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Abstract—Generate-and-validate (G&V) automated program
repair (APR) techniques have been extensively studied during
the past decade. Meanwhile, such techniques can be extremely
time-consuming due to the manipulation of program code to
fabricate a large number of patches and also the repeated test
executions on patches to identify potential fixes. PraPR, a recent
G&V APR technique, reduces such costs by modifying program
code directly at the level of compiled JVM bytecode with on-
the-fly patch validation, which directly allows multiple bytecode
patches to be tested within the same JVM process. However,
PraPR is limited due to its unique bytecode-repair design, and is
basically unsound/imprecise as it assumes that patch executions
do not change global JVM state and affect later patch executions
on the same JVM process. In this paper, we propose a unified
patch validation framework, named UniAPR, to perform the
first empirical study of on-the-fly patch validation for state-of-
the-art source-code-level APR techniques widely studied in the
literature; furthermore, UniAPR addresses the imprecise patch
validation issue by resetting the JVM global state via runtime
bytecode transformation. We have implemented UniAPR as a
publicly available fully automated Maven Plugin. Our study
demonstrates for the first time that on-the-fly patch validation
can often speed up state-of-the-art source-code-level APR by over
an order of magnitude, enabling all existing APR techniques
to explore a larger search space to fix more bugs in the near
future. Furthermore, our study shows the first empirical evidence
that vanilla on-the-fly patch validation can be imprecise/unsound,
while UniAPR with JVM reset is able to mitigate such issues with
negligible overhead.

I. INTRODUCTION

Software bugs are inevitable in modern software systems,

costing trillions of dollars in financial loss and affecting

billions of people [5]. Meanwhile, software debugging can

be extremely challenging and costly, consuming over half of

the software development time and resources [44]. Therefore,

a large body of research efforts have been dedicated to

automated debugging techniques [49], [36], [12]. Among the

existing debugging techniques, Automated Program Repair

[14] (APR) techniques hold the promise of reducing debug-

ging effort by suggesting likely patches for buggy programs

with minimal human intervention, and have been extensively

studied in the recent decade. Please refer to the recent surveys

on APR for more details [36], [12].
Generate-and-validate (G&V) APR refers to a practical

category of APR techniques that attempt to fix the bugs by first

generating a pool of patches and then validating the patches

via certain rules and/or checks [12]. A patch is said to be

plausible if it passes all the checks. Ideally, we would apply

formal verification [40] techniques to guarantee correctness of

generated patches. However, in practice, formal specifications

are often unavailable for real-world projects, thus making for-

mal verification infeasible. In contrast, testing is the prevalent,

economic methodology of getting more confidence about the

quality of software [1]. Therefore, the vast majority of recent

G&V APR techniques leverage developer tests as the criteria

for checking correctness of the generated patches [12], i.e.,

test-based G&V APR.

Two main costs are associated with such test-based G&V

APR techniques: (1) the cost of manipulating program code

to fabricate/generate patches based on certain transformation

rules; (2) repeated executions of all the developer tests to

identify plausible patches for the bugs under fixing. Since the

search space for APR is infinite and it is impossible to triage

the elements of this search space due to theoretical limits, test-

based G&V APR techniques usually lack clear guidance and

often act in a rather brute-force fashion: they usually generate a

huge pool of patches to be validated and the larger the program

the larger the set of patches to be generated and validated.

This suggests that the speed of patch generation and validation

plays a key role in scalability of the APR techniques, which

is one of the most important challenges in designing prac-

tical APR techniques [8]. Therefore, apart from introducing

new and/or more effective transformation rules, some APR

techniques have been proposed to mitigate the aforementioned

costs. For example, JAID [6] uses mutation schema to fabricate

meta-programs that bundle multiple patches in a single source

file, while SketchFix [15] uses sketches [23] to achieve a

similar effect. However, such techniques mainly aim to speed

up the patch generation time, while patch validation time

has been shown to be dominant during APR [35]. Most

recently, PraPR [13] aims to reduce both patch generation

and validation time by modifying program code directly at

the bytecode level with on-the-fly patch validation, which

directly allows multiple bytecode-level patches to be tested

within the same JVM process. However, bytecode-level APR

is not flexible (e.g., large-scope changes can be extremely hard

to implement at the bytecode level) and fails to fix many bugs

that can be fixed at the source-code level [13]; furthermore,

PraPR requires decompilation (which may be imprecise or

even fail) to decompile the bytecode-level patches for manual

inspection. In fact, all other popular general-purpose G&V

APR techniques fix at the source code level.

In this paper, we propose a unified test-based patch val-

idation framework, named UniAPR, to empirically study the



impact of on-the-fly patch validation for state-of-the-art source-

code-level APR techniques. While existing source-code-level

APR usually restarts a new JVM process for each patch, our

on-the-fly patch validation aims to use a single JVM process

for patch validation, as much as possible, and leverages

JVM’s dynamic class redefinition feature (a.k.a. the HotSwap

mechanism and Java Agent technology [7]) to only reload

the patched bytecode classes on-the-fly for each patch. In

this way, UniAPR not only avoids reloading (also including

linking and initializing) all used classes for each patch (i.e.,

only reloading the patched bytecode files), but also can avoid

the unnecessary JVM warm-up time (e.g., the accumulated

JVM profiling information across patches enables more and

more code to be JIT-optimized and the already JIT-optimized

code can also be shared across patches).

UniAPR has been implemented as a fully automated

Maven [11] plugin (available at [47]), to which almost all

existing state-of-the-art Java APR tools can be attached in the

form of patch generation add-ons. We have constructed add-

ons for representative APR tools from different APR families.

Specifically, we have constructed add-ons for CapGen [48],

SimFix [17], and ACS [50] that are modern representatives of

template-/pattern-based [9], [21], heuristic-based [2], [22], and

constraint-based [51], [39] techniques. Our empirical study

shows for the first time that on-the-fly patch validation can

often speed up state-of-the-art APR systems by over an order

of magnitude, enabling all existing APR techniques to explore

a larger search space to fix more bugs in the near future.

Furthermore, our study (Section V-A2) shows the first

empirical evidence that when sharing JVM across multiple

patches, the global JVM state may be polluted by earlier patch

executions, making later patch execution results unreliable.

For example, some patches may modify some static fields,

which are used by some later patches sharing the same JVM.

Therefore, we further propose the first solution to address

such imprecision problem by isolating patch executions via

resetting JVM states after each patch execution using runtime

bytecode transformation. Our experimental results show that

our UniAPR with JVM reset is able to the avoid impreci-

sion/unsoundness of vanilla on-the-fly patch validation with

negligible overhead.

We envision a future wherein all existing APR tools (like

SimFix [17], CapGen [48], and ACS [50]) and major APR

frameworks (like ASTOR [33] and Repairnator [38]) are

leveraging this framework for patch validation. In this way,

researchers will only need to focus on devising more effective

algorithms for better exploring the patch search space, rather

than spending time on developing their own components for

patch validation, as we can have a unified, generic, and much

faster framework for all. In summary, this paper makes the

following contributions:

• Framework. We introduce the first unified on-the-fly

patch validation framework, UniAPR, to empirically

study the impact of on-the-fly patch validation for state-

of-the-art source-code-level APR techniques.

• Technique. We show the first empirical evidence that on-

the-fly patch validation can be imprecise/unsound, and

introduce a new technique to reset the JVM state right

after each patch execution to address such issue.

• Implementation. We have implemented on-the-fly patch

validation based on the JVM HotSwap mechanism and

Java Agent technology [7], and implemented the JVM-

reset technique based on the ASM bytecode manipulation

framework [41]; the overall UniAPR tool has been imple-

mented as a practical Maven plugin [47], and can accept

different APR techniques as patch generation add-ons.

• Empirical Study. We conduct a large-scale study of the

effectiveness of UniAPR on its interaction with state-of-

the-art APR systems from three different APR families,

demonstrating that UniAPR can often speed up state-of-

the-art APR by over an order of magnitude (without vali-

dation imprecision/unsoundness). Furthermore, the study

results also indicate that UniAPR can serve as a unified

platform to naturally support hybrid APR to directly

combine the strengths of different APR tools.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss the current status of auto-

mated program repair (Section II-A); then, we introduce Java

Agent and HotSwap, on which UniAPR is built (Section II-B).

A. Automatic Program Repair

Automatic program repair (APR) aims to suggest likely

patches for buggy programs to reduce the manual effort during

debugging. The widely studied generate-and-validate (G&V)

techniques attempt to fix bugs by first generating a pool of

patches and then validating the patches via certain rules and/or

checks [22], [39], [48], [13], [17], [33], [30], [29]. Generated

patches that can pass all the tests/checks are called plausible

patches. However, not all plausible patches are the patches

that the developers want. Therefore, these plausible patches

are further manually checked by the developers to find the

final correct patches (i.e., the patches semantically equivalent

to developer patches). G&V APR techniques [22], [39], [48],

[13], [17], [33], [31], [16] have been extensively studied in

recent years, since it can substantially reduce developer efforts

in bug fixing. According to a recent work [27], researchers

have designed various APR techniques based on heuristics

[28], [22], [17], constraint solving [51], [10], [39], [34], and

pre-defined templates [20], [13], [26]. Besides automated bug

fixing, researchers have also proposed Unified Debugging [32],

[4] to leverage various off-the-shelf APR techniques to help

with manual bug fixing. In this way, the application scope of

APR techniques has been extended to all possible bugs, not

only the bugs that can be automatically fixed.

Meanwhile, despite the spectacular progress in designing

and applying new APR techniques, very few techniques have

attempted to reduce the time cost for APR, especially the patch

validation time which dominates repair process. For example,

JAID [6] uses patch schema to fabricate meta-programs that

bundle several patches in a single source file, while SketchFix





the JVM). Then, the test driver can be triggered to execute

the tests to validate against the patch without restarting a

new JVM. After all tests are done for this patch execution,

UniAPR will replace the patched bytecode file(s) with the

original one(s) to revert to the original version. Furthermore,

UniAPR also resets the global JVM states to prepare a clean

JVM environment for the next patch execution (marked with

the short dashed lines). The same process is repeated for each

patch. Finally, the patch validation results will be stored into

the patch execution database via socket connections (marked

with ❻). Note that for any plausible patch that can pass all the

tests, UniAPR will directly retrieve the original source-level

patch for manual inspection (marked with ❼) in case the patch

was generated by source-level APR.

We have already constructed add-ons for three different

APR tools representing three different families of APR tech-

niques. These add-ons include CapGen [48] (representing

pattern/template-based APR techniques), SimFix [17] (repre-

senting heuristic-based techniques), and ACS [50] (represent-

ing constraint-based techniques). Of course, users of UniAPR

can also easily build new patch generation add-ons for other

APR tools. For existing APR tools, this can be easily done

by modifying their source code so that the tools abandon

validation of patches after generating/compiling them.

Next, we will talk about our detailed design for fast patch

validation via on-the-fly patching (Section III-A) as well as

precise patch validation via JVM reset (Section III-B).

A. Fast Patch Validation via On-the-fly Patching

Algorithm 1 is a simplified description of the steps that

vanilla UniAPR (without JVM-reset) takes in order to validate

candidate patches on-the-fly. The algorithm takes as inputs the

original buggy program P , its test suite T , and the set of

candidate patches P generated by any APR technique2. The

output is a map, R, that maps each patch into its corresponding

execution result. The overall UniAPR algorithm is rather

simple. UniAPR first initializes all patch execution results as

unknown (Line 2). Then, UniAPR gets into the loop body and

obtains the set of patches still with unknown execution results

(Line 4). If there is no such patches, the algorithm simply

returns since all the patches have been validated. Otherwise, it

means this is the first iteration or the earlier JVM process gets

terminated abnormally (e.g., due to timeout or JVM crash). In

either case, UniAPR will create a new JVM process (Line 7)

to evaluate the remaining patches (Line 8).

We next talk about the detailed validate function, which

takes the remaining patches, the original test suite, and a new

JVM as input. For each remaining patch P ′, the function

first obtains the patched class name(s) Cpatched and patched

bytecode file(s) Fpatched within P ′ (Lines 11 and 12). Then,

the function leverages our HotSwap Agent to replace the

bytecode file(s) under the same class name(s) as Cpatched

with the patched bytecode file(s) Fpatched; it also stores the

2Note that here we assume that P is available before patch validation for the
ease of presentation, but our overall approach is general and can also easily
handle the case where P is continuously constructed during patch validation.

Algorithm 1: Vanilla on-the-fly patch validation
Input: Original buggy program P , test suite T , and set of candidate patches P

Output: Validation status
R : P→ {PLAUSIBLE, NON− PLAUSIBLE, ERROR}

1 begin

2 R ← P× {UNKNOWN} ; // initialize result function

3 while True do

4 Pleft ← {P
′ | P′ ∈ P ∧R(P′) = UNKNOWN}// get all

the left patches not yet validated

5 if Pleft = ∅ then

6 return R // return if no left patches

7 JVM← createJVMProcess()// create a new JVM

8 validate(Pleft, T ,JVM)) // validate the left

patches on the new JVM

9 function validate(Pleft, T ,JVM):

10 for P′ in Pleft do

11 Cpatched ← patchedClassNames(P′)
12 Fpatched ← patchedBytecodeFiles(P′)

// Swap in the patched bytecode files

13 Forig ← HotSwapAgent.swap(JVM, Cpatched,Fpatched)
14 for t in T do

15 try:

16 if run(JVM, t) = FAILING then

17 status← NON− PLAUSIBLE

18 else

19 status← PLAUSIBLE

20 catch TimeOutException, MemoryError:

21 status← ERROR

22 R ← R∪ {P′ → status}
23 if status = NON-PLAUSIBLE then

24 break // continue with the next patch

when current one is falsified

25 if status = ERROR then

26 return // restart a new JVM when this

current one timed out or crashed

// Swap back the original bytecode files

27 HotSwapAgent.swap(JVM, Cpatched,Forig)

replaced bytecode file(s) as Forig to recover it later (Line 13).

Note that our implementation will explicitly load the corre-

sponding class(es) to patch (e.g., via Class.forName())

if they are not yet available before swapping. In this way,

the function can now execute the tests within this JVM to

validate the current patch since the patched bytecode file(s) has

already been loaded (Lines 14-26). If the execution for a test

finishes normally, its status will be marked as Plausible or

Non-Plausible (Lines 16-19); otherwise, the status will be

marked as Error, e.g., due to timeout or JVM crash (Lines

20-21). Then, P ′’s status will be updated in R (Line 22).

If the current status is Non-Plausible, the function will

abort the remaining test executions for the current patch since

it has been falsified, and move on to the next patch (Line

24); if the current status is Error, the function will return to

the main algorithm (Line 26), which will restart the JVM.

When the validation for the current patch finishes without

the Error status, the function will also recover the patched

bytecode file(s) into the original one(s) to facilitate the next

patch validation (Line 27).

B. Precise Patch Validation via JVM Reset

1) Limitations for vanilla on-the-fly patch validation: The

vanilla on-the-fly patch validation presented in Section III-A

works for most patches of most buggy projects. The basic

process can be illustrated via Figure 2. In the figure, each





P1 P2 P3 P4 …

public class C {

static int f;

static Object o;

<clinit>(){

f=1;
o=new Object();

}

}

Runtime Bytecode Transformation

Static Pollution Analysis

public void resetJVM(){

for(Class c :statusMap.keySet())

statusMap.put(c, false);

resetJDKSystemProperties();

…
}

Dynamic State Reset

public static boolean check(Class c){

if(!statusMap.get(c)){

statusMap.put(c, true);

return false;

}
return true;

}

public class C {

static int f;

static Object o;

<clinit>(){

uniapr_clinit()
}

public static void uniapr_clinit(){

synchronized(C.class){

if(!UniAPR.check(C.class)){

f=1;
o=new Object();

}

}

}

}

Fig. 5: On-the-fly patch validation via JVM reset

returns all classes with non-final static fields or final

static fields with non-primitive types (their actual object

states in the heap can be changed although their actual

references cannot be changed), since the states for all such

static fields can be changed across patches. Shown in Figure 5,

the blue block denotes our static analysis, and class C is

identified since it has static fields f and o that can be mutated.
C1 T is a class and an instance of T is created
C2 T is a class and a static method declared by T is invoked.
C3 A static field declared by T is assigned
C4 A static field declared by T is used and the field is not a constant variable
C5 T is a top level class, and an assert statement lexically nested in T is executed

TABLE I: Class initialization conditions

Runtime Bytecode Transformation. According to Java Lan-

guage Specification (JSL) [42], static class initializers get

invoked when any of the five conditions shown in Table I gets

satisfied. Therefore, the ideal way to reinitialize the classes

with pollution sites is to simply follow the JSL design. To

this end, we perform runtime bytecode transformation to add

class initializations right before any instance that falls in to the

five conditions shown in Table I. Note that our implementation

also handles the non-conventional Reflection-based accesses to

such potential pollution sites. Since JVM does not allow class

initialization at the application level, following prior work on

speeding up traditional regression testing [3], we rename the

original class initializers (i.e., <clinit>()) to be invoked

into another customizable name (say uniapr_clinit()).

Meanwhile, we still keep the original <clinit>() initializ-

ers since JVM needs that for the initial invocation; however,

now <clinit>() initializers do not need to have any content

except an invocation to the new uniapr_clinit(). Note

that we also remove potential final modifiers for pollution

sites during bytecode transformation to enable reinitializations

of final non-primitive static fields. Since this is done at the

bytecode level after compilation, the original compiler will

still ensure that such final fields cannot be changed during

the actual compilation phase.
Now, we will be able to reinitialize classes via invoking the

corresponding uniapr_clinit() methods. However, JVM

only initializes the same class once within the same JVM,

while now uniapr_clinit() will be executed for each

instance satisfying the five conditions in Table I. Therefore, we

need to add the dynamic check to ensure that each class only

gets (re)initialized once for each patch execution. Shown in

Figure 5, the orange blocks denote different patch executions.

During each patch execution, the classes with pollution sites

will be transformed at runtime. For example, class C will be

transformed into the code block connected with the P3 patch

execution in Figure 5; the yellow line in the transformed code

denotes the dynamic check to ensure that C is only initialized

once for each patch. The pseudo code for the dynamic check

is shown in the top-right of the figure: the check maintains

a ConcurrentHashMap for the classes with pollution sites

and their status (true means the corresponding class has been

reinitialized). The entire initialization is also synchronized

based on the corresponding Class object to handle concur-

rent accesses to class initializers; in fact, JVM also leverages

a similar mechanism to avoid class reinitializations due to

concurrency (despite implementing that at a different level).

(Note that this simplified mechanism is just for illustration

purpose; our actual implementation manipulates arrays with

optimizations for faster and safe tracking/check.) In this way,

when the first request for initializing class C arrives, all the

other requests will be blocked. If the class has not been

initialized, then only the current access will get the return

value of false to reinitialize C, while all other other requests

will get the true value and skip the static class initialization.

Furthermore, the static class initializers get invoked following

the same order as if they were invoked in a new JVM.

Dynamic State Reset. After each patch execution, our

approach will reset the state for the classes within the

status ConcurrentHashMap. In this way, during the

next patch execution, all the used classes within the

ConcurrentHashMap will be reinitialized (following the

check in Figure 5). Note that besides the application and

3rd-party classes, the JDK classes themselves may also have

pollution sites. Luckily, JDK provides such common APIs

to reset such pollution sites without the actual bytecode

transformation. In this way, our implementation also invokes

such APIs to reset potential JDK pollution sites. Please also

note that our system provides a public interface for the users

to customize the reset content for different projects under

repair. For example, some projects may require preparing

specific external resources for each patch execution, which

can be easily added to our public interface. In Figure 5, the

green strips denote the dynamic state reset, and the example

reset code after P3’s execution simply resets the status for

all classes within the status map as false and also resets

potential JDK pollution sites within classes.

IV. EXPERIMENTAL SETUP

A. Research Questions

To thoroughly evaluate our UniAPR framework, in this

study, we aim to investigate the following research questions:

• RQ1: How does vanilla on-the-fly patch validation per-

form for automated program repair?

• RQ2: How does on-the-fly patch validation with jvm-reset

perform for automated program repair?



Sub. Name #Bugs #Tests LoC

Chart JFreeChart 26 2,205 96K
Time Joda-Time 27 4,130 28K
Lang Apache commons-lang 65 2,245 22K
Math Apache commons-math 106 3,602 85K
Closure Google Closure compiler 133 7,927 90K
Total 357 20,109 321K

TABLE II: Defects4J V1.0.0 statistics

For both RQs, we study both the effectiveness of UniAPR

in reducing the patch validation cost, and the precision of

UniAPR in producing precise patch validation results.

B. Benchmarks

We choose the Defects4J (V1.0.0) benchmark suite [19],

since it contains hundreds of real-world bugs from real-world

systems, and has become the most widely studied dataset for

program repair [13], [10], [6], [17], [48] or even software

debugging in general [24], [25], [4]. Table II presents the

statistics for the Defects4J dataset. Column “Sub.” presents the

project IDs within Defects4J, while Column “Name” presents

the actual project names. Column “#Bugs” presents the num-

ber of bugs collected from real-world software development

for each project, while Columns “#Tests” and “LoC” present

the number of tests (i.e., JUnit test methods) and the lines of

code for the HEAD buggy version of each project.

C. Studied Repair Tools

Being a well-developed field, APR offers us a cornucopia

of choices to select from. According to a recent study [27],

there are 31 APR tools targeting Java programs considering

two popular sources of information to identify Java APR tools:

the community-led program-repair.org website and the

living review of APR by Monperrus [37]. 17 of those Java

APR tools are found to be publicly available and applicable to

the widely used Defects4J benchmark suite (without additional

manually collected information, e.g., potential bug locations)

as of July 2019. Note that all such tools are source-level

APR, since the only bytecode-level APR tool PraPR was

only available after July 2019. Table III presents all such

existing Java-based APR tools, which can be categorized

into three main categories according to prior work [27]:

heuristic-based [22], [17], [28], constraint-based [51], [10],

and template-based [26], [48] repair techniques. In this work,

we aims to speed up all existing source-level APR techniques

via on-the-fly patch validation. Therefore, we select one rep-

resentative APR tool from each of the three categories for

our evaluation to demonstrate the general applicability of our

UniAPR framework. All the three considered APR tools, i.e.,

ACS [50], SimFix [17], and CapGen [48] are highlighted in

bold font in the table. For each of the selected tools, we

evaluate them on all the bugs that have been reported as fixed

(with correct patches) by their original papers to evaluate: (1)

UniAPR effectiveness, i.e., how much speedup UniAPR can

achieve, and (2) UniAPR precision, i.e., whether the patch

validation results are consistent with and without UniAPR.

Tool Category Tools

Constraint-based ACS, Nopol, Cardumen, Dynamoth

Heuristic-based SimFix, Arja, GenProg-A, jGenProg, jKali,

jMutRepair, Kali-A, RSRepair-A

Template-based CapGen, TBar, AVATAR, FixMiner, kPar

TABLE III: Available Java APR tools for Defects4J [27]

D. Implementation

UniAPR has been implemented as a publicly available fully

automated Maven plugin [47], on which one can easily inte-

grate any patch generation add-ons. The current implementa-

tion involves over 10K lines of Java code. As a Maven plugin,

the users simply need to add the necessary plugin information

into the POM file. In this way, once the users fire com-

mand: mvn org.uniapr:uniapr-plugin:validate,

the plugin will automatically obtain all the necessary infor-

mation for patch validation. It will automatically obtain the

test code, source code, and 3-rd party libraries from the

underlying POM file for the actual test execution. Furthermore,

it will automatically load all the patches from the default

patches-pool directory (note that the patch directory name

and patch can be configured through POM as well) created by

the APR add-ons for patch validation. The current UniAPR

version assumes the patch directory generated by the APR

add-ons to include all available patches represented by their

patched bytecode files, i.e., the patch pool is constructed before

patch validation. Note that, each patch may involve more than

one patched bytecode file, e.g., some APR tools (such as

SimFix [17]) can fix bugs with multiple edits.

During patch validation, UniAPR forks a JVM and passes

all the information about the test suites and the subject

programs to the child process. The process runs tests on each

patch and reports their status. We use TCP Socket Connections

to communicate between processes. UniAPR repeats this pro-

cess of forking and receiving report results until all the patches

are executed. It is worth noting that it is very easy for UniAPR

to fork two or more processes to take maximum advantage of

today’s powerful machines. However, for a fair comparison

with existing work, we always ensure that only one JVM is

running patch validation at any given time stamp.

E. Experimental Setup

For each of the studied APR tools, we perform the following

experiments on all the bugs that have been reported as fixed

in their original papers:

First, we execute the original APR tools to trace their orig-

inal patch-validation time and detailed repair results (e.g., the

number of patches executed and plausible patches produced).

Note that the only exception is for CapGen: digging into the

decompiled CapGen code (CapGen source code is not avail-

able), we observed that CapGen excluded some (expensive)

tests for certain bugs via unsafe test selection. Such unsafe

test selection is inconsistent with the original paper [48], and

can be dangerous (i.e., it may fail to falsify incorrect patches).

Therefore, to enable a fair and realistic study, for CapGen,

we build a variant for vanilla UniAPR that simply restarts a



new JVM for each patch (same as CapGen) to simulate the

original CapGen performance. Note that if we had presented

the performance comparison between UniAPR and the original

CapGen using the same reduced tests, the UniAPR speedup

can be even larger because UniAPR mainly reduces the JVM-

restart overhead — similar reduction on JVM overhead would

yield larger overall speedup given shorter test-execution time

(as the overall patch-validation time includes JVM overhead

and test-execution time). For example, the average speedup

achieved by UniAPR with JVM-reset on Chart bugs is 15.7X

compared with the original CapGen (on the same set of

reduced tests) and 8.4X compared with our simulated CapGen.

Next, we modify the studied tools and make them conform

to UniAPR add-on interfaces, i.e., dumping all the generated

patches into the patch directory format required by UniAPR.

Then, we launch our UniAPR to validate all the patches

generated by each of the studied APR tools on all the available

tests, and trace the new patch validation time and results. Note

that we repeat this step for both variants of UniAPR (i.e.,

vanilla UniAPR and UniAPR with JVM reset) to evaluate their

respective performance.

To evaluate our UniAPR variants, we include the following

metrics: (1) the speedup compared with the original patch

validation time, measuring the effectiveness of UniAPR, and

(2) the repair results compared with the original patch vali-

dation, measuring the precision of our patch validation (i.e.,

checking whether UniAPR fails to fix any bugs that can be

fixed via traditional patch validation). All our experimentation

is done on a Dell workstation with Intel Xeon CPU E5-2697

v4@2.30GHz and 98GB RAM, running Ubuntu 16.04.4 LTS

and Oracle Java 64-Bit Server version 1.7.0 80.

V. RESULT ANALYSIS

A. RQ1: Vanilla On-the-fly Patch Validation

1) Effectiveness: For answering this RQ, we evaluated

vanilla UniAPR (i.e., without JVM-reset) that is configured

to use the add-on corresponding to each studied APR tool.

The main experimental results are presented in Figure 6. In

each sub-figure, the horizontal axis presents all the bugs that

have been reported to be fixed by each studied tool, while the

vertical axis presents the time cost (s); the solid and dashed

lines present the time cost for traditional patch validation and

our vanilla UniAPR, respectively.

From the figure, we can observe that the vanilla UniAPR can

substantially speed up the existing patch validation component

for all state-of-the-art APR tools with almost no slowdowns.

For example, when running ACS on Math-25, the traditional

patch validation costs 698s, while on-the-fly patch validation

via vanilla UniAPR takes only 2.3s to produce the same

patch validation results, i.e., 304.89X speedup; when running

SimFix on Lang-60, the traditional patch validation costs 924s,

while vanilla UniAPR takes only 4s to produce the same

patch validation results, i.e., 229.96X speedup; when running

CapGen on Math-80, the traditional patch validation costs

18,991s, while vanilla UniAPR takes only 1582s to produce

the same patch validation results, i.e., 12.00X speedup. Note

Tool # All # Mismatch Ratio (%)
CapGen 22 3 13.64%
SimFix 34 1 2.94%
ACS 18 0 0.00%
All 74 4 5.41%

TABLE IV: Inconsistent fixing results

that we have further marked various peak speedups in the

figure to help better understand the effectiveness of UniAPR.

To our knowledge, this is the first study demonstrating that on-

the-fly patch validation can also substantially speed up state-

of-the-art source-level APR.

2) Precision: We further study the number of bugs that

vanilla UniAPR does not produce the same repair results as

the traditional patch validation (that restarts a new JVM for

each patch). Table IV presents the summarized results for

all the studied APR tools on all their fixable bugs. In this

table, Column “Tool” presents the studied APR tools, Column

“# All” presents the number of all studied fixable bugs for

each APR tool, Column “# Mismatch” presents the number of

bugs that vanilla UniAPR has inconsistent fixing results with

the original APR tool, and Column “Ratio (%)” presents the

ratio of bugs with inconsistent results. From this table, we

can observe that vanilla UniAPR produces imprecise results

for 5.41% of the studied cases overall. To our knowledge, this

is the first empirical study demonstrating that on-the-fly patch

validation may produce imprecise/unsound results compared

to traditional patch validation. Another interesting finding is

that 3 out of the 4 cases with inconsistent patching results

occur on the CapGen APR tool. One potential reason is that

CapGen is a pattern-based APR system and may generate far

more patches than SimFix and ACS. For example, CapGen

on average generates over 1,400 patches for each studied bug,

while SimFix only generates around 150 on average. In this

way, CapGen has way more patches that may affect the correct

patch execution than the other studied APR tools. Note that

SimFix has only around 150 patches on average since we only

studied its fixed bugs; if we had considered all Defects4J bugs

studied by the original SimFix paper (including the bugs that

cannot be fixed by SimFix), SimFix will produce many more

patches, exposing more imprecise/unsound patch validation

issues as well as leading to much larger UniAPR speedups.

B. RQ2: On-the-fly Patch Validation via JVM-Reset

1) Effectiveness: We now present the experimental results

for our UniAPR with JVM-reset. The main experimental

results are presented in Figure 7. In each sub-figure, the

horizontal axis presents all the bugs that have been reported to

be fixed by each studied tool, while the vertical axis presents

the time cost (s); the solid and dashed lines present the time

cost for traditional patch validation and UniAPR with JVM

reset, respectively. From the figure, we can observe that for

all the studied APR tools, UniAPR with JVM reset can also

substantially speed up the existing patch validation component

with almost no performance degradation. For example, when

running ACS on Math-25, the traditional patch validation

costs 698s, while on-the-fly patch validation via UniAPR





Fig. 9: Correlation between patch number and speedup

achieved by UniAPR with JVM reset

Fig. 10: Correlation between patch number and overhead

incurred by JVM-reset over vanilla UniAPR

respectively. Shown in the figure, JVM reset has incurred

negligible overhead among all the studied bugs for all three

systems on UniAPR, e.g., on average 8.33%/7.81%/1.72%

overhead for ACS/CapGen/SimFix. The reason is that class

reinitializations only need to be performed at certain sites

for only the classes with pollution sites. Also, we have

various optimizations to speed up JVM reset. For example,

although our basic JVM-reset approach in Figure 5 performs

runtime checks on a ConcurrentHashMap, our actual im-

plementation uses arrays for faster class status tracking/check.

Furthermore, we observe that the overhead does not change

much regardless of the bugs studied, e.g., our UniAPR with

JVM-reset has stable overhead across bugs with different

number of patches. To further confirm our finding, we perform

the Pearson Correlation Coefficient analysis [43] between the

number of patches for each studied bug and the corresponding

JVM-reset overhead (over vanilla UniAPR) on the ACS tool

with the highest overhead. Shown in Figure 10, the horizontal

axis denotes the number of patches, while the vertical axis

denotes the overhead (%) incurred; each data point represents

one studied bug for ACS. From this figure, we can observe

that there is no clear correlation (at the significance level of

0.05), i.e., JVM-reset overhead is not affected by the numbers

of patches. In summary, UniAPR with JVM-reset only incurs

negligible and stable overhead (e.g., less than 8.5% for all

studied tools) compared to the vanilla UniAPR, demonstrating

the scalability of UniAPR with JVM-reset.

2) Precision: According to our experimental results,

UniAPR with JVM-rest produces exactly the same APR results

as the traditional patch validation, i.e., UniAPR with JVM-reset

successfully fixed all the bugs that vanilla UniAPR failed to

fix, mitigating the imprecision/unsoundness of vanilla UniAPR.

We now discuss all 4 bugs that UniAPR with JVM reset can

fix while vanilla UniAPR without JVM reset cannot fix:

Figure 11 presents the test that fails on the only plausible

(also correct) patch of Lang-6 (using CapGen) when running

// org.apache.commons.lang3.StringEscapeUtilsTest.java

public void testUnescapeHtml4() {

for (int i = 0; i < HTML_ESCAPES.length; ++i) {

String message = HTML_ESCAPES[i][0];

String expected = HTML_ESCAPES[i][2];

String original = HTML_ESCAPES[i][1];

// assertion failure: ampersand expected:<bread &[]

butter> but was:<bread &[amp;] butter>

assertEquals(message, expected, StringEscapeUtils.

unescapeHtml4(original));

...

Fig. 11: Test failed without JVM-reset on Lang-6

UniAPR without JVM-reset. Given the expected resulting

string ‘‘bread &[] butter’’, the actual returned one

is ‘‘bread &[amp;] butter’’. Digging into the code,

we realize that class StringEscapeUtils has a static field

named UNESCAPE_HTML4, which is responsible for perform-

ing the unescapeHtml4() method invocation. However,

during earlier patch executions, the actual object state of that

field is changed, making the unescapeHtml4() method

invocation return problematic result with vanilla UniAPR.

In contrast, when running UniAPR with JVM-reset, field

UNESCAPE_HTML4 will be recreated before each patch ex-

ecution (if accessed) and will have a clean object state for

performing the unescapeHtml4() method invocation.

// org.apache.commons.math3.EventStateTest.java

public void testIssue695() {

FirstOrderDifferentialEquations equation = new

FirstOrderDifferentialEquations() {

...

double tEnd = integrator.integrate(equation, 0.0, y,

target, y);

...

private static class ResettingEvent implements

EventHandler {

private static double lastTriggerTime = Double.

NEGATIVE_INFINITY;

public double g(double t, double[] y) {

// assertion error

Assert.assertTrue(t >= lastTriggerTime);

return t - tEvent;

}

...

Fig. 12: Test failed without JVM-reset on Math-30/41

Figure 12 shows another test that fails on the only plausible

(and correct) patch of Math-30 when running vanilla UniAPR

with CapGen patches, and fails on the only plausible (and

correct) patch of Math-41 when running vanilla UniAPR

with SimFix patches. Looking into the code, we find that

the invocation of integrate() in the test will finally call

the method g() in class ResettingEvent (in the bot-

tom). The static field lastTriggerTime of class Reset-

tingEvent should be Double.NEGATIVE_INFINITY in

Java, which means the assertion should not fail. Unfortunately,

the earlier patch executions pollute the state and change the

value of the field. Thus, the test failed when running with

vanilla UniAPR on the two plausible patches. In contrast,

UniAPR with JVM-reset is able to successfully recover that.

There are four plausible CapGen patches on Math-5 (one

is correct) when running with the traditional patch validation.



// org.apache.commons.math3.genetics.UniformCrossoverTest.

java

public class UniformCrossoverTest {

private static final int LEN = 10000;

private static final List<Integer> p1 = new ArrayList<

Integer>(LEN);

private static final List<Integer> p2 = new ArrayList<

Integer>(LEN);

public void testCrossover() {

performCrossover(0.5);

...

private void performCrossover(double ratio) {

...

// assertion failure: expected:<0.5> but was

:<5.5095>

Assert.assertEquals(1.0 - ratio, Double.valueOf((

double) from1 / LEN), 0.1);

...

Fig. 13: Test failed without JVM-reset on Math-5

// org.apache.commons.math3.complex.ComplexTest.java

public class ComplexTest {

private double inf = Double.POSITIVE_INFINITY;

...

public void testMultiplyNaNInf() {

Complex z = new Complex(1,1);

Complex w = z.multiply(infOne);

// assertion failure: expected:<-Infinity> but was

:<Infinity>

Assert.assertEquals(w.getReal(), inf, 0);

...

Fig. 14: Another test failed without JVM-reset on Math-5

With vanilla UniAPR, all the plausible patches failed on some

tests. Figure 13 shows the test that fails on three plausible

patches (including the correct one) on Math-5. The expected

value of the assertion should be 0.5, but the actual value turned

to 5.5095 due to the change of variable from1. After inspect-

ing the code, we found the value of from1 is decided by two

static fields p1 and p2 in class UniformCrossoverTest.

The other earlier patch executions pollute the field values,

leading to this test failure when running with vanilla UniAPR.

Figure 14 presents another test that fails on one plausi-

ble patch on Math-5. The expected value from invocation

w.getReal() should be Infinity, which should be the

same as field inf defined in class ComplexTest; however,

the actual result from the method invocation is -Infinity.

The root cause of this test failure is similar to the previous

ones, the static fields NaN and INF in class Complex are

responsible for the result of method invocation getReal().

In this way, getReal() returns a problematic result because

the earlier patch executions changed the corresponding field

values. In contrast, using UniAPR with JVM-reset, all the four

plausible patches are successfully produced.

C. Discussion

Having single JVM session for validating more than one

patch has the immediate benefit of skipping costly JVM restart,

reload, and warm-up. As shown by our empirical study, this

offers substantial speedups in patch validation. On the other

hand, this approach might have the following limitations:

First, the execution of the patches might interfere with each

other, i.e., the execution of some tests in one patch might have

side-effects affecting the execution of other tests on another

patch. UniAPR mitigates these side-effects by resetting static

fields to their default values and resetting JDK properties.

Although our experimental results demonstrate that such JVM

reset can fix all bugs fixed by the traditional patch validation

and opens a new dimension for fast&precise patch validation,

such in-memory JVM state reset for only class fields might

not be sufficient to handle all cases. Also, the side-effects

could propagate via operating system or the network. Our

current implementation provides a public interface for the

users to resolve such issue between patch executions (note

that no subject systems in our evaluation require such manual

configuration). In the near future, we will study more subject

programs to fully investigate the impact of such side effects

and design solutions to address them fully automatically.

Second, HotSwap-based patch validation does not support

patches that involve changing the layout of the class, e.g.

adding/removing fields and/or methods to/from a class. Luck-

ily, the existing APR techniques mainly target patches within

ordinary method bodies, and our UniAPR framework is able

to reproduce all correct patches for all the three studied state-

of-the-art techniques. Another thing worth discussion is that

HotSwap originally does not support changes in static initializ-

ers; interestingly, our JVM-reset approach can naturally help

UniAPR overcome this limitation, since the new initializers

can now be reinvoked based on our bytecode transformation to

reinitialize the classes. In the near future, we will further look

into other promising dynamic class redefinition techniques

for implementing our on-the-fly patch validation, such as

JRebel [46] and DCEVM [45].

VI. CONCLUSION

Automated program repair (APR) has been extensively

studied in the last decade, and various APR systems/tools

have been proposed. However, state-of-the-art APR tools still

suffer from the efficiency problem largely due to the expensive

patch validation process. In this work, we have proposed a

unified on-the-fly patch validation framework for all JVM-

based APR systems. Compared with the existing on-the-fly

patch validation work [13] which only works for bytecode

APR, this work generalizes on-the-fly patch validation to all

existing state-of-the-art APR systems at the source code level.

This work shows the first empirical results that on-the-fly patch

validation can speed up state-of-the-art representative APR

systems, including CapGen, SimFix, and ACS, by over an

order of magnitude. Furthermore, this work also shows the

first empirical evidence that on-the-fly patch validation can

incur imprecise/unsound patch validation results, and further

introduces a new technique for resetting JVM state for precise

patch validation with negligible overhead.
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