
Enhanced Compiler Bug Isolation via Memoized Search

Junjie Chen∗†

College of Intelligence and
Computing, Tianjin University

China, Tianjin
junjiechen@tju.edu.cn

Haoyang Ma∗

College of Intelligence and
Computing, Tianjin University

China, Tianjin
haoyang_9804@tju.edu.cn

Lingming Zhang
University of Illinois at
Urbana-Champaign
USA, IL, Urbana

lingming@illinois.edu

ABSTRACT

Compiler bugs can be disastrous since they could affect all the soft-

ware systems built on the buggy compilers. Meanwhile, diagnosing

compiler bugs is extremely challenging since usually limited de-

bugging information is available and a large number of compiler

files can be suspicious. More specifically, when compiling a given

bug-triggering test program, hundreds of compiler files are usu-

ally involved, and can all be treated as suspicious buggy files. To

facilitate compiler debugging, in this paper we propose the first

reinforcement compiler bug isolation approach via structural mu-

tation, called RecBi. For a given bug-triggering test program, RecBi

first augments traditional local mutation operators with structural

ones to transform it into a set of passing test programs. Since

not all the passing test programs can help isolate compiler bugs

effectively, RecBi further leverages reinforcement learning to intel-

ligently guide the process of passing test program generation. Then,

RecBi ranks all the suspicious files by analyzing the compiler exe-

cution traces of the generated passing test programs and the given

failing test program following the practice of compiler bug isolation.

The experimental results on 120 real bugs from two most popular C

open-source compilers, i.e., GCC and LLVM, show that RecBi is able

to isolate about 23%/58%/78% bugs within Top-1/Top-5/Top-10 com-

piler files, and significantly outperforms the state-of-the-art com-

piler bug isolation approach by improving 92.86%/55.56%/25.68%

isolation effectiveness in terms of Top-1/Top-5/Top-10 results.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Compilers; • Theory of computation → Reinforce-

ment learning.

KEYWORDS

Compiler Bug Isolation, Fault Localization, Reinforcement Learning

∗Both authors contributed equally to this paper.
†Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21ś25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416570

ACM Reference Format:

Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Com-

piler Bug Isolation via Memoized Search. In 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’20), September 21ś

25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3324884.3416570

1 INTRODUCTION

Compilers are one of the most fundamental software systems since

almost all software systems (ranging from operating systems, web

browsers, to script code written by end-users) are compiled by

them. Although dedicated efforts have been devoted to ensuring

their quality, compilers are still error-prone due to their extremely

large-scale and complicated codebases [17, 18, 21, 58, 70]. In practice,

compiler bugs are very harmful, and can potentially affect all the

software systems compiled by the buggy compilers. Therefore, it is

essential to detect, isolate, and fix all possible compiler bugs.

In the literature, many approaches have been proposed to au-

tomatically detect compiler bugs [12ś14, 18, 19, 28, 58, 66, 70, 75],

but there is limited research efforts dedicated to automated debug-

ging of compiler bugs, such as bug isolation and fixing. That is,

compiler bug isolation and fixing are still a rather tedious and time-

consuming process for modern compilers. In particular, compiler

bug isolation is a more fundamental problem since it also directly

helps with effective compiler bug fixing. Although many automated

bug localization approaches (such as spectrum-based [7, 27, 73],

slicing-based [69], mutation-based [34, 45, 48, 51, 74], and the recent

program-repair-based [9, 46] approaches) have been proposed for

common software systems, these existing approaches can hardly

isolate compiler bugs due to either extremely high costs or poor

effectiveness; please refer to the extensive discussion in a recent

work [16] for more details.

To facilitate compiler bug isolation, Chen et al. [16] proposed

the first approach, named DiWi, which transforms the problem

of compiler bug isolation to the problem of passing test program

generation. More specifically, given a failing test program, DiWi

first generates a set of passing test programs by traditional local

mutation operators (which change minimal program elements such

as modifiers and constants), and then leverages existing bug local-

ization techniques [6, 36] to identify the compiler buggy files by

comparing the execution traces between the generated passing pro-

grams and the given failing test program. Although the generated

passing test programs via DiWi has been demonstrated to perform

better than both developer-written test programs and the test pro-

grams generated by the widely-used compiler fuzzing technique

(i.e., Csmith [70]) for compiler bug isolation [16], DiWi still suffers

from the effectiveness issue. For example, as demonstrated by the

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

existing work [16] and our study (to be presented in Section 4.5),

developers using DiWi still need to check about 15 innocent files

before finding the really buggy one on average; about 62.5% studied

bugs cannot be successfully isolated after checking 5 most sus-

picious files recommended by DiWi (please note that in practice,

most developers tend to abort the automated debugging tools if

they cannot localize buggy elements within Top-5 positions [38]).

To further advance state-of-the-art compiler bug isolation, in

this paper, we propose an enhanced compiler bug isolation ap-

proach via memoized search and structural mutation, called RecBi

(Reinforcement compiler Bug isolation). More specifically, since

compiler bugs tend to occur in the components of compiler opti-

mizations that tend to depend on test program structure, for a given

compiler bug with a failing test program, RecBi first augments the

traditional local mutation operators used by DiWi with structural

mutation operators (which change the test program structure by

inserting some control-flow-alerting statements such as branch

and loop statements) to effectively generate similar test programs

that can flip the compiler execution results (i.e., from failing to

passing). This is because traditional local mutation operators usu-

ally have small influence on program structure due to its minor

modification, while structural mutation operators can augment the

ability of changing program structure by effectively altering the

control-flow of test programs and in the meanwhile optimizations

are often involved in compiler bugs and structural mutation is good

at skipping the buggy optimizations. However, not all the generated

passing test programs can facilitate isolating compiler bugs [16],

and thus casually or simply heuristically performing mutations on

the given failing test program may not be effective. Thus, RecBi

further incorporates reinforcement learning [37] (a kind of memo-

ized search), which can effectively learn both historical and future

knowledge, to intelligently guide how to conduct mutation in order

to generate a set of more effective passing test programs during

a given period. Finally, similar to the existing work [7, 16], RecBi

ranks all the suspicious files according to their suspicious scores by

comparing the compiler execution traces between the generated

passing test programs and the given failing program. In a word,

the novelties of RecBi are twofold: 1) it opens a new dimension

for compiler bug isolation via structural mutation; 2) it leverages

reinforcement learning for more intelligent compiler bug isolation.

To evaluate the effectiveness of RecBi, we conducted an extensive

study based on 120 real compiler bugs from GCC [2] and LLVM [4],

which are the most widely-used C compilers in both industry and

academia [16, 41, 58, 70]. Our experimental results show that RecBi

is able to isolate 27, 70, 93, 107 bugs (out of 120 compiler bugs) within

Top-1, Top-5, Top-10, and Top-20 files, respectively. That is, about

23%, 58%, 78%, and 89% bugs can be isolated successfully within

Top-1, Top-5, Top-10, and Top-20 files through RecBi, respectively.

In particular, RecBi substantially outperforms the state-of-the-art

approach DiWi. For example, the improvements of RecBi over DiWi

are up to 92.86%/55.56% in terms of Top-1/Top-5 results, 45.55% in

terms of MFR (Mean First Rank, measuring the effectiveness in

detecting the first buggy file for each bug), and 44.62% in terms of

MAR (Mean Average Rank, measuring the effectiveness in detecting

all the buggy files for each bug). Furthermore, we investigated the

contributions of both major components in RecBi (i.e., structural

1 i n t p r i n t f (c on s t char ∗ , . . .) ;

2 i n t a , b =1 ;

3 i n t main () {

4 i n t i ;

5 f o r (i = 0 ; i < 5 6 ; i ++)

6 f o r (; a ; a−−)
7 ;

8 i n t ∗ c=&b ;

9 i f (∗ c)

10 ∗ c =1%(uns igned i n t) ∗ c | 5 ;

11 p r i n t f ("%d \ n " , b) ;

12 r e t u r n 0 ;

13 }

(a) Failing Program

1 i n t p r i n t f (c on s t char ∗ , . . .) ;

2 i n t a , b =1 ;

3 i n t main () {

4 i n t i ;

5 f o r (i = 0 ; i < 5 6 ; i ++)

6 f o r (; a ; a−−)
7 ;

8 i n t ∗ c=&b ;

9 while(aś ś)

10 i f (∗ c)

11 ∗ c =1%(uns igned i n t) ∗ c | 5 ;

12 p r i n t f ("%d \ n " , b) ;

13 r e t u r n 0 ;

14 }
(b) Passing Program

Figure 1: GCC Bug 64682

mutation and reinforcement learning for passing test program gen-

eration), as well as the impacts of different RecBi configurations.

To sum up, this paper makes the following main contributions:

• This work opens a new dimension of compiler bug isolation

via structural mutation, i.e., leveraging carefully designed

structural mutation operators for generating passing test

programs to boost compiler bug isolation.

• This work brings reinforcement learning to the compiler

bug isolation area for the first time, i.e., leveraging state-

of-the-art reinforcement learning to intelligently guide the

structural-mutation-based compiler bug isolation process.

• The proposed technique has been implemented as a practi-

cal compiler bug isolation system, named RecBi, based on

mature tools and libraries, i.e., Clang Libtooling library [1],

Gcov [3], and PyTorch [5].

• This work conducts an extensive study based on 120 real

compiler bugs from two most widely-used C compilers, i.e.,

GCC and LLVM, to evaluate the effectiveness of RecBi. The

results reveal the effectiveness of RecBi (significantly out-

performing the state-of-the-art DiWi), the contribution of

each major component in RecBi, and the impacts of different

RecBi configurations.

2 BACKGROUND

2.1 Test Program Mutation for Compiler Bug
Isolation

To solve the problem of compiler bug isolation, Chen et al. [16]

transforms this problem to the problem of passing test program gen-

eration. According to the idea of spectrum-based bug localization

(also called SBFL) [7, 67], all the compiler files touched by a given

failing test program during compilation are suspects and passing

test programs are helpful to reduce the suspicion of innocent files.

If a passing test program has similar execution trace (except the

buggy files) with the given failing test program, the buggy files

are more likely to be isolated by comparing the execution trace

between the passing test program and the given failing test pro-

gram. Therefore, DiWi designs three categories of local mutation

operators to produce such similar passing test programs by chang-

ing three minimal program elements (i.e., variables, constants, and

operators) of the given failing test program.

Although these traditional local mutation operators in DiWi

can generate some passing test programs as demonstrated by the

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

1 v o l a t i l e

2 i n t a , b , c =2 ;

3 uns igned d ;

4 i n t main () {

5 i n t e =−32;

6 d=−31;

7 f o r (; d >2 ; d ++)

8 f o r (e + + ; ; b−−)
9 i f (c)

10 break ;

11 e&&a ;

12 r e t u r n 0 ;

13 }

(a) Failing

1 v o l a t i l e

2 i n t a , b , c =2 ;

3 uns igned d ;

4 i n t main () {

5 i n t e =−32;

6 ⊲d=−31;

7 ⊲ f o r (; d >2 ; d ++)

8 ⊲ f o r (e + + ; ; b−−)
9 ⊲ i f (c)

10 break ;

11 ⊲e&&a ;

12 r e t u r n 0 ;

13 }

(b) Locations

1 v o l a t i l e

2 i n t a , b , c =2 ;

3 uns igned d ;

4 i n t main () {

5 i n t e =−32;

6 if(((long)(a-a))<1)

7 d=−31;

8 f o r (; d >2 ; d ++)

9 f o r (e + + ; ; b−−)
10 i f (c)

11 break ;

12 e&&a ;

13 r e t u r n 0 ;

14 }
(c) Mutant

Figure 3: Example of Structural Mutation

3.1 Structural Mutation

The goal of mutation is to flip the compiler execution result (from

failing to passing) by transforming a given failing test program.

As presented in prior work [16, 18, 19, 58], most of compiler bugs

occur in the components of compiler optimizations, while the trig-

gering of compiler optimizations tends to depend on the structure

of test programs. Therefore, transforming the structure of a given

failing test program is helpful to generate effective passing test

programs. However, the existing local mutation operators in DiWi

usually have small influence on program structure due to its minor

modification, and thus we further explore structural mutation in

RecBi. More specifically, we design four structural mutation op-

erators, which insert four different types of statements to a given

failing test program respectively, to change the control-flow of the

failing test program. The four types of inserted statements are 1)

branch statements, 2) loop statements, 3) function calls, and

4) goto statements, since they are recognized to be effective to

change the control-flow of a program [23, 24, 42].

Except goto statements, the other three types of statements re-

quire additional ingredients (i.e., conditions in a branch or loop

statement, as well as the called function and its parameters in a func-

tion call) to complete insertion. However, it could be inefficient to

casually construct these ingredients. As demonstrated by the exist-

ing work [16], although the state-of-the-art compiler bug isolation

approach DiWi outperforms the approach using the developer-

provided test programs to isolate compiler bugs, the latter is able

to perform no worse than the former in some cases. Therefore,

it may be promising to adapt the ingredients already within the

developer-provided test programs for our structural mutation. In

this way, the unique value of the developer-provided test programs

embodied in the existing work [16] can be incorporated by RecBi.

Figure 2 shows the overview of our structural mutation, which

consists of three steps. First, RecBi extracts all the branch condi-

tions, loop conditions, declared functions and the corresponding

function calls, in the developer-provided test programs for the com-

piler under test, as an ingredient pool. Second, RecBi randomly

selects an ingredient from the ingredient pool according to the

type of the statement to be inserted, and randomly selects an in-

sertable location in the seed test program. It would produce invalid

test programs or fake passing test programs [16] (i.e., the gener-

ated passing test programs are not really passing and just remove

Table 1: Summary of mutation operators in RecBi

ID Description

1 Insert a branch (i.e., if) statement;

2 Insert a loop (i.e., while) statement;

3 Insert a function call;

4 Insert a goto statement;

5 Insert/remove a qualifier (i.e., volatile, const, and restrict);

6
Insert/remove a modifier (i.e., long, short, signed, and

unsigned);

7 Replace a variable with another valid one

8 Replace a constant with another valid one;

9 Replace/remove an unary operator;

10 Replace a binary operator with another valid one.

the test oracles) when inserting a statement to an improper loca-

tion. There are three types of non-insertable locations in RecBi:

1) the locations outside functions, 2) the locations before decla-

rations for the sake of maintaining the identifier scope, and 3)

the locations before the statements used as test oracles (such as

printf/__builtin_abort/return statements). Third, RecBi per-

forms insertion, and then conducts refactoring for new variables

in the selected ingredient, i.e., renaming the new variable to those

within the seed test program with compatible types, to make the

mutated test program valid. Figure 3 shows an illustrative example

for structural mutation, where Figure 3a is a failing test program,

Figure 3b identifies all the insertable locations (denoted as ⊲) in the

failing test program, and Figure 3c is a generated passing test pro-

gram via our structural mutation (by inserting a branch statement).

Local Mutation Operators. Besides these structural mutation op-

erators, RecBi also incorporates the traditional local mutation oper-

ators targeting the minimal program elements, which have been

studied by the existingwork for compiler bug isolation [16]. The rea-

son is that 1) the generated test programs via these local mutation

operators have been demonstrated to outperform the developer-

provided test programs and the test programs generated via the

widely-used compiler fuzzing technique (i.e., Csmith [70]) [16], and

2) for the compiler bugs in the front-end component (although the

number of this type of compiler bugs is rare), local mutation could

be very useful. Therefore, RecBi has 10 mutation operators in total,

which are summarized in Table 1.

Test Oracles. After mutation, it is also required to check whether

the generated test program is passing or still failing [15, 16]. Accord-

ing to the types of compiler bugs (i.e., crash bugs and wrong-code

bugs) [16, 20, 58], RecBi considers two types of test oracles ac-

cordingly. Regarding crash bugs (i.e., the compiler crashes when

using some compilation options to compile a test program), the

used test oracle is whether the compiler still crashes when using

the same compilation options to compile a generated test program.

Regarding wrong-code bugs (i.e., the compiler mis-compiles a test

program without any failure messages, causing the test program

to have inconsistent execution result under different compilation

options), the used test oracle is whether a generated test program

still produces inconsistent execution results under the compilation

options producing inconsistencies before.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

of the current passing test program set) due to the following in-

tuition ś when the size of the passing test program set is small, it

is preferable for RecBi to accept a new passing test program even

though it may decrease the diversity and similarity (because when

𝑛 is smaller, the actual delta is less important); but with the size

of the passing test program set increasing, we have less interests

to generate such low-quality passing test programs with RecBi.

Therefore, we incorporate 𝑛 to reflect such intuition in RecBi.

However, at each state only one mutation operator is selected

to generate a passing test program, and a mutation operator could

perform extremely differently due to various mutated locations,

which could lead to slow convergence for A2C. Moreover, it means

that the improved quality of the passing program set in the current

time step cannot precisely reflect the effect of the selected mutation

operator. Therefore, to reduce the influence of various performance

of a mutation operator, RecBi combines the improved quality at

the current time step and the historically improved quality by the

current mutation operator as the actual reward obtained at the

current time step, instead of directly using the improved quality:

𝑅𝑒𝑤𝑎𝑟𝑑𝑡 =

∑𝑡
𝑖=1 Δ𝑄𝑖

𝑇 (𝑚𝑖)
(6)

where, Δ𝑄𝑖=0 if the selected mutation operator is not 𝑚𝑖 at the

𝑖th time step, otherwise Δ𝑄𝑖 is calculated by Formula 5, and 𝑇 (𝑚𝑖)
refers to the number of times that𝑚𝑖 has been selected to mutate

the given failing test program.

3.2.2 Advantage Loss Function. After obtaining the actual reward

at the current time step, RecBi further uses CNN to obtain the

predicted potential reward. To better take the future factors into

account, A2C designs an advantage loss function in order to reduce

the high variance of the two neural networks and avoid falling into

the local optimal [63], which is shown in Formula 7:

𝐴(𝑡) =
𝑡+𝑢
∑

𝑖=𝑡

(𝛾 (𝑖−𝑡)𝑅𝑒𝑤𝑎𝑟𝑑𝑖) + 𝛾𝑢𝑃𝑅𝑡+𝑢 − 𝑃𝑅𝑡 (7)

where, 𝑢 represents that CNN considers the future 𝑢 consecutive

states and actions when predicting the potential reward, 𝛾 is the

weight of the actual future reward, PRt+u and PR𝑡 are the predicted

potential rewards at the (t+u)th and tth time steps by CNN respec-

tively. In particular, RecBi repeats the process in a time step for 𝑢

times and get the approximation of the actual future reward.

Based on the loss calculated by the advantage function in For-

mula 7, RecBi updates the weights of both ANN and CNN according

to Formula 8.

𝜔 = 𝜔 + 𝛽
𝜕(𝑙𝑜𝑔𝑃𝜔 (𝑎𝑡 |𝑠𝑡)𝐴(𝑡))

𝜕𝜔
(8)

where, 𝑠𝑡 and 𝑎𝑡 are the current state and action, 𝑃𝜔 (𝑎𝑡 |𝑠𝑡) refers to
the probability that 𝑎𝑡 is performed at 𝑠𝑡 based on the parameters

𝜔 in ANN and CNN, 𝛽 is the learning rate.

3.3 Compiler Buggy File Identification

Based on the set of generated passing test programs and the given

failing test program, RecBi leverages the idea of SBFL to identify

the buggy compiler files via comparing the coverage of failing

and passing tests [16]. More specifically, following prior work on

compiler bug isolation [16], RecBi first adopts state-of-the-art SBFL

formula, i.e., Ochiai [7] as shown in Formula 9, to calculate the

suspicious score of each statement:

𝑠𝑐𝑜𝑟𝑒 (𝑠) = 𝑒 𝑓𝑠
√

(𝑒 𝑓𝑠 + 𝑛𝑓𝑠) (𝑒 𝑓𝑠 + 𝑒𝑝𝑠)
(9)

where ef𝑠 and nf𝑠 represent the number of failing tests that execute

and do not execute statement 𝑠 , and ep𝑠 represents the number

of passing tests that execute statement 𝑠 . Since in RecBi there is

only one given failing test program, ef𝑠 is 1. Moreover, RecBi only

considers the statements executed by the given failing test program,

and thus nf𝑠 is 0. Therefore, in RecBi the Ochiai formula can be

simplified as:

𝑠𝑐𝑜𝑟𝑒 (𝑠) = 1
√
1 + 𝑒𝑝𝑠

(10)

After obtaining the suspicious score of each statement, RecBi

further calculates the suspicious score of each compiler file. Follow-

ing prior work [16], RecBi aggregates the suspicious scores of the

statements executed by the given failing test program in a compiler

file as the suspicious score of the compiler file:

𝑆𝐶𝑂𝑅𝐸 (𝑓) =
∑𝑛𝑓

𝑖=1 𝑠𝑐𝑜𝑟𝑒 (𝑠𝑖)
𝑛𝑓

(11)

where 𝑛𝑓 is the number of statements executed by the failing test

program in the compiler file 𝑓 . According to the descending order of

the suspicious score of each compiler file, RecBi produces a ranking

list of compiler files, where the higher a compiler file is ranked, the

higher possibility the file has to be buggy.

4 EVALUATION

In this study, we aim to address the following research questions:

• RQ1: How does RecBi perform on compiler bug isolation?

• RQ2: How does each main component contribute to RecBi?

• RQ3: How does different RecBi configurations impact the

effectiveness of RecBi?

4.1 Compilers and Bugs

In the study, we used both GCC and LLVM as subjects to investigate

the effectiveness of RecBi, covering almost all popular open-source

C compilers used in the existing work [13, 16, 21, 41, 70]. Regarding

the subject bugs, we used the released benchmark, including 120

real compiler bugs (60 GCC bugs and 60 LLVM bugs), including all

bugs from prior compiler bug isolation work [16]. Each compiler

bug contains the following information: the buggy compiler version,

the failing test program, the compilation options to reproduce the

bug, and the buggy files (served as the ground-truth in our study).

On average, a GCC buggy version has 1,758 files with 1,447K source

lines of code (SLOC), while a LLVM buggy version has 3,265 files

with 1,723K SLOC.

4.2 Implementation and Parameters

We implemented our proposed approach RecBi based on Clang

Libtooling library [1], Gcov [3], and PyTorch [5]. They are used

to parse a test program to an AST (Abstract Syntax Tree), collect

compiler coverage information, and provide the framework of A2C,

respectively. Following the default setting in the existing work [8,

63], we also set 𝛾 and 𝛽 in A2C to be 0.9 and 0.01, respectively. In

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

RecBi, the default settings of 𝛼 and 𝑢 are 0.8 and 5, respectively.

Note that we investigated the impacts of such main parameters

on RecBi in RQ3. Following the existing work [16], we set the

terminating condition to be one hour limit. That is, we compared all

the studied compiler bug isolation approaches under the same time

limit for fair comparison. To reduce the influence of randomness,

we repeatedly ran all the approaches for 5 times, and calculated

the median results. Our study is conducted on a workstation with

32-core CPU, 120G memory and Ubuntu 14.04 operating system.

We have released our tool and experimental data at our project

homepage: https://github.com/haoyang9804/RecBi.

4.3 Independent Variables

4.3.1 Compared Approaches. We compared RecBi with the state-of-

the-art compiler bug isolation approach DiWi [16] to answer RQ1.

DiWi isolates compiler bugs via local mutation and the traditional

MH (Metropolis-Hasting) algorithm [25], which depends on the

most recent behavior of each mutation operator to determine the

next mutation operator. Moreover, in traditional SBFL, developer-

provided tests are always used as the passing tests to reduce the

suspicion of innocent program elements. Thus, in RQ1 we also

investigated whether the generated passing programs via RecBi

outperform the developer-provided passing test programs for the

compiler under test. We call the approach using the latter Dev,

which uses the same strategy to rank all the compiler files as RecBi

(presented in Section 3.3) but uses the developer-provided passing

programs instead of the generated passing programs via RecBi.

In RQ2, we investigated the contributions of two main compo-

nents in RecBi, including newly designed structural mutation and

the reinforcement learning based test program generation strategy.

Therefore, we designed the following variants of RecBi.

• RecBimh replaces the reinforcement learning based test pro-

gram generation strategy with the traditional MH algorithm

used in DiWi. That is, RecBimh adopts the same strategy to

guide the process of test program generation as DiWi.

• RecBirand removes the reinforcement learning based test

program generation strategy from RecBi. That is, RecBirand
does not have any guidance to generate test programs by

randomly selecting a mutation operator in each time step.

• RecBifilter removes the reinforcement learning based test

program generation strategy from RecBi, but keeps the part

of measuring the quality of a generated passing test program

since the measurement method is the base of the reinforce-

ment learning based test program generation strategy. That

is, RecBifilter randomly selects a mutation operator in each

time step, then measures the quality of a generated passing

test program in the same way as RecBi, and finally filters

the low-quality passing test program (Δ𝑄𝑡 < 0). Actually,

RecBifilter is an updated version of RecBirand by adding a

measuring component.

We compared RecBimh and DiWi to investigate the contribution

of our designed structural mutation operators. We then compared

RecBi, RecBirand, and RecBimh to investigate the contribution of

our proposed reinforcement learning based test program gener-

ation strategy. Besides, we compared RecBirand and RecBifilter to

investigate the effectiveness of our designed measurement for the

quality of a generated passing test program, which is the base of

our reinforcement learning based test program generation strategy.

4.3.2 Different RecBi Configurations. In RQ3, we investigated dif-

ferent configurations of RecBi. Here, we discussed two main param-

eters in RecBi, including 𝛼 (used to combine similarity and diversity

as shown in Formula 4) and 𝑢 (the number of future time steps that

RecBi takes into account in Formula 7). Regarding 𝛼 , we studied

𝛼 = 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. Here, 𝛼 = 0 means that

RecBi only considers similarity, while 𝛼 = 1 means that RecBi only

considers diversity. Regarding 𝑢, we studied 𝑢 = 1, 2, 3, 4, 5, 6, and

7, respectively.

4.4 Measurements

Each compiler bug isolation approach produces a ranking list of

suspicious compiler files, and thus we measured the position of

each buggy file in the ranking list to measure the effectiveness of

each approach. Regarding the tie issue (i.e., multiple compiler files

have the same suspicious scores), we adopted the worst ranking

following the existingwork [35, 52]. More specifically, we calculated

the following metrics, which are widely-used by the existing work

in the area of bug localization [16, 40, 48, 55].

• Top-n measures the number of bugs that are isolated suc-

cessfully within the Top-n position (i.e., 𝑛 ∈ {1, 5, 10, 20} in
our study) in the ranking list. The larger the Top-n value is,

the more effective the approach is.

• Mean First Ranking (MFR)measures the mean of the rank

of the first buggy file in the ranking list for each bug. MFR

focuses on isolating the first buggy element fast in order to

facilitate debugging. The smaller the MFR value is, the more

effective the approach is.

• Mean Average Ranking (MAR)measures the mean of the

average rank of all buggy files in the ranking list for each bug.

MAR focuses on isolating all buggy elements precisely. The

smaller the MAR value is, the more effective the approach is.

4.5 Results and Analysis

4.5.1 RQ1: Overall effectiveness of RecBi. We illustrated the com-

parison results among various approaches in Table 2. Overall, RecBi

is able to isolate 27, 70, 93, 107 compiler bugs (out of 120 compiler

bugs) within Top-1, Top-5, Top-10, and Top-20 files, respectively.

That is, nearly 23%, 58%, 78%, and 89% bugs can be isolated success-

fully within Top-1, Top-5, Top-10, and Top-20 files through RecBi,

respectively. We further analyzed the effectiveness of RecBi on

different subject compilers, and surprisingly found that although

there are a larger number of compiler files in LLVM compared

with GCC, RecBi achieves better results on LLVM than GCC. For

example, the MFR and MAR values of RecBi on LLVM are 7.77

and 7.85 respectively while those of RecBi on GCC are 8.75 and

9.35 respectively. Moreover, we found that the other approaches

indeed perform worse on LLVM than GCC. The results demonstrate

that, the effectiveness of RecBi is not affected when facing larger

compiler systems, indicating its scalability.

We then compared RecBi with the state-of-the-art compiler bug

isolation approach DiWi. From Table 2, RecBi performs better than

DiWi in terms of all the metrics and on both of subject compilers.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

Table 2: Compiler bug isolation effectiveness comparison

Sub Approach Top-1 ⇑𝑇𝑜𝑝−1 Top-5 ⇑𝑇𝑜𝑝−5 Top-10 ⇑𝑇𝑜𝑝−10 Top-20 ⇑𝑇𝑜𝑝−20 MFR ⇑𝑀𝐹𝑅 MAR ⇑𝑀𝐴𝑅

LLVM

RecBi 13 Ð 38 Ð 48 Ð 54 Ð 7.77 Ð 7.85 Ð
DiWi 6 116.67 23 65.22 37 29.73 47 14.89 16.80 53.75 16.92 53.61
Dev 2 550.00 12 216.67 22 118.18 37 45.95 37.36 79.20 37.49 79.06
RecBimh 10 30.00 31 22.58 42 14.29 50 8.00 11.17 30.44 11.48 31.62
RecBifilter 7 85.71 27 40.74 42 14.29 49 10.20 13.77 43.57 17.91 56.17

RecBirand 3 333.33 29 31.03 39 23.08 49 10.20 40.12 80.63 40.16 80.45

GCC

RecBi 14 Ð 32 Ð 45 Ð 53 Ð 8.75 Ð 9.35 Ð
DiWi 8 75.00 22 45.45 37 21.62 49 8.16 13.53 35.33 14.15 33.92
Dev 3 366.67 12 166.67 25 80.00 32 65.62 22.44 61.01 23.04 59.42
RecBimh 13 7.69 30 6.67 41 9.76 49 8.16 10.52 16.83 10.92 14.38
RecBifilter 14 0.00 30 6.67 43 4.65 50 6.00 10.10 13.37 10.30 9.22

RecBirand 4 250.00 18 77.78 26 73.08 39 35.90 19.40 54.90 19.99 53.23

ALL

RecBi 27 Ð 70 Ð 93 Ð 107 Ð 8.26 Ð 8.60 Ð
DiWi 14 92.86 45 55.56 74 25.68 96 11.46 15.17 45.55 15.53 44.62
Dev 5 440.00 24 191.67 47 97.87 69 55.07 29.90 72.38 30.26 71.58
RecBimh 23 17.39 61 14.75 83 12.05 99 8.08 10.84 23.80 11.20 23.21
RecBifilter 21 28.57 57 22.81 85 9.41 99 8.08 11.93 30.76 14.10 39.01

RecBirand 7 285.71 47 48.94 65 43.08 88 21.59 29.76 72.24 30.08 71.41

* Columns ł⇑∗ž present the improvement rates of RecBi over a compared approach in terms of various metrics.

The overall improvements of RecBi over DiWi in terms of Top-1,

Top-5, Top-10, Top-20 are 92.86%, 55.56%, 25.68%, and 11.46%, re-

spectively. In particular, as demonstrated by the existing work [38],

the Top-5 metric is more important in practice since most devel-

opers tend to abort the automated debugging tools if they cannot

localize buggy elements within Top-5 positions [38], and thus RecBi

is more practical than DiWi by largely improving the effectiveness

of compiler bug isolation in terms of Top-5. The MFR and MAR

values of RecBi are 8.26 and 8.60 respectively while those of DiWi

are 15.17 and 15.53 respectively, demonstrating 45.55% and 44.62%

improvements of RecBi over DiWi respectively. That demonstrates

that RecBi indeed significantly outperforms the state-of-the-art

approach DiWi for compiler bug isolation.

We also compared RecBi with the approach using the developer-

provided passing test programs Dev. From Table 2, RecBi signif-

icantly outperform Dev in terms of all the metrics and on both

GCC and LLVM. The overall improvements of RecBi over Dev are

440.00%, 191.67%, 97.87%, and 55.07% in terms of Top-1, Top-5, Top-

10, and Top-20, respectively. Also, the overall improvements of

RecBi over Dev are 72.38% and 71.58% in terms of MFR and MAR,

respectively. The results demonstrate the apparent superiority of

RecBi compared with Dev.

Qualitative Analysis. We further performed qualitative analysis

on RecBi with two examples. Figure 5 shows two programs, where

the left one is the given failing test program and the right one is a

passing test program generated via our designed structural muta-

tion (i.e., inserting a while statement). This bug is triggered when

compiling the failing test program using GCC revision 228291 at

-O2 and above. The root cause lies in the compiler file "ifcvt.c",

which incorrectly uses 8-bit registers for optimization instead of

32-bit ones. By inserting a while statement with a false predicate,

a passing test program is generated as shown in Figure 5b, since it

invalidates the statement łc=(b&15)ˆe;ž that triggers the buggy

optimizations. We further calculated the similarity between the two

1 i n t p r i n t f (c on s t char ∗ , . . .) ;

2 i n t a ;

3 i n t b =10 ;

4 char c ;

5 i n t main () {

6 char d ;

7 i n t e =5 ;

8 f o r (a =0 ; a ; a−−){ e = 0 ; }

9 c = (b&15)^ e ;

10 d=c>e ? c : c<<e ;

11 p r i n t f ("%d \ n " , d) ;

12 r e t u r n 0 ;

13 }

(a) Failing Program

1 i n t p r i n t f (c on s t char ∗ , . . .) ;

2 i n t a ;

3 i n t b =10 ;

4 char c ;

5 i n t main () {

6 char d ;

7 i n t e =5 ;

8 f o r (a =0 ; a ; a−−){ e = 0 ; }

9 while(e<a) { c = (b&15)^ e ; }

10 d=c>e ? c : c<<e ;

11 p r i n t f ("%d \ n " , d) ;

12 r e t u r n 0 ;

13 }

(b) Passing Program

Figure 5: GCC Bug 67786

1 i n t a ;

2 vo id fn1 () {

3 char b =0 ;

4 f o r (; b != −2 ; b−−)
5 f o r (a =0 ; a <1 ; a ++)

6 i f ((uns igned i n t) b >1)

7 r e t u r n ;

8 }

9 i n t main () {

10 fn1 () ;

11 i f (a ! = 0)

12 _ _ b u i l t i n _ a b o r t () ;

13 r e t u r n 0 ;

14 }

(a) Failing Program

1 i n t a ;

2 vo id fn1 () {

3 char b =0 ;

4 goto Label;

5 f o r (; b != −2 ; b−−)
6 f o r (a =0 ; a <1 ; a ++)

7 Label:

8 i f ((uns igned i n t) b >1)

9 r e t u r n ;

10 }

11 i n t main () {

12 fn1 () ;

13 i f (a ! = 0)

14 _ _ b u i l t i n _ a b o r t () ;

15 r e t u r n 0 ;

16 }
(b) Passing Program

Figure 6: LLVM Bug 24356

test programs following Formula 1, which is 0.974. That demon-

strates the power of our structural mutation that guarantees the

generated passing test program to share a similar execution trace

with the given failing test program. In particular, RecBi ranks the

buggy file at the 2nd position.

Enhanced Compiler Bug Isolation via Memoized Search ASE ’20, September 21–25, 2020, Virtual Event, Australia

Its basic insight is that if mutating a code element can change

the outcome of some failing tests, the code element may have po-

tential impact on the failing tests and thus may have been buggy.

Meanwhile, Zhang et al. [74] independently proposed FIFL, the

first mutation-based bug localization approach for evolving sys-

tems. The basic insight is that regression bugs can be simulated

and localized via mutating corresponding code elements on the old

program version. More recently, Moon et al. [48] proposed another

mutation-based bug localization approach, named MUSE, based on

the idea that mutating faulty code elements may cause more failed

tests to pass than mutating correct elements. Different from these

traditional mutation-based bug localization approaches, which aim

to mutate the software systems under test, our approach RecBi

aims to mutate the failing test cases (i.e., test programs) to generate

passing test programs for compiler bug isolation.

Learning-basedBugLocalization. In recent years, a lot of learning-

based bug localization approaches have been proposed [40, 44, 55,

68]. For example, Xuan and Monperrus [68] proposed to utilize the

learning-to-rank algorithm to localize bugs by combining different

suspicious scores calculated by SBFL. Le et al. [40] further consid-

ered both the suspicious scores calculated by SBFL and program

invariant to localize bugs through the learning-to-rank algorithm.

Recently, Li et al. [44] proposed to use deep learning techniques

to localize bugs by considering the suspicious scores calculated

by SBFL and mutation based bug localization, as well as static fea-

tures extracted from the defect prediction area [64] and information

retrieval area [26]. Different from these learning-based bug local-

ization approaches, which use learning techniques to rank all the

suspicious code elements, our approach RecBi utilizes the reinforce-

ment learning algorithm (i.e., A2C) to guide the process of passing

test program generation for compiler bug isolation.

7 CONCLUSION

In this paper, we propose a reinforcement compiler bug isolation

approach via structural mutation, which is called RecBi. RecBi first

augments traditional local mutation operators with structural ones

in order to generate a set of effective passing test programs for

a given compiler bug with a failing test program. In particular,

RecBi incorporates reinforcement learning to intelligently guide

the process of passing test program generation. Based on the set of

generated passing test programs and the given failing test program,

RecBi ranks all the suspicious files by comparing the execution trace

between them. We conducted an extensive study to evaluate RecBi

based on two most popular C open-source compilers (i.e., GCC

and LLVM) and 120 real bugs from them. The experimental results

demonstrate the effectiveness of RecBi, significantly outperforming

the state-of-the-art compiler bug isolation approach.

ACKNOWLEDGEMENTS

This work was partially supported by National Science Foundation

under Grant Nos. CCF-1763906 and CCF-1942430, and Alibaba.

REFERENCES
[1] Accessed: 2020. Clang Libtooling library. http://clang.llvm.org/docs/LibTooling.

html.
[2] Accessed: 2020. GCC. https://gcc.gnu.org.
[3] Accessed: 2020. Gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[4] Accessed: 2020. LLVM. https://llvm.org.
[5] Accessed: 2020. PyTorch. https://pytorch.org/.
[6] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation of Similarity

Coefficients for Software Fault Localization. In 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06). 39ś46.

[7] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89ś98.

[8] Milan Aggarwal, Aarushi Arora, Shagun Sodhani, and Balaji Krishnamurthy. 2018.
Improving Search Through A3C Reinforcement Learning Based Conversational
Agent. In 18th International Conference on Computational Science. 273ś286.

[9] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effective-
ness of Unified Debugging: An Extensive Study on 16 Program Repair Systems.
In ASE. to appear.

[10] Jacqueline M. Caron and Peter A. Darnell. 1990. Bugfind: A Tool for Debugging
Optimizing Compilers. SIGPLAN Notices 25, 1 (1990), 17ś22.

[11] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and Robert R. Schneck.
2005. Type-based verification of assembly language for compiler debugging. In
Proceedings of TLDI’05: 2005 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation. 91ś102.

[12] Junjie Chen. 2018. Learning to accelerate compiler testing. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
472ś475.

[13] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 700ś711.

[14] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test Case Prioritization for Compilers: A Text-Vector Based
Approach. In 2016 IEEE International Conference on Software Testing, Verification
and Validation. 266ś277.

[15] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and
Hong Mei. 2016. Supporting oracle construction via static analysis. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 178ś189.

[16] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019. 223ś234.

[17] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. Static duplicate bug-report identification for compilers. SCIENTIA
SINICA Informationis 49, 10 (2019), 1283ś1298.

[18] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering. 180ś190.

[19] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Computing Surveys
(CSUR) 53 (02 2020), 1ś36.

[20] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. History-Guided Configuration Diversification for Compiler Test-
Program Generation. In 34th IEEE/ACM International Conference on Automated
Software Engineering. 305ś316.

[21] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu
Zhang, and XIE Bing. 2018. Coverage prediction for accelerating compiler testing.
IEEE Transactions on Software Engineering (2018).

[22] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Z. Fern,
Eric Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN
Conference on Programming Language Design and Implementation. 197ś208.

[23] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In Proceedings of the 41st International Conference on Software
Engineering. 1257ś1268.

[24] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 85ś99.

[25] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-
hastings algorithm. The american statistician 49, 4 (1995), 327ś335.

[26] Tung Dao, Lingming Zhang, and NaMeng. 2017. How does execution information
help with information-retrieval based bug localization?. In Proceedings of the 25th
International Conference on Program Comprehension. 241ś250.

[27] Nicholas DiGiuseppe and James A. Jones. 2011. On the Influence ofMultiple Faults
on Coverage-Based Fault Localization. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. 210ś220.

[28] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 93:1ś93:29.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Junjie Chen, Haoyang Ma, and Lingming Zhang

[29] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. 2012.
A survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42, 6 (2012), 1291ś1307.

[30] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the undefined-
ness of C. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 336ś345.

[31] K. Scott Hemmert, Justin L. Tripp, Brad L. Hutchings, and Preston A. Jackson.
2003. Source Level Debugger for the Sea Cucumber Synthesizing Compiler. In
11th IEEE Symposium on Field-Programmable Custom Computing Machines. 228.

[32] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically reducing
tree-structured test inputs. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. 861ś871.

[33] Josie Holmes and Alex Groce. 2018. Causal Distance-Metric-Based Assistance
for Debugging after Compiler Fuzzing. In 29th IEEE International Symposium on
Software Reliability Engineering. 166ś177.

[34] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho
Kim, and Moonzoo Kim. 2015. Mutation-Based Fault Localization for Real-
World Multilingual Programs. In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering. 464ś475.

[35] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. 2008. Fault localization using
value replacement. In Proceedings of the 2008 international symposium on Software
testing and analysis. 167ś178.

[36] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. 273ś282.

[37] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence research 4 (1996),
237ś285.

[38] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. 165ś176.

[39] Nico Krebs and Lothar Schmitz. 2014. Jaccie: A Java-based compiler-compiler
for generating, visualizing and debugging compiler components. Sci. Comput.
Program. 79 (2014), 101ś115.

[40] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. 177ś188.

[41] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation. 216ś226.

[42] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 386ś399.

[43] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David
Majnemer, John Regehr, and Nuno P. Lopes. 2017. Taming undefined behavior
in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 633ś647.

[44] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169ś180.

[45] Xia Li and Lingming Zhang. 2017. Transforming programs and tests in tandem
for fault localization. Proc. ACM Program. Lang. 1, OOPSLA (2017), 92:1ś92:30.

[46] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and
Lu Zhang. 2020. Can Automated Program Repair Refine Fault Localization? A
Unified Debugging Approach. In ISSTA. to appear.

[47] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (2013).

[48] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the
mutants: Mutating faulty programs for fault localization. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. IEEE,
153ś162.

[49] Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki Komatsu, and
Toshio Nakatani. 2006. Replay compilation: improving debuggability of a just-in-
time compiler. In Proceedings of the 21th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 241ś252.

[50] Mike Papadakis and Yves Le Traon. 2012. Using Mutants to Locate "Unknown"
Faults. In Fifth IEEE International Conference on Software Testing, Verification and
Validation. 691ś700.

[51] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Softw. Test. Verification Reliab. 25, 5-7 (2015), 605ś628.

[52] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 609ś620.

[53] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation. 335ś346.

[54] Anthony M. Sloane. 1999. Debugging Eli-Generated Compilers With Noosa. In
Compiler Construction, 8th International Conference, CC’99, Held as Part of the
European Joint Conferences on the Theory and Practice of Software. 17ś31.

[55] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273ś283.

[56] Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls,
Rémi Munos, and Michael Bowling. 2018. Actor-critic policy optimization in
partially observable multiagent environments. In Advances in neural information
processing systems. 3422ś3435.

[57] Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Milica Gasic, and Steve Young.
2017. Sample-efficient actor-critic reinforcement learning with supervised data
for dialogue management. arXiv preprint arXiv:1707.00130 (2017).

[58] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. 294ś305.

[59] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering. 361ś371.

[60] Richard Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. 2000. Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation.
Adv. Neural Inf. Process. Syst 12 (02 2000).

[61] R. S. Sutton and A. G. Barto. 1998. Reinforcement Learning: An Introduction.
IEEE Transactions on Neural Networks 9, 5 (1998), 1054ś1054.

[62] Konda Vijay, R. and Tsitsiklis John, N. 2000. Actor-critic Algorithms. SIAM
Journal on Control and Optimization (April 2000).

[63] Mnih Volodymyr, Badia Adrià, Puigdomènech, Mirza Mehdi, and Graves Alex.
2016. Asynchronous Methods for Deep Reinforcement Learning. In ICML2016.
1928ś1937.

[64] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering. 297ś308.

[65] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards optimization-safe systems: analyzing the impact of undefined
behavior. In ACM SIGOPS 24th Symposium on Operating Systems Principles. 260ś
275.

[66] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
Learning Library Testing via Effective Model Generation. In The 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. to appear.

[67] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Trans. Software Eng. 42, 8 (2016),
707ś740.

[68] Jifeng Xuan and Martin Monperrus. 2014. Learning to Combine Multiple Ranking
Metrics for Fault Localization. In 30th IEEE International Conference on Software
Maintenance and Evolution. 191ś200.

[69] Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improv-
ing fault localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. 52ś63.

[70] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283ś294.

[71] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs. In
Proceedings of the Tenth ACM SIGSOFT Symposium on Foundations of Software
Engineering. 1ś10.

[72] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183ś200.

[73] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In 2011 27th IEEE Inter-
national Conference on Software Maintenance (ICSM). 23ś32.

[74] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. 2013. Injecting mechanical
faults to localize developer faults for evolving software. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications. 765ś784.

[75] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 347ś361.

	Abstract
	1 Introduction
	2 Background
	2.1 Test Program Mutation for Compiler Bug Isolation
	2.2 Reinforcement Learning

	3 Approach
	3.1 Structural Mutation
	3.2 Test Program Generation via Reinforcement Learning
	3.3 Compiler Buggy File Identification

	4 Evaluation
	4.1 Compilers and Bugs
	4.2 Implementation and Parameters
	4.3 Independent Variables
	4.4 Measurements
	4.5 Results and Analysis

	5 Discussion
	5.1 Threats to Validity
	5.2 Future Work

	6 Related Work
	7 Conclusion
	References

