
On the Effectiveness of Unified Debugging:
An Extensive Study on 16 Program Repair Systems

Samuel Benton
The University of Texas at Dallas
Samuel.Benton1@utdallas.edu

Xia Li∗

Kennesaw State University
xli37@kennesaw.edu

Yiling Lou∗

Peking University
louyiling@pku.edu.cn

Lingming Zhang
University of Illinois at Urbana-Champaign

lingming@illinois.edu

ABSTRACT

Automated debugging techniques, including fault localization and

program repair, have been studied for over a decade. However, the

only existing connection between fault localization and program re-

pair is that fault localization computes the potential buggy elements

for program repair to patch. Recently, a pioneering work, ProFL,

explored the idea of unified debugging to unify fault localization

and program repair in the other direction for the first time to boost

both areas. More specifically, ProFL utilizes the patch execution

results from one state-of-the-art repair system, PraPR, to help im-

prove state-of-the-art fault localization. In this way, ProFL not only

improves fault localization for manual repair, but also extends the

application scope of automated repair to all possible bugs (not only

the small ratio of bugs that can be automatically fixed). However,

ProFL only considers one APR system (i.e., PraPR), and it is not

clear how other existing APR systems based on different designs

contribute to unified debugging. In this work, we perform an exten-

sive study of the unified-debugging approach on 16 state-of-the-art

program repair systems for the first time. Our experimental results

on the widely studied Defects4J benchmark suite reveal various

practical guidelines for unified debugging, such as (1) nearly all

the studied 16 repair systems can positively contribute to unified

debugging despite their varying repairing capabilities, (2) repair

systems targeting multi-edit patches can bring extraneous noise

into unified debugging, (3) repair systems with more executed/plau-

sible patches tend to perform better for unified debugging, and (4)

unified debugging effectiveness does not rely on the availability of

correct patches in automated repair. Based on our results, we further

propose an advanced unified debugging technique, UniDebug++,

which can localize over 20% more bugs within Top-1 positions than

state-of-the-art unified debugging technique, ProFL.

∗This work was mainly done when they are (visiting) PhD students at UT Dallas.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21ś25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416566

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Unified debugging, Program repair, Fault localization

ACM Reference Format:

Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effec-

tiveness of Unified Debugging: An Extensive Study on 16 Program Repair

Systems. In 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE ’20), September 21ś25, 2020, Virtual Event, Australia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416566

1 INTRODUCTION

With the rapid development of information technology, software

systems have been widely adopted in almost all aspects of modern

society. However, software bugs (also called software faults in this

paper) are inevitable because of the complexity of modern software

systems. Software faults can cause software systems to crash or

perform unexpected behaviors, both scenarios resulting in disas-

ter, e.g., costing trillions of dollars in financial loss and affecting

billions of people [1]. In practice, software debugging is essential

for removing bugs from existing faulty software systems. Manual

debugging, however, can be extremely challenging, tedious, and

costly. Such impediments consume over 50% of the development

time/effort [48] and cost the global economy billions of dollars [7].

To date, a huge body of research effort has been dedicated to

automated debugging to relieve developer burdens, investigating

both fault localization [4, 15, 21, 23, 38, 40, 54, 59, 62, 64] and auto-

mated program repair [9, 13, 14, 25, 26, 28ś32, 35, 36, 43, 51, 57, 61]

techniques. Fault localization aims to precisely localize buggy el-

ements within a buggy system based on dynamic and/or static

program analysis, and can automatically produce a ranked list of

suspicious code elements for developers, reducing their effort for

manual bug checking. Classic spectrum-based fault localization

(SBFL) techniques [4, 15, 23] mainly analyze the statistical correla-

tion between code coverage and test outcomes to infer potential

buggy locations. For example, a code element primarily executed

by failed tests are likely to be more suspicious. However, using only

coverage information may not be precise enough. Therefore re-

searchers further propose mutation-based fault localization (MBFL)

techniques [22, 38, 40, 63] by further considering the impact infor-

mation between mutated code elements and tests (simulated via

mutations). Recently, machine learning techniques have been used

ASE ’20, September 21ś25, 2020, Virtual Event, Australia Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang

to combine various dimensions of debugging information for more

powerful fault localization [6, 21, 22, 60].

While fault localization still requires manual repair, automated

program repair (APR) aims to directly fix software bugs automati-

cally with minimal human intervention. A typical test-driven APR

technique takes a faulty program and its test suite as input and gen-

erates program patches with the end goal to find a patch passing all

tests. Due to its promising future, various APR techniques have been

proposed, including search-based, semantics-driven, and learning-

based techniques [14, 20, 35, 59, 61]. For more details, please refer

to recent surveys on fault localization [56] and APR [37].

Despite extensive research on automated debugging over the past

decades, we still lack practical automated debugging techniques.

Current fault localization techniques has limited effectiveness in

practice ś they either require massive training data that may not

always be available [21, 49] or are ineffective for debugging real-

world systems [18, 41]. Furthermore, it is rather challenging for

APR techniques to fix all possible bugs ś even state-of-the-art APR

techniques [10, 14, 46] can only fix a small ratio of real bugs (i.e.,

<20% for Defects4J [16]) automatically.

To enable more practical debugging, the unified debugging ap-

proach, ProFL, was recently proposed to unify fault localization and

APR to boost both areas [33, 34]. While both fault localization and

APR have been studied for over a decade, their only prior connec-

tion is that fault localization is leveraged as a supplier for pointing

out potentially buggy locations for APR to fix. The unified debug-

ging approach ProFL unifies the two areas in the other direction

for the first time, i.e. leveraging large number of patch execution re-

sults generated during APR (even when APR fails to fix the bug) to

further boost fault localization. The basic intuition is that if a patch

passes some originally failing test(s), the patched location is very

likely to have some close relationship with the real buggy location

(e.g., sharing the same method or even same line), since otherwise

the patch cannot mute the bug impact and pass the originally fail-

ing test(s). Using the recent PraPR [10] APR system, ProFL is able

to substantially boost/outperform state-of-the-art SBFL [3, 15, 23],

MBFL [22, 38, 40, 63], and unsupervised/supervised learning based

fault localization [21, 49, 64].

In this way, given any buggy project, ProFL not only directly

returns the patches when automated repair works, but also provides

improved fault localization hints for manual repair for all other

cases. That is, ProFL not only significantly improves fault localiza-

tion for manual repair, but also extends the application scope of

automated repair to all possible bugs (not only the small portion of

bugs that can be automatically fixed).

Despite this promising direction, the ProFL work only considers

one APR system (i.e., PraPR), while there are many other available

APR systems based on different designs and it is not clear how

other APR systems contribute to unified debugging. Therefore,

to bridge this gap, we conduct the first extensive study of unified

debugging on 16 state-of-the-art APR systems. These 16 systems

represent recent public Java APR systems that execute without

requiring specialized data or infrastructure. These selected systems

utilize constraint-based [9, 36, 58], heuristic-based [14, 35, 61], and

template-based [19, 24, 25] repair approaches seen in recent repair

literature. Furthermore, we use the Defects4J benchmark suite for

our evaluation since it is the most widely used benchmark in recent

fault localization and APR work (including the unified debugging

work [33]). Our experimental results reveal various practical guide-

lines for further advancing unified debugging and even software

debugging in general. To summarize, this paper makes the follow-

ing main contributions:

• Study. This paper presents the first extensive study of uni-

fied debugging using 16 state-of-the-art APR systems.

• Dataset. Our detailed experimental data (including patch

execution information, experimental script, and result analy-

sis for fault localization, APR, and unified debugging) on the

studied Defects4J subjects are publicly available online [2].

• Guidelines. Our study reveals various practical guidelines,

including: (1) nearly all the studied 16 APR tools can pos-

itively contribute to unified debugging despite their vary-

ing repairing capabilities, (2) APR tools targeting multi-edit

patches bring noise and degrade performance for unified de-

bugging, (3) APR tools with more executed/plausible patches

tend to perform better for unified debugging, and (4) uni-

fied debugging effectiveness does not exclusively rely on the

availability of correct patches from APR.

• Technique. Based on our study results, we further pro-

pose an advanced unified debugging technique, UniDebug++,

which can localize 21% more bugs within Top-1 than state-

of-the-art unified debugging technique, ProFL.

2 STUDIED APPROACH

In this section, we first briefly discuss the traditional fault localiza-

tion and program repair process (Section 2.1) to motivate unified

debugging. Then, we present the basic process for the studied uni-

fied debugging process (Section 2.2). Lastly, we present a real-world

example to further motivate our study in this paper (Section 2.3).

2.1 Fault Localization and Program Repair

Given a buggy program and its failing test suite, test-based fault

localization computes each code element’s probability to be buggy

based on various techniques [4, 5, 21, 40, 65]. For example, the

widely studied spectrum-based fault localization (SBFL) [4, 15, 23]

will collect the dynamic coverage information for each failing/pass-

ing test to compute each code element’s suspiciousness value. In

this way, developers can choose to directly startmanual repair with

the help of such suspiciousness information.

Alternatively, developers can also choose to directly perform au-

tomated program repair (APR) [14, 35, 61]. Typical APR techniques

leverage fault localization techniques to compute the potential

buggy locations for patching, e.g., the Ochiai SBFL technique has

been widely used in recent APR work, such as PraPR [10], Sim-

Fix [14], and CapGen [55]. After the patch generation and validation,

all the plausible patches (i.e., the patches that can pass all tests) are

returned for manual inspection to find the final correct patches (i.e.,

the patches semantically equivalent to developer patches). In this

way, the final correct patches are the only useful outcome fromAPR;

in fact, even plausible but incorrect patches are treated as harmful

in traditional APR work [58], since they require time-consuming

and tedious manual inspection. However, to date, even state-of-

the-art APR can only produce correct patches for a small ratio of

real-world bugs, making APR a waste of resources for all the other

ASE ’20, September 21ś25, 2020, Virtual Event, Australia Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang

protected void computeGeometricalProperties () {

...

if (v.length == 0) {

final BSPTree <Euclidean2D > tree = getTree(false);

- if ((Boolean) tree.getAttribute ()) {

+ if (false) {

// the instance covers the whole space

setSize(Double.POSITIVE_INFINITY);

setBarycenter(Vector2D.NaN);

...

}

protected void computeGeometricalProperties () {

...

if (v.length == 0) {

final BSPTree <Euclidean2D > tree = getTree(false);

- if ((Boolean) tree.getAttribute ()) {

+ if (tree.getCut () == null && (Boolean) tree.getAttribute ()) {

// the instance covers the whole space

setSize(Double.POSITIVE_INFINITY);

setBarycenter(Vector2D.NaN);

...

}

Figure 2: Generated patch of Kali-A and developer patch for Math-32

has been demonstrated to substantially outperform raw method-

level SBFL. Columns "PraPR", "Kali-A", and "TBar" represent the

unified debugging approaches using the patch-execution informa-

tion from APR systems PraPR, Kali-A, and TBar, respectively. The

patch category information for each method is included in the table.

Unmodified, hereby referred to as Non-Modify, represents a new

patch category implying that these code elements are never patched

by an APR tool. Lastly, Column "UniDebug+" presents the tech-

nique simply using all patches from the prior three APR systems.

From the motivating example, we have the following interesting

findings:

First, unified debugging using other APR systems can have

promising fault localization results even when the PraPR system

used by ProFL cannot help improve the performance. For example,

Kali-A can directly rank the buggy method at the 1st location, while

both SBFL and ProFL with PraPR rank the bug at the 4th location.

Figure 2 represents the patch generated by Kali-A (left side) and the

correct patch provided by developers (right side). From the patches,

we found that Kali-A generates a patch by changing the buggy

conditional statement into if (false) which is useless for fixing

the real bug; however, this patch does help pinpoint the actual bug

location, demonstrating the generality of unified debugging for

all possible APR systems. This finding motivates us to perform an

extensive study to investigate the effectiveness of different APR

systems for unified debugging. Second, different APR systems have

different unified debugging performances and combining themmay

potentially result in even more powerful unified debugging. Shown

in the last column of Table 1, simply combining all patches gen-

erated by different APR systems can also localize the bug within

Top-1.

3 STUDY DESIGN

3.1 Research Questions

In this study, we aim to investigate the following research questions:

• RQ1: How does unified debugging perform with all studied

APR systems?

• RQ2: How do unmodified code elements during APR impact

unified debugging?

• RQ3: How does unified debugging correlate with program

repair effectiveness?

• RQ4: How do we further advance state-of-the-art unified

debugging with all studied APR systems?

Tool Category Tools

Constraint-based ACS, Cardumen, Dynamoth

Heuristic-based Arja, GenProg-A, jGenProg, jKali,

jMutRepair, Kali-A, RSRepair-A, Simfix

Template-based AVATAR, FixMiner, kPar, PraPR, TBar

Table 2: Repair systems studied

Project Name # Bugs # Tests LOC

Chart JFreeChart 26 2,205 96K

Lang Apache Lang 65 2,245 22K

Math Apache Math 106 3,602 85K

Time Joda-Time 27 4,130 28K

Total 224 12,362 231K

Table 3: Studied bugs from Defects4J v1.0.0

3.2 Experimental Setup

For this study, we considered all the 16 program repair systems

accessible from a recent study [27]. Furthermore, we also consid-

ered the recent PraPR repair system [10] which the initial unified

debugging work is based on. Table 2 shows the breakdown of all

the APR systems studied, including: heuristic-based - Arja [61],

GenProg-A [61], jGenProg [35], jKali [35], jMutRepair [35], Kali-A

[61], RSRepair-A [61], and Simfix [14]; constraint-based - ACS [58],

Cardumen [36], and Dynamoth [9]; and template-based - AVATAR

[25], FixMiner [19], kPar [24], TBar [26], and PraPR [10]. We man-

ually modified all studied APR systems to collect the detailed patch

execution information required by unified debugging, and ensured

that our modified version did not impact the tool functionality. 1

Each system used original time settings suggested by the original

papers.

Most of the studied APR systems have been implemented to

target version 1.0.0 (and older) of the widely used Defects4J bench-

mark [16], which includes 357 real-world bugs from five real-world

software systems. Meanwhile, in our evaluation process, we found

that many of the studied tools (e.g., CapGen, ACS, Arja, GenProg-A,

etc.) do not support or cannot successfully execute Closure from

Defects4J 1.0.0 (according to their original publications). Therefore,

for fair comparison, all of our experiments are performed on the

remaining four subjects from Defects4J 1.0.0; the Chart, Time, Lang,

and Math projects. Detailed statistics are shown in Table 3.

Each tool was executed using each the same JDK version found

in the tool’s original publication, allowing us to obtain repair exe-

cution results as close as possible to the tool’s original results. Thus,

1Note that we fail to get the our modified version of Nopol functional due to the
specific design of Nopol. Nevertheless, we believe that excluding one specific tool does
not impact the general findings and contributions of this study (especially we also
have many other constraint-based APR systems studied).

On the Effectiveness of Unified Debugging:

An Extensive Study on 16 Program Repair Systems ASE ’20, September 21ś25, 2020, Virtual Event, Australia

in our experiments, we ultimately utilized two JDK versions, JDK

1.8.0.242 (hereby referred to as JDK 1.8) and JDK 1.7.0.80 (hereby

referred to as JDK 1.7). Systems Simfix and Dynamoth executed

using JDK 1.8 exclusively. Systems Cardumen, jGenProg, jKali, and

jGenProg executed using JDK 1.8 and validated system test suites

with JDK 1.7. All other systems executed using JDK 1.7 exclusively.

All our experiments were conducted within the following en-

vironment: 36 3.0GHz Intel Xeon Platinum Processors, 60GBs of

memory, and Ubuntu 18.04.4 LTS operating system.

3.3 Implementation Details

3.3.1 ProFL Configuration. Although unified debugging can be

used to refine any existing fault localization technique, by default,

the original unified debugging work, ProFL, utilizes APR to re-

fine state-of-the-art SBFL technique, Ochiai [3] with aggregation

strategy [49]. Actually, the original ProFL work demonstrates that

unified debugging has consistent performance for refining different

state-of-the-art fault localization techniques. Therefore, in this pa-

per, we also focus on using Ochiai (with aggregation) to investigate

the impact of different repair systems. Furthermore, following the

original ProFLwork, this study also focuses onmethod-level fault lo-

calization (i.e., localizing potential buggy methods), as researchers

have demonstrated that class-level fault localization can be too

coarse-grained [18] while statement-level fault localization can be

too fine-grained and miss necessary contextual information [41].

3.3.2 Non-Modify Category. For the original ProFL work, the used

PraPR repair system [10] is extremely fast due to the bytecode-level

manipulation and can generate patches for almost all the possible

suspicious methods, i.e., methods executed by failed tests (since

methods not executed by failed tests should not be responsible for

the current test failures). However, for all other APR tools, there

may exist many suspicious methods without any patch, since it

is expensive for APR tools to generate patches for every method.

Therefore, besides the four categories of methods mentioned in

Section 2.2, we create a new category, Non-Modify, to represent the

methods that do not receive any patch for a specific APR system.

It is unclear how this new category compares with the other four

categories studied in the original unified debugging work. There-

fore, we explore the impact of the ranking this new Non-Modify

category within the existing four ProFL categories in Section 4.2.

Note that as the default setting, we put Non-Modify alongside the

NegFix category since the plurality of all patches fall into the NegFix

category (thus the majority of Non-Modify methods may also fall

into the NegFix category if they had been generated with patches).

3.3.3 Repair Tool Integration with ProFL. The original ProFL tool

has been implemented as a publicly available Maven plugin. We ob-

tained the original ProFL source code from the authors and analyzed

the interface between ProFL and its underlying APR system. Then,

we modified all the 16 studied APR systems to produce detailed

patch execution information consistent with the original ProFL

interface (e.g., regarding the patch location, failing and passing

tests for each patch). In this way, we can safely replace the original

PraPR system with any other studied APR systems for our study.

Please note that we also augment the original ProFL code to handle

the new Non-Modify method category.

3.4 Evaluation Metrics

Following prior work [21, 49, 64], we measure the number of bugs

localized within Top-1, Top-3, and Top-5 positions as the primary

metrics for this study. The reason is that researchers have observed

that most developers will abort automated debugging tools if they

cannot return the actual buggy elements within the Top-5 posi-

tions [18]. Specifically, given a set of methods which tie for the

same rank, each method is assigned the worst rank of the tied

methods, following prior work [21, 22, 33]. Furthermore, we also

present the mean first rank (MFR) and mean average rank (MAR)

results widely used in prior fault localization [21, 22] and unified

debugging [33] work. More specifically, for precise localization of

all buggy elements of each bug, we compute the average ranking

of all the buggy elements for each bug; MAR is simply the mean of

the average ranking of all bugs. Similarly, for a bug with multiple

buggy elements,the localization of the first buggy element is crit-

ical since the rest buggy elements may be directly localized after

that; therefore, we use MFR to compute the mean of the first buggy

element’s rank for each bug.

4 RESULT ANALYSIS

4.1 RQ1 - Performance of Unified Debugging
with Different APR systems

In this research question, we first investigate the effectiveness of

unified debugging on all the 16 studied APR systems. Figure 3 shows

the fault localization results on all the studied subjects (i.e., Lang,

Chart, Time, and Math from the Defects4J benchmark) in terms of

the Top-1, Top-3, Top-5, MFR, and MAR metrics. The upper sub-

figure represents the Top-N results and bottom sub-figure indicates

the MFR/MAR results. Each bar in both sub-figures represents dif-

ferent APR systems. Note that we use the default treatment for

the Non-Modify category which inserts such methods alongside

the NegFix category, i.e., CleanFix > NoisyFix > NoneFix > NegFix

= Non-Modify (discussed in Section 3.3.2). Also note that the 16

repair systems in this figure are ordered chronologically with re-

spect to the date for each publication, following the existing APR

study [27]. We also include the result of state-of-the-art SBFL (i.e.,

Ochiai with aggregation) and the first unified debugging technique

(i.e., ProFL with PraPR) in the last for comparison (Note that ProFL

has been demonstrated to outperform/improve all state-of-the-art

fault localization [33, 34]). From the figure, we have the following

observations. First, unified debugging with most APR systems per-

forms better than state-of-the-art SBFL! For example, in terms of

Top-1, 15 out of 16 tools can help improve SBFL and only Arja fails

to meet the initial SBFL results. That said, Arja can still localize 73

faults within Top-1 which is fairly close to the SBFL result. This

finding indicates the broad applicability of the unified debugging

approach. Second, even though existing APR study [27] has ob-

served that more recent APR systems can fix more bugs than earlier

systems, there is no obvious trend showing that unified debugging

with more recent (i.e., chronologically later) APR systems can help

localize more bugs than earlier ones. This finding demonstrates that

APR systems’ capability to produce correct patches is not highly

correlated to the unified debugging effectiveness in fault localiza-

tion. Lastly, different results of the 16 APR systems indicate that

On the Effectiveness of Unified Debugging:

An Extensive Study on 16 Program Repair Systems ASE ’20, September 21ś25, 2020, Virtual Event, Australia

EID Suspicious Method
SBFL TBar RSRepair-A Arja UniDebug+

Susp. Rank Category Rank Category Rank Category Rank Category Rank

e1 AbstractRealVector:getL1Norm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5

e2 AbstractRealVector:getNorm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5

e3 ArrayRealVector:getL1Norm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5

e4 ArrayRealVector:getLInfNorm()D 0.707 5 CleanFix 1 NoneFix 5 CleanFix 5 CleanFix 5

e5 OpenMapRealVector:getLInfNorm()D 0.707 5 Non-Modify 5 NoneFix 5 CleanFix 5 CleanFix 5

Table 4: Unified debugging with different APR systems for Math-77

org.apache.commons.math.linear.ArrayRealVector.java

public double getLInfNorm () {

double max = 0;

for (double a : data) {

- max += Math.max(max , Math.abs(a));

+ max = Math.max(max , Math.abs(a));

}

return max;

}

org.apache.commons.math.linear.OpenMapRealVector.java

- public double getLInfNorm () {

- double max = 0;

- Iterator iter = entries.iterator ();

- while (iter.hasNext ()) {

- iter.advance ();

- max += iter.value ();

- }

- return max;

- }

Figure 4: Correct developer patch for Math-77

org.apache.commons.math.linear.ArrayRealVector.java

public double getLInfNorm () {

double max = 0;

for (double a : data) {

max += Math.max(max , Math.abs(a));

}

- return max;

+ return getDimension ();

}

Figure 5: TBar’s incorrect CleanFix patch for Math-77

Finding 2: APR tools specifically targetingmulti-edit patches

can bring noise into unified debugging, as each multi-edit

patch involves multiple modifications and many modifica-

tions are not helpful in muting the bug impacts even the

patch can pass some originally failing test(s).

4.1.2 Quantitative Analysis. Since the capability to produce correct

patches is not highly correlated with unified debugging effective-

ness, we further performs detailed quantitative analysis to explore

what factors of APR systems are highly correlated to the effec-

tiveness of unified debugging. Figure 7 represents the correlation

analysis between different factors of APR systems and representa-

tive fault localization metrics (i.e., Top-1 and MFR). Note that we

also excluded APR tools targeting multi-edit patches. In this fig-

ure, łTotalPatchž represents the number of all executed compilable

patches generated from each APR tool, łMethodByTotalž represents

the number of unique methods modified by all executed patches,

łPlausiblePatchž represents the number of plausible patches gener-

ated by each tool, and łMethodsByPlausiblež represents the number

of unique methods covered by the plausible patches. Within each

sub-figure, each data point represents one studied APR system,

and we perform Pearson Correlation Coefficient analysis [42] at

significance level of 0.05. From this figure, we can observe that APR

systems tend to perform significantly better for unified debugging

when executing more patches for more methods and/or producing

more plausible patches for more methods. The finding is statis-

tically significant for all the sub-figures at the significance level

of 0.05. Although the finding is surprisingly uniform, this makes

intuitive sense, since APR systems patching more code elements

tend to accumulate more information for debugging. This finding

suggests future APR systems to explore more patches for more

powerful unified debugging, and also calls for research for faster

patch execution (otherwise APR systems cannot afford massive

patch executions).

Finding 3: APR systems executing more patches across code

elements and/or producing more plausible patches tend to

perform better for unified debugging, calling for future re-

search on fast & exhaustive patch exploration .

4.2 RQ2 - Impacts of Non-Modify Code
Elements on Unified Debugging

As discussed in Section 3.3.2, we add one new patch category, Non-

Modify, which represents suspicious methods that some APR tools

do not afford to modify. The first research question has demon-

strated the effectiveness of default unified debugging setting on 16

APR systems by treating Non-Modify equivalently as the fourth

patch category NegFix. In this research question, we further eval-

uate the unified debugging effectiveness when casting the Non-

Modify category into each of the four different ProFL categories.

Figure 8 represents the representative Top-1 and MFR results of

all the 16 APR systems with such four settings represented with

lines in different colors. From the figure, we can observe that for

most systems, casting Non-Modify code elements into the last Neg-

Fix category performs better than casting them into other three

categories in terms of both Top-1 and MFR. For example, Simfix

can localize 100 bugs within Top-1 when casting Non-Modify into

NegFix category, and can only localize 95/93/90 bugs within Top-1

when casting Non-Modify into NoneFix/NoisyFix/CleanFix cate-

gory. Also, in terms of MFR, Kali-A can achieve 5.53 with NegFix,

which is also significantly better than Kali-A with other three cate-

gories (6.76/6.25/6.45). The reason is that NegFix patches are more

prevalent for most code elements (including Non-Modify ones),

while other patch categories can be harder to generate.

Finding 4: Non-Modify code elements (i.e., elements with no

patches) can be treated in the same way as elements with only

NegFix patches (i.e., the patches that cannot fix any failing

test but can cause originally passing tests to fail) for precise

unified debugging.

On the Effectiveness of Unified Debugging:

An Extensive Study on 16 Program Repair Systems ASE ’20, September 21ś25, 2020, Virtual Event, Australia

●●

● ●

●

●

●

●

●

●

4

8

12

ACS Arja AVATAR Dynamoth FixMiner jKali jMutRepair kPar Simfix TBar

Tool

T
o

p
1

● SBFL

ProFL

●

●

●

●●

●

●

●

●

●

2

4

6

8

10

ACS Arja AVATAR Dynamoth FixMiner jKali jMutRepair kPar Simfix TBar

Tool

T
o

p
1

● SBFL

ProFL

●●

● ●

●

●

●

●

●

●70

75

80

85

90

95

ACS Arja AVATAR Dynamoth FixMiner jKali jMutRepair kPar Simfix TBar

Tool

T
o

p
1

● SBFL

ProFL

Figure 9: Unified debugging on buggy versions with (1) cor-

rect, (2) incorrect but plausible, and (3) implausible patches

Table 5: Effectiveness of UniDebug+ and UniDebug++

Tech Name Top-1 Top-3 Top-5 MFR MAR

SBFL 75 144 169 5.63 6.90

ProFL 103 165 183 4.67 5.98

UniDebug+𝑎𝑙𝑙 95 160 177 4.84 6.16

UniDebug++𝑎𝑙𝑙 119 168 180 4.48 5.86

UniDebug+ 110 168 182 4.49 5.88

UniDebug++ 125 172 184 4.27 5.71

observe that almost all APR systems consistently outperform SBFL

in all the three bug sets. One potential reason is that as long as

a patch can pass some originally failing test(s), its patch location

may be closely related to the actual buggy location since otherwise

it cannot mute the bug impact to pass failing tests. In this way,

patches do not need be correct or even plausible to contribute to

unified debugging. Furthermore, even the patches that only make

originally passing tests turn to fail can help eliminate the poten-

tially correct/benign locations to also boost unified debugging. This

further demonstrates the general applicability and promising future

for unified debugging.

Finding 5: Unified debugging effectiveness does not rely

on the availability of correct or even plausible patches from

APR. Similar as when conducting manual program repair,

APR patch execution results from even incorrect/implausible

patches can still reveal actual buggy locations (when they

pass some failing test(s)) or eliminate correct locations (even

when they only fail on originally passing tests).

4.4 RQ4 - More Advanced Unified Debugging

To combine the strengths of different APR systems, one naive way is

to simply combine the patches of different APR systems for unified

debugging, i.e., the UniDebug+ technique that we have talked about.

Table 6: Example for UniDebug++

SBFL Tool1 Tool2 Tool3 UniDebug+ UniDebug++

e1 0.8 CleanFix CleanFix CleanFix CleanFix CleanFix(3)

e2 0.8 CleanFix NegFix CleanFix CleanFix CleanFix(2)

e3 0.8 CleanFix NoneFix NoneFix CleanFix CleanFix(1)

In this way, the final category information for a code element can

be determined by the best category information of all patches of the

code element from the combined APR systems. In this section, we

further propose a more advanced technique, UniDebug++, which

further distinguishes code elements with the same suspiciousness

values in the same category. More specifically, after assigning the

patch group category (for patches generated by all combined APR

systems) to a code element in the category aggregation step (shown

in Figure 1), we further count the total number of APR systems that

generate patches in the same category as this code element.

The intuition is that if more APR systems can assign the best

category information to a code element, this element should have

higher priority in the ranked list compared to its tied peers. Table 6

shows an simple example to illustrate UniDebug++. In this example,

elements e1, e2 and e3 have the same SBFL suspiciousness value

0.8 and are all in the CleanFix category according to UniDebug+,

therefore they cannot be distinguished when using UniDebug+.

In contrast, UniDebug++ further considers the number pf APR

systems producing CleanFix patches for each element. For example,

e1 has CleanFix patches when using all three APR systems and

should be ranked higher than other elements. In this way, we can

leverage more precise APR information for more powerful unified

debugging.

Table 5 shows the results of original SBFL, ProFL, UniDebug+

and UniDebug++ in terms of Top-1, Top-3, Top-5, MFR and MAR.

Note that as discussed in Section 4.1.1, APR systems specifically

targeting multi-edit patches can introduce extra noise for unified

debugging and have been excluded for UniDebug+ and UniDe-

bug++. Meanwhile, we also include, as references, their variants

which consider all studied APR systems, denoted as UniDebug+𝑎𝑙𝑙
and UniDebug++𝑎𝑙𝑙 in the table. From the results, we have the

following observations. First, UniDebug+𝑎𝑙𝑙 and UniDebug++𝑎𝑙𝑙
perform worse than UniDebug+ and UniDebug++, respectively. In

fact, UniDebug+𝑎𝑙𝑙 even performs worse than ProFL which only

uses the PraPR APR system. This finding further confirms our ear-

lier qualitative analysis and Finding 2 that APR systems targeting

multi-edit patches are not suitable for unified debugging. Second,

both UniDebug+ and UniDebug++ can significantly outperform

SBFL and ProFL in all metrics. For example, UniDebug+ can localize

110 bugs within Top-1, i.e., 35/7 more than SBFL/ProFL. Third,

UniDebug++ can achieve the best result (even comparing against

our own UniDebug+), localizing 125 faults within Top-1, i.e., 50/22

more than state-of-the-art SBFL/ProFL.

Shown in Section 4.1, APR systems with more plausible patches

tend to perform better in unified debugging. Therefore, we further

study the impact of having different subsets of APR systems for

UniDebug+ and UniDebug++. To that end, we rank all APR sys-

tems in descending order of the number of additional bugs that

each APR system can come up with plausible patches. In this way,

we can observe the effectiveness trend of UniDebug+ and UniDe-

bug++ with more and more APR systems. Figure 10 presents Top-1

ASE ’20, September 21ś25, 2020, Virtual Event, Australia Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang

●

●

●

●

●

● ● ●

● ● ● ● ●

105

110

115

120

125

1 2 3 4 5 6 7 8 9 10 11 12 13

Comb

T
o
p
1

● UniDebug+ UniDebug++

Figure 10: UniDebug+ and UniDebug++ with increasing

number of APR systems

results when including more and more APR systems under UniDe-

bug+ and UniDebug++. From the figure, we can observe several

interesting findings. First, both UniDebug+ and UniDebug++ over-

all have increasing effectiveness when including more and more

APR systems. Second, we also observe that both techniques tend

to saturate when new systems cannot provide much additional

plausible patches. This actually indicates that a small subset of the

studied APR systems (e.g., 6 of them) can be combined to achieve

same effectiveness as the whole set. Third, UniDebug++ has much

better effectiveness compared to UniDebug+ which simply puts all

patches from different APR systems together. The reason is that

most APR systems are helpful for fault localization, and the code

elements ranked high by multiple APR systems are indeed more

likely to be buggy.

Please note that running multiple APR systems for UniDebug+

or UniDebug++ can be costly. Although the efficiency issue is out

of scope for this paper, our above finding demonstrates that a small

subset (e.g., 6) of them can already be sufficient for effective unified

debugging. Also, Chen et al. [8] have recently proposed a general

on-the-fly patch-validation framework to substantially speed up

existing APR systems. Furthermore, such APR systems can be run

in parallel to further increase the potential for improved unified

debugging with minimal delay; this not only 1) improves the prob-

ability for the buggy project to be directly automatically fixed via

multiple APR systems, but also 2) further boosts fault localization

for manual repair even when none of the APR systems can directly

fix the bug.

Finding 6: Our new unified debugging technique UniDe-

bug++ considering common behaviors between multiple APR

systems can localize 125 bugs within Top-1, which signifi-

cantly improves the state-of-the-art ProFL by over 20%.

4.5 Threats to Validity

4.5.1 Internal Validity. All of our study results are directly depen-

dent on the correctness of our implementation of all the studied

techniques. Faulty implementations in any aspect will yield mis-

leading / inaccurate results. To mitigate this threat, we reuse the

implementation of the SBFL and ProFL techniques obtained from

the ProFL authors. We also obtained the source code for all the

studied APR systems from the authors to investigate their impact

on unified debugging. Furthermore, we execute both APR systems

with our modifications (to record detailed patch execution informa-

tion required by unified debugging) and the original APR systems

to ensure that they produce the same results (i.e., our modification

does not change the APR behavior).

4.5.2 Construct Validity. This threat mainly lies in the dependent

variables or metrics used in this study. To reduce such threats, we

adopted themost widely usedmetrics in recent fault localization [21,

22, 49] and unified debugging [33, 34] studies.

4.5.3 External Validity. To evaluate on real-world bugs, we choose

theDefects4J v1.0.0 dataset with hundreds of real-world bugs, which

is the most widely used benchmark suite for recent APR and fault

localization work. However, the study results may still not gen-

eralize to all possible systems in the wild, and we plan to further

enlarge our benchmark selection in the near future.

Also, since the study aims to investigate the impact of APR

systems for unified debugging, different APR systems may yield

totally different results. Therefore, we simply studied all the state-

of-the-art APR systems that (1) have publicly available source code

and (2) are applicable to the used Defects4J benchmark [27].

5 RELATED WORK

As the studied unified debugging approach unifies traditional fault

localization and automated program repair (APR) to boost both

areas, in this section, we talk about the related work in both areas.

5.1 Fault Localization

The basic idea of fault localization is to automatically produce a

ranking list of code elements (e.g., program methods or statements)

based on the descending order of their suspiciousness values (i.e.,

the probability of being buggy) to help developers in manual de-

bugging or serve as the supplier for APR. Various fault localization

techniques have been proposed over the past decades. Spectrum-

based fault localization (SBFL) [39, 47], one of the most classic fault

localization approaches, has been intensively studied due to its

effectiveness and scalability. Its basic insight is that code elements

primarily executed by failed tests are more suspicious than elements

primarily executed by passed tests.

To date, various formulae (e.g., based on statistical analysis or

other heuristics) have been proposed to compute code element sus-

piciousness, such as Tarantula [15], Ochiai [3], SBI [23], and so on.

One main limitation for such traditional SBFL is that faulty code ele-

ments may be coincidentally executed by passed tests and elements

executed by failed tests do not always have real impacts on the

program failure. To bridge the gap between coverage and impact in-

formation, mutation-based fault localization (MBFL) [22, 38, 40, 63]

has been proposed to transform program source code based on

mutation testing [12] to check the impact of each code element

on test outcomes. The basic idea of MBFL is that if one mutant

incurs different failure outputs of failed tests before and after mu-

tation, the corresponding code element of this mutant may have

a high impact on program failures, and thus may be the buggy.

MUSE [38] and Metallaxis [40] are two widely studied MBFL tech-

niques targeting traditional application scenarios, while FIFL [63] is

a MBFL technique specifically targeting evolving software systems.

Compared with MBFL, unified debugging utilizes program repair

information that aims to fix software bugs to pass more tests rather

than mutation testing that was originally proposed to create new

On the Effectiveness of Unified Debugging:

An Extensive Study on 16 Program Repair Systems ASE ’20, September 21ś25, 2020, Virtual Event, Australia

artificial bugs to fail more tests; furthermore, unified debugging

has also been shown to substantially outperform state-of-the-art

MBFL [33, 34]. In the literature, researchers have also proposed var-

ious other fault localization techniques, including techniques based

on program slicing [5, 44], development history [17], and infor-

mation retrieval [65], as well as techniques for combining various

dimensions of information via machine learning [21, 49, 60].

5.2 Automated Program Repair

Automated program repair (APR) aims to directly fix program bugs

without human intervention. Given a buggy project, APR tech-

niques utilize various strategies to automatically generate potential

patches and then validate those patches to check their correct-

ness, e.g., based on regression tests [10], static analysis [50], or

formal specifications [52]. To date, test-driven APR has been ex-

tensively studied due to the wide adoption of testing in practice. A

typical test-driven APR technique first applies off-the-shelf fault

localization techniques (e.g., Ochiai [3] has been widely used for

APR [10, 14, 55]) to pinpoint potential buggy locations for patching.

Then, any patches that can pass all the originally failing and passing

tests are called plausible patches, while plausible patches seman-

tically equivalent to corresponding developer patches are called

correct patches (which are the final outcome for APR). Depending on

how the patches are generated, APR [10, 14, 31, 58] can be catego-

rized into the following categories [11, 27]: (1) heuristic-based APR,

which investigates possible code modifications for patching by iter-

ating a search space, e.g., GenProg [53] uses genetic programming

algorithm to search donor code from existing code for generating

patches; (2) constraint-based APR, which typically transforms the

APR problem into a satisfiability problem by constructing a repair

constraint that the patches should satisfy, e.g., Nopol [59] lever-

ages an SMT solver to solve the condition synthesis problem; (3)

template-based APR, which performs APR via predefined fixing pat-

terns, e.g., FixMiner [19] automatically mines bug-fix patterns from

existing code repositories; (4) learning-based APR, which uses ma-

chine learning techniques to learn correct code locations/snippets

from a training code corpus, e.g., Prophet [31] and ELIXIR [45].

Recently, ProFL [33] initializes the idea of unified debugging

to investigate the effectiveness of APR for fault localization. The

experimental results show that ProFL is able to boost/outperform

state-of-the-art SBFL [3, 15, 23], MBFL [22, 38, 40, 63], and unsuper-

vised/supervised learning based fault localization [21, 49, 64] using

the recent PraPR APR system [10], and also extends the application

scope of APR to all possible bugs. However, it is not clear how other

state-of-the-art APR techniques contribute to unified debugging

and how to further advance unified debugging, while this paper

moves one step forward to that end, particularly with regards to

assessing the impact of other APR tools in unified debugging.

6 CONCLUSION

In this paper, we have performed an extensive study of the impacts

of different automated program repair systems on the recently pro-

posed unified debugging approach [33, 34]. Our study results on the

popular Defects4J benchmark suite have revealed various practical

guidelines for further advancing unified debugging, including: (1)

nearly all the studied 16 repair systems can contribute to unified

debugging despite their varying repairing capabilities, (2) repair

systems targeting multi-edit patches can bring noise and degrade

performance for unified debugging, (3) repair systems with more

executed/plausible patches tend to perform better for unified de-

bugging, (4) unified debugging effectiveness does not exclusively

rely on the availability of correct patches from automated repair.

Based on our findings, we further proposed an advanced unified

debugging technique, UniDebug++, which can localize over 20%

more bugs within Top-1 than state-of-the-art unified debugging

technique, ProFL [33, 34]. In the near future, we will work on tenta-

tive program repair, a new direction enabled by unified debugging

to allow fault localization and program repair to boost each other

for more powerful debugging, e.g., patch execution results from an

initial set of repair systems can enable precise fault localization for

applying more advanced repair systems for cost-effective repair.

ACKNOWLEDGEMENTS

This work was partially supported by National Science Foundation

under Grant Nos. CCF-1763906 and CCF-1942430, and Alibaba.

REFERENCES
[1] 2020. Tricentis reports. https://www.tricentis.com/resources/software-fail-

watch-5th-edition/
[2] 2020. Unified Debugging Website. https://github.com/ProdigyXable/

UnifiedDebuggingStudy
[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation

of similarity coefficients for software fault localization. In 2006 12th Pacific Rim
International Symposium on Dependable Computing (PRDC’06). IEEE, 39ś46.

[4] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89ś98.

[5] Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. 1995. Fault
localization using execution slices and dataflow tests. In Proceedings of Sixth
International Symposium on Software Reliability Engineering. ISSRE’95. IEEE, 143ś
151.

[6] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. 177ś188.

[7] CO Boulder. 2013. University of Cambridge Study: Failure to Adopt
Reverse Debugging Costs Global Economy $41 Billion Annually.
https://www.roguewave.com/company/news/2013/university-of-cambridge-
reverse-debugging-study. Accessed: Jan. 8, 2019.

[8] Lingchao Chen and Lingming Zhang. 2020. Fast and Precise On-the-fly Patch
Validation for All. arXiv preprint arXiv:2007.11449 (2020).

[9] Thomas Durieux and Martin Monperrus. 2016. DynaMoth: Dynamic Code Syn-
thesis for Automatic Program Repair. In Proceedings of the 11th International
Workshop on Automation of Software Test (AST ’16). Association for Computing
Machinery, 85ś91.

[10] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-
pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 19ś30.

[11] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56ś65.

[12] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of
mutation testing. IEEE TSE 37, 5 (2011), 649ś678.

[13] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
program transformations from singular examples via big code. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 255ś266.

[14] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 298ś309.

[15] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273ś282.

[16] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437ś440.

ASE ’20, September 21ś25, 2020, Virtual Event, Australia Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang

[17] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller.
2007. Predicting faults from cached history. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 489ś498.

[18] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. 165ś176.

[19] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. Fixminer: Mining relevant fix
patterns for automated program repair. Empirical Software Engineering (2020),
1ś45.

[20] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering 38, 1 (2011), 54ś72.

[21] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169ś180.

[22] Xia Li and Lingming Zhang. 2017. Transforming Programs and Tests in Tandem
for Fault Localization. Proc. ACM Program. Lang. 1, OOPSLA, Article 92 (Oct.
2017), 30 pages. https://doi.org/10.1145/3133916

[23] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005.
Scalable statistical bug isolation. ACM Sigplan Notices 40, 6 (2005), 15ś26.

[24] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon. 2019. You
Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in
Benchmarking Automated Program Repair Systems. In 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST). 102ś113.

[25] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In SANER. 456ś467.

[26] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 31ś42.

[27] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé François D As-
sise Bissyande, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and
Yves Le Traon. 2020. On the Efficiency of Test Suite based Program Repair: A
Systematic Assessment of 16 Automated Repair Systems for Java Programs. In
42nd ACM/IEEE International Conference on Software Engineering (ICSE).

[28] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 727ś739.

[29] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 166ś178.

[30] Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 702ś713.

[31] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 298ś312.

[32] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 43ś54.

[33] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Can Automated Program Repair Refine Fault Localization? arXiv preprint
arXiv:1910.01270 (2019).

[34] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization? a
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 75ś87.

[35] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library
for java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis. 441ś444.

[36] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space
with Automatically Mined Templates: The Cardumen Mode of Astor. In SSBSE.
65ś86.

[37] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1ś24.

[38] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. IEEE,
153ś162.

[39] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-
ology (TOSEM) 20, 3 (2011), 1ś32.

[40] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605ś628.

[41] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 international symposium

on software testing and analysis. 199ś209.
[42] K Pearson. 1895. Notes on Regression and Inheritance in the Case of Two Parents

Proceedings of the Royal Society of London, 58, 240-242.
[43] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of

Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. 24ś36.

[44] Manos Renieres and Steven P Reiss. 2003. Fault localization with nearest neighbor
queries. In 18th IEEE International Conference on Automated Software Engineering,
2003. Proceedings. IEEE, 30ś39.

[45] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir:
Effective object-oriented program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 648ś659.

[46] Seemanta Saha et al. 2019. Harnessing evolution for multi-hunk program repair.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 13ś24.

[47] Raul Santelices, James A Jones, Yanbing Yu, and Mary Jean Harrold. 2009. Light-
weight fault-localization using multiple coverage types. In 2009 IEEE 31st Inter-
national Conference on Software Engineering. IEEE, 56ś66.

[48] Undo Software. 2016. Increasing software development productivity
with reversible debugging. https://undo.io/media/uploads/files/Undo_
ReversibleDebugging_Whitepaper.pdf. Accessed: Jan. 21, 2019.

[49] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 273ś283.

[50] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair
for heap properties. In Proceedings of the 40th International Conference on Software
Engineering. 151ś162.

[51] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far are We?. In the 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2020).

[52] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. 2010. Automated fixing of programs with contracts. In Proceedings
of the 19th international symposium on Software testing and analysis. 61ś72.

[53] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE, 364ś374.

[54] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2020. Historical Spectrum based Fault Localization. IEEE
Transactions on Software Engineering (TSE) (2020).

[55] M.Wen, J. Chen, R.Wu, D. Hao, and S. Cheung. 2018. Context-Aware Patch Gener-
ation for Better Automated Program Repair. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). 1ś11.

[56] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707ś740.

[57] Mingyuan Wu, Lingming Zhang, Cong Liu, Shin Hwei Tan, and Yuqun Zhang.
2019. Automating cuda synchronization via program transformation. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
748ś759.

[58] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu
Zhang. 2017. Precise condition synthesis for program repair. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 416ś426.

[59] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2016), 34ś55.

[60] Jifeng Xuan and Martin Monperrus. 2014. Learning to combine multiple ranking
metrics for fault localization. In 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 191ś200.

[61] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated repair of java pro-
grams via multi-objective genetic programming. IEEE Transactions on Software
Engineering (2018).

[62] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In 2011 27th IEEE Inter-
national Conference on Software Maintenance (ICSM). 23ś32.

[63] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting Mechanical
Faults to Localize Developer Faults for Evolving Software. In OOPSLA. 765ś784.

[64] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using PageRank. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 261ś272.

[65] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 14ś24.

