art
unified debugging (studied in Section 4.4).

Finding 1: Despite their varying repair capabilities, almost
all the studied 16 APR systems individually boost state-of-
the-art SBFL and contribute to unified debugging.

4.1.1 Qualitative Analysis. Now we perform a detailed qualitative
analysis to investigate the different performance of different APR
systems. Table 4 shows a subset of the unified debugging results
with different APR systems from Math-77. Note that we also include
the results for UniDebug+, which simply uses all patches from
different APR systems. Column “EID” describes the ID for each
method. Column “Category” represents the category computed
for each method based on each tool. Column “Rank” describes
how each method ranks in the final results. Math-77 fails on two
tests, testBasicFunctions within class ArrayRealVectorTest
and testBasicFunctions within class SparseRealVectorTest,
both from the org.apache.commons.math.linear package. The
buggy methods for Math-77 involve modifications of methods e4
and e5, according to developer patch in Figure 4. According to
traditional SBFL, all five methods tie and are ranked 5th (according
to the worst ranking). We next discuss the performance of three
example APR systems for unified debugging:

TBar is able to generate a CleanFix patch by exclusively modifying
method e4, shown in Figure 5. This CleanFix patch successfully
passes one of the originally failed tests, and passes every other

test. Even though this patch is not a correct patch, it does help to
boost the rank of one buggy method to Top-1. The reason is that
the patch shares the same location with the bug and thus is able to
mute the bug impact via modifying the return value. This further
demonstrates the effectiveness of unified debugging.
RSRepair-A generates 43 NegFix and 355 NoneFix patches across
14 unique methods for this bug. All five methods in Table 4 are
NoneFix based on RSRepair-A. From this categorization, el - e5
are ranked the same as the SBFL results. Note that, in this case,
although RSRepair-A was not able to improve SBFL, it will not
deteriorate the fault localization results when combining with the
more effective TBar. The reason is that when putting all patches
together, methods with higher patch categories will still be ranked
higher.

Arja is a very interesting case. It actually produces many incorrect
but CleanFix patches for Math-77, including for all five suspicious
methods shown in Table 4. We were surprised by the fact that Arja
can produce so many CleanFix since they are usually hard to gen-
erate. Digging into various such patches, we found the reason to
be that Arja specifically targets multi-edit patches (i.e., each patch
modifies multiple program locations). For example, one such Clean-
Fix patch is shown in Figure 6. In this way, as long as one/part of
the multiple edits within a multi-edit patch can make some failing
tests to pass, the patch can potentially be CleanFix, making all mod-
ified methods of this patch to be highly ranked. Furthermore, such
noise incurred by multi-edit APR systems can also be harmful when
combining different APR systems for unified debugging. For exam-
ple, shown in the last column of Table 4, UniDebug+ also cannot
distinguish the five suspicious methods. Therefore, we exclude all
such multi-edit APR tools when combining different APR systems
for unified debugging (Section 4.4) to remove unnecessary noise.
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. SBFL TBar RSRepair-A Arja UniDebug+

EID Suspicious Method
Susp. Rank Category Rank || Category Rank || Category Rank || Category Rank

el AbstractRealVector:getL1Norm()D | 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5
e2 AbstractRealVector:getNorm()D | 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5
e3 ArrayRealVector:getL1Norm()D | 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5
ed ArrayRealVector:getLInfNorm()D | 0.707 5 CleanFix 1 NoneFix 5 CleanFix 5 CleanFix 5
e5 | OpenMapRealVector:getLInfNorm()D | 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5

Table 4: Unified debugging with different APR systems for Math-77

org.apache.commons.math.linear.ArrayRealVector. java
public double getLInfNorm() {
double max = 0;
for (double a : data) {
- max += Math.max(max,
+ max = Math.max(max,
}

return max;

Math.abs(a));
Math.abs(a));

org.apache.commons.math.linear.OpenMapRealVector. java

public double getLInfNorm() {
double max = 0;
Iterator iter = entries.iterator();
while (iter.hasNext()) {
iter.advance();
max += iter.value();

return max;

3

Figure 4: Correct developer patch for Math-77

org.apache.commons.math.linear.ArrayRealVector. java

public double getLInfNorm() {
double max = 0;
for (double a : data) {

max += Math.max(max, Math.abs(a));

¥

- return max;

+ return getDimension();

}
Figure 5: TBar’s incorrect CleanFix patch for Math-77

Finding 2: APR tools specifically targeting multi-edit patches
can bring noise into unified debugging, as each multi-edit
patch involves multiple modifications and many modifica-
tions are not helpful in muting the bug impacts even the
patch can pass some originally failing test(s).

4.1.2  Quantitative Analysis. Since the capability to produce correct
patches is not highly correlated with unified debugging effective-
ness, we further performs detailed quantitative analysis to explore
what factors of APR systems are highly correlated to the effec-
tiveness of unified debugging. Figure 7 represents the correlation
analysis between different factors of APR systems and representa-
tive fault localization metrics (i.e., Top-1 and MFR). Note that we
also excluded APR tools targeting multi-edit patches. In this fig-
ure, “TotalPatch” represents the number of all executed compilable
patches generated from each APR tool, “MethodByTotal” represents
the number of unique methods modified by all executed patches,
“PlausiblePatch” represents the number of plausible patches gener-
ated by each tool, and “MethodsByPlausible” represents the number
of unique methods covered by the plausible patches. Within each
sub-figure, each data point represents one studied APR system,
and we perform Pearson Correlation Coefficient analysis [42] at
significance level of 0.05. From this figure, we can observe that APR
systems tend to perform significantly better for unified debugging
when executing more patches for more methods and/or producing
more plausible patches for more methods. The finding is statis-
tically significant for all the sub-figures at the significance level
of 0.05. Although the finding is surprisingly uniform, this makes
intuitive sense, since APR systems patching more code elements
tend to accumulate more information for debugging. This finding
suggests future APR systems to explore more patches for more
powerful unified debugging, and also calls for research for faster

patch execution (otherwise APR systems cannot afford massive
patch executions).

Finding 3: APR systems executing more patches across code
elements and/or producing more plausible patches tend to
perform better for unified debugging, calling for future re-
search on fast & exhaustive patch exploration .

4.2 RQ2 - Impacts of Non-Modify Code
Elements on Unified Debugging

As discussed in Section 3.3.2, we add one new patch category, Non-
Modify, which represents suspicious methods that some APR tools
do not afford to modify. The first research question has demon-
strated the effectiveness of default unified debugging setting on 16
APR systems by treating Non-Modify equivalently as the fourth
patch category NegFix. In this research question, we further eval-
uate the unified debugging effectiveness when casting the Non-
Modify category into each of the four different ProFL categories.
Figure 8 represents the representative Top-1 and MFR results of
all the 16 APR systems with such four settings represented with
lines in different colors. From the figure, we can observe that for
most systems, casting Non-Modify code elements into the last Neg-
Fix category performs better than casting them into other three
categories in terms of both Top-1 and MFR. For example, Simfix
can localize 100 bugs within Top-1 when casting Non-Modify into
NegFix category, and can only localize 95/93/90 bugs within Top-1
when casting Non-Modify into NoneFix/NoisyFix/CleanFix cate-
gory. Also, in terms of MFR, Kali-A can achieve 5.53 with NegFix,
which is also significantly better than Kali-A with other three cate-
gories (6.76/6.25/6.45). The reason is that NegFix patches are more
prevalent for most code elements (including Non-Modify ones),
while other patch categories can be harder to generate.

Finding 4: Non-Modify code elements (i.e., elements with no
patches) can be treated in the same way as elements with only
NegFix patches (i.e., the patches that cannot fix any failing
test but can cause originally passing tests to fail) for precise
unified debugging.
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// AbstractRealVector.java
public double getLINorm() {

// ArrayRealVector.java
public double getLInfNorm() {
double max = 0;

for (double a data) {

// OpenMapRealVector. java
public double getLInfNorm() {
double max = 0;
Iterator iter=entries.iterator();
while (iter.hasNext()) {
iter.advance();

double norm = 0;

Iterator<Entry> it = sparselterator();

Entry e;

while (it.hasNext()&&(e=it.next())!=null){
norm += Math.abs(e.getValue());

}

max+=Math.max (max,Math.abs(a)); max += iter.value(); while (it.hasNext ()& (e=it.next())!=null){
} 3 norm += Math.abs(e.getValue());
- return max; - return max; 3
+ return data.length; + return virtualSize; return norm;
¥
(a) Modifications for ArrayRealVectorjava (b) Modifications for OpenMapRealVectorjava (€) Modifications for AbstractRealVector.java
Figure 6: An incorrect Arja CleanFix patch (with three modified methods) for Math-77
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Figure 8: Impact of casting Non-Modify code elements into different categories

4.3 RQ3 - How Does Unified Debugging
Correlate with APR Effectiveness?

APR systems all aim to produce correct patches for as many bugs
as possible. However, this is a rather challenging goal, and even
state-of-the-art APR tools can only fix less than 20% of the studied
bugs [10]. Therefore, in this research question, we empirically study
whether unified debugging is also limited by the APR effectiveness
(i.e., in producing correct patches). The three sub-figures in Fig-
ure 9 show the representative Top-1 metric for SBFL and unified

debugging using each APR system on (1) buggy versions where the
corresponding APR system has correct patches, (2) buggy versions
with incorrect but plausible patches, and (3) buggy versions with-
out even plausible patches, respectively. Please note that we omit
the APR systems that did not present detailed correct patch IDs
in their original publications in this figure. From the figures, we
can observe that different APR systems perform differently in all
three different bug sets, and almost all APR systems can contribute
to unified debugging to outperform SBFL. More importantly, we
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Figure 9: Unified debugging on buggy versions with (1) cor-
rect, (2) incorrect but plausible, and (3) implausible patches

Table 5: Effectiveness of UniDebug+ and UniDebug++

Tech Name Top-1 | Top-3 | Top-5 | MFR | MAR
SBFL 75 144 169 5.63 | 6.90
ProFL 103 165 183 4.67 | 598

UniDebug+o; | 95 | 160 | 177 | 484 | 6.16
UniDebug++,; | 119 | 168 | 180 | 4.48 | 5.86
UniDebug+ 110 168 182 4.49 | 5.88
UniDebug++ 125 172 184 4.27 | 5.71

observe that almost all APR systems consistently outperform SBFL
in all the three bug sets. One potential reason is that as long as
a patch can pass some originally failing test(s), its patch location
may be closely related to the actual buggy location since otherwise
it cannot mute the bug impact to pass failing tests. In this way,
patches do not need be correct or even plausible to contribute to
unified debugging. Furthermore, even the patches that only make
originally passing tests turn to fail can help eliminate the poten-
tially correct/benign locations to also boost unified debugging. This
further demonstrates the general applicability and promising future
for unified debugging.

Finding 5: Unified debugging effectiveness does not rely
on the availability of correct or even plausible patches from
APR. Similar as when conducting manual program repair,
APR patch execution results from even incorrect/implausible
patches can still reveal actual buggy locations (when they
pass some failing test(s)) or eliminate correct locations (even
when they only fail on originally passing tests).

4.4 RQ4 - More Advanced Unified Debugging

To combine the strengths of different APR systems, one naive way is
to simply combine the patches of different APR systems for unified
debugging, i.e., the UniDebug+ technique that we have talked about.
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Table 6: Example for UniDebug++

SBFL | Tooll Tool2 Tool3 | UniDebug+ || UniDebug++
el 0.8 | CleanFix | CleanFix | CleanFix | CleanFix CleanFix(3)
e2 0.8 | CleanFix | NegFix | CleanFix | CleanFix CleanFix(2)
e3 0.8 | CleanFix | NoneFix | NoneFix CleanFix CleanFix(1)

In this way, the final category information for a code element can
be determined by the best category information of all patches of the
code element from the combined APR systems. In this section, we
further propose a more advanced technique, UniDebug++, which
further distinguishes code elements with the same suspiciousness
values in the same category. More specifically, after assigning the
patch group category (for patches generated by all combined APR
systems) to a code element in the category aggregation step (shown
in Figure 1), we further count the total number of APR systems that
generate patches in the same category as this code element.

The intuition is that if more APR systems can assign the best
category information to a code element, this element should have
higher priority in the ranked list compared to its tied peers. Table 6
shows an simple example to illustrate UniDebug++. In this example,
elements e1, e2 and e3 have the same SBFL suspiciousness value
0.8 and are all in the CleanFix category according to UniDebug+,
therefore they cannot be distinguished when using UniDebug+.
In contrast, UniDebug++ further considers the number pf APR
systems producing CleanFix patches for each element. For example,
el has CleanFix patches when using all three APR systems and
should be ranked higher than other elements. In this way, we can
leverage more precise APR information for more powerful unified
debugging.

Table 5 shows the results of original SBFL, ProFL, UniDebug+
and UniDebug++ in terms of Top-1, Top-3, Top-5, MFR and MAR.
Note that as discussed in Section 4.1.1, APR systems specifically
targeting multi-edit patches can introduce extra noise for unified
debugging and have been excluded for UniDebug+ and UniDe-
bug++. Meanwhile, we also include, as references, their variants
which consider all studied APR systems, denoted as UniDebug+;
and UniDebug++,;; in the table. From the results, we have the
following observations. First, UniDebug+,;; and UniDebug++
perform worse than UniDebug+ and UniDebug++, respectively. In
fact, UniDebug+,;; even performs worse than ProFL which only
uses the PraPR APR system. This finding further confirms our ear-
lier qualitative analysis and Finding 2 that APR systems targeting
multi-edit patches are not suitable for unified debugging. Second,
both UniDebug+ and UniDebug++ can significantly outperform
SBFL and ProFL in all metrics. For example, UniDebug+ can localize
110 bugs within Top-1, i.e., 35/7 more than SBFL/ProFL. Third,
UniDebug++ can achieve the best result (even comparing against
our own UniDebug+), localizing 125 faults within Top-1, i.e., 50/22
more than state-of-the-art SBFL/ProFL.

Shown in Section 4.1, APR systems with more plausible patches
tend to perform better in unified debugging. Therefore, we further
study the impact of having different subsets of APR systems for
UniDebug+ and UniDebug++. To that end, we rank all APR sys-
tems in descending order of the number of additional bugs that
each APR system can come up with plausible patches. In this way,
we can observe the effectiveness trend of UniDebug+ and UniDe-
bug++ with more and more APR systems. Figure 10 presents Top-1
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Figure 10: UniDebug+ and UniDebug++ with increasing
number of APR systems

results when including more and more APR systems under UniDe-
bug+ and UniDebug++. From the figure, we can observe several
interesting findings. First, both UniDebug+ and UniDebug++ over-
all have increasing effectiveness when including more and more
APR systems. Second, we also observe that both techniques tend
to saturate when new systems cannot provide much additional
plausible patches. This actually indicates that a small subset of the
studied APR systems (e.g., 6 of them) can be combined to achieve
same effectiveness as the whole set. Third, UniDebug++ has much
better effectiveness compared to UniDebug+ which simply puts all
patches from different APR systems together. The reason is that
most APR systems are helpful for fault localization, and the code
elements ranked high by multiple APR systems are indeed more
likely to be buggy.

Please note that running multiple APR systems for UniDebug+
or UniDebug++ can be costly. Although the efficiency issue is out
of scope for this paper, our above finding demonstrates that a small
subset (e.g., 6) of them can already be sufficient for effective unified
debugging. Also, Chen et al. [8] have recently proposed a general
on-the-fly patch-validation framework to substantially speed up
existing APR systems. Furthermore, such APR systems can be run
in parallel to further increase the potential for improved unified
debugging with minimal delay; this not only 1) improves the prob-
ability for the buggy project to be directly automatically fixed via
multiple APR systems, but also 2) further boosts fault localization
for manual repair even when none of the APR systems can directly

fix the bug.

Finding 6: Our new unified debugging technique UniDe-
bug++ considering common behaviors between multiple APR
systems can localize 125 bugs within Top-1, which signifi-
cantly improves the state-of-the-art ProFL by over 20%.

4.5 Threats to Validity

4.5.1 Internal Validity. All of our study results are directly depen-
dent on the correctness of our implementation of all the studied
techniques. Faulty implementations in any aspect will yield mis-
leading / inaccurate results. To mitigate this threat, we reuse the
implementation of the SBFL and ProFL techniques obtained from
the ProFL authors. We also obtained the source code for all the
studied APR systems from the authors to investigate their impact
on unified debugging. Furthermore, we execute both APR systems
with our modifications (to record detailed patch execution informa-
tion required by unified debugging) and the original APR systems
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to ensure that they produce the same results (i.e., our modification
does not change the APR behavior).

4.5.2 Construct Validity. This threat mainly lies in the dependent
variables or metrics used in this study. To reduce such threats, we
adopted the most widely used metrics in recent fault localization [21,
22, 49] and unified debugging [33, 34] studies.

4.5.3  External Validity. To evaluate on real-world bugs, we choose
the Defects4] v1.0.0 dataset with hundreds of real-world bugs, which
is the most widely used benchmark suite for recent APR and fault
localization work. However, the study results may still not gen-
eralize to all possible systems in the wild, and we plan to further
enlarge our benchmark selection in the near future.

Also, since the study aims to investigate the impact of APR
systems for unified debugging, different APR systems may yield
totally different results. Therefore, we simply studied all the state-
of-the-art APR systems that (1) have publicly available source code
and (2) are applicable to the used Defects4] benchmark [27].

5 RELATED WORK

As the studied unified debugging approach unifies traditional fault
localization and automated program repair (APR) to boost both
areas, in this section, we talk about the related work in both areas.

5.1 Fault Localization

The basic idea of fault localization is to automatically produce a
ranking list of code elements (e.g., program methods or statements)
based on the descending order of their suspiciousness values (i.e.,
the probability of being buggy) to help developers in manual de-
bugging or serve as the supplier for APR. Various fault localization
techniques have been proposed over the past decades. Spectrum-
based fault localization (SBFL) [39, 47], one of the most classic fault
localization approaches, has been intensively studied due to its
effectiveness and scalability. Its basic insight is that code elements
primarily executed by failed tests are more suspicious than elements
primarily executed by passed tests.

To date, various formulae (e.g., based on statistical analysis or
other heuristics) have been proposed to compute code element sus-
piciousness, such as Tarantula [15], Ochiai [3], SBI [23], and so on.
One main limitation for such traditional SBFL is that faulty code ele-
ments may be coincidentally executed by passed tests and elements
executed by failed tests do not always have real impacts on the
program failure. To bridge the gap between coverage and impact in-
formation, mutation-based fault localization (MBFL) [22, 38, 40, 63]
has been proposed to transform program source code based on
mutation testing [12] to check the impact of each code element
on test outcomes. The basic idea of MBFL is that if one mutant
incurs different failure outputs of failed tests before and after mu-
tation, the corresponding code element of this mutant may have
a high impact on program failures, and thus may be the buggy.
MUSE [38] and Metallaxis [40] are two widely studied MBFL tech-
niques targeting traditional application scenarios, while FIFL [63] is
a MBFL technique specifically targeting evolving software systems.
Compared with MBFL, unified debugging utilizes program repair
information that aims to fix software bugs to pass more tests rather
than mutation testing that was originally proposed to create new
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artificial bugs to fail more tests; furthermore, unified debugging
has also been shown to substantially outperform state-of-the-art
MBFL [33, 34]. In the literature, researchers have also proposed var-
ious other fault localization techniques, including techniques based
on program slicing [5, 44], development history [17], and infor-
mation retrieval [65], as well as techniques for combining various
dimensions of information via machine learning [21, 49, 60].

5.2 Automated Program Repair

Automated program repair (APR) aims to directly fix program bugs
without human intervention. Given a buggy project, APR tech-
niques utilize various strategies to automatically generate potential
patches and then validate those patches to check their correct-
ness, e.g., based on regression tests [10], static analysis [50], or
formal specifications [52]. To date, test-driven APR has been ex-
tensively studied due to the wide adoption of testing in practice. A
typical test-driven APR technique first applies off-the-shelf fault
localization techniques (e.g., Ochiai [3] has been widely used for
APR [10, 14, 55]) to pinpoint potential buggy locations for patching.
Then, any patches that can pass all the originally failing and passing
tests are called plausible patches, while plausible patches seman-
tically equivalent to corresponding developer patches are called
correct patches (which are the final outcome for APR). Depending on
how the patches are generated, APR [10, 14, 31, 58] can be catego-
rized into the following categories [11, 27]: (1) heuristic-based APR,
which investigates possible code modifications for patching by iter-
ating a search space, e.g., GenProg [53] uses genetic programming
algorithm to search donor code from existing code for generating
patches; (2) constraint-based APR, which typically transforms the
APR problem into a satisfiability problem by constructing a repair
constraint that the patches should satisfy, e.g., Nopol [59] lever-
ages an SMT solver to solve the condition synthesis problem; (3)
template-based APR, which performs APR via predefined fixing pat-
terns, e.g., FixMiner [19] automatically mines bug-fix patterns from
existing code repositories; (4) learning-based APR, which uses ma-
chine learning techniques to learn correct code locations/snippets
from a training code corpus, e.g., Prophet [31] and ELIXIR [45].
Recently, ProFL [33] initializes the idea of unified debugging
to investigate the effectiveness of APR for fault localization. The
experimental results show that ProFL is able to boost/outperform
state-of-the-art SBFL [3, 15, 23], MBFL [22, 38, 40, 63], and unsuper-
vised/supervised learning based fault localization [21, 49, 64] using
the recent PraPR APR system [10], and also extends the application
scope of APR to all possible bugs. However, it is not clear how other
state-of-the-art APR techniques contribute to unified debugging
and how to further advance unified debugging, while this paper
moves one step forward to that end, particularly with regards to
assessing the impact of other APR tools in unified debugging.

6 CONCLUSION

In this paper, we have performed an extensive study of the impacts
of different automated program repair systems on the recently pro-
posed unified debugging approach [33, 34]. Our study results on the
popular Defects4] benchmark suite have revealed various practical
guidelines for further advancing unified debugging, including: (1)
nearly all the studied 16 repair systems can contribute to unified
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debugging despite their varying repairing capabilities, (2) repair
systems targeting multi-edit patches can bring noise and degrade
performance for unified debugging, (3) repair systems with more
executed/plausible patches tend to perform better for unified de-
bugging, (4) unified debugging effectiveness does not exclusively
rely on the availability of correct patches from automated repair.
Based on our findings, we further proposed an advanced unified
debugging technique, UniDebug++, which can localize over 20%
more bugs within Top-1 than state-of-the-art unified debugging
technique, ProFL [33, 34]. In the near future, we will work on tenta-
tive program repair, a new direction enabled by unified debugging
to allow fault localization and program repair to boost each other
for more powerful debugging, e.g., patch execution results from an
initial set of repair systems can enable precise fault localization for
applying more advanced repair systems for cost-effective repair.
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