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Abstract
The Minimum Circuit Size Problem (MCSP) has been the focus of intense study
recently; MCSP is hard for SZK under rather powerful reductions (Allender and Das
Inf. Comput. 256, 2–8, 2017), and is provably not hard under “local” reductions com-
putable in TIME(n0.49) (Murray and Williams Theory Comput. 13(1), 1–22, 2017).
The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses
of P) under some of the more familiar notions of reducibility (such as many-one or
Turing reductions computable in polynomial time or in AC0) is closely related to
many of the longstanding open questions in complexity theory (Allender and Hira-
hara ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019; Allender et al. Comput.
Complex. 26(2), 469–496, 2017; Hirahara and Santhanam 2017; Hirahara and Watan-
abe 2016; Hitchcock and Pavan 2015; Impagliazzo et al. 2018; Murray and Williams
Theory Comput. 13(1), 1–22, 2017). All prior hardness results for MCSP hold also
for computing somewhat weak approximations to the circuit complexity of a func-
tion (Allender et al. SIAM J. Comput. 35(6), 1467–1493, 2006; Allender and Das Inf.
Comput. 256, 2–8, 2017; Allender et al. J. Comput. Syst. Sci. 77(1), 14–40, 2011;
Hirahara and Santhanam 2017; Kabanets and Cai 2000; Rudow Inf. Process. Lett.
128, 1–4, 2017) (Subsequent to our work, a new hardness result has been announced
(Ilango 2020) that relies on more exact size computations). Some of these results
were proved by exploiting a connection to a notion of time-bounded Kolmogorov
complexity (KT) and the corresponding decision problem (MKTP). More recently,
a new approach for proving improved hardness results for MKTP was developed
(Allender et al. SIAM J. Comput. 47(4), 1339–1372, 2018; Allender and Hirahara
ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019), but this approach estab-
lishes only hardness of extremely good approximations of the form 1 + o(1), and
these improved hardness results are not yet known to hold for MCSP. In particular,
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it is known that MKTP is hard for the complexity class DET under nonuniform ≤AC0

m
reductions, implying MKTP is not in AC0[p] for any prime p (Allender and Hirahara
ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019). It was still open if similar
circuit lower bounds hold for MCSP (But see Golovnev et al. 2019; Ilango 2020). One
possible avenue for proving a similar hardness result for MCSP would be to improve
the hardness of approximation for MKTP beyond 1 + o(1) to ω(1), as KT-complexity
and circuit size are polynomially-related. In this paper, we show that this approach
cannot succeed. More specifically, we prove that PARITY does not reduce to the prob-
lem of computing superlinear approximations to KT-complexity or circuit size via
AC0-Turing reductions that make O(1) queries. This is significant, since approximat-
ing any set in P/poly AC0-reduces to just one query of a much worse approximation of
circuit size or KT-complexity (Oliveira and Santhanam 2017). For weaker approxima-
tions, we also prove non-hardness under more powerful reductions. Our non-hardness
results are unconditional, in contrast to conditional results presented in Allender and
Hirahara (ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019) (for more power-
ful reductions, but for much worse approximations). This highlights obstacles that
would have to be overcome by any proof that MKTP or MCSP is hard for NP under
AC0 reductions. It may also be a step toward confirming a conjecture of Murray and
Williams, that MCSP is not NP-complete under logtime-uniform ≤AC0

m reductions.

Keywords Minimum Circuit Size Problem · Reductions · NP-completeness ·
Time-bounded Kolmogorov complexity

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the problem of determining whether
a (given) Boolean function f (represented as a bitstring of length 2k for some k) has
a circuit of size at most a (given) threshold θ . Although the complexity of MCSP has
been studied for more than half a century (see [24, 32] for more on the history of the
problem), recent interest in MCSP traces back to the work of Kabanets and Cai [24],
who connected the problem to questions involving the natural proofs framework of
Razborov and Rudich [30].

Since then, there has been a flurry of research on MCSP [3–6, 9, 10, 18–21, 23,
26, 27], but still the exact complexity of MCSP remains unknown. MCSP is in NP,
but it remains an important open question whether MCSP is NP-complete.

MCSP is Likely Not inP There is good evidence for believing MCSP �∈ P. If MCSP is
in P, then there are no cryptographically-secure one-way functions [24]. Furthermore,
[3] shows MCSP is hard for SZK under BPP-Turing reductions, so if MCSP ∈ P then
SZK ⊆ BPP, which seems unlikely.

ShowingMCSP isNP-HardWould BeDifficult Murray and Williams [26] have shown
that if MCSP is NP-hard under polynomial-time many-one reductions, then EXP �=
ZPP, which is a likely separation but one that escapes current techniques. Results
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from [3, 21, 26] also give various likely (but difficult to show) consequences for
MCSP being hard under more restrictive forms of reduction. We note that it has been
suggested that MCSP might well be complete for NP [23]. In this regard, it may
also be relevant to note that MCSPQBF is complete for PSPACE under ZPP-Turing
reductions [5].

The Hardness of Both MCSP and Approximating MCSP Have Important Conse-
quences for Complexity Theory We have already mentioned that if MCSP is NP-hard
under polynomial-time reductions, then EXP �= ZPP [26]. In a recent develop-
ment, Hirahara [18] shows that if a certain approximation to MCSP is NP-hard, then
NP �⊆ BPP implies that NP is difficult to compute even on average. In another recent
development, several papers ([28], [29], [25]) study “hardness magnification” phe-
nomena, whereby seemingly meager n · logω(1) n circuit lower bounds on certain
parameterizations of MCSP imply much stronger results such as NP �⊆ P/poly.1

MCSP is Not Hard forNP in Limited Settings Murray and Williams [26] show MCSP
is not NP-hard under a certain type of “local” reductions computable in TIME(n0.49).
This is significant, since many well-known NP-complete problems are complete
under local reductions computable in even logarithmic time. (A list of such problems
is given in [26].) Also, under cryptographic assumptions, very weak approximations
to MCSP are not NP-hard, even under P/poly reductions [4].

Many Hardness Results for MCSP Also Hold for Approximate Versions of MCSP In
various settings, the power of MCSP to distinguish between functions with circuits
of size θ and those requiring size θ + 1 is not needed. Rather, in [3, 5, 8, 23, 27, 31],
the reduction succeeds assuming only that reliable answers are given to queries on
instances of the form (T , θ), where either the truth table T requires circuits of size
≥ θ = |T |.9 or T can be computed by circuits of size ≤ |T |.01.

This is an appropriate time to call attention to one such reduction to approxima-
tions to MCSP. Corollary 66 of [27] shows that, for every small δ > 0, for every
solution S to MCSP[nδ, n.5],2 for every set A ∈ P/poly, there is a c > 1 and a set A′
that differs from A on at most (1/2 − 1/nc)2n of the strings of each length n, such
that A′ ≤AC0

tt S via a reduction3 that makes only one query. (That is, A′ ≤AC0

1−tt S.)
Stated another way, any set in P/poly can be “approximated” with just one query to a
weak approximation of MCSP. (Changing the solution S will yield a different set A′.)

There is no Known Many-One Hardness Result for MCSP, But One is Known for a
Related Problem MKTP, the minimum time-bounded Kolmogorov complexity prob-
lem, is loosely the “program version” of MCSP. It is known [4] that MKTP is hard for
DET under (non-uniform) NC0 many-one reductions; it is conjectured that the same

1The hardness magnification result we have stated here is from [25].
2This promise problem is defined formally in Section 2.1.
3Although Corollary 6 of [27] does not mention the number of queries, inspection of the proof shows that
only one query is performed.
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is true for MCSP. Time-bounded Kolmogorov complexity is polynomially-related to
circuit complexity [5], so one natural way to extend the hardness result of [4] from
MKTP to MCSP would be to stretch the very small gap given in the reduction of DET
to MKTP.

1.1 Our Contributions, and Related Prior Work

We address the following questions based on prior work:

1. Can the non-hardness result of Murray and Williams [26] be extended to more
powerful reductions? Both [26] and [9] conjecture that MCSP is not NP-complete
under uniform AC0 reductions.

2. Can the aforementioned conditional theorem of [4], establishing the non-
NP-hardness of very weak approximations to MCSP under cryptographic
assumptions, be improved, to show non-NP-hardness of MCSP for stronger
approximations?

3. The worst-case to average case reduction given by [18] is conditional on the NP-
hardness of a certain approximation to MCSP. Can we say anything about the
NP-hardness of this problem in, say, the context of limited reductions?

4. Finally, can the result of [4], showing that MKTP is hard for DET under ≤AC0

m
reductions, be extended, to hold for MCSP as well, by increasing the gap?

Our results give the following replies to these questions:

1. For superlinear approximations to MCSP, one can, in fact, give much stronger
non-hardness results than [26], showing non-hardness even under non-uniform
AC0 many-one reductions and even limited types of AC0 Turing reductions. To
our knowledge, this is the first known non-hardness result for any variant of
MCSP under non-uniform AC0 reductions. While AC0 reductions are provably
less powerful than polynomial time reductions, most natural examples of NP-
complete problems are easily seen to be complete under AC0 (and even NC0!)
reductions [7].

2. Allender and Hirahara [4] show that, if cryptographically-secure one-way func-
tions exist, then ε(n)-GapMCSP is not hard for NP under P/poly-Turing reduc-
tions4 for some ε(n) = no(1). Our result gives a trade-off, where we reduce the
gap dramatically but also weaken the type of reduction. In particular, our results
imply that if one-way functions exist, then ε(n)-GapMCSP is NP-intermediate
under ≤AC0

m and ≤AC0

k−tt reductions, where ε(n) = o(n).
3. We show that the approximation to MCSP considered by [18] is actually not

NP-hard under AC0 reductions.
4. Our work rules out one natural way to extend the MKTP hardness results

to MCSP. One might have hoped that the reduction given by [4] could be
extended to a larger gap and hence apply to MCSP (since MKTP and MCSP are
polynomially related [5]). However, we show that this is impossible.

4The problem ε-GapMCSP is defined somewhat differently in [4] than here. See Section 2. Thus the form
of ε(n) looks different here than in [4].



Theory of Computing Systems

Our main theorem is an impossibility result in the setting of ε(θ)-GapMCSP, which is
the promise version of MCSP with a multiplicative ε(θ) gap where θ is the threshold.

Theorem 1 PARITY �≤AC0

m ε(θ)-GapMCSP where ε(θ) = o(θ).

We note that this is not the first work to describe non-hardness of approximation
under AC0 reductions. Arora [12] is credited by [1], with showing that no AC0 reduc-
tion f can have the property that x ∈ PARITY implies f (x) has a very large clique,
and x �∈ PARITY implies f (x) has only very small cliques. (In Section 3, we present
a similar result for Max-3-SAT, so that the reader can compare the techniques.) Our
work differs from that of [12] in several respects. Arora shows that AC0 reductions
cannot prove very strong hardness of approximations for a problem where strong
inapproximability results are already known. We show that AC0 reductions cannot
establish even very weak inapproximability results for MCSP. Also, our techniques
allow us to move beyond ≤AC0

m reductions, to consider AC0-Turing reducibility.
All of the theorems that we state in terms of MCSP hold also for MKTP, with

identical proofs. For the sake of readability, we present the theorems and proofs only
in terms of MCSP.

2 Preliminaries

We use \ to denote set difference. For a natural number n, we let [n] denote the set
{1, . . . , n}.

2.1 DefiningMCSP

For any binary string T of length 2k , we define CC(T ) to be the size of the smallest
circuit (using only NOT gates and AND and OR gates of fan-in 2) that computes the
function given by truth table T written in lexicographic order, where, for concrete-
ness, circuit size is defined to be the number of AND and OR gates, although our
arguments work for other reasonable notions of circuit size.

Throughout the paper, we use various approximate notions of the minimum circuit
size problem, given as follows:

Definition 2 (Gap MCSP) For any function ε : N → N, we define ε(n)-GapMCSP
to be the promise problem (Y, N) where

Y := {(T , θ) | CC(T ) ≤ ε(θ)}, and

N := {(T , θ) | CC(T ) > θ},
where θ is written in binary.

Note that this definition differs in minor ways from the way that ε-GapMCSP was
defined in [4]. The definition presented here allows for finer distinctions than the
definition that was used in [4].
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Our results for non-hardness under ≤AC0

T reductions are best stated in terms of a
restricted version of ε-GapMCSP, where the thresholds are fixed, for inputs of a given
size: This variant of MCSP has been studied previously in [19, 26]; an analogous
problem defined in terms of KT-complexity is denoted RKT in [5].

Definition 3 (Parameterized Gap MCSP) For any functions �, g : N → N such that
�(n) ≤ g(n), We define the language MCSP[�, g] to be the promise problem (Y, N)

where

Y := {T | CC(T ) ≤ �(|T |)}, and

N := {T | CC(T ) > g(|T |)}.

2.2 Complexity Classes and Reductions

We assume the reader is familiar with basic complexity classes such as P and NP. As
we work extensively with non-uniform NC0 and AC0, we refer to the text by Vollmer
[33] for background on these circuit classes. Throughout this paper, unless otherwise
explicitly mentioned, we refer to the non-uniform versions of these circuit classes.

Let C be a class of circuits. For any languages A and B, we write A ≤C
m B if there

is a function f computed by a circuit family {Cn} ∈ C such that f (x) ∈ B ⇐⇒
x ∈ A. We write A ≤C

T B if there is a circuit family in C computing A with B-oracle
gates. In particular, since we are primarily concerned with C = AC0, we denote this
as A ≤AC0

T B. We write A ≤AC0

tt B if there is an AC0 circuit family computing A with
B-oracle gates, where there is no directed path from any oracle gate to another, i.e.
if the reduction is non-adaptive. If, furthermore, the non-adaptive reduction has the
property that each of the oracle circuits contains at most k oracle gates, then we write
A ≤AC0

k−tt B.
Let Y ⊆ {0, 1}� and N ⊆ {0, 1}� be disjoint. Then � = (Y, N) is a promise

problem. A language L is a solution to a promise problem � = (Y, N) if Y ⊆ L

and N ∩ L = ∅. For two promise problems �1 and �2, some type of reducibility r

(many-one, truth table, or Turing), and a circuit class C, we say �1 ≤C
r �2 if there

is a single family of oracle circuits {Cn} in C such that for every solution S2 of �2,
there is a solution S1 of �1 such that Cn computes an r-reduction from S1 to S2.

2.3 Boolean Strings and Functions

For an x ∈ {0, 1}n and a set of indices B ⊆ [n], we let xB denote the Boolean string
obtained by flipping the ith bit of x for each i ∈ B.

A partial string (or restriction) is an element of {0, 1, ?}�. Define the size of a
partial string p to be the number of bits in which it is {0, 1}-valued. We say a partial
string p ∈ {0, 1, ?}n agrees with a binary string x ∈ {0, 1}n if they agree on all
{0, 1}-valued bits. If x ∈ {0, 1}n is a binary string and B ⊆ [n], then x|B denotes the
partial string given by replacing the j th bit of x with ? for each j ∈ [n] \ B. We say
a partial string p1 extends a partial string p2 if p1 is equal to p2 on all bits where p2
is {0, 1}-valued.
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A partial Boolean function on n variables is a function f : I → {0, 1} where
I ⊆ {0, 1}n. For a promise problem � = (Y, N) and n ∈ N, we let �|n be the partial
Boolean function that decides membership in Y on instances of length n which satisfy
the promise. (In particular, �|n : I := (Y ∪ N) ∩ {0, 1}n → {0, 1}.)

We will make use of two well-studied complexity measures on Boolean functions:
block sensitivity and certificate complexity. We refer the reader to a detailed sur-
vey by Hatami, Kulkarni, and Pankratov [17] for background on these notions. For
completeness, we provide the definitions of the two measures that we need. In our
context, we will use these measures on partial Boolean functions. Let I ⊆ {0, 1}n
and let f : I → {0, 1} be a partial Boolean function. For an input x ∈ I , define
the block sensitivity of f at x, denoted bs(f, x), to be the maximum number of non-
empty, disjoint sets B1, . . . , Bk such that xBi ∈ I and f (x) �= f (xBi ) for all i. (Here,
by “f (y) �= f (z)” we require that f is defined at both y and z.) Define the 0-block
sensitivity of f to be bs0(f ) := maxx:f (x)=0 bs(f, x). For an input x ∈ I , define
the certificate complexity of f at x, denoted c(f, x), to be the size of the smallest
set B ⊆ [n] such that f (y) = f (x) for all y ∈ I that agree with x|B . Define the
0-certificate complexity of f to be c0(f ) := maxx:f (x)=0 c(f, x).

3 Prior Work

In this section, we present a result that is similar in spirit to a result reported by
Arora in an unpublished manuscript [12]. There, it was shown that there is no AC0-
computable function f with the property that x ∈ PARITY implies f (x) has a very
large clique, and x �∈ PARITY implies f (x) has only very small cliques. Here, in
order to illustrate the techniques that were employed in [12], we observe that no AC0

reduction can establish the known inapproximability of Max-3-SAT [16].
Our results, like those of [12], rely on the following lemma, which says that it is

possible to apply a restriction to a family of AC0 circuits and thereby obtain a family
of NC0 circuits. This lemma is implicit in the earliest lower bound work on AC0 [2,
13], and was stated and proved in this form in [1].

Lemma 4 (Lemma 7 in [1]) LetCn be a family of n-input (multi-output) AC0 circuits.
Then there exists an a > 0 such that for all n ∈ N there exists a restriction of Cn to
	(n1/a) input variables that transforms Cn into a (multi-output) NC0 circuit.

Here, when we say that a restriction “transforms” a circuit into a NC0 circuit, we
mean the process whereby any OR gate that has a constant 1 feeding into it (say,
from the restriction) can be replaced by a constant 1, and any AND gate that has a 0
feeding into it can be replaced by a constant 0, and this process can be repeated until
no more simplification is possible.

Proposition 5 Let 0 < ε < 1. No AC0 reduction f can have the property that
x ∈ PARITY implies f (x) ∈ 3-SAT, and x �∈ PARITY implies f (x) has at most an ε

fraction of the clauses satisfied.
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Proof By appealing to Lemma 4, we may assume that the function f is an NC0

reduction. (A more careful argument, explaining how this assumption is justified,
is provided in the proof of Theorem 1.) Let d be the constant, such that each out-
put bit of f (x) depends on at most d bits of x, and let x ∈ PARITY have length
n. Let f (x) consist of m clauses, each encoded using c log m bits for some con-
stant c (which we can assume since the number of clauses is polynomially-related
to the number of variables). Then since |f (x)| = cm log m, and each output bit
depends on at most d input bits, there is some i ≤ n such that the i-th bit of x

affects at most (dcm log m)/n output bits. Flipping the i-th bit of x, to obtain a
new string x′ �∈ PARITY can affect at most (dcm log m)/n clauses. Since f (x) ∈
3-SAT, there is an assignment that satisfies at least m − (dcm log m)/n clauses of
f (x′). The theorem is proved, by observing that m − (dcm log m)/n > εm for all
large m.

This discussion of prior work is also the appropriate place to mention that a pre-
liminary version of this article appeared in a conference proceedings [11]. Several
proofs were omitted from the conference publication, due to space limitations, and
they are presented in full here.

4 Non-hardness Under NC0 Reductions

In this section, we prove our main lemmas, showing that problems that are NC0-
reducible to ε-GapMCSP have bounded 0-block sensitivity and also have sublinear
0-certificate complexity. Whenever we will have occasion to use these lemmas, it
will be in situations when we are able to assume that the NC0 reduction is computing
a function f satisfying the condition that there is a bound γ (n) > 0 such that, for all
n, there is a θ ≥ γ (n) such that, for all x of length n, f (x) is of the form (T (x), θ).
(In particular, the threshold θ is the same for all inputs of length n.) We will call such
an NC0 reduction a γ -honest reduction.

Lemma 6 Let ε(θ) = o(θ), and let � = (Y, N) be a promise problem, where
� ≤NC0

m ε-GapMCSP via a γ -honest reduction f computed by an NC0 circuit family
Cn of depth ≤ d , where γ (n) ≥ log log n. Then there is an n0 (that depends only on ε

and d) such that for all n ≥ n0, if N |n �= ∅, then bs0(�|n) < s, where s is a constant
that depends only on d .

Proof Let s = 2d+1 + 1. Since ε(n) = o(n), we can pick a constant r0 > 4s such
that ε(r) < r/(2s) for all r ≥ r0. Pick n0 ≥ 22r0 , and let n ≥ n0.

For the sake of contradiction, suppose bs0(�|n) ≥ s, and let x ∈ N∩{0, 1}n be a 0-
valued instance with bs(�|n, x) ≥ s. Then we can find disjoint sets B1, . . . Bs ⊆ [n]
such that �|n(xBj ) = 1 for all j ∈ [s]. (That is, each xBj is in Y .)

Let f (x) = (T , θ), and note that CC(T ) > θ ≥ γ (n) (since f is γ -honest). Since
x ∈ N and Cn is a reduction to ε-GapMCSP, we know that any circuit that computes
the function with truth table T has size at least θ . For each j ∈ [s], let Tj be the
truth table produced by Cn on input xBj . Since xBj ∈ Y , we know that each Tj has
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a circuit Dj computing Tj of size at most ε(θ). (Here, it is important that the same
threshold θ is used for all inputs of length n, by γ -honesty.)

We aim to build a “small” circuit computing T , which would contradict T having
high complexity. Our circuit C for computing T works as follows: on input i, output
the majority of D1(i), . . . , Ds(i). The size of C is at most s · ε(θ) + 2s (each Dj has
size at most ε(θ), and computing the majority of s bits can be done with a circuit of
size 2s).

Now, we argue that this circuit correctly computes the ith bit of T for all i. Let i

be arbitrary. Recall the ith bit of T is defined to be the ith output of Cn(x). Since Cn

is a depth d circuit of fan-in 2, the ith output of Cn depends on at most 2d input wires
W ⊆ [m]. Hence, on any input y such that y|W = x|W , we have that the ith output
of Cn(y) equals the ith output of Cn(x). In particular, if B is disjoint from W , then
the ith output of Cn(x

B) equals the ith output of Cn(x). Since B1, . . . Bs are disjoint
and |W | ≤ 2d , it follows that at most 2d of the sets B1, . . . , Bs have a non-empty
intersection with W . Hence, since s = 2d+1 + 1, the majority of the sets B1, . . . , Bs

are disjoint with W , so the majority of the circuits D1, . . . , Ds when run on input i

output the ith output of Cn(x).
We thus have that CC(T ) ≤ s · ε(θ) + 2s. But θ > γ (n) ≥ log log n (since the

reduction f is γ -honest). By the choice of n0 we have ε(θ) < θ/2s (since θ >

log log n ≥ r0). Thus CC(T ) ≤ s · θ/2s + 2s = θ/2 + 2s < θ (since θ > log log n >

4s). This contradicts CC(T ) > θ .

The reader who is interested primarily in Theorem 1 (which shows that Gap MCSP
is not NP-hard under nonuniform AC0 m-reductions) can skip ahead to Section 5.
The rest of this section develops tools that are used in our results that deal with more
powerful notions of reducibility.

Lemma 7 Let ε(θ) = o(θ), and let � = (Y, N) be a promise problem, where
� ≤NC0

m ε-GapMCSP via a γ -honest reduction f computed by an NC0 circuit family
Cn of depth≤ d , where γ (n) ≥ log log n. Let k ≥ 1. Then there is an n0 (that depends
only on ε, k and d) such that for all n ≥ n0, if N |n �= ∅, then c0(�|n) ≤ n/k.

Proof Let p = 2d , let p′ = (2pk+1
p

)
, and let K be a constant that is specified later

(and which depends only on k and d). Since ε(θ) = o(θ), we can pick a constant s0

such that
(
p′
2

)
ε(s) + K < s for all s ≥ s0.

Pick n0 ≥ 22s0 , and let n ≥ n0.
For contradiction, suppose c0(�|n) > n/k. Let x ∈ N ∩ {0, 1}n be a 0-valued

instance with c0(�|n, x) > n/k. Then, for all S ⊆ [n] with |S| ≤ n/k, there is an xS

such that xS agrees with x|S and such that �|n(xS) = 1. (That is, xS ∈ Y .)
Let (T , θ) be the truth table produced by Cn on input x. Since x ∈ N and Cn is a

reduction, we know that any circuit computing T has size at least θ .
For each S ⊆ [n] with size at most n/k, let TS be the truth table produced by Cn

on input xS . Since xS ∈ Y , we know that TS has a circuit DS of size at most ε(θ).
We aim to build a “small” circuit computing T , which would contradict that T has

high complexity. Recall that p = 2d , and that p′ = (2pk+1
p

)
.
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Claim 1 There exist sets S1, . . . Sp′ ⊆ [n] such that

• |Si | ≤ n
2k

for all i, and
• for any set P ⊆ [n] with |P | ≤ p, we have that P ⊆ Si for some i.

Proof (Proof of Claim) Pick sets V1, . . . , V2pk+1 ⊆ [n] of size at most n
2pk

whose
union is [n]. Let V = {V1, . . . , V2pk+1}. Now let each of S1, . . . , S(2pk+1

p )
be the union

of some p sets chosen from V . Each Si has size at most p n
2pk

= n
2k

. Let P ⊆ [n]
be an arbitrary set of size p. Since

⋃
V ∈V V = [n], every element e of P lies within

some V ∈ V . Then P is contained in the union of some p sets from V , so P ⊆ Si for
some i.

For each i �= j ∈ [p′], let Si,j = Sj,i = Si ∪ Sj . Note that |Si,j | ≤ n/k.
Our circuit C for computing T works as follows. On input r , for each i ∈ [p′], see

if DSi,1(r) = · · · = DSi,p′ (r). If so, then output DSi,1(r). The size of this circuit is at

most
(
p′
2

)
ε(θ) + K (for some fixed constant K) since each of the

(
p′
2

)
DSi,j

circuits
has size at most ε(θ) and the other “unanimity” condition is a Boolean function on(
p′
2

)
variables (of in fact linear size) and so can be computed with circuit of some size

K = O(p′)2 (that depends only on k and d).
Now, we argue that C on input r correctly computes the rth bit of T . Let r ∈ [m]

be arbitrary. For convenience, given any input y ∈ {0, 1}n let Cr
n(y) denote the rth

output of Cn(x). Recall the rth bit of T is defined to be Cr
n(x). We must show two

things. First, that there exists an i such that DSi,1(r) = · · · = DSi,p′ (r) and second,
that if for some i we have that DSi,1(r) = · · · = DSi,p′ (r), then DSi,1(r) = Cr

n(x).

Since Cn has depth d , the rth output of Cn can depend on at most 2d input wires
W ⊆ [m]. Hence, on any input y such that y|W = x|W , we have that Cr

n(y) = Cr
n(x).

Since p = 2d , by the claim, there exists some Si� such that W ⊆ Si� . Therefore, for

all j we have that xSi�,j
|W = x|W , so DSi�,j

(r)
def= Cr

n(xSi�,j
) = Cr

n(x).
This implies both things we must show. First, we know that DSi�,1(r) = · · · =

DSi�,p′ (r) since they each equal Cr
n(x). Second, if for some i, we have that DSi,1(r) =

· · · = DSi,p′ (r), then we also have that DSi,1(r) = DSi,i�
(r) = Cr

n(x).

Thus we have that T can be computed by a circuit of size at most
(
p′
2

)
ε(θ) + K ,

which is less than θ , since θ ≥ log log n ≥ s0. This contradicts that CC(T ) > θ .

Next, we note that one can improve the bounds given by Lemma 7 assuming a
larger gap.

Lemma 8 Let ε(θ) < θα , and let � = (Y, N) be a promise problem, where � ≤NC0

m
ε-GapMCSP via a γ -honest reduction f computed by an NC0 circuit family Cn of
depth ≤ d , where γ (n) ≥ nβ . Then for all δ such that δ0 = β(1 − α)/2d+1 > δ > 0
there is an n0 such that for all n ≥ n0, if N |n �= ∅, then c0(�|n) ≤ n1−δ .

Proof Let p = 2d . Suppose for contradiction that for some δ > 0 with δ < δ0 =
β(1 − α)/2p we have c0(�|n) > n1−δ infinitely often. We can follow the same
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argument (and notation) as above, except we have to be more careful since n/c0(�|n)
is no longer a constant, and hence p′ = (2pn/c0(�|n)+1

p

) ≤ (2pnδ+1
p

) = O(npδ) is no
longer constant. Since the unanimity condition can be implemented by a circuit of
size linear in

(
p′
2

)
, we can construct a circuit computing truth table T of size

ε(θ) · c1p
′2 = ε(θ) · c1

(
2pnδ + 1

p

)2

≤ c2ε(θ)n2pδ

infinitely often for some positive constants c1, c2. By γ -honesty, we have θ ≥
γ (n) ≥ nβ . This implies that we can construct a circuit computing T of size

c2ε(θ)n2pδ ≤ c2ε(θ)(θ1/β)2pδ < c2θ
αθ2pδ/β < θ

infinitely often. This is a contradiction since T is a truth table with circuit complexity
≥ θ .

Next, we present a variant of Lemma 8, but restricted to the parameterized ver-
sion of MCSP. This variant is useful in extending our non-hardness results to ≤AC0

T
reductions that make no(1) queries.

Lemma 9 Let � = (Y, N) be a promise problem. If � ≤NC0

m MCSP[�, g] with
�(m) = o(g(m)/mδ) for some δ > 0, then c0(�|n) ≤ nε for some ε < 1 for all but
finitely many n where N |n �= ∅, where ε depends only on the depth of the NC0 circuit
family and δ.

Proof Suppose for contradiction that for all ε < 1 we have c0(�|n) > nε infinitely
often. Once again, we follow the same argument (and notation) as above. We can
construct a circuit computing truth table T of size

�(m) · c1p
′2 ≤ �(m) · c1

(
2pn/c0(�|n) + 1

p

)2

≤ �(m)c1

(
2pn1−ε + 1

p

)2

≤ c2�(m)n2p(1−ε),

infinitely often for some positive constants c1, c2. (Here, m denotes the length of
the truth table T .) Note that since c0(�|n) > nε , we know �|n depends on ≥ nε

input bits. Since the circuit has depth at most d and gates of fan-in 2, we must have
m ≥ nε/2d . This implies that we can construct a circuit computing T of size

c2�(m)(nε)
2p(1−ε)

ε ≤ c3�(m)m
2p(1−ε)

ε ,

infinitely often for some positive constant c3. Setting ε = 2p
2p+δ

, we have that T

can be computed by a circuit of size ≤ c3�(m) · mδ infinitely often, which is a
contradiction since T is a truth table with circuit complexity ≥ g(m) = ω(�(m) ·
mδ).
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5 Non-hardness Under Many-One AC0 Reductions

In this section, we use the tools of the preceding section to show that the problem of
approximating circuit size is not hard for any class containing PARITY under ≤AC0

m
reductions. We recall Theorem 1:

Theorem 1 PARITY �≤AC0

m ε-GapMCSP where ε(n) = o(n).

Proof Suppose not. Then there is a family of AC0 circuits Cn that many-one reduces
PARITY to ε-GapMCSP. By Lemma 4, there is an a such that we can transform
each Cn into an NC0 circuit Dm on m = 	(n1/a) variables, computing a reduction
f from either PARITY or ¬PARITY (depending on the parity of the restriction) to
ε-GapMCSP. For each input x of length n, f (x) is of the form (T (x), θ(x)). Since
there are only O(log n) output gates in the θ(x) field, and each output gate depends
on only O(1) input variables, all of the output gates for θ(x) can be fixed by set-
ting only O(log n) input variables. Furthermore, we claim that there is some setting
of these O(log n) input variables, such that the resulting value of θ is greater than
log n/ log log n. If this were not the case, then the ≤AC0

m reduction of PARITY (or
¬PARITY) on m = 	(n1/a) variables to ε-GapMCSP has the property that θ(x)

is always less than log n/ log log n. But, as in the proof of Theorem 1.3 of [26],
instances of MCSP where θ is O(log n/ log log n) can be solved with a DNF circuit of
polynomial size. Thus this would give rise to AC0 circuits for PARITY, contradicting
the well-known circuit lower bounds of [2, 13].

Summarizing up to this point: The circuits Dm with O(log n) additional variables
set (fixing the value of θ ) yields a family on m′ = m−O(log n) = 	(n1/(a+1)) vari-
ables, where each circuit Dm′ reduces either PARITY or ¬PARITY to ε-GapMCSP,
where furthermore this reduction satisfies the hypotheses of Lemmas 6 and 7.

But then the conclusions of Lemmas 6 and 7 contradict the fact that both PARITY
and ¬PARITY on m′ variables have 0-certificate complexity and 0-block-sensitivity
m′.

6 Non-hardness Under Limited Turing AC0 Reductions

With some work, we can extend our non-hardness results beyond many-one reduc-
tions to some limited Turing reductions.

In our proofs that deal with AC0-Turing reductions, we will need to replace some
oracle gates with “equivalent” hardware—where this hardware will provide answers
that are consistent with some solution to the promise problem ε-GapMCSP, but might
not be consistent with the particular solution that is provided as an oracle. In order
to ensure that this doesn’t cause any problems, we introduce the notion of a “sturdy”
AC0-Turing reduction:

Definition 10 Let �1 = (Y1, N1) and �2 = (Y2, N2) be promise problems. A
family {Cn} of AC0-oracle circuits is a sturdy ≤AC0

T reduction from �1 to �2 if, for
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every pair of solutions S, S′ to �2, every oracle gate G in Cn, and every x ∈ Y1 ∪N1,
there is a solution S′′ such that CS

n (x) = CS′′
n (x) = CS

n [G → S′](x), where the
notation CS

n [G → S′] refers to the circuit Cn with oracle S, but where the oracle gate
G answers queries according to the solution S′ instead of S.

Lemma 11 Let � be any promise problem. If � ≤AC0

tt ε(n)-GapMCSP via a reduc-

tion of depth d , then � ≤AC0

tt ε(n)-GapMCSP via a sturdy reduction of depth 5d with

the same number of oracle gates. If � ≤AC0

T ε(n)-GapMCSP via a reduction of depth

d , then � ≤AC0

T ε(n)-GapMCSP via a sturdy reduction of depth 5d with the same
number of oracle gates.

Proof Briefly: We modify Cn, so that each oracle query is checked against queries
that were asked “earlier” in the computation, and the computation uses only the oracle
answer from the first time a query was asked. Since each query is given an answer
that is consistent with some solution, the new circuit gives the same answers as a new
solution (which we denote as S′′). Since Cn is a reduction, we get the same answer
when using S or S′′.

In more detail: Label the oracle gates G1, . . . , Gk of Cn in topological order so
that there is no directed path from Gi to Gj for all i > j (and for a truth-table
reduction, any ordering suffices). Let qi denote the query asked by Gi . Let C′

n be the
circuit where we replace any wire that leaves Gi by a wire connected to the following
subfunction:

Gi(x) ∧ ∀j < i(qi �= qj )

or
∃j < i(qi = qj ∧ ∀k < j (qk �= qj ) ∧ Gj(qj ))

The reader can verify that this additional circuitry can be implemented in depth five,
and thus C′

n has depth at most 5d . Furthermore, this hardware does not add any oracle
gates or directed paths between oracle gates, so the number of oracle gates used is
unchanged and truth-table reductions remain truth-table reductions.

Now let S and S′ be any two solutions to ε(n)-GapMCSP. Consider any input x

of length n that satisfies the promise of � = (Y, N). (That is, x ∈ Y ∪ N .) Thus
CS

n (x) = CS′
n (x). Now consider the operation of C′

n(x) where some oracle gate Gi

answers queries according to S′, rather than S. By construction, the behavior of this
computation C′S

n[Gi → S′] is the same as that of CS′′
n (x), where

S′′(q(x)) :=
{

S(q(x)) if q(x) �= qi(x), or if qi(x) = qj (x) for some j < i,
S′(q(x)) otherwise.

S′′ is also a solution to ε-GapMCSP, since it agrees with either S or S′ on each
query, and both S and S′ agree on all queries that satisfy the promise. Thus C′S

n[Gi →
S′](x) = CS′′

n (x) = CS′
n (x) = CS

n (x), since Cn is a reduction. Also, C′S′′
n (x) =

CS′′
n (x) and C′S

n(x) = CS
n (x), since each oracle gate of C′

n answers each query the
same way that Cn does, if the same oracle is provided to each gate. Thus, we have
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that C′S
n(x) = C′S′′

n (x) = C′S
n[Gi → S′](x). This establishes that C′

n is computing
a sturdy reduction.

Theorem 12 Let k ≥ 1, and let ε(n) = o(n). Then PARITY �≤AC0

k−tt ε-GapMCSP.

Proof We show that, for all k ≥ 1, if PARITY ≤AC0

k−tt ε-GapMCSP, then

PARITY ≤AC0

(k−1)−tt ε-GapMCSP. This suffices, since a 0-truth-table reduction is

simply an AC0 circuit computing PARITY, which cannot exist.
Given the oracle circuit family Cn, (where by Lemma 11 we may assume that

the ≤AC0

k−tt reduction is sturdy), let Dn be the subcircuit consisting of those gates that
are on a path from an input variable to any oracle gate. Dn is simply an AC0 cir-
cuit on n variables, and thus by Lemma 4, there is an a such that we can transform
each Dn into an NC0 circuit Em(n) on m(n) = 	(n1/a) variables. Replacing Dn by
Em(n) in Cn yields a k-tt reduction Fm(n) from PARITY or ¬PARITY on m(n) vari-
ables to ε-GapMCSP. (If Fm(n) is a reduction from ¬PARITY, then modify Fm(n) by
negating the output gate, so that each Fm(n) is a reduction from PARITY on m(n)

variables to ε-GapMCSP.) Note that we can obtain a family of polynomial-size cir-
cuits on n variables by starting with Fm(n2a) (which has more than n input variables)
and setting some of the variables to 0. Thus, without any loss of generality, we may
assume that our circuit family Cn has the property that the subcircuit Dn consist-
ing of the gates on a path from an input gate to an oracle gate consists of NC0

circuitry.
For each n, select the first oracle gate G1 (in some order). Consider the circuit

family Bn consisting of all of the gates that are on a path from any input to G1. Note
that Bn is an NC0 circuit family computing some function f , where f (x) is of the
form (T (x), θ(x)). If it is possible to set some of the input variables of Bn so that the
output gates for θ(x) take on a value θ ≥ log n/ log log n, do so. Note that this leaves
m = n − O(log n) variables unset. (If it is not possible to do so, then (as in the proof
of Theorem 1), G1 can be replaced in Cn by a polynomial-sized DNF circuit, thereby
yielding a (sturdy) (k − 1)-tt reduction, as desired.) Call C′

m and B ′
m the circuits that

result by restricting the O(log n) input variables of Cn and Bn, respectively.
We now aim to find a restriction of the inputs and a solution to ε-GapMCSP such

that the output of G1 is constant. Define � = (Y, N) to be the promise problem
where for all x we put x ∈ Y if and only if CC(T (x)) ≤ ε(θ) and x ∈ N if and only
if CC(T (x)) > θ where B ′

m(x) = (T (x), θ). Observe that B ′
m is a log n-honest NC0

reduction of � to ε-GapMCSP.
There are two cases, depending on whether N = ∅ or not. If N = ∅, then S′ =

{(T , θ) : CC(T ) ≤ ε(θ)} is a solution to ε-GapMCSP such that every query to G1 is
answered affirmatively. By the sturdiness of the reduction, G1 can be replaced by a
constant 1, transforming C′

m into a (k − 1)-tt reduction.
If N �= ∅, then by Lemma 7, for all large m c0(�|m) ≤ m/(k+1). That is, there is

a way to set some r ≤ m/(k + 1) input variables, obtaining restriction ρ, and thereby
obtain a circuit B ′′

m−r = B ′
m|ρ on m − r variables, such that for any string z of length

m − r , CC(Tm−r (z)) > ε(θ) where B ′′
m−r (z) = (Tm−r (z), θ). That is, every query
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to G1 is answered negatively in C′
m|ρ , and hence G1 can be replaced by a constant

0, transforming C′
m|ρ into a (k − 1)-tt reduction from PARITY to ε-GapMCSP on

m − r = 	(n) variables in this case.
In both cases, we obtain a (k − 1)-tt reduction from PARITY to ε-GapMCSP, as

desired.

With a larger gap, we can rule out nonadaptive reductions that use no(1) queries.

Theorem 13 Let ε(n) < nα for some 1 > α > 0. Then for any circuit family {Cn}
computing an ≤AC0

tt reduction of PARITY to ε-GapMCSP, there is a δ > 0 such that,
for all large n, Cn makes at least nδ queries.

Proof Let {Cn} be a circuit family computing an ≤AC0

tt reduction of PARITY to
ε-GapMCSP. By Lemma 11 we may assume that each Cn is sturdy. As in the proof
of the preceding theorem, we assume without loss of generality that Cn has the prop-
erty that the subcircuit Dn consisting of those gates that lie on paths from input gates
to oracle gates consists of NC0 circuitry of depth d . (We will assume without loss of
generality that, if the gates in Dn are removed from Cn, the depth of the circuit that
remains is also at most d . Otherwise, let d be the maximum of these two constants.)

We will show that, for all large n, Cn contains at least nδ oracle gates
G1, G2, . . . , Gt , where δ is chosen to be less than (1 − α)/12d2d+1. For the sake of
a contradiction, assume that t < nδ .

Here is a high-level overview of the rest of the proof: As in the proof of the pre-
ceding theorem, we construct a sequence of restrictions (one for each oracle gate), so
that when the input bits of Cn are set according to the restrictions, each oracle gate
either has a very small threshold θ , or else it can be replaced by a constant. In this
way, we transform Cn into a circuit on m ≥ n/2 input bits where each oracle gate
Gi has a threshold θi < n1/3d/ log n. Replacing each such oracle gate by a DNF of
size 2O(n1/3d ) (as in the proof of the preceding theorem) results in an AC0 circuit of
depth at most d + 1 computing PARITY, in contradiction to the lower bound of [15].
Details follow.

Our argument proceeds in t stages, where oracle gate Gi is considered in stage i.
At the start of stage i we have a partial restriction ρi−1 that has at most (i − 1)n1−2δ

bits set. Here is a detailed description of stage i:
Consider the circuit family Bn consisting of all of the gates that are on a path from

any input to Gi . Note that Bn is an NC0 circuit family computing some function fi ,
where fi(x) is of the form (Ti(x), θi(x)). If for all x that agree with ρi−1, θi(x) <

n1/(3d)/ log(n), then stage i is done; set ρi = ρi−1 and go on to the next stage.
Otherwise, there is a way to set an additional O(log n) additional variables, thereby
extending ρi−1 to obtain a new restriction ρ′

i , so that for all x which agree with ρ′
i ,

θi(x) takes on a constant value θi ≥ n1/(3d)/ log n ≥ n1/(4d).
We now aim to find a restriction of the inputs and a solution to ε-GapMCSP such

that the output of Gi is constant. Define �i = (Yi, Ni) to be the promise problem
where for all x that agree with ρ′

i we put x ∈ Yi if and only if CC(Ti(x)) ≤ ε(θi) and
x ∈ Ni if and only if CC(Ti(x)) > θi where Bn(x) = (Ti(x), θi). Observe that Bn is
a n1/(4d)-honest NC0 reduction of �i to ε-GapMCSP.
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There are two cases, depending on whether Ni = ∅ or not. If Ni = ∅, then
S = {(T , θ) : CC(T ) ≤ θ} is a solution to ε-GapMCSP such that every query to Gi

is answered affirmatively. By the sturdiness of the reduction, the output of Gi can be
replaced by the constant 1, and we let ρi = ρ′

i .
If Ni �= ∅, then by Lemma 8, for all large n, c0(�i |ρ′

i
) ≤ n1−3δ . (The conditions of

Lemma 8 are satisfied, since (1/4d)(1−α)/2d+1 > 3δ.) That is, there is a way to set
at most n1−3δ additional variables, thereby extending ρ′

i to obtain a new restriction
ρi , such that for any string x of length n that agrees with ρi , CC(Ti(x)) > ε(θi).
Therefore, S = {(T , θ) : CC(T ) ≤ ε(θ)} is a solution to ε-GapMCSP such that every
query to Gi is answered negatively. Hence, by the sturdiness of the reduction, gate
Gi can be replaced by a constant 0.

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an additional
O(log n) + n1−3δ < n1−2δ variables.

Since t < nδ , we have that ρt has m ≥ n − tn1−2δ > n − nδn1−2δ = n − n1−δ >

n/2 unset variables. Let C′′
m be the circuit Cn|ρt . Each oracle gate in C′′

m has the
property that the threshold that is computed is always no more than n1/3d . Since the
reduction is sturdy, the circuit still behaves correctly if each oracle gate is replaced by
a circuit that computes MCSP exactly, and (as in the proof of Theorem 1.3 of [26]),
instances of MCSP where θ is bounded by n1/3d/ log n can be computed by a DNF of
size 2O(n1/3d ). Replacing each oracle gate by such a DNF yields a circuit of depth at
most d + 1, of size 2O(n1/3d ), computing PARITY, thereby violating the lower bound
established in [15].

If we consider the parameterized version of MCSP, rather than ε-GapMCSP, we
obtain non-hardness even under ≤AC0

T reductions.

Theorem 14 Let �(m) = o(g(m)/mδ) for some 1 > δ > 0. Then for any circuit
family {Cn} computing an≤AC0

T reduction of PARITY toMCSP[�, g], there is an ε > 0
such that, for all large n, Cn makes at least nε queries.

Proof Define the oracle depth of a gate G to be the largest number of oracle gates
on any directed path ending with G.

Let {Cn} be a circuit family computing an ≤AC0

T reduction of PARITY to
MCSP[�, g]. As above, we may assume that each Cn is sturdy, and that the subcircuit
Dn consisting of those gates at oracle depth 1 consists of NC0 circuitry of depth at
most d . Let k be the maximum oracle depth of any gate in {Cn}.

Here is a high-level overview of the rest of the proof: Similar to the proof of
the preceding theorem, we construct a sequence of t restrictions ρ1, . . . , ρt , so that
in Cn|ρi

the first i gates G1, . . . , Gi can be replaced a constant. In this way, we
transform Cn into a circuit on n′ ≥ n/2 input bits of oracle depth k − 1.

We will first show that there is a value ε > 0 (specified later) such that if Cn

does not have at least nε gates at oracle depth 1, then Cn can be replaced by an ≤AC0

T
reduction of oracle depth k − 1, by eliminating all of the oracle gates G1, . . . , Gt at
oracle depth 1.
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Our argument proceeds in t stages, where oracle gate Gi is considered in stage i.
At the start of stage i we have a partial restriction ρi−1 that has at most (i − 1)n1−2ε

bits set. Here is a detailed description of stage i:
Consider the circuit family Bn consisting of all of the gates that are on a path

from any input to Gi . Note that Bn is an NC0 circuit family computing some function
fi(x) = Ti(x). Let m = |Ti(x)|. Also, although Bn sits inside of Cn (which is com-
puting PARITY), the function fi might not have any obvious connection to PARITY.
By the end of the next paragraph, we will have identified some relevant properties of
fi .

We now aim to find a restriction of the inputs and a solution to MCSP[�, g] for
which the output of Gi is constant. Define �i = (Yi, Ni) to be the promise problem
where for all x that agree with ρi−1 we put x ∈ Yi if and only if CC(Ti(x)) ≤ �(m)

and x ∈ Ni if and only if CC(Ti(x)) > g(m). Observe that by construction of �i ,
Bn is an NC0 reduction of �i to ε-GapMCSP.

There are two cases, depending on whether N = ∅ or not. If N = ∅, then S =
{T : CC(T ) ≤ g(|T |)} is a solution to MCSP[�, g] such that every query to Gi is
answered affirmatively. By the sturdiness of the reduction, the output of Gi can be
replaced by the constant 1, and we let ρi = ρi−1.

If N �= ∅, then, by Lemma 9, for all large n, c0(�i |ρi−1) ≤ nε′
for some ε′ < 1 that

depends only on d and δ. That is, there is a way to set at most nε′
additional variables,

thereby extending ρi−1 to obtain a new restriction ρi , such that for any string x of
length n that agrees with ρi , CC(Ti(x)) > �(m). Thus, S = {T : CC(T ) ≤ �(m)} is a
solution to MCSP[�, g] such that every query to Gi is answered negatively. Therefore,
by the sturdiness of the reduction, gate Gi can be replaced by a constant 0.

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an additional
nε′

variables.
It is now time to set the constant ε to be 1 − (ε′/2).
Since t < nε , we have that ρt has r ≥ n−tnε′ = n−n1−(ε′/2)nε′ = n−n1−(ε′/2) >

n/2 unset variables.
A minor complication arises when we want to repeat this argument inductively to

reduce the oracle depth to k − 2 and so on. Namely, the constant ε′ depends on the
depth d of the NC0 circuitry that feeds into the oracle gates at the bottom level of
Cn. Cn|ρt has oracle depth k − 1, as desired, but it now has AC0 circuitry feeding
into the lowest level of oracle gates, and when we appeal to Lemma 4 to apply a
random restriction to convert that AC0 circuitry to NC0 circuitry, the depth of the NC0

circuitry increases to a depth that we can denote d2.
However, this problem is resolved by observing that the choice of ε′ in Lemma 9

is monotone in the depth d . Thus, if we carry out the argument above, but pick ε′
using the parameter d2 instead of d when we appeal to Lemma 9, and then repeat
the argument to reduce the oracle depth to k − 2, the parameters still work out. If we
let d3 be the depth of the NC0 circuitry that results by starting with Cn with depth-
d NC0 circuitry at the bottom, eliminating lowest level of oracle gates and applying a
random restriction to obtain a circuit family of oracle depth k − 1 with NC0 circuitry
of depth d2 at the bottom, and then repeating the process to obtain a circuit family of
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oracle depth k − 2 with NC0 circuitry of depth d3 at the bottom, then the argument
above is sufficient to obtain a circuit family of depth k − 3, etc.

Thus, there is a choice of ε′ that suffices to convert an arbitrary ≤AC0

T reduction of
oracle depth k (with fewer than nε oracle gates) to an AC0 circuit computing parity
on n	(1) input bits, thereby obtaining the desired contradiction.

7 Open Questions

There remain several open questions. The true complexity of MCSP remains a mys-
tery. We have made progress in understanding the hardness of an approximation to
MCSP, but how far can Theorem 1 be extended? Can we prove non-hardness under
general truth-table and Turing reductions? Can we reduce the gap in the theorem to
some constant factor approximations? Does the impossibility result hold when AC0

is replaced with, say, AC0[2] many-one reductions? Is MCSP hard for DET under
≤AC0

m reductions? (Recall that the related problem MKTP is hard for DET under such
reductions [4].)
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