
Qi Tian
State Key Laboratory of

Coastal and Offshore Engineering,
Dalian University of Technology,

Dalian 116024, China;
Department of Industrial and

Systems Engineering, Rutgers,
The State University of New Jersey,

Piscataway, NJ 08854
e-mail: qt32@scarletmail.rutgers.edu

Shenghan Guo
Department of Industrial and

Systems Engineering, Rutgers,
The State University of New Jersey,

Piscataway, NJ 08854
e-mail: sg888@scarletmail.rutgers.edu

Erika Melder
Department of Computer Science,

University of Maryland-College Park,
College Park, MD 20742

e-mail: erikavmelder@gmx.com;
evmelder@umd.edu

Linkan Bian
Mem. ASME,

Department of Industrial and
Systems Engineering,

Mississippi State University,
Mississippi State, MS, 39762
e-mail: lb1425@msstate.edu

Weihong “Grace” Guo1

Mem. ASME
Department of Industrial and

Systems Engineering, Rutgers,
The State University of New Jersey,

Piscataway, NJ 08854
e-mail: wg152@rutgers.edu

Deep Learning-Based Data
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Additive Manufacturing
Laser-based additive manufacturing (LBAM) provides unrivalled design freedom with the
ability to manufacture complicated parts for a wide range of engineering applications.
Melt pool is one of the most important signatures in LBAM and is indicative of process
anomalies and part defects. High-speed thermal images of the melt pool captured during
LBAM make it possible for in situ melt pool monitoring and porosity prediction. This
paper aims to broaden current knowledge of the underlying relationship between process
and porosity in LBAM and provide new possibilities for efficient and accurate porosity pre-
diction. We present a deep learning-based data fusion method to predict porosity in LBAM
parts by leveraging the measured melt pool thermal history and two newly created deep
learning neural networks. A PyroNet, based on Convolutional Neural Networks, is devel-
oped to correlate in-process pyrometry images with layer-wise porosity; an IRNet, based
on Long-term Recurrent Convolutional Networks, is developed to correlate sequential
thermal images from an infrared camera with layer-wise porosity. Predictions from
PyroNet and IRNet are fused at the decision-level to obtain a more accurate prediction
of layer-wise porosity. The model fidelity is validated with LBAM Ti–6Al–4V thin-wall
structure. This is the first work that manages to fuse pyrometer data and infrared camera
data for metal additive manufacturing (AM). The case study results based on benchmark
datasets show that our method can achieve high accuracy with relatively high efficiency,
demonstrating the applicability of the method for in situ porosity detection in LBAM.
[DOI: 10.1115/1.4048957]
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1 Introduction
Laser-based additive manufacturing (LBAM) produces metal

parts from bottom to up through layer-wise cladding, which pro-
vides unprecedented possibilities to produce complicated parts
with multiple functions for a wide range of engineering applications
[1]. Powder bed fusion (PBF) and direct energy deposition (DED)
are two main methods in LBAM. PBF fuses the powder preplaced
layer by layer selectively using the laser [2]. In DED, the material is
infused into a melt pool which is used to fill in the cross-section of
the part and produce the part layer by layer. This process creates
large thermal gradients, leading to residual stress and plastic defor-
mation [3], which may affect the surface integrity, microstructure,
or mechanical properties of the products.
Since the shape and size of the melt pool are very important to

determining the microstructure of additive manufacturing (AM)
parts [4], melt pool data have been treated as one of the most impor-
tant signatures for monitoring and predicting defects [5]. Some
researchers develop finite element models to simulate the melt
pool for parameter selection in the process planning stage [6–9],

while others capture melt pool thermal images during manufactur-
ing and correlate the thermal images with defects for in situ
process monitoring [10–15].
On the physics-based simulation of the melt pool, finite element

model (FEM) has been widely used for modeling the melt pool
geometry and thermal distribution. For example, Romano et al.
established an FEM for the AM process to simulate the melt pool
thermal distribution and geometry in powder bed and compared
these characteristics between different powder materials [6]. Song
et al. presented a combination of FEM and experimental measure-
ments to analyze the impact of scanning velocity or laser power
on the melt pool size during the selective laser melting (SLM)
process [7]. Zhuang et al. developed an FEM to model the
change of melt pool dimensions and temperature field of Ti–6Al–
4V powder during SLM [8]. Tian et al. established an FEM for
fluid flow and heat transfer with different parameters to study the
impact of different parameters on the dilution ratio of the
Ni-based alloy [9]. All these methods, however, are limited to
melt pool simulation, which cannot be used for in situ process mon-
itoring or defect prediction due to the randomness in the actual man-
ufacturing process but beyond the capability of FEMs.
In recent years, the developments in LBAM and sensors enable

researchers to capture melt pool thermal behavior during the manu-
facturing process. High-speed thermal images of the melt pool

1Corresponding author.
Manuscript received June 4, 2020; final manuscript received October 17, 2020;

published online December 17, 2020. Assoc. Editor: Qiang Huang.

Journal of Manufacturing Science and Engineering APRIL 2021, Vol. 143 / 041011-1
Copyright © 2020 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/143/4/041011/6604377/m
anu_143_4_041011.pdf by R

utgers U
niversity user on 15 M

arch 2021

mailto:qt32@scarletmail.rutgers.edu
mailto:sg888@scarletmail.rutgers.edu
mailto:erikavmelder@gmx.com;
mailto:evmelder@umd.edu
mailto:lb1425@msstate.edu
mailto:wg152@rutgers.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4048957&domain=pdf&date_stamp=2020-12-17


captured during LBAM make it possible for in situ melt pool mon-
itoring and anomaly detection. Khanzedeh et al. used tensor decom-
position to extract features from thermal image streams to monitor
metal-based AM [10]. Mahmoudi et al. used the melt pool thermal
images as the input signal to detect layer-wise defects in PBF pro-
cesses [11]. Seifi et al. built a novel model to study the relationship
between thermal images and defects [12].
A major anomaly or defect with LBAM is porosity. The lack of

knowledge about the underlying process–porosity relationship,
along with the pressing need for efficient and accurate porosity pre-
diction, hampers the wide adoption of LBAM parts. This need has
motivated a few recent studies on porosity detection with in situ
pyrometry data of the melt pool. Khanzadeh et al. proposed a self-
organizing maps-based porosity prediction method considering the
thermal distribution and shape of the melt pool during LBAM [13].
Khanzadeh et al. used different supervised machine learning
methods to predict porosity based on the features extracted by the
Functional Principal Component Analysis from the melt pool
images [14]. Khanzadeh et al. analyzed the thermophysical dynam-
ics to predict porosity during DED using thermal images of the melt
pool [15]. Scime et al. used the melt pool image obtained by a high-
speed camera for in situ detection of keyholing porosity and balling
instabilities [16]. Mitchell et al. proposed a Gaussian filter-based
method to predict porosity using melt pool pyrometer images [17].
The bulk work of the existing image-based porosity prediction

methods, as reviewed earlier, focuses on extracting features from
images using statistical or machine learning methods. Deep learning
consists of neural networks with multiple hierarchical layers [18],
thus is superior over traditional machine learning methods in
finding hidden structures within large datasets and making more
accurate predictions. Compared with traditional machine learning
methods, which have proven to be inadequate at handling
massive data efficiently, deep learning has achieved superior perfor-
mance in image recognition, gait recognition, etc. [19–21], making
it suitable to be used for multi-sensor image data.
Deep learning has been investigated for surface defect inspection

[22], machinery fault diagnosis [23], defect prediction and residual
life estimation [24], and production scheduling [25]; however, its
potential in real-time monitoring of LBAM remains to be tapped.
A few recent studies explored deep learning for anomaly detection
in metal AM using acoustic signals [26,27] and infrared images
[28,29]. Scime et al. used a powder bed camera as the sensor and
presented a Convolutional Neural Network (CNN) to detect and
predict the powder bed defects autonomously [28].
Typical deep learning architectures include CNN, Recurrent

Neural Network (RNN), Auto Encoder, and so on. CNN is designed
to transfer image data to output variables. Since the sensor data can
be represented in 2D images, CNN can be adopted to effectively
handle the scale and position in variant structures in image data.
RNN is designed to work with sequence prediction problems.
The Long-term Recurrent Convolutional Networks (LRCN) [30]
have become an important part of RNNs these years due to their
superiority in dealing with long-range dependencies.
Our work aims to broaden current knowledge of the underlying

process–porosity causal relationship in LBAM and provide new
possibilities for efficient and accurate porosity prediction. We
present a deep learning-based data fusion method to predict porosity
in as-LBAM parts by leveraging the measured melt pool thermal
history and deep learning. PyroNet, which is a CNN-based
model, is established to correlate pyrometer images with layer-wise
porosity; IRNet, which is an RNN-based model, is established to
correlate infrared (IR) camera images with porosity. Predictions
from PyroNet and IRNet will be fused at the decision-level to
obtain a more accurate prediction of layer-wise porosity. We
would like to highlight that this is the first work that manages to
fuse pyrometer data and IR camera data for metal AM. The pyrom-
eter captures local heat transfer around the melt pool, whereas the
stationary IR camera allows to characterize the global, between-
layer thermal dynamics. While pyrometer data have been investi-
gated in several recent studies [13–15], IR camera data have

never been brought into the picture. Smart data fusion of these
two sources of data will allow to significantly enhance the predic-
tion accuracy of internal porosity.
The remainder of the paper is arranged as follows. Section 2

explains the pyrometer and IR data, including the data collection
procedure, pre-processing, porosity labeling, and augmenting the
imbalanced dataset. Section 3 presents the proposed decision-level
data fusion framework for porosity prediction, including a PyroNet
for pyrometer images and an IRNet for IR image sequences, and a
fusion method to combine the results from PyroNet and IRNet. The
results are analyzed in Sec. 4. Finally, Sec. 5 concludes the paper.

2 Data Characterization and Processing
In this section, the data source and pre-processing procedures are

first introduced in Sec. 2.1. Section 2.2 describes how we assign
porosity labels to input data. The data augmentation procedure to
handle the unbalanced data issue is explained in Sec. 2.3.

2.1 Data Collection and Pre-processing. The thermal data of
the melt pool in LBAM refer to Marshall et al. [31]. Specifically, a
LENS™ 750 system is applied to produce a Ti–6Al–4V thin-wall
structure. The system is equipped with two sensors for in-process
data collection. A pyrometer (Stratonics, Inc.) measures the melt
pool temperature. An infrared (IR) camera (Sierra-Olympic Tech-
nologies, Inc. Viento320) detects infrared energy during manufac-
turing and converts it to produce a thermal image of the melt
pool. The setup of the IR sensor and pyrometer inside the
LENS™ chamber is presented in Fig. 1.
It can be seen from Fig. 1 that the pyrometer is mounted above

the build plate, outside the chamber. In this setup, the pyrometer
can monitor the temperature of the melt pool in a vertical direction.
The data of the pyrometer are output to comma separated value
(CSV) files, each of which contains a 752 × 480 (width × height)
matrix of temperature values. As for the IR camera, it is oriented
at around 62.7 deg with respect to the middle of the build plate.
The IR camera monitors the thermal changes of the sample edge-
wise, whose data are also output to CSV files, each of which con-
tains a 320 × 240 (width × height) matrix of temperature values.
Due to the different scanning rates of the two sensors, 1564

pyrometer images and 6256 IR images are obtained during
LBAM. This indicates that approximately every four IR images cor-
respond to one pyrometer image. Among the 6256 IR images, some
are eliminated because they do not contain any useful melt pool
information. This is because these images are collected between
two layers when the deposition head moves back to its original posi-
tion to start printing the next layer.

Fig. 1 Setup of the infrared camera and the pyrometer [31]
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The raw images are large relative to the melt pool, which brings
the need to remove some of the backgrounds and focus on the melt
pool. To do so, we select a submatrix from the original data matrix,
which is used to generate an Red Green Blue (RGB) image in
MATLAB. Specifically, the submatrix of each pyrometer image is in
rows 380–580 and columns 120–320, while the one of each IR
image is in rows 125–185 and columns 50–190, both of which
are focusing on the high-temperature area of the melt pool. The

jet colormap is selected to provide the best color contrast for the
melt pool temperature.
Pyrometer data have strong spatial correlations but relatively

weak temporal correlations. The prediction power for porosity in
these data mainly comes from their spatial correlations rather than
from the neglectable temporal correlations [10,14]. Hence, this
study mainly explores the spatial patterns of pyrometer data for
porosity prediction. IR data, on the other hand, have much stronger

Fig. 2 First, middle, and last scans on layer 29 for (a)–(c) pyrometer data and (d )–(f ) infrared camera data
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temporal dependence. This is because the scanning direction of the
IR camera is about 45 deg to the melt pool, making IR images very
different from each other in the same layer, as shown in Fig. 2.
The temporal correlations in IR images are the major source of pre-
diction power for porosity, thus cannot be neglected. Therefore, it is
reasonable to treat IR images as image sequences rather than indi-
vidual images.
An image sequence contains several continuous-time images, just

like the frames in a video. Having a long sequence can better pre-
serve the long-term temporal correlations but poses challenges to
the computational efforts of deep learning models. Our preliminary
analysis of comparing sequences of 2, 3, 4, or 5 IR images has
shown that having three continuous-time IR images as a sequence
can provide the best balance between model accuracy and compu-
tational efficiency. Therefore, we will transfer every three IR images
to an IR sequence.

2.2 Porosity Labeling. Supervised deep learning requires that
each melt pool image must have a porosity label. In this paper, the
porosity labeling process is conducted by 3D computed tomography
(CT) (refer to Khanzadeh et al. [14]), giving the size and shape of the
pores for each sample. For those having a pore with diameter larger
than 0.05 mm, they are treated as “bad” samples with porosity, oth-
erwise as “good” samples with neglectable porosity. In this way,
pyrometer images are labeled [14]. As for the way to label IR
images, they are determined following the mapping between pyrom-
eter images and IR images. The porosity label of each IR sequence is
then determined according to themajority labels of the images in that
sequence. Each IR sequence is then mapped to a pyrometer image
according to the timestamp of data collection.
After the above processing and labeling, we obtain 840 pyrometer

images, including 774 “good” and 66 “bad” ones. A pyrometer image
with the “good” label and one with the “bad” label are compared in
Fig. 3. It can be seen that the “good” image has no obvious porosity
while the “bad” image does. We also obtain 840 IR sequences, with
the same labels as the corresponding pyrometer images.

2.3 Cross-validation With Data Augmentation. The size of
pyrometer/IR data set is rather small, which may potentially cause
overfitting issue. To avoid overfitting [32], 6-fold cross-validation
(CV) was used to partition the pre-processed data into six parts.
The random partitioning in CV adopted stratified sampling, i.e.,
1/6 portion of the “good” samples and 1/6 portion of the “bad”
samples, is randomly drawn from the original data (without replace-
ment) to form a fold. Thus, in each fold, we have 129 “good”
samples and 11 “bad” ones. Fivefolds are taken to form the training
set, and one fold is preserved as the test set. There are total 645
“good” samples and 55 “bad” ones in the training set, and 129
“good” samples and 11 “bad” ones in the test set.

Data augmentation is a necessary processing step before the
actual model training. This is because the training data size, 700,
are small for building a deep learning model. Meanwhile, the imbal-
ance between “good” and “bad” samples, i.e., 645 versus 55, is
likely to compromise the learning outcome and prediction
accuracy—the model trained on such data would not fully learn
the population of “bad” samples and tend to make false-negative
predictions. To resolve these concerns, we augment the “bad”
samples in training data using bootstrapping. Bootstrapping has
been used in training data/feature augmentation to improve the
learning outcomes of machine learning/deep learning models
[33]. Bootstrapping is used to augment the “bad” samples to
645, i.e., the same size as the “good” samples. In this way, we
have a balance between the “good” and “bad” samples in the
training set. Note that the bootstrapping is only used for the
training set.
During model training, 1/6 of the training set is separated as the

training-phase validation data, which consists of 1/6 “good”
samples and 1/6 “bad” ones. The 5/6 training part is used to train
the deep learning models, and the 1/6 validation part is to validate
the models with suitable hyper-parameters. In summary, there are
538 “good” and 538 “bad” samples in the training part of the training
set, 107 “good” and 107 “bad” samples in the validation part of the
training set, 129 “good” and 11 “bad” samples in the test set. By par-
titioning the pyrometer data in this manner, the corresponding IR
data sequences automatically formed the training/testing set in the
same way.

3 Deep Learning-Based Data Fusion Method
In this section, we will first introduce the decision-level data

fusion framework for porosity detection in Sec. 3.1, followed by
a CNN model for pyrometer images and an LRCN model for IR
data in Secs. 3.2 and 3.3, respectively.

3.1 Decision-Level Data Fusion. The proposed decision-level
data fusion framework is illustrated in Fig. 4. After generating
pyrometer images and IR sequences from the raw data, 3D CT is
used to identify porosity; porosity labels are then assigned to both
pyrometer images and IR sequences. Next, the labeled pyrometer
images are fed into a CNN model (VGG16), and the labeled IR
sequences are fed into an LRCN model to train the supervised
deep learning models. Note that the pyrometer data and IR data
are used separately; the two models are trained separately.
After model training, the well-trained VGG16 model and LRCN

model are used to predict the porosity condition for the test set
pyrometer images and IR sequences. The predicted probability of
the ith pyrometer image being “good” is denoted as p̂ pyro(i); the pre-
dicted probability of the ith IR sequence being “good” is p̂IR(i).

Fig. 3 (a) A pyrometer image with “good” label and (b) a pyrometer image with “bad” label

041011-4 / Vol. 143, APRIL 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/143/4/041011/6604377/m
anu_143_4_041011.pdf by R

utgers U
niversity user on 15 M

arch 2021



Therefore, each melt pool receives two predictions, which are then
fused according to a weighted average of the two predicted proba-
bilities. The final predicted probability of the ith sample to be
“good,” p̂(i), can be calculated by

p̂(i) = w · p̂ pyro(i) + (1 − w) · p̂IR(i) (1)

where w∈ [0, 1] is the weighting factor of pyrometer data. If p̂(i) is
larger than 0.5, the ith sample will be predicted as a “good” sample
with neglectable porosity; otherwise, it will be detected as a “bad”
sample and that there is porosity.

3.2 Convolutional Neural Network Model for Pyrometer
Data—PyroNet. We develop a CNN model, called PyroNet, for
the pyrometer data. The PyroNet adopts the classical VGG16 [34]
structure for the following advantages. First, VGG16 adopts con-
secutive 3 × 3 convolution cores instead of the lager convolution
nucleus (such as 11 × 11, 5 × 5) in traditional deep learning struc-
ture. The smaller convolution kernels can increase the depth of
the network and make the network able to learn more complex pat-
terns. Second, the number of parameters in the VGG16 network is
small, which can help reduce the computational time. The modified
VGG16 architecture for PyroNet is shown in Fig. 5.
The input of PyroNet is RGB pyrometer images with a resolu-

tion of 224 × 224 pixels (width × height) denoted as Hi, where i is
the index of the pyrometer image and i= 1, 2,…. The VGG16
structure mainly contains convolutional layers, max-pooling
layers, flatten layer, drop-out layers, and fully connected (FC)
layers. The convolutional layers are used to extract features from
the input images and the previous convolutional layer, and they
have weights that need to be trained. As for the max-pooling
layers, they are used to reduce the number of parameters and com-
putation by down-sampling the representation. Flatten layer, just as
its name implies, is used to flatten the data matrix into vectors
which can be dealt with FC layers. Drop-out layers are used to
delete some parameters to avoid overfitting. Finally, the FC
layers are mainly used to take the results of the convolution/
pooling process and use them to classify the image into a label,
thus finish the prediction. Details about the hyper-parameters in
our PyroNet are shown in Fig. 6.
In PyroNet, the pyrometer images Hi will go through five blocks

that are used to extract features (shown as Conv1_x, Conv2_x,
Conv3_x, Conv4_x, and Conv5_x in Fig. 6). Each of these
blocks is composed of several convolutional layers and end up
with a max-pooling layer. Specifically, the kernel size of the convo-
lution layers is always 3, which means that at a convolutional layer,
a 3 × 3 ×P kernel, h, is performed on an M×N×P input map, x=
(x)mnp∈ℝM×N×P, to generate an output map, x′ = (x′)mnq∈
ℝM×N×Q, of Q channels

x′mnq = (h ∗ x)mnq =
∑Q/2

i3=−Q/2

∑1
i2=−1

∑1
i1=−1

hi1i2 i3 · xm−i1, n−i2 , q−i3 (2)

Fig. 4 Decision-level data fusion framework

Fig. 5 VGG16 architecture for the PyroNet, adapted from Ref. [35]
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where * is the convolutional operator. The activation function of
these convolution layers is ReLU [36] (i.e., rectified linear unit),
which is used to remove the negative values, and follows a quite
simple function y = (y)mnq ∈ RM×N×Q, ymnq =max (0, x′mnq).
The stride of 1 and pad of 1 are used for all the convolutional
layers. The max-pooling layer with a kernel size of 2 then
reduces the revolution of y and improves the robustness of
learned features. In max-pooling, the R×C×Q output map, z=
(z)rcq∈ℝR×C×Q, is achieved by computing the maximum values
over non-overlapping regions of the input map y with a 2 × 2
square filter

zrcq = max
m, n∈{1,2}

(y(2r+m)(2c+n)q) (3)

q= 1, 2, …, Q. An illustration of the first max-pooling layer in
PyroNet is shown in Fig. 7. Through each block (Conv1_x,
Conv2_x, …, Conv5_x), the resolution of input becomes half of
its original resolution (224, 112, 56, 28, and 14) due to max-pooling
layers, while the dimension doubles until 512 (64, 128, 256, 512,
and 512) as the number of filters for convolutional layers increase.

After passing the 5th block (Conv5_x), the features extracted for
Hi form z(5)i = [(z(5))rcq]i ∈ R7×7×512, which are flattened into a

vector, z(5)i ∈ R1×25088, and then fed to two FC layers (equipped
with ReLU activation function) with 4096 channels each

f (1)ij =max 0, b(1) +
∑25088
k=1

z(5)ik · w(1)
jk

( )
,

j = 1, 2, . . . , 4096

(4)

f (2)ij =max 0, b(2) +
∑4096
k=1

f (1)ik · w(2)
jk

( )
,

j = 1, 2, . . . , 4096

(5)

where w(l)
jk and b(l ) are the weight and bias of FC layers, l= 1, 2. A

1D feature vector f (2)i ∈ R1×4096 is thus obtained. To avoid overfit-
ting, a drop-out layer is added after each of these two FC layers,
whose rate is 0.5.

Fig. 6 Hyper-parameters in the PyroNet
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After that, another FC layer which uses a two-way softmax func-
tion as the activation is to establish the relationship between
extracted features f (2)i and binary porosity label (0 for “good” and
1 for “bad”) in PyroNet. The probability of a sample to be
“good,” p̂ pyro(i), can be calculated by

p̂ pyro(i) =
e fi0

e fi1 + e fi0
,

fij = bj +
∑4096
k=1

f (2)ik · wjk , j = 0, 1

(6)

where p̂ pyro(i) is the predicted probability of a pyrometer image
showing neglectable porosity (diameter of <0.05 mm, predicted as
“good”). wjk and bj are the weight and bias of the final FC layers.
The predicted label of the pyrometer image will be “good” if
p̂ pyro(i) > 0.5.
We use the Keras package to build up the PyroNet. The pyrom-

eter images are resized to 224 × 224 pixels (width × height) and then
fed into the PyroNet. To train the PyroNet, categorical cross-
entropy is used as the loss function

CE = −pi log p̂ pyro(i) − (1 − pi) log (1 − p̂ pyro(i)) (7)

where pi is the ground truth. The stochastic gradient descent (SGD)
method is selected as the optimizer. We use classification accuracy
as the performance metric in model training. A well-trained PyroNet
will be used to predict the probability for the pyrometer images in
the test set to be “good,” p̂ pyro(i), and then used for the data
fusion framework to calculate the final predicted probability of a
sample to be “good,” p̂(i).

3.3 LRCN Model for Infrared Image Data—IRNet. We
develop an IRNet for the IR image sequences. Since our IR data
are several individual sequences where each sequence contains
three time-continuous IR images, IRNet needs to model the
spatial information of each IR image as well as the temporal infor-
mation among the three images in the same sequence. To model
sequential images, IRNet incorporates the idea of the LRCN
model [30], which combines a CNN model to deal with image
data and an RNN model (e.g., Long Short-Term Memory
(LSTM) model) to handle temporal information.
A commonly used structure in the LRCN model is known as the

FC-LSTM structure. It adopts several convolutional layers to
extract features of images that have been added with temporal

information through time-distributed layers first. After that, a
flatten layer, a combination of FC layers, and drop-out layers will
convert the parameters into a vector and decrease the number of
parameters. Finally, an LSTM layer will model the temporal infor-
mation and another FC layer is used to predict the classification
label. This FC-LSTM structure is illustrated in Fig. 8.
The major disadvantage of FC-LSTM is the way to handle spa-

tiotemporal data. Since it uses FC layers to finish transitions
between input and state, as well as the ones between state and
state, it is unable to encode spatial information [35]. Also, the
LSTM layer can only deal with one-dimensional vectors; thus,
the information has to be flattened to fit the input of the LSTM layer.
To cope with this disadvantage of FC-LSTM, our IRNet employs

the ConvLSTM2D layer in the Keras package to build up the LRCN
model, as shown in Fig. 9. The ConvLSTM2D layer is similar to an
LSTM layer, while both of the recurrent transformations and input
transformations are convolutional. That is to say, it can effectively
deal with spatial information and temporal information simulta-
neously. The input of IRNet is IR sequences, each of which contains
three resized 224 × 224 pixels (width × height) RGB IR images.
The input of IRNet is denoted as H̃i, where i is the index of the IR

sequence and i= 1, 2, …. Each of the sequences contains three

Fig. 7 Max-pooling layer illustration

Fig. 8 FC-LSTM structure
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resized 224 × 224 pixels (width × height) RGB IR images, denoted
as χ1, χ2, and χ3 for each sequence. The input sequences will go
through three ConvLSTM2D blocks. Each ConvLSTM2D block
contains two ConvLSTM2D layers [37] with the same kernel size
(set as 3), pad (set as 1), and return sequence (set as True to feed-
back all the information in each input sequence), whose equations
are shown as follows:

it = σ(Wxi ∗ χt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ χ t +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ χt +Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ χt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(8)

where χt is each image in the input sequence i, t= 1, 2, 3. it, ft, ot are
input gate, forgot gate, output gate of the tth image in the sequence,
respectively. Ct is the cell output, and Ht is the hidden state. σ is the
logistic sigmoid function, “*” denotes the convolution operator, and
“◦” means the Hadamard product. The weight tensor subscripts
have the obvious meaning; for example, Whi is the hidden-input
gate tensor and Wxo is the input–output gate tensor, etc. Bias is
also considered, which are denoted as b with certain subscripts.
Through these blocks, the resolution of the images in input

sequences is halved twice, from 224 to 56, while the dimension is
doubled twice, from 64 to 256, since we set a larger and larger fil-
tering parameter for each block. The stride in the second
ConvLSTM2D layers in three blocks is set as 2, which is different
from the one in the first ConvLSTM2D layer in that block. By doing
so, these ConvLSTM2D are equivalent to one ConvLSTM2D layer
with stride 1 and another pooling layer. This arrangement decreases

the resolution of the data while offering better performance than
using the pooling layer. Also, between two ConvLSTM2D layers
in each part, a Batch Normalization layer is used to transfer the
mean of activation of the previous layer close to 0 and its standard
deviation near 1. Other parameters of the ConvLSTM2D layers use
their default values, such as the “tanh” activation, “hard_sigmoid”
recurrent activation, and so on.
The rest of IRNet is quite similar to PyroNet: after going through

the ConvLSTM2D blocks, the data will be flattened, and a combina-
tion of FC layers and drop-out layers will decrease the number of
parameters and predict the possibility of IR sequences to be “good”
or “bad” by another FC layer using two-way softmax as the activation
function.Categorical cross-entropy is used as the loss function, SGD
withNesterov [38]momentum is used as the optimizer, and accuracy
is used as the performance metric to train the IRNet. Note that the
learning rate in SGD is adjusted according to the accuracy of the vali-
dation part during model training to avoid local optimum. A well-
trained IRNet is then used to predict the probability to be “good”
for the IR sequences in the test set, p̂IR(i), and finally used for the
data fusion framework to calculate p̂(i) according to Eq. (1).

4 Results and Analysis
Since 6-fold CV is performed to help prevent overfitting, we first

present the detailed results and analysis for one of the folds (called
Fold 1) in Secs. 4.1 to 4.3. Specifically, we will analyze the perfor-
mance of PyroNet and compare them with existing studies in
Sec. 4.1. The performance of IRNet will be presented in Sec. 4.2.
The fused results will be given in Sec. 4.3. Finally, the performance
of other folds (Fold 2 to Fold 6) will be listed in Sec. 4.4.

Fig. 9 Hyper-parameters in the IRNet
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4.1 PyroNet Results. The PyroNet is trained by a training set,
including 538 “good” and 538 “bad” pyrometer images to train the
model and 107 “good” and 107 “bad” pyrometer images to validate
the model. The batch size is 96, and the epoch number is 100.
The loss and accuracy during the training process of PyroNet are
presented in Fig. 10.
It can be seen from Fig. 10 that as the epoch number grows, both

the training loss and validation loss decrease to nearly 0, while both
the training accuracy and validation accuracy increase to almost 1,
indicating that our PyroNet is well trained by the pyrometer dataset.
After training the PyroNet, we can use it to predict the porosity

label for the test set (including 129 “good” and 11 “bad” pyrometer
images). The confusion matrix of PyroNet is presented in Table 1.
In this study, we treat “bad” as positive and “good” as negative.

Thus, True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN) are 10, 0, 129, 1, respectively. Hence, per-
formance indicators such as accuracy, recall, and precision can be
determined by

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (9)

Recall =
TP

TP + FN
× 100% (10)

Precision =
TP

TP + FP
× 100% (11)

Fig. 10 Loss and accuracy during the training process of the PyroNet

Table 1 Confusion matrix of the PyroNet

Actual class

Predicted class

Bad Good

Bad 10 1
Good 0 129

Table 2 Performance comparison with existing methods

Method
Accuracy

(%)
Recall
(%)

Precision
(%)

False-
positive
rate (%)

T2 chart with tensor
decomposition by
Khanzadeh et al. [10]

90.74 95.24 61.86 10.0

Q chart with tensor
decomposition by
Khanzadeh et al. [10]

88.19 25.40 80.00 1.08

K-Nearest Neighbor
(KNN) by Khanzadeh
et al. [14]

NA 98.44 NA 0.19

PyroNet 99.29 90.90 100 0

Note: NA in the table means unavailable.
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The performance indicators are compared with those from exist-
ing research that used the same data source. The comparison results
are presented in Table 2.
Comparison results in Table 2 show that the proposed PyroNet

yields higher accuracy, higher precision, and a lower false-positive
rate than existing methods, suggesting the superiority of deep learn-
ing methods for porosity detection with melt pool images. We also
notice that the recall value of our proposed method is not the best
but still acceptable. The difference in the recall performance is
partly due to the different number of true “bad” samples in the

Fig. 11 Loss and accuracy during the training process of the IRNet

Table 3 Confusion matrix of the IRNet

Actual class

Predicted class

Bad Good

Bad 5 6
Good 0 129

Table 4 Estimated probability that the melt pool is “good”

Image
index

PyroNet
prediction
p̂ pyro(i)

IRNet
prediction
p̂IR(i)

Fused
prediction p̂(i)

True
label

1 0.01 0 0.006 “bad”
3 0.02 0 0.012 “bad”
4 0.74 0.04 0.46 “bad”
5 0.02 0.09 0.048 “bad”
6 1 0.97 0.988 “good”
7 1 0.99 0.996 “good”
8 0.99 0.87 0.942 “good”
11 0.99 1 0.994 “good”
21 0 1 0.4 “bad”
41 0.08 1 0.448 “bad”
47 0 1 0.4 “bad”
62 0 1 0.4 “bad”
81 1 0.85 0.94 “good”
91 0 1 0.4 “bad”
122 0.01 1 0.406 “bad”
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test set. Khanzadeh et al. [10] had 63 true “bad” samples in the test
set, while we have only 11. Thus, the small number of “bad”
samples in our test set causes a relatively significant impact on
our recall result. It is noticed that the data pre-processing in Khan-
zadeh et al. [10] differed from ours, but the comparison remains
valid and fair since identical raw dataset from the same AM
process underlaid the comparison.

Table 5 Confusion matrix after data fusion

Actual class

Predicted class

Bad Good

Bad 11 0
Good 0 129

Fig. 12 Loss and accuracy during the training process of the PyroNet for Fold 2 to Fold 6: (a) fold 2, (b)
fold 3, (c) fold 4, (d) fold 5, and (e) Fold 6
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4.2 IRNet Results. The IRNet is trained by a training set,
including 1076 IR sequences with half “good” and half “bad” to
train the model, and 214 IR sequences with half “good” and half
“bad” to validate the model. The batch size is 96, and the epoch
number is 100. The loss and accuracy during the training process
of IRNet are presented in Fig. 11.
From Fig. 11, it is clear that after some fluctuations, the

training process finally converges, which means that the
IRNet is well trained. Next, the well-trained IRNet is used to
predict porosity label for IR sequences in the test set with 129
“good” and 11 “bad.” The confusion matrix of IRNet is presented
in Table 3.
From Table 3, it can be seen that the overall performance

of the IRNet is not as good as the PyroNet. Thus, we assign
a relatively higher weight to PyroNet results, believing the
PyroNet to be more effective than the IRNet. A factor of w= 0.6
is suggested for the decision-level data fusion for porosity
prediction.

4.3 Data Fusion Results and Analysis. By setting the weight-
ing factor as 0.6, we combine the PyroNet predicted probability of a
sample being “good” p̂ pyro and the IRNet predicted probability p̂IR
to calculate the p̂ value for each sample in the test set. Most samples
have a fused probability of 0 or 1, indicating high confidence in the
prediction. The results of selected samples that have p̂ between 0
and 1 are shown in Table 4.
From Table 4, it can be seen that the PyroNet prediction and

IRNet prediction are not consistent for samples 4, 21, 41, 47, 62,
91, and 122. For most of them, such as samples 21, 41, 47, 62,
91, and 122, PyroNet prediction is accurate compared with the
true label. However, for sample 4, it is misclassified by the
PyroNet, whose true label is “bad” while the predicted probability
to be “good” is p̂ pyro(4) = 0.74. On the other hand, the IRNet of
the 4th sample gives a very low predicted probability to be
“good,” p̂IR(4) = 0.04. It gives the fused predicted probability
p̂(4) = 0.46, which is less than 0.5, and so, the 4th sample will be
predicted as “bad.” The predicted labels of other samples after

Fig. 13 Loss and accuracy during the training process of the IRNet for Fold 2 to Fold 6: (a) fold 2, (b) fold 3, (c) fold 4, (d) fold 5, and
(e) fold 6
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data fusion are the same as the ones from PyroNet. By considering
the information in IR data, we can achieve perfect results whose
confusion matrix is shown in Table 5.
Moreover, both PyroNet and IRNet can predict the porosity con-

dition of the 140 samples in the test set within 30 s. This indicates
that the total time of detecting a sample in the LBAM process takes
less than half a second (around 0.43 s, to be exact), which proves
our proposed method is fast enough for in situ monitoring during
the LBAM process.

4.4 Performance of Fold 2 to Fold 6. Similar to Fold 1, we
also train the PyroNet and IRNet by using pyrometer data and IR
data in the training set of Fold 2 to Fold 6, respectively. The training
performance (i.e., training/validation loss and training/validation
accuracy) of PyroNet and IRNet for Fold 2 to Fold 6 is shown in
Figs. 12 and 13. From these figures, it is clear that the deep learning
models were well trained. The training/validation accuracy con-
verged to nearly 1 in all folds for pyrometer data and Folds 2, 3,
4, 5 for IR data; The training/validation loss converged to around
0 in all folds for pyrometer data and Folds 2, 3, 4, 5 for IR data.
Next, we use the trained PyroNet and IRNet on pyrometer data

and IR data in test sets of different folds to obtain p̂ pyro and p̂IR,
respectively. The performance including the confusion matrix and
accuracy of PyroNet and IRNet for all folds is shown in Tables 6
and 7. From Table 6, it can be seen that the performance of
PyroNet in all folds is quite good, and all the accuracy values of
them are larger than 96%. Among them, Fold 6 gives relatively
poor performance. Comparing with Table 6, the IRNet results in
Table 7 are not as good as the ones of PyroNet but acceptable.
The accuracy values of all folds are not less than 90%. In agreement

with PyroNet, Fold 6 shows the worst performance. The good per-
formance of Tables 6 and 7 proves that both of the PyroNet and
IRNet are trained properly and can be used for the data fusion
framework.
Finally, a factor of w= 0.6, which is the same value as we use in

Sec. 4.2, is set as the weight of PyroNet while doing decision-level
data fusion to get p̂. The final porosity prediction results can be
obtained, whose performance is shown in Table 8. From Table 8,
we can see that our proposed data fusion framework shows close
performance for all folds. Among them, Fold 1 shows the best per-
formance, while Fold 6 shows the worst.
Furthermore, a comparison between Tables 6 and 8 suggests that

considering potential features in IR data and incorporating IRNet
results can improve the porosity prediction performance for Folds
1, 2, and 5, while the ones of other folds (Folds 3, 4, and 6) will
not become worse, which shows the effectiveness of our proposed
method.

5 Conclusion and Future Work
In this study, a deep learning-based decision-level data fusion

method is proposed for in situ porosity detection during the
LBAM process. The proposed method correlates melt pool
thermal behavior, captured by pyrometer and infrared camera,
with porosity. Specifically, a convolutional neural network called
PyroNet is developed based on VGG16 to correlate pyrometer
images with porosity; an IRNet is developed based on an LRCN
to correlate IR image sequences with porosity. A data fusion frame-
work is proposed to combine the predictions from PyroNet and
IRNet to predict porosity.
To our knowledge, this is the first work that manages to fuse

pyrometer data and IR camera data for metal AM. This study
proves that although IR data were not used in previous studies, it
has some implicit associations with porosity, thus can be used
together with pyrometer data to help increase porosity prediction
accuracy. We also prove that even though both of the pyrometer
data and IR data are useful for porosity prediction, considering dif-
ferent collecting methods and data features, it would be better to set
a higher weight for pyrometer data comparing with IR data since we
have more confidence for pyrometer data. Moreover, despite a rela-
tively slow training process of CNN model and LRCN model, once
the deep learning model is well trained by training data, it can be
used to predict porosity for new samples with high efficiency,
making our method able to be used for in situ melt pool monitoring
and detection of internal porosity during LBAM.
The main limitation of this study lies in the empirical selection of

the weighting factor w and probability threshold p. In the future, we
may consider designing optimization algorithms to select the
optimal w and p automatically. Another interesting topic for
future work is to incorporate data from additional sensors, LBAM
process parameters, and physics information into our proposed
data fusion framework to increase the accuracy and efficiency of
porosity prediction. Besides, how to propose a suitable method to
study the potential temporal patterns of pyrometer data may be an
interesting topic in future studies.
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