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Abstract

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study
recently; MCSP is hard for SZK under rather powerful reductions (Allender and Das
Inf. Comput. 256, 2-8, 2017), and is provably not hard under “local” reductions com-
putable in TIME(n%*°) (Murray and Williams Theory Comput. 13(1), 1-22, 2017).
The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses
of P) under some of the more familiar notions of reducibility (such as many-one or
Turing reductions computable in polynomial time or in AC?) is closely related to
many of the longstanding open questions in complexity theory (Allender and Hira-
hara ACM Trans. Comput. Theory 11(4), 27:1-27:27, 2019; Allender et al. Comput.
Complex. 26(2), 469-496, 2017; Hirahara and Santhanam 2017; Hirahara and Watan-
abe 2016; Hitchcock and Pavan 2015; Impagliazzo et al. 2018; Murray and Williams
Theory Comput. 13(1), 1-22, 2017). All prior hardness results for MCSP hold also
for computing somewhat weak approximations to the circuit complexity of a func-
tion (Allender et al. STAM J. Comput. 35(6), 1467-1493, 2006; Allender and Das Inf.
Comput. 256, 2-8, 2017; Allender et al. J. Comput. Syst. Sci. 77(1), 14-40, 2011;
Hirahara and Santhanam 2017; Kabanets and Cai 2000; Rudow Inf. Process. Lett.
128, 1-4, 2017) (Subsequent to our work, a new hardness result has been announced
(Ilango 2020) that relies on more exact size computations). Some of these results
were proved by exploiting a connection to a notion of time-bounded Kolmogorov
complexity (KT) and the corresponding decision problem (MKTP). More recently,
a new approach for proving improved hardness results for MKTP was developed
(Allender et al. STAM J. Comput. 47(4), 1339-1372, 2018; Allender and Hirahara
ACM Trans. Comput. Theory 11(4), 27:1-27:27, 2019), but this approach estab-
lishes only hardness of extremely good approximations of the form 1 4 o(1), and
these improved hardness results are not yet known to hold for MCSP. In particular,
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it is known that MKTP is hard for the complexity class DET under nonuniform 5&00
reductions, implying MKTP is not in AC°[ p] for any prime p (Allender and Hirahara
ACM Trans. Comput. Theory 11(4), 27:1-27:27, 2019). It was still open if similar
circuit lower bounds hold for MCSP (But see Golovnev et al. 2019; Ilango 2020). One
possible avenue for proving a similar hardness result for MCSP would be to improve
the hardness of approximation for MKTP beyond 1+ o(1) to w(1), as KT-complexity
and circuit size are polynomially-related. In this paper, we show that this approach
cannot succeed. More specifically, we prove that PARITY does not reduce to the prob-
lem of computing superlinear approximations to KT-complexity or circuit size via
AC'-Turing reductions that make O (1) queries. This is significant, since approximat-
ing any set in P/poly AC%-reduces to just one query of a much worse approximation of
circuit size or KT-complexity (Oliveira and Santhanam 2017). For weaker approxima-
tions, we also prove non-hardness under more powerful reductions. Our non-hardness
results are unconditional, in contrast to conditional results presented in Allender and
Hirahara (ACM Trans. Comput. Theory 11(4), 27:1-27:27, 2019) (for more power-
ful reductions, but for much worse approximations). This highlights obstacles that
would have to be overcome by any proof that MKTP or MCSP is hard for NP under
AC? reductions. It may also be a step toward confirming a conjecture of Murray and
Williams, that MCSP is not NP-complete under logtime-uniform 5&00 reductions.
Keywords Minimum Circuit Size Problem - Reductions - NP-completeness -
Time-bounded Kolmogorov complexity

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the problem of determining whether
a (given) Boolean function f (represented as a bitstring of length 2% for some k) has
a circuit of size at most a (given) threshold 6. Although the complexity of MCSP has
been studied for more than half a century (see [24, 32] for more on the history of the
problem), recent interest in MCSP traces back to the work of Kabanets and Cai [24],
who connected the problem to questions involving the natural proofs framework of
Razborov and Rudich [30].

Since then, there has been a flurry of research on MCSP [3-6, 9, 10, 18-21, 23,
26, 27], but still the exact complexity of MCSP remains unknown. MCSP is in NP,
but it remains an important open question whether MCSP is NP-complete.

MCSP is Likely Notin P There is good evidence for believing MCSP ¢ P. If MCSP is
in P, then there are no cryptographically-secure one-way functions [24]. Furthermore,
[3] shows MCSP is hard for SZK under BPP-Turing reductions, so if MCSP € P then
SZK C BPP, which seems unlikely.

Showing MCSP is NP-Hard Would Be Difficult Murray and Williams [26] have shown
that if MCSP is NP-hard under polynomial-time many-one reductions, then EXP #
ZPP, which is a likely separation but one that escapes current techniques. Results
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from [3, 21, 26] also give various likely (but difficult to show) consequences for
MCSP being hard under more restrictive forms of reduction. We note that it has been
suggested that MCSP might well be complete for NP [23]. In this regard, it may
also be relevant to note that MCSP®F is complete for PSPACE under ZPP-Turing
reductions [5].

The Hardness of Both MCSP and Approximating MCSP Have Important Conse-
quences for Complexity Theory We have already mentioned that if MCSP is NP-hard
under polynomial-time reductions, then EXP # ZPP [26]. In a recent develop-
ment, Hirahara [18] shows that if a certain approximation to MCSP is NP-hard, then
NP & BPP implies that NP is difficult to compute even on average. In another recent
development, several papers ([28], [29], [25]) study “hardness magnification” phe-
nomena, whereby seemingly meager n - log?" n circuit lower bounds on certain
parameterizations of MCSP imply much stronger results such as NP & P/poly.!

MCSP is Not Hard for NP in Limited Settings Murray and Williams [26] show MCSP
is not NP-hard under a certain type of “local” reductions computable in TIME(n%4°).
This is significant, since many well-known NP-complete problems are complete
under local reductions computable in even logarithmic time. (A list of such problems
is given in [26].) Also, under cryptographic assumptions, very weak approximations
to MCSP are not NP-hard, even under P/poly reductions [4].

Many Hardness Results for MCSP Also Hold for Approximate Versions of MCSP In
various settings, the power of MCSP to distinguish between functions with circuits
of size 6 and those requiring size 6 + 1 is not needed. Rather, in [3, 5, 8, 23, 27, 31],
the reduction succeeds assuming only that reliable answers are given to queries on
instances of the form (7, ), where either the truth table T requires circuits of size
> 6 = |T | or T can be computed by circuits of size < |T'|°.

This is an appropriate time to call attention to one such reduction to approxima-
tions to MCSP. Corollary 66 of [27] shows that, for every small § > 0, for every
solution S to MCSP[n‘S, n'5],2 for every set A € P/poly, thereis a ¢ > 1 and a set A’
that differs from A on at most (1/2 — 1/n¢)2" of the strings of each length n, such

0 . . . 0
that A’ §tA[C S via a reduction’ that makes only one query. (That is, A’ gﬁfn S))
Stated another way, any set in P/poly can be “approximated” with just one query to a

weak approximation of MCSP. (Changing the solution S will yield a different set A”.)

There is no Known Many-One Hardness Result for MCSP, But One is Known for a
Related Problem MKTP, the minimum time-bounded Kolmogorov complexity prob-
lem, is loosely the “program version” of MCSP. It is known [4] that MKTP is hard for
DET under (non-uniform) NC® many-one reductions; it is conjectured that the same

IThe hardness magnification result we have stated here is from [25].

2This promise problem is defined formally in Section 2.1.

3 Although Corollary 6 of [27] does not mention the number of queries, inspection of the proof shows that
only one query is performed.
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is true for MCSP. Time-bounded Kolmogorov complexity is polynomially-related to
circuit complexity [5], so one natural way to extend the hardness result of [4] from
MKTP to MCSP would be to stretch the very small gap given in the reduction of DET
to MKTP.

1.1 Our Contributions, and Related Prior Work

We address the following questions based on prior work:

1.

Can the non-hardness result of Murray and Williams [26] be extended to more
powerful reductions? Both [26] and [9] conjecture that MCSP is not NP-complete
under uniform AC? reductions.

Can the aforementioned conditional theorem of [4], establishing the non-
NP-hardness of very weak approximations to MCSP under cryptographic
assumptions, be improved, to show non-NP-hardness of MCSP for stronger
approximations?

The worst-case to average case reduction given by [18] is conditional on the NP-
hardness of a certain approximation to MCSP. Can we say anything about the
NP-hardness of this problem in, say, the context of limited reductions?

Finally, can the result of [4], showing that MKTP is hard for DET under 5&00
reductions, be extended, to hold for MCSP as well, by increasing the gap?

Our results give the following replies to these questions:

1.

For superlinear approximations to MCSP, one can, in fact, give much stronger
non-hardness results than [26], showing non-hardness even under non-uniform
AC® many-one reductions and even limited types of AC® Turing reductions. To
our knowledge, this is the first known non-hardness result for any variant of
MCSP under non-uniform AC® reductions. While AC? reductions are provably
less powerful than polynomial time reductions, most natural examples of NP-
complete problems are easily seen to be complete under AC® (and even NC°!)
reductions [7].

Allender and Hirahara [4] show that, if cryptographically-secure one-way func-
tions exist, then € (n)-GapMCSP is not hard for NP under P/poly-Turing reduc-
tions* for some €(n) = n°. Our result gives a trade-off, where we reduce the
gap dramatically but also weaken the type of reduction. In particular, our results

imply that if one-way functions exist, then € (n)-GapMCSP is NP-intermediate

0 0 .
under §ﬁlc and gﬁgn reductions, where €(n) = o(n).

We show that the approximation to MCSP considered by [18] is actually not
NP-hard under AC? reductions.

Our work rules out one natural way to extend the MKTP hardness results
to MCSP. One might have hoped that the reduction given by [4] could be
extended to a larger gap and hence apply to MCSP (since MKTP and MCSP are
polynomially related [5]). However, we show that this is impossible.

4The problem ¢-GapMCSP is defined somewhat differently in [4] than here. See Section 2. Thus the form
of €(n) looks different here than in [4].
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Our main theorem is an impossibility result in the setting of € (6)-GapMCSP, which is
the promise version of MCSP with a multiplicative € (6) gap where 0 is the threshold.

Theorem 1 PARITY fﬁfo €(0)-GapMCSP where €(60) = 0(0).

We note that this is not the first work to describe non-hardness of approximation
under AC? reductions. Arora [12] is credited by [1], with showing that no AC? reduc-
tion f can have the property that x € PARITY implies f(x) has a very large clique,
and x ¢ PARITY implies f(x) has only very small cliques. (In Section 3, we present
a similar result for Max-3-SAT, so that the reader can compare the techniques.) Our
work differs from that of [12] in several respects. Arora shows that AC? reductions
cannot prove very strong hardness of approximations for a problem where strong
inapproximability results are already known. We show that AC? reductions cannot
establish even very weak inapproximability results for MCSP. Also, our techniques
allow us to move beyond 5&00 reductions, to consider AC®-Turing reducibility.

All of the theorems that we state in terms of MCSP hold also for MKTP, with
identical proofs. For the sake of readability, we present the theorems and proofs only
in terms of MCSP.

2 Preliminaries

We use \ to denote set difference. For a natural number n, we let [n] denote the set
{1,...,n}.

2.1 Defining MCSP

For any binary string 7 of length 2¥, we define CC(T') to be the size of the smallest
circuit (using only NOT gates and AND and OR gates of fan-in 2) that computes the
function given by truth table 7" written in lexicographic order, where, for concrete-
ness, circuit size is defined to be the number of AND and OR gates, although our
arguments work for other reasonable notions of circuit size.

Throughout the paper, we use various approximate notions of the minimum circuit
size problem, given as follows:

Definition 2 (Gap MCSP) For any function € : N — N, we define €(n)-GapMCSP
to be the promise problem (Y, N) where

Y := ((T,0) | CC(T) < €(0)}, and
N = {(T, ) | CC(T) > 6},

where 6 is written in binary.
Note that this definition differs in minor ways from the way that e-GapMCSP was

defined in [4]. The definition presented here allows for finer distinctions than the
definition that was used in [4].
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Our results for non-hardness under 5%00 reductions are best stated in terms of a
restricted version of e-GapMCSP, where the thresholds are fixed, for inputs of a given
size: This variant of MCSP has been studied previously in [19, 26]; an analogous
problem defined in terms of KT-complexity is denoted Rkt in [5].

Definition 3 (Parameterized Gap MCSP) For any functions ¢, g : N — N such that
£(n) < g(n), We define the language MCSP[{, g] to be the promise problem (Y, N)
where

Y = {T | CC(T) < £(|T])}, and
N = {T | CC(T) > g(ITD}.

2.2 Complexity Classes and Reductions

We assume the reader is familiar with basic complexity classes such as P and NP. As
we work extensively with non-uniform NC° and AC?, we refer to the text by Vollmer
[33] for background on these circuit classes. Throughout this paper, unless otherwise
explicitly mentioned, we refer to the non-uniform versions of these circuit classes.
Let C be a class of circuits. For any languages A and B, we write A 5% B if there
is a function f computed by a circuit family {C,} € C such that f(x) € B <=
x € A. We write A S% B if there is a circuit family in C computing A with B-oracle
gates. In particular, since we are primarily concerned with C = AC?, we denote this
as A Séco B. We write A 5@00 B if there is an ACY circuit family computing A with
B-oracle gates, where there is no directed path from any oracle gate to another, i.e.
if the reduction is non-adaptive. If, furthermore, the non-adaptive reduction has the
property that each of the oracle circuits contains at most k oracle gates, then we write

problem. A language L is a solution to a promise problem IT = (Y, N)if Y C L
and N N L = #. For two promise problems I1; and I1», some type of reducibility r
(many-one, truth table, or Turing), and a circuit class C, we say IT; Src I, if there
is a single family of oracle circuits {C,,} in C such that for every solution S, of IT,
there is a solution Sy of I1; such that C,, computes an r-reduction from Sj to S3.

2.3 Boolean Strings and Functions

For an x € {0, 1}"* and a set of indices B C [n], we let xB denote the Boolean string
obtained by flipping the ith bit of x for each i € B.

A partial string (or restriction) is an element of {0, 1, 7}*. Define the size of a
partial string p to be the number of bits in which it is {0, 1}-valued. We say a partial
string p € {0, 1, ?2}" agrees with a binary string x € {0, 1}" if they agree on all
{0, 1}-valued bits. If x € {0, 1}" is a binary string and B C [n], then x|p denotes the
partial string given by replacing the jth bit of x with ? for each j € [n] \ B. We say
a partial string pp extends a partial string p if p; is equal to p; on all bits where p;
is {0, 1}-valued.
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A partial Boolean function on n variables is a function f : I — {0, 1} where
I C {0, 1}"*. For a promise problem IT = (Y, N) and n € N, we let I1|, be the partial
Boolean function that decides membership in ¥ on instances of length n which satisfy
the promise. (In particular, IT|, : I := (Y UN) N {0, 1} — {0, 1}.)

We will make use of two well-studied complexity measures on Boolean functions:
block sensitivity and certificate complexity. We refer the reader to a detailed sur-
vey by Hatami, Kulkarni, and Pankratov [17] for background on these notions. For
completeness, we provide the definitions of the two measures that we need. In our
context, we will use these measures on partial Boolean functions. Let I < {0, 1}"
and let f : I — {0, 1} be a partial Boolean function. For an input x € I, define
the block sensitivity of f at x, denoted bs( f, x), to be the maximum number of non-
empty, disjoint sets By, ..., By such that x® € I and fx) # f(xBi) for all i. (Here,
by “f(y) # f(z)” we require that f is defined at both y and z.) Define the 0-block
sensitivity of f to be bso(f) = maxy. r(x)=0 bs(f, x). For an input x € I, define
the certificate complexity of f at x, denoted c(f, x), to be the size of the smallest
set B C [n] such that f(y) = f(x) for all y € I that agree with x|p. Define the
O-certificate complexity of f to be co(f) = maxy. fx)=0 c(f, x).

3 Prior Work

In this section, we present a result that is similar in spirit to a result reported by
Arora in an unpublished manuscript [12]. There, it was shown that there is no ACP-
computable function f with the property that x € PARITY implies f(x) has a very
large clique, and x ¢ PARITY implies f(x) has only very small cliques. Here, in
order to illustrate the techniques that were employed in [12], we observe that no AC®
reduction can establish the known inapproximability of Max-3-SAT [16].

Our results, like those of [12], rely on the following lemma, which says that it is
possible to apply a restriction to a family of AC? circuits and thereby obtain a family
of NC? circuits. This lemma is implicit in the earliest lower bound work on AC? [2,
13], and was stated and proved in this form in [1].

Lemma 4 (Lemma 7in [1]) Let C,, be a family of n-input (multi-output) AC° circuits.
Then there exists an a > 0 such that for all n € N there exists a restriction of Cy, to
Q) input variables that transforms C,, into a (multi-output) NC° circuit.

Here, when we say that a restriction “transforms” a circuit into a NCO circuit, we
mean the process whereby any OR gate that has a constant 1 feeding into it (say,
from the restriction) can be replaced by a constant 1, and any AND gate that has a 0
feeding into it can be replaced by a constant 0, and this process can be repeated until
no more simplification is possible.

Proposition 5 Let 0 < € < 1. No AC? reduction f can have the property that

x € PARITY implies f(x) € 3-SAT, and x ¢ PARITY implies f(x) has at most an €
fraction of the clauses satisfied.
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Proof By appealing to Lemma 4, we may assume that the function f is an NC°
reduction. (A more careful argument, explaining how this assumption is justified,
is provided in the proof of Theorem 1.) Let d be the constant, such that each out-
put bit of f(x) depends on at most d bits of x, and let x € PARITY have length
n. Let f(x) consist of m clauses, each encoded using clogm bits for some con-
stant ¢ (which we can assume since the number of clauses is polynomially-related
to the number of variables). Then since | f(x)| = cmlogm, and each output bit
depends on at most d input bits, there is some i < n such that the i-th bit of x
affects at most (dcm logm)/n output bits. Flipping the i-th bit of x, to obtain a
new string x’ ¢ PARITY can affect at most (dcm logm)/n clauses. Since f(x) €
3-SAT, there is an assignment that satisfies at least m — (dcm logm)/n clauses of
f(x"). The theorem is proved, by observing that m — (dcm logm)/n > em for all
large m. O

This discussion of prior work is also the appropriate place to mention that a pre-
liminary version of this article appeared in a conference proceedings [11]. Several
proofs were omitted from the conference publication, due to space limitations, and
they are presented in full here.

4 Non-hardness Under NC° Reductions

In this section, we prove our main lemmas, showing that problems that are NC°-
reducible to e-GapMCSP have bounded 0-block sensitivity and also have sublinear
O-certificate complexity. Whenever we will have occasion to use these lemmas, it
will be in situations when we are able to assume that the NC” reduction is computing
a function f satisfying the condition that there is a bound y (n) > 0 such that, for all
n, there is a & > y (n) such that, for all x of length n, f(x) is of the form (7' (x), 0).
(In particular, the threshold 8 is the same for all inputs of length n.) We will call such
an NC? reduction a y-honest reduction.

Lemma 6 Let €¢(0) = o0(0), and let T1 = (Y, N) be a promise problem, where
IT 5,’)‘,00 €-GapMCSP via a y-honest reduction f computed by an NC circuit family
C,, of depth < d, where y (n) > loglogn. Then there is an ng (that depends only on €
and d) such that for alln > ng, if N|,, # 0, then bso(I1|,) < s, where s is a constant
that depends only on d.

Proof Lets = 24+1 4 1. Since €(n) = o(n), we can pick a constant rg > 4s such
that €(r) < r/(2s) for all r > rq. Pick ng > 2%°, and let n > ny.

For the sake of contradiction, suppose bso(I1|,) > s,andletx € NN{0, 1}" be a 0-
valued instance with bs(I1],, x) > s. Then we can find disjoint sets By, ... By C [n]
such that IT|, (x8i) = 1 for all j € [s]. (That is, each x5/ isin Y.)

Let f(x) = (T, 0), and note that CC(T') > 6 > y(n) (since f is y-honest). Since
x € N and C,, is a reduction to e-GapMCSP, we know that any circuit that computes
the function with truth table T has size at least 6. For each j € [s], let T; be the
truth table produced by C, on input x%/. Since x8/ € ¥, we know that each T; has
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a circuit D; computing T; of size at most €(6). (Here, it is important that the same
threshold 6 is used for all inputs of length 7, by y-honesty.)

We aim to build a “small” circuit computing 7', which would contradict 7 having
high complexity. Our circuit C for computing 7 works as follows: on input i, output
the majority of D1 (i), ..., Ds(i). The size of C is at most s - €(9) + 2s (each D; has
size at most €(0), and computing the majority of s bits can be done with a circuit of
size 2s).

Now, we argue that this circuit correctly computes the ith bit of 7 for all i. Let i
be arbitrary. Recall the ith bit of T is defined to be the ith output of Cy, (x). Since C,
is a depth d circuit of fan-in 2, the ith output of C,, depends on at most 2¢ input wires
W C [m]. Hence, on any input y such that y|w = x|w, we have that the ith output
of C,,(y) equals the ith output of C, (x). In particular, if B is disjoint from W, then
the ith output of C, (xB) equals the ith output of C,(x). Since By, ... B are disjoint

and |W| < 24 it follows that at most 2¢ of the sets B 1, ..., Bs have a non-empty
intersection with W. Hence, since s = 291! + 1, the majority of the sets By, ..., B
are disjoint with W, so the majority of the circuits D1, ..., Dy when run on input i

output the ith output of C,, (x).

We thus have that CC(T) < s - €(0) + 25s. But 8 > y(n) > loglogn (since the
reduction f is y-honest). By the choice of ny we have €(6) < 6/2s (since 6 >
loglogn > rp). Thus CC(T) < s-6/2s4+2s =0/2+2s < 0 (since 8 > loglogn >
4s). This contradicts CC(T') > 6. O]

The reader who is interested primarily in Theorem 1 (which shows that Gap MCSP
is not NP-hard under nonuniform AC® m-reductions) can skip ahead to Section 5.
The rest of this section develops tools that are used in our results that deal with more
powerful notions of reducibility.

Lemma 7 Let €(0) = 0(0), and let T1 = (Y, N) be a promise problem, where
IT 5?‘,?0 €-GapMCSP via a y-honest reduction f computed by an NC° circuit family
C, of depth < d, where y (n) > loglogn. Let k > 1. Then there is an ng (that depends
only on €, k and d) such that for all n > ng, if N|,, # 0, then co(I1],) < n/k.

Proof Let p = 24, let p’ = (*’**'), and let K be a constant that is specified later
(and which depends only on k and d). Since €(0) = 0(8), we can pick a constant sp
such that (’;/)e(s) + K < sforalls > s.

Pick ng > 2%, and let n > ny.

For contradiction, suppose co(I1]|,) > n/k. Let x € N N {0, 1}"* be a 0-valued
instance with co(I1|,, x) > n/k. Then, for all § C [r] with |S| < n/k, there is an xg
such that xg agrees with x|g and such that IT|,(xs) = 1. (Thatis, xg € Y.)

Let (T, 6) be the truth table produced by C,, on input x. Since x € N and Cj, is a
reduction, we know that any circuit computing 7 has size at least 6.

For each § C [n] with size at most n/k, let Ts be the truth table produced by C,
on input xg. Since xg € Y, we know that T has a circuit Dg of size at most € (6).

We aim to build a “small” circuit computing 7', which would contradict that 7" has

high complexity. Recall that p = 2¢, and that p’ = (2” ’;‘H).
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Claim 1 There exist sets S, ... S, C [n] such that

® |Si| < 5 foralli, and
® forany set P C [n] with |P| < p, we have that P C S; for some i.

Proof (Proof of Claim) Pick sets Vi, ..., Voprq1 S [n] of size at most 5 whose
unionis [n]. LetV = {V1, ..., Vopiy1}. Nowleteachof §1, .. ., S(zpk+1) be the union

P
of some p sets chosen from V. Each S; has size at most pznﬂ = 5. Let P C [n]
be an arbitrary set of size p. Since | Jy ), V = [n], every element e of P lies within
some V € V. Then P is contained in the union of some p sets from V, so P C S; for
some i. O

Foreachi # j € [p'], let Si.j =38 =38US;. Note that |S; ;| <n/k.
Our circuit C for computing T works as follows. On input r, for each i € [p'], see
if Dg, ,(r) = = DS ,(r) If so, then output Dy, , (). The size of this circuit is at

most (5 )6(9) +K (for some fixed constant K) since each of the (5 ) Dy, ; circuits
has size at most €(0) and the other “unanimity” condition is a Boolean funct10n on
(g/) variables (of in fact linear size) and so can be computed with circuit of some size
K = O(p’)?* (that depends only on k and d).

Now, we argue that C on input r correctly computes the rth bit of 7. Let r € [m]
be arbitrary. For convenience, given any input y € {0, 1}" let C;,(y) denote the rth
output of C,(x). Recall the rth bit of T is defined to be C (x). We must show two
things. First, that there exists an i such that Dy, ,(r) = --- = Dsi,p, (r) and second,
that if for some i we have that Dg, ((r) =--- = Dsl._p, (r), then Dg, | (r) = C; (x).

Since C, has depth d, the rth output of C,, can depend on at most 2¢ input wires
W C [m]. Hence, on any input y such that y|w = x|w, we have that C} (y) = C; (x).
Since p = 2¢, by the claim, there exists some S,* such that W C §;+. Therefore, for

all j we have thatxs* lw = x|w, so Ds,, . (r) C’( XS ) = CJ (x).

This implies both thlngs we must show First, we know that Dg, 1(r) = ... =
DS - (r) since they each equal C}, (x). Second, if for some i, we have that Dy, , (r)

= DS ,(r) then we also have that Dy, , (r) = Ds, . (r) = C) (x).

Thus we have that T can be computed by a circuit of size at most ( )6(9) + K,
which is less than 6, since 8 > loglogn > sg. This contradicts that CC(T) > 6. [

Next, we note that one can improve the bounds given by Lemma 7 assuming a
larger gap.

Lemma 8 Let €(0) < 6%, and let T1 = (Y, N) be a promise problem, where T1 5,';‘100
€-GapMCSP via a y-honest reduction f computed by an NC° circuit family C, of
depth < d, where y (n) > nP. Then for all § such that 69 = B(1 — oz)/Zd"’1 >8>0
there is an nq such that for all n > ng, if N|, # 9, then co(I1],) < n'~?.

Proof Let p = 24, Suppose for contradiction that for some § > 0 with § < 89 =
B — a)/2p we have co(I1],) > nl=? infinitely often. We can follow the same
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argument (and notation) as above, except we have to be more careful since n/co(I1],)
8
is no longer a constant, and hence p’ = (Zp"/coénl")ﬂ) < (ZP"pH) = 0(nP%) is no

longer constant. Since the unanimity condition can be implemented by a circuit of
size linear in (1; ), we can construct a circuit computing truth table 7" of size

2pn8 + 1\
e(e)-cpo:e(e)-cl( pr ) < cre(@)n?
P

infinitely often for some positive constants cy, c;. By y-honesty, we have 6 >
y(n) > nP. This implies that we can construct a circuit computing 7' of size

c26(@)n2P < c2e(0)(0V/P)2PS < c,9%92P3/B — ¢

infinitely often. This is a contradiction since 7 is a truth table with circuit complexity
> 0. O

Next, we present a variant of Lemma 8, but restricted to the parameterized ver-
. . . . . 0
sion of MCSP. This variant is useful in extending our non-hardness results to 5%0

reductions that make n°" queries.

Lemma 9 Let I1 = (Y, N) be a promise problem. If T1 5,'\,‘100 MCSP[¢, g] with
L(m) = o(g(m)/m‘s)for some § > 0, then co(I1|,) < n€ for some € < 1 for all but
finitely many n where N, # @, where € depends only on the depth of the NC° circuit
family and §.

Proof Suppose for contradiction that for all € < 1 we have co(I1],) > n€ infinitely
often. Once again, we follow the same argument (and notation) as above. We can
construct a circuit computing truth table 7" of size

2 1—e 2
Z(m)'q(z’)”/c(’(;'”H 1) < E(m)q<2pn ) + 1)

IA

em) -c1p”

2p(1—e)

IA

cl(m)n

infinitely often for some positive constants c1, c3. (Here, m denotes the length of
the truth table 7'.) Note that since co(I1|,) > n€, we know II|, depends on > n¢
input bits. Since the circuit has depth at most d and gates of fan-in 2, we must have
m > n€/2¢. This implies that we can construct a circuit computing 7' of size

€ 2p(l1—e) 2p(1—e¢)
l(m)(n®) < = c3lmym™ <,

infinitely often for some positive constant c3. Setting € = we have that T

2p
2p+6°
can be computed by a circuit of size < c3£(m) - m® infinitely often, which is a
contradiction since T is a truth table with circuit complexity > g(m) = w(£(m) -

md). O]
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5 Non-hardness Under Many-One AC° Reductions

In this section, we use the tools of the preceding section to show that the problem of

approximating circuit size is not hard for any class containing PARITY under fﬁlc
reductions. We recall Theorem 1:

Theorem 1 PARITY zAC° ¢-GapMCSP where €(n) = o(n).

Proof Suppose not. Then there is a family of ACY circuits C,, that many-one reduces
PARITY to e-GapMCSP. By Lemma 4, there is an a such that we can transform
each C, into an NC? circuit D,, on m = Q(nl/?) variables, computing a reduction
f from either PARITY or —PARITY (depending on the parity of the restriction) to
€-GapMCSP. For each input x of length n, f(x) is of the form (7 (x), 6(x)). Since
there are only O (logn) output gates in the 6 (x) field, and each output gate depends
on only O(1) input variables, all of the output gates for (x) can be fixed by set-
ting only O (logn) input variables. Furthermore, we claim that there is some setting
of these O(logn) input variables, such that the resulting value of 0 is greater than
logn/loglogn. If this were not the case, then the 5&00 reduction of PARITY (or
—PARITY) on m = (n'/?) variables to e-GapMCSP has the property that 6(x)
is always less than logn/loglogn. But, as in the proof of Theorem 1.3 of [26],
instances of MCSP where 0 is O (logn/loglogn) can be solved with a DNF circuit of
polynomial size. Thus this would give rise to AC? circuits for PARITY, contradicting
the well-known circuit lower bounds of [2, 13].

Summarizing up to this point: The circuits D,, with O (logn) additional variables
set (fixing the value of 9) yields a family on m’ = m — O (logn) = Q (n'/@*D) vari-
ables, where each circuit D,,s reduces either PARITY or —PARITY to ¢-GapMCSP,
where furthermore this reduction satisfies the hypotheses of Lemmas 6 and 7.

But then the conclusions of Lemmas 6 and 7 contradict the fact that both PARITY
and —PARITY on m’ variables have 0-certificate complexity and 0-block-sensitivity
m'. O

6 Non-hardness Under Limited Turing AC® Reductions

With some work, we can extend our non-hardness results beyond many-one reduc-
tions to some limited Turing reductions.

In our proofs that deal with AC?-Turing reductions, we will need to replace some
oracle gates with “equivalent” hardware—where this hardware will provide answers
that are consistent with some solution to the promise problem €-GapMCSP, but might
not be consistent with the particular solution that is provided as an oracle. In order
to ensure that this doesn’t cause any problems, we introduce the notion of a “sturdy”
AC'-Turing reduction:

Definition 10 Let I1; = (Y{, Ny) and I1; = (Y2, N2) be promise problems. A

family {C,} of ACP-oracle circuits is a sturdy 5%00 reduction from IT; to I if, for
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every pair of solutions S, S’ to Iy, every oracle gate G in C,,, and every x € Y{ UN]|,
there is a solution S” such that C,f(x) = C;lg”(x) = C,f[G — S’1(x), where the
notation C ,f [G — S'] refers to the circuit C,, with oracle S, but where the oracle gate
G answers queries according to the solution S’ instead of S.

Lemma 11 Let I1 be any promise problem. If T <Ac’ €(n)-GapMCSP via a reduc-

—1t

tion of depth d, then T1 <Ac’ €(n)-GapMCSP via a sturdy reduction of depth 5d with

—1t
the same number of oracle gates. If T 5?00 €(n)-GapMCSP via a reduction of depth

d, then T1 5'%00 €(n)-GapMCSP via a sturdy reduction of depth 5d with the same
number of oracle gates.

Proof Briefly: We modify C,,, so that each oracle query is checked against queries
that were asked ““earlier” in the computation, and the computation uses only the oracle
answer from the first time a query was asked. Since each query is given an answer
that is consistent with some solution, the new circuit gives the same answers as a new
solution (which we denote as S”). Since Cj, is a reduction, we get the same answer
when using S or S”.

In more detail: Label the oracle gates Gy, ..., G of C, in topological order so
that there is no directed path from G; to G; for all i > j (and for a truth-table
reduction, any ordering suffices). Let g; denote the query asked by G;. Let C), be the
circuit where we replace any wire that leaves G; by a wire connected to the following
subfunction:

Gi(x) AYj <ilgi #q))
or
3j <i(qi =qj ANVk < jlgr #qj) NG jg;))

The reader can verify that this additional circuitry can be implemented in depth five,
and thus C,, has depth at most 5d. Furthermore, this hardware does not add any oracle
gates or directed paths between oracle gates, so the number of oracle gates used is
unchanged and truth-table reductions remain truth-table reductions.

Now let S and S’ be any two solutions to €(n)-GapMCSP. Consider any input x
of length n that satisfies the promise of [T = (¥, N). (Thatis, x € Y U N.) Thus
C;lg (x) = C;f/ (x). Now consider the operation of C;(x) where some oracle gate G;
answers queries according to ', rather than S. By construction, the behavior of this
computation C ’,f [G; — S']is the same as that of C;f” (x), where

S"(q(x)) == S(g(x)) ifq(x) # gi(x), orif g;(x) = q;(x) for some j < i,
q | §’(g(x)) otherwise.

S” is also a solution to e-GapMCSP, since it agrees with either S or S’ on each
query, and both S and S’ agree on all queries that satisfy the promise. Thus C’ ,f [Gi —
SNx) = ¢(x) = C5'(x) = C5(x), since C, is a reduction. Also, C'5 (x) =
C;f ,(x) and C ’,Sl x) = C;f (x), since each oracle gate of C;, answers each query the
same way that C,, does, if the same oracle is provided to each gate. Thus, we have
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that C’,f(x) = C’,f//(x) = C’S[Gi — §’](x). This establishes that C’,, is computing
a sturdy reduction. O

Theorem 12 Let k > 1, and let €(n) = o(n). Then PARITY £°°° ¢.GapMCSP.

k—1t

Proof We show that, for all k > 1, if PARITY S?E(t)t €-GapMCSP, then

PARITY 56&01)7“ €-GapMCSP. This suffices, since a O-truth-table reduction is
simply an AC circuit computing PARITY, which cannot exist.

Given the oracle circuit family C,, (where by Lemma 11 we may assume that

the 5@9& reduction is sturdy), let D,, be the subcircuit consisting of those gates that
are on a path from an input variable to any oracle gate. D, is simply an AC? cir-
cuit on n variables, and thus by Lemma 4, there is an a such that we can transform
each D, into an NC? circuit Eym onm(n) = Q(n'/%) variables. Replacing D, by
Epn@y in Cy yields a k-tt reduction F,(,y from PARITY or —=PARITY on m(n) vari-
ables to €-GapMCSP. (If Fj, ) is a reduction from —PARITY, then modify F,,,) by
negating the output gate, so that each F,,(,) is a reduction from PARITY on m(n)
variables to e-GapMCSP.) Note that we can obtain a family of polynomial-size cir-
cuits on n variables by starting with F,,, 2.y (which has more than n input variables)
and setting some of the variables to 0. Thus, without any loss of generality, we may
assume that our circuit family C, has the property that the subcircuit D,, consist-
ing of the gates on a path from an input gate to an oracle gate consists of NC?
circuitry.

For each n, select the first oracle gate G (in some order). Consider the circuit
family B, consisting of all of the gates that are on a path from any input to G. Note
that B, is an NC? circuit family computing some function f, where f(x) is of the
form (7' (x), 6(x)). If it is possible to set some of the input variables of B,, so that the
output gates for (x) take on a value 6 > logn/loglogn, do so. Note that this leaves
m = n — O (logn) variables unset. (If it is not possible to do so, then (as in the proof
of Theorem 1), G can be replaced in C,, by a polynomial-sized DNF circuit, thereby
yielding a (sturdy) (k — 1)-tt reduction, as desired.) Call C), and B}, the circuits that
result by restricting the O (log n) input variables of C,, and B,,, respectively.

We now aim to find a restriction of the inputs and a solution to e-GapMCSP such
that the output of G is constant. Define [1 = (Y, N) to be the promise problem
where for all x we put x € Y if and only if CC(T (x)) < €(0) and x € N if and only
if CC(T (x)) > 6 where B/, (x) = (T (x), ). Observe that B/, is a log n-honest NC°
reduction of IT to e-GapMCSP.

There are two cases, depending on whether N = @ or not. If N = ¢, then §’ =
{(T,0) : CC(T) < €(0)} is a solution to e-GapMCSP such that every query to G is
answered affirmatively. By the sturdiness of the reduction, G can be replaced by a
constant 1, transforming C), into a (k — 1)-tt reduction.

If N # ¢, then by Lemma 7, for all large m co(I1],;,) < m/(k+ 1). That is, there is
a way to set some r < m/(k + 1) input variables, obtaining restriction p, and thereby
obtain a circuit B,,_,. = Bj,|, on m — r variables, such that for any string z of length

m-—r

m —r, CC(T—(2)) > €(0) where B),_,.(z) = (Tu—r(z), 0). That is, every query
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to G is answered negatively in C,, |,, and hence G can be replaced by a constant
0, transforming C), |, into a (k — 1)-tt reduction from PARITY to €-GapMCSP on
m — r = Q(n) variables in this case.

In both cases, we obtain a (k — 1)-tt reduction from PARITY to ¢-GapMCSP, as
desired. O

With a larger gap, we can rule out nonadaptive reductions that use n°" queries.

Theorem 13 Let €(n) < n® for some 1 > o > 0. Then for any circuit family {C,}

computing an SQCO reduction of PARITY to e-GapMCSP, there is a § > 0 such that,
for all large n, C,, makes at least n® queries.

Proof Let {C,} be a circuit family computing an 5@00 reduction of PARITY to
€-GapMCSP. By Lemma 11 we may assume that each C,, is sturdy. As in the proof
of the preceding theorem, we assume without loss of generality that C,, has the prop-
erty that the subcircuit D, consisting of those gates that lie on paths from input gates
to oracle gates consists of NC? circuitry of depth d. (We will assume without loss of
generality that, if the gates in D,, are removed from C,,, the depth of the circuit that
remains is also at most d. Otherwise, let d be the maximum of these two constants.)

We will show that, for all large n, C, contains at least n® oracle gates
G1, Gy, ..., Gy, where § is chosen to be less than (1 — a)/l2d2d+1. For the sake of
a contradiction, assume that ¢ < n?.

Here is a high-level overview of the rest of the proof: As in the proof of the pre-
ceding theorem, we construct a sequence of restrictions (one for each oracle gate), so
that when the input bits of C,, are set according to the restrictions, each oracle gate
either has a very small threshold 6, or else it can be replaced by a constant. In this
way, we transform C,, into a circuit on m > n/2 input bits where each oracle gate
G; has a threshold 6; < n'/3¢/1logn. Replacing each such oracle gate by a DNF of
size 200" (as in the proof of the preceding theorem) results in an AC circuit of
depth at most d + 1 computing PARITY, in contradiction to the lower bound of [15].
Details follow.

Our argument proceeds in ¢ stages, where oracle gate G; is considered in stage i.
At the start of stage i we have a partial restriction p;_ that has at most (i — l)nl’z‘s
bits set. Here is a detailed description of stage i:

Consider the circuit family B, consisting of all of the gates that are on a path from
any input to G;. Note that B, is an NCY circuit family computing some function f;,
where f;(x) is of the form (7;(x), 6;(x)). If for all x that agree with p;_1, 6;(x) <
n/GD /log(n), then stage i is done; set p; = p;_; and go on to the next stage.
Otherwise, there is a way to set an additional O(logn) additional variables, thereby
extending p;_1 to obtain a new restriction ,0; , so that for all x which agree with pi’ ,
0; (x) takes on a constant value 6; > nl/(3d)/ logn > pl/@d),

We now aim to find a restriction of the inputs and a solution to e-GapMCSP such
that the output of G; is constant. Define Il; = (¥;, N;) to be the promise problem
where for all x that agree with p; we put x € Y; if and only if CC(T;(x)) < €(6;) and
x € N; if and only if CC(T;(x)) > 6; where B, (x) = (T;(x), 6;). Observe that By, is
an'/D _honest NC? reduction of IT; to e-GapMCSP.
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There are two cases, depending on whether N; = # or not. If N; = (J, then
S ={(T,0) : CC(T) < 0} is a solution to e-GapMCSP such that every query to G;
is answered affirmatively. By the sturdiness of the reduction, the output of G; can be
replaced by the constant 1, and we let p; = p].

If N; # 0, then by Lemma 8, for all large n, co(IT; |pl{) < nl-39, (The conditions of

Lemma 8 are satisfied, since (1/4d)(1 — oe)/2dJrl > 34§.) That is, there is a way to set
at most n' =% additional variables, thereby extending p; to obtain a new restriction
pi, such that for any string x of length n that agrees with p;, CC(T;(x)) > €(6;).
Therefore, S = {(T,0) : CC(T) < €(0)} is a solution to e-GapMCSP such that every
query to G; is answered negatively. Hence, by the sturdiness of the reduction, gate
G can be replaced by a constant 0.

This completes stage i. Note that, in obtaining p; from p;_; we set an additional
O(logn) + n'=3% < n1=28 varjables.

Since t < n®, we have that porhasm >n — ml=2 5y —pdpl=20 —y _pl-d
n/2 unset variables. Let C”,, be the circuit C,|,,. Each oracle gate in C”, has the
property that the threshold that is computed is always no more than n'/3¢_ Since the
reduction is sturdy, the circuit still behaves correctly if each oracle gate is replaced by
a circuit that computes MCSP exactly, and (as in the proof of Theorem 1.3 of [26]),
instances of MCSP where 6 is bounded by n!/3? / log n can be computed by a DNF of
size 200" Replacing each oracle gate by such a DNF yields a circuit of depth at

most d + 1, of size 20" computing PARITY, thereby violating the lower bound
established in [15]. O

If we consider the parameterized version of MCSP, rather than e-GapMCSP, we

. 0 .
obtain non-hardness even under 5%0 reductions.

Theorem 14 Let £(m) = o(g(m)/m‘s)for some 1 > § > 0. Then for any circuit

Sfamily {C,,} computing an §?CO reduction of PARITY to MCSP([{, g], thereisane > 0
such that, for all large n, C, makes at least n€ queries.

Proof Define the oracle depth of a gate G to be the largest number of oracle gates
on any directed path ending with G.

Let {C,} be a circuit family computing an Séco reduction of PARITY to
MCSP[Z, g]. As above, we may assume that each C,, is sturdy, and that the subcircuit
D,, consisting of those gates at oracle depth 1 consists of NC circuitry of depth at
most d. Let k be the maximum oracle depth of any gate in {Cj,}.

Here is a high-level overview of the rest of the proof: Similar to the proof of
the preceding theorem, we construct a sequence of ¢ restrictions py, ..., pr, so that
in Cyl,,; the first i gates G, ..., G; can be replaced a constant. In this way, we
transform C,, into a circuit on n’ > n/2 input bits of oracle depth k — 1.

We will first show that there is a value € > 0 (specified later) such that if C,
does not have at least n¢ gates at oracle depth 1, then C,, can be replaced by an 5%00
reduction of oracle depth k — 1, by eliminating all of the oracle gates G1, ..., G; at
oracle depth 1.
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Our argument proceeds in ¢ stages, where oracle gate G; is considered in stage i.
At the start of stage i we have a partial restriction p;_1 that has at most (i — Dnl—2€
bits set. Here is a detailed description of stage i:

Consider the circuit family B, consisting of all of the gates that are on a path
from any input to G;. Note that By, is an NC circuit family computing some function
fi(x) = T;(x). Let m = |T;(x)|. Also, although B, sits inside of C,, (which is com-
puting PARITY), the function f; might not have any obvious connection to PARITY.
By the end of the next paragraph, we will have identified some relevant properties of
fi.

We now aim to find a restriction of the inputs and a solution to MCSP[¢, g] for
which the output of G; is constant. Define I[1; = (Y¥;, N;) to be the promise problem
where for all x that agree with p;_; we put x € ¥; if and only if CC(T;(x)) < £(m)
and x € N; if and only if CC(T;(x)) > g(m). Observe that by construction of IT;,
By, is an NC? reduction of IT; to €-GapMCSP.

There are two cases, depending on whether N = () or not. If N = (J, then § =
{T : CC(T) < g(|T])} is a solution to MCSP[¢, g] such that every query to G; is
answered affirmatively. By the sturdiness of the reduction, the output of G; can be
replaced by the constant 1, and we let p; = p;_1.

If N # @, then, by Lemma 9, for all large n, co(I; |5,_,) < n¢ forsome ¢’ < 1 that

depends only on d and §. That is, there is a way to set at most n¢ additional variables,
thereby extending p;_1 to obtain a new restriction p;, such that for any string x of
length n that agrees with p;, CC(T;(x)) > £(m). Thus, S ={T : CC(T) < £(m)}isa
solution to MCSP[{, g] such that every query to G; is answered negatively. Therefore,
by the sturdiness of the reduction, gate G; can be replaced by a constant 0.

This completes stage i. Note that, in obtaining p; from p;_1 we set an additional
n€ variables.

It is now time to set the constant € to be 1 — (¢//2).

Since r < n€, we have that p; has r > n—tn€ =n—n!=€/Dpe — p_pl=ED 5
n/2 unset variables.

A minor complication arises when we want to repeat this argument inductively to
reduce the oracle depth to k — 2 and so on. Namely, the constant €’ depends on the
depth d of the NC° circuitry that feeds into the oracle gates at the bottom level of
Cy. Cyulp, has oracle depth k — 1, as desired, but it now has ACO circuitry feeding
into the lowest level of oracle gates, and when we appeal to Lemma 4 to apply a
random restriction to convert that AC? circuitry to NC? circuitry, the depth of the NC°
circuitry increases to a depth that we can denote d.

However, this problem is resolved by observing that the choice of €’ in Lemma 9
is monotone in the depth d. Thus, if we carry out the argument above, but pick ¢’
using the parameter d; instead of d when we appeal to Lemma 9, and then repeat
the argument to reduce the oracle depth to k — 2, the parameters still work out. If we
let d3 be the depth of the NC? circuitry that results by starting with C,, with depth-
d NCP circuitry at the bottom, eliminating lowest level of oracle gates and applying a
random restriction to obtain a circuit family of oracle depth k — 1 with NC? circuitry
of depth d; at the bottom, and then repeating the process to obtain a circuit family of
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oracle depth k — 2 with NC? circuitry of depth d3 at the bottom, then the argument

above is sufficient to obtain a circuit family of depth k — 3, etc.

. . . . 0 .
Thus, there is a choice of €’ that suffices to convert an arbitrary S%C reduction of

oracle depth k (with fewer than n€ oracle gates) to an AC? circuit computing parity
on nM) input bits, thereby obtaining the desired contradiction. O

7 Open Questions

There remain several open questions. The true complexity of MCSP remains a mys-
tery. We have made progress in understanding the hardness of an approximation to
MCSP, but how far can Theorem 1 be extended? Can we prove non-hardness under
general truth-table and Turing reductions? Can we reduce the gap in the theorem to
some constant factor approximations? Does the impossibility result hold when AC?
is replaced with, say, AC’[2] many-one reductions? Is MCSP hard for DET under

§ACO reductions? (Recall that the related problem MKTP is hard for DET under such

m
reductions [4].)

Acknowledgments Much of this work was done during the 2018 DIMACS REU program, which was
organized by Lazaros Gallos, Parker Hund, and many others. During this time, R. I. and N. V. were
supported by NSF grant CCF-1559855, and they were undergraduates at Rutgers University and Harvard
University, respectively. Subsequently, R.I. was supported by an Akamai Presidential Fellowship. E. A. is
supported in part by NSF grants CCF-1909216 and CCF-1514164. This work was done in part while E.
A. was visiting the Simons Institute for the Theory of Computing. We would also like to thank Michael
Saks, Shuichi Hirahara, Avishay Tal, and John Hitchcock for helpful discussions. Finally, we are grateful
to our anonymous reviewers for suggestions on improving this paper’s exposition.

References

1. Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: an isomorphism theorem and
a gap theorem. J. Comput. Syst. Sci. 57(2), 127-143 (1998)

2. Ajtai, M.: Ell—formulae on finite structures. Ann. Pure Appl. Logic 24, 1-48 (1983)

3. Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256, 2-8 (2017)

4. Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimization and related
problems. ACM Trans. Comput. Theory 11(4), 27:1-27:27 (2019)

5. Allender, E., Buhrman, H., Koucky, M., van Melkebeek, D., Ronneburger, D.: Power from random
strings. SIAM J. Comput. 35(6), 1467-1493 (2006)

6. Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing disjunctive normal form
formulas and ACY circuits given a truth table. SIAM J. Comput. 38(1), 63-84 (2008)

7. Allender, E., Loui, M.C., Regan, K.W.: Reducibility and completeness. In: Algorithms and Theory of
Computation Handbook, pp. 23-23. Chapman & Hall/CRC (2010)

8. Allender, E., Koucky, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded
Kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci. 77(1), 1440
(2011)

9. Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem. Comput. Complex.
26(2), 469-496 (2017)

10. Allender, E., Grochow, J.A., van Melkebeek, D., Moore, C., Morgan, A.: Minimum circuit size, graph
isomorphism, and related problems. SIAM J. Comput. 47(4), 1339-1372 (2018)

@ Springer



Theory of Computing Systems

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.
31.

32.

33.

Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size. In: Proceedings
of the 14th International Computer Science Symposium in Russia (CSR), volume 11532 of Lecture
Notes in Computer Science, pp. 13—24. Springer (2019)

Arora, S.: AC?-reductions cannot prove the PCP theorem. Unpublished Manuscript (1995)

Furst, M., Saxe, JB., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst.
Theory 17(1), 13-27 (1984)

Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.: ACO[p] lower
bounds against MCSP via the coin problem. In: Proceedings of the 46th International Colloquium on
Automata Languages, and Programming, (ICALP), volume 132 of LIPIcs, pp. 66:1-66:15 (2019)
Hastad, J.: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge (1987)
Hastad, J.: Some optimal inapproximability results. J. ACM 48(4), 798-859 (2001)

Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theory Comput.
Grad. Surv. 4, 1-27 (2011)

Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: Proceedings of the
59th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 247-258 (2018)

Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: Proceed-
ings of the 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs, pp. 7:1-7:20.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

Hirahara, S., Watanabe, O.: Limits of minimum circuit size problem as oracle. In: Proceedings of the
31st Computational Complexity Conference (CCC), volume 50 of LIPIcs, pp. 18:1-18:20. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

Hitchcock, J., Pavan, A.: On the NP-completeness of the minimum circuit size problem. In: Proceed-
ings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), volume 45 of LIPIcs, pp. 236-245. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2015)

Ilango, R.: Approaching MCSP from above and below: hardness for a conditional variant and AC°[ p].
In: Proceedings of the 11th Innovations in Theoretical Computer Science Conference, (ITCS), volume
151 of LIPIcs, pp. 34:1-34:26. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2020)
Impagliazzo, R., Kabanets, V., Volkovich, I.: The power of natural properties as oracles. In: Proceed-
ings of the 33rd Computational Complexity Conference (CCC), volume 102 of LIPIcs, pp. 7:1-7:20.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: Proceedings of the 32nd ACM Symposium
on Theory of Computing (STOC), pp. 73-79, New York (2000)

McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-bounded compression
imply strong separations of complexity classes. In: Proceedings of the 51st ACM Symposium on
Theory of Computing (STOC), pp. 1215-1225. ACM (2019)

Murray, C.D., Williams, R.R.: On the (non) NP-hardness of computing circuit complexity. Theory
Comput. 13(1), 1-22 (2017)

Oliveira, I.C., Santhanam, R.: Conspiracies between learning algorithms, circuit lower bounds and
pseudorandomness. In: Proceedings of the 32nd Computational Complexity Conference (CCC),
volume 79 of LIPIcs, pp. 18:1-18:49. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In: Proceedings of the
59th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 65-76 (2018)

Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art lower bounds.
In: Proceedings of the 34th Computational Complexity Conference (CCC), volume 137 of LIPIcs,
pp. 27:1-27:29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24-35 (1997)

Rudow, M.: Discrete logarithm and minimum circuit size. Inf. Process. Lett. 128, 1-4 (2017)
Trakhtenbrot, B.: A survey of Russian approaches to perebor (brute-force searches) algorithms. IEEE
Ann. Hist. Comput. 6(4), 384-400 (1984)

Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer Science & Business
Media (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



Theory of Computing Systems

Affiliations
Eric Allender! © . Rahul llango? - Neekon Vafa3#

Rahul Ilango
rilango @mit.edu

Neekon Vafa

neekonvafa @ gmail.com

Rutgers University, Piscataway, NJ, USA

Massachusetts Institute of Technology, Cambridge, MA, USA
3 Harvard University, Cambridge, MA, USA

4 Google, Mountain View, CA, USA

@ Springer


http://orcid.org/0000-0002-0650-028X
mailto: rilango@mit.edu
mailto: neekonvafa@gmail.com

	The Non-hardness of Approximating Circuit Size
	Abstract
	Introduction
	MCSP is Likely Not in P
	Showing MCSP is NP-Hard Would Be Difficult
	The Hardness of Both MCSP and Approximating MCSP Have Important Consequences for Complexity Theory
	MCSP is Not Hard for NP in Limited Settings
	Many Hardness Results for MCSP Also Hold for Approximate Versions of MCSP
	There is no Known Many-One Hardness Result for MCSP, But One is Known for a Related Problem


	Our Contributions, and Related Prior Work

	Preliminaries
	Defining MCSP
	Complexity Classes and Reductions
	Boolean Strings and Functions

	Prior Work
	Non-hardness Under NC0 Reductions
	Non-hardness Under Many-One AC0 Reductions
	Non-hardness Under Limited Turing AC0 Reductions
	Open Questions
	References
	Affiliations


