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Deep neural network (DNN) has become increasingly popular and DNN testing is very critical to guarantee
the correctness of DNN, i.e., the accuracy of DNN in this work. However, DNN testing suffers from the serious
efficiency problem, i.e., it is costly to label each test input to know the DNN accuracy for the testing set
since labeling each test input involves multiple persons (even with domain-specific knowledge) in a manual
way and the testing set is large-scale. To relieve this problem, we propose a novel and practical approach,
called PACE (which is short for Practical ACcuracy Estimation), to selecting a small set of test inputs that can
precisely estimate the accuracy of the whole testing set. In this way, the labeling costs can be largely reduced
by just labeling this small set of selected test inputs. Besides achieving the precise accuracy estimation, to
make PACE more practical it is also required that it is interpretable, deterministic, and efficient as much as
possible. Therefore, PACE first incorporates clustering to interpretably divide test inputs with different testing
capabilities (i.e., testing different functionalities of a DNN model) into different groups. Then, PACE utilizes
the MMD-critic algorithm, a state-of-the-art example-based explanation algorithm, to select prototypes (i.e.,
the most representative test inputs) from each group according to the group sizes, which can reduce the impact
of noise due to clustering. Meanwhile, PACE also borrows the idea of adaptive random testing to select test
inputs from the minority space (i.e., the test inputs that are not clustered into any group) in order to achieve
great diversity under the required number of test inputs. The two parallel selection processes (i.e., selection
from both groups and the minority space) compose the final small set of selected test inputs. We conducted an
extensive study to evaluate the performance of PACE based on a comprehensive benchmark (i.e., 24 pairs
of DNN models and testing sets) by considering different types of models (i.e., classification and regression
models, high-accuracy and low-accuracy models, CNN and RNN models) and different types of test inputs
(i.e., original, mutated, and automatically generated test inputs). The results demonstrate that PACE is able
to precisely estimate the accuracy of the whole testing set with only 1.181%~2.302% deviations on average,
significantly outperforming the state-of-the-art approaches.
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1 INTRODUCTION

In recent years, deep neural network (DNN) has been widely studied in many domains and has
gained great success in practice, such as autonomous driving cars [11], face recognition [93], medical
diagnosis [69], aircraft collision avoidance systems [43], and software engineering [17, 18, 52, 114].
Unfortunately, DNN still suffers from bugs like traditional software systems [41, 60-62, 73, 103],
which can result in serious consequences, even disasters in safety-critical domains. For example,
a pedestrian was killed by an Uber autonomous driving car in Tempe, Arizona in 2018!. Also, a
Tesla Model S in autopilot mode crashed into a parked fire trunk with light flashing on a California
freeway in 20182, Therefore, guaranteeing the quality of DNN is very critical.

In practice, DNN testing is one of the most effective ways to guarantee the quality of DNN.
However, it suffers from two main challenges. First, it is difficult to ensure whether the used test
inputs are sufficient enough to test DNN, since the practical scenario is very complex and changeable.
To solve this challenge, researchers have paid much attention by proposing various metrics to
measure the adequacy of test inputs [54, 60, 73] or designing various approaches to generating
adversarial inputs [63, 70, 103]. Second, it is costly to label these test inputs to know the DNN
accuracy for the testing set due to the following reasons: 1) Manual labeling is the main method,
and usually labeling one test input involves multiple persons to ensure the labeling correctness; 2)
The testing set is large-scale; 3) In many cases, labeling also relies on domain-specific knowledge,
and thus it makes labeling more expensive by employing the persons with the domain-specific
knowledge. According to our industrial partners, the second challenge is even more troublesome
than the first one, but currently few efforts have been devoted to relieving this challenge, which is
the target of our work.

Recently, Li et al. [55] proposed the first approach, called CES, to selecting a small set of test
inputs that can precisely estimate the accuracy of the whole testing set. In this way, the labeling cost
can be reduced by just labeling this small set of test inputs. More specifically, CES conducts selection
by minimizing the cross entropy between the selected set and the whole testing set. Although
CES has been evaluated to be effective in the existing study [55], it suffers from several limitations
in practice. First, the selection result produced by CES does not have good interpretability. It is
hard to explain the relation between the selected test inputs and the testing goal (e.g., testing
various functionalities of a DNN model). Second, CES involves randomness, and thus it can produce
different selection results at different runs for the same DNN model and the achieved effectiveness
by different selection results has fluctuation to some degree. Third, the effectiveness of CES still
needs to be improved. Therefore, a practical approach to selecting a small number of test inputs to
precisely estimate the accuracy of the whole testing set is still urgently desirable.

To improve the efficiency of DNN testing, in this paper we propose a novel and practical approach
for test input selection to reducing labeling cost, called PACE (Practical ACcuracy Estimation).
To make PACE practical, it is required that PACE is interpretable, deterministic, and efficient as

! https://www.vice.com/en_us/article/9kga85/uber-is-giving-up-on-self-driving-cars-in-california-after-deadly- crash.
2 https://www.newsweek.com/autonomous-tesla-crashes-parked-fire- truck- california-freeway-789177.
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much as possible. Moreover, it is required that PACE is able to select a small set of test inputs to
precisely estimate the accuracy of the whole testing set. To satisfy the above two requirements,
PACE first clusters test inputs into different groups by identifying effective features, in order to
discriminate test inputs with different testing capabilities (i.e., testing different functionalities of
a DNN model). This is also a step to augment the interpretability. Then, PACE selects test inputs
from each group to make this small set to be able to test various functionalities of a DNN model.
Since it is hard to perfectly discriminate test inputs with different testing capabilities via clustering,
we should select the test inputs that best represent the testing capability of the group to bypass the
impact of noise in each group. Here, PACE adopts the MMD-critic algorithm [44], a state-of-the-art
example-based explanation algorithm (which is used for the interpretability of a machine learning
model including classification and clustering), to select prototypes (i.e., the most representative
test inputs) from each group. This is another step to further augment the interpretability. Also,
there may be some test inputs that do not belong to any group, indicating that each of them is
likely to have unique testing capability. We call the space of these test inputs minority space. To
better approximate the whole set, PACE not only selects test inputs from each group according
to the group sizes so as to maintain the similar distribution of testing capabilities, but also selects
test inputs from the minority space. More specifically, PACE borrows the idea of adaptive random
testing [22] for selection in order to explore the minority space with the limited number of test
inputs as sufficiently as possible.

We conducted an extensive study to evaluate the effectiveness of PACE based on 24 pairs of DNN
models under test and testing sets. In our benchmark, we considered both classification models and
regression models, high-accuracy models and low-accuracy models, CNN models and RNN models,
and different types of test inputs (i.e., original test inputs, mutated test inputs, and automatically
generated test inputs). Our experimental results demonstrate that PACE is able to precisely estimate
the accuracy of the whole testing set with only 1.181%~2.302% deviations on average for all the
subjects, significantly outperforming all the three compared approaches (i.e., SRS, CES, and CSS
to be introduced in Section 4.2) with the average improvements of 51.06%, 50.94%, and 70.12%,
respectively. We further investigated the contribution of each component in PACE, and the results
demonstrate that each component (including clustering, MMD-critic based selection, and adaptive
random selection) indeed contributes to PACE.

To sum up, our work has the following major contributions:

e Approach. We propose the first relatively interpretable, deterministic, and efficient approach,
PACE, to selecting a subset of DNN test inputs for estimating the accuracy of the whole
testing set.

e Implementation. We implement the proposed approach based on state-of-the-art frame-
works and libraries, such as Keras 2.2.4 [3] with TensorFlow 1.14.0 [6], as well as HDBSCAN,
FastICA, and MMD-critic algorithms provided by hdbscan 0.8.22 [2], sklearn [1], and the
authors of the MMD-critic algorithm [4], respectively.

e Study. We conduct an extensive study based on 24 pairs of DNN models under test and
testing sets, in which the diversity of both models and test inputs are considered carefully,
demonstrating the effectiveness of PACE.

e Artifact. We have released an extensive dataset for future usage and research, including our
implementation as well as experimental data.
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2 BACKGROUND
2.1 DNN and DNN Testing

DNN is composed of multiple layers and each layer contains a large number of neurons [57]. The
neurons between layers are connected with links equipped with weights. The weights are acquired
based on the training process with training data. DNN maps inputs to outputs via calculation based
on these weights. Currently, DNN is mainly divided into CNN (Convolutional Neural Network)
and RNN (Recurrent Neural Network). CNN involves convolution computing and is usually used to
deal with data with grid-like topology (e.g., images) [29], while RNN uses loops to keep learned
knowledge and is often used to deal with sequential data (e.g., natural language and speech) [47].

DNN testing is one of the most widely-used ways of guaranteeing the quality of DNN [60, 73].
Like traditional software systems, DNN testing also involves test inputs and test oracles. Test inputs
in DNN testing refer to the inputs that need to be predicted by DNN. According to the specific task
of the DNN under test, the test input can be image, natural language, or speech. Test oracles in
DNN testing are based on manual labeling. That is, it is required for each test input to manually
label its ground-truth by persons. By comparing the labeled ground truth and the predicted result,
it is clear to determine whether a test input is predicted correctly by the DNN model.

2.2 Test Optimization in DNN Testing

As presented in Section 1, it is costly to label test inputs. To improve the efficiency of DNN testing,
there are two categories of methods to optimize the testing process. The first one is test input
selection. It aims to select a small set of test inputs that can precisely estimate the accuracy of the
whole testing set. Then, developers can just label the small set of test inputs instead, to save the
labeling costs. Li et al. [55] proposed the state-of-the-art approach in this category, which selects
test inputs by minimizing the cross entropy between the selected set and the whole testing set based
on the outputs of the last hidden layer of the DNN under test. The second category is test input
prioritization. It aims to rank all the test inputs based on their probabilities that can be incorrectly
predicted by the DNN under test without discarding any test input. In this way, developers can find
the test inputs revealing incorrect behaviors earlier. Shi et al. [91] proposed an approach for test
input prioritization by measuring the purity of test inputs following the idea of Gini purity [75]
based on the confidences outputted by the DNN. Zhang et al. [111] proposed to rank test inputs by
calculating their noise sensitivity. By adding the same noise to the test inputs, the test inputs with
higher noise sensitivity are more likely to fool the DNN than those with lower noise sensitivity.
Furthermore, Ma et al. [64] proposed a set of metrics based on model confidence on specific inputs
to select test inputs that are more likely to be misclassified, which has the similar goal with test
input prioritization above.

Our work belongs to the first category, i.e., test input selection, to estimate the accuracy of the
whole testing set using a small set of selected test inputs, and we discuss and compare it with the
state-of-the-art test input selection approaches [55] in Sections 4 and 5.

3 APPROACH

To improve the efficiency of DNN testing, we aim to select a subset of test inputs to represent the
whole testing set. That is, we hope to precisely estimate the accuracy of the whole set by only
labeling the small set of selected test inputs. In this way, the costs of labeling can be reduced largely.
However, how to effectively select such a small set of test inputs is challenging. Moreover, it is
required that the selection approach is interpretable, efficient, and deterministic as much as possible,
in order to make it applicable in practice. This is also a critical challenge to solve this problem.
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Fig. 1. Overview of PACE

In this paper, we propose a novel and practical approach, called PACE (Practical ACcuracy
Estimation), to selecting such a small set of test inputs. In general, for a whole testing set, some test
inputs have similar testing capabilities (i.e., testing the similar functionalities of a DNN) while some
test inputs have different testing capabilities. Intuitively, the small set of selected test inputs should
cover various testing capabilities and maintain the original distribution of these testing capabilities,
so as to represent the whole set as much as possible with high interpretability. To achieve this
goal, PACE clusters all the test inputs into groups based on the identified features reflecting their
testing capabilities from them, in which different groups are more likely to have different testing
capabilities. Since the sizes of groups reflect the distribution of different testing capabilities to some
degree, PACE selects the required number of test inputs according to the proportion of different
group sizes, in order to maintain the similar distribution of testing capabilities.

A natural follow-up question is which test inputs should be selected from each group. Since it is
difficult to perfectly discriminate test inputs with different testing capabilities via clustering, we
should select the test inputs that best reflect the testing capability of the group to bypass the impact
of noise in each group. To further augment the interpretability of the selected test inputs, PACE
utilizes the MMD-critic algorithm [44], a state-of-the-art example-based explanation algorithm, to
select prototypes (i.e., the most representative test inputs) from each group. Furthermore, there
may be also some test inputs that do not belong to any group. That is, each of them is likely to
have unique testing capability. We call the space of these test inputs minority space. It is reasonable
to select test inputs from the minority space as well, to further approximate the whole set. To more
sufficiently explore the minority space using the required number of test inputs, PACE borrows the
idea of adaptive random testing [22] to select test inputs.

Figure 1 presents the overview of our approach PACE. In the following, we first introduce the
studied features of test inputs for clustering in Section 3.1, and then present clustering-based
testing capability discrimination in Section 3.2. Next, we present MMD-critic based prototype
selection in Section 3.3 and adaptive random exploration for minority space in Section 3.4. Finally,
we summarize the usage of PACE in Section 3.5.

3.1 Studied Features

We first identify features of test inputs to help discriminate their testing capabilities. Following
traditional software testing [20, 21, 110], there are two types of features that can reflect testing
capabilities to some degree, i.e., coverage features and input features. For DNN testing, the former
refers to which DNN elements are covered when executing a test input while the latter does not rely
on coverage information but relies on test-input information. In this work, we use input features
to help discriminate testing capabilities. There are three main reasons: (1) The existing work [91]
has demonstrated that, many test inputs may have very similar neuron coverage for a given DNN
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Fig. 2. Feature extraction visualization

and thus coverage features cannot discriminate their testing capabilities well. (2) The effectiveness
of coverage features has been evaluated in the problem of selecting test inputs and the results
demonstrated that its effectiveness is worse than that of input features [55]. (3) Collecting coverage
features tend to incur extra costs.

A DNN gradually learns features from inputs to predict labels. Different layers of a DNN represent
different types of input features. The layers more close to the input layer represent more basic
features while the layers more close to the output layer represent more high-order features. That is,
test-input information contains basic information, i.e., the test input itself and the basic features
extracted from the test input, and high-level information, i.e., the high-order features extracted
from the test input. More high-order features can more precisely capture the relations between
inputs and labels, but they are more specific to a given DNN model and collecting them is more
costly since it needs to run more layers of a DNN model. In contrast, more basic features are more
general and can be collected more efficiently, but they cannot reflect more complex patterns of input
features to predict labels. Our approach is not specific to certain type of input features and we study
different types of input features in this work. More specifically, we study the following four types
of input features (including both basic features and high-order features) as the representatives:

e Original features (ORI): refer to the input vector of a DNN, which are the most basic
features and directly represent an input itself.

e First-layer features (FL): refer to the output of the first layer in a DNN, which are the most
close one to the input vector of a DNN.

e Last-hidden-layer features (LHL): refer to the output of the last hidden layer in a DNN,
which are the high-order features that can directly infer the prediction result for an input.

e Confidence features (CON): refer to the output of a DNN (classifier), which represent the
confidence of a prediction result and have been used by the existing work [55, 91]. We also
classify it to input features since it does not rely on coverage information but relies on the
output derived from a test input via a DNN model.

Figure 2 illustrates where each type of features come from in DNN using one input example (i.e.,
an automobile image in CIFAR-10 used in our study to be presented in Section 4). Please note that,
the input of a DNN and the output of some layer in a DNN may be a multidimensional matrix,
and thus we reshape the matrix to a vector as a feature vector (such as ORI and FL in Figure 2). In
particular, ORI features are static features since they do not need to run a DNN, while FL, LHL, and
CON features are all dynamic features.

3.2 Clustering-Based Testing Capability Discrimination

Based on the identified features of test inputs (e.g., ORI or FL), each test input is represented
as a feature vector. PACE clusters test inputs into different groups to discriminate their testing
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capabilities based on the set of feature vectors. Before clustering, we first normalize features to
adjust the values measured on different scales to a common scale. Since the features are all numeric
type, PACE adopts min-max normalization [19, 25] to adjust each value of these features into
the interval [0,1]. Suppose a whole testing set is denoted as T whose size is denoted as st, the
set of test inputs in T is denoted as T = {ty,f,, ..., t;;} and the feature vector of ¢; is denoted as
Fi = {fi, fiz, - . .. fir}, we use a variable x;; to represent the value of the jth feature for t; before
normalization and use a variable x;; to represent the value of the j*h feature for t; after normalization
(1<i<stand1 < j <r). Formula 1 shows the calculation of normalization.

. xij —min({xx;|1 < k < st})

xi‘j = (1)

max({xx;|1 < k < st}) —min({x;|1 < k < st})

PACE then adopts the HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications
with Noise) algorithm [66] to cluster test inputs due to the following reasons. (1) It is scarcely
possible to know the number of types of testing capabilities in advance, and thus the clustering
algorithms that are required to pre-define the number of clusters cannot be applicable, such as the
widely-used K-means algorithm [37]. HDBSCAN does not need to pre-define the number of clusters
and performs clustering based on density. (2) One of the most widely-used density-based clustering
algorithms is DBSCAN [85], and HDBSCAN is its upgraded version. In particular, HDBSCAN
can have varying density clusters while DBSCAN has to pre-define the density of clusters. (3)
HDBSCAN has been demonstrated to be very efficient [66], making our approach PACE more
practical. (4) HDBSCAN has few parameters to set and is robust to parameter selection [66], which
makes it much easier to be used in practice.

HDBSCAN is a density-based clustering algorithm that groups the data points that are closely
packed together (i.e., data points with many nearby neighbors). To more clearly illustrate the
process of HDBSCAN in PACE, we sample 100 test inputs from the testing set CIFAR-10 of the DNN
model ResNet-20 (used in our study to be presented in Section 4) to make visualization for main
stages in HDBSCAN clustering, which is shown in Figure 3. More specifically, it first constructs a
weighted graph, where data points are vertices and there is an edge between any two points whose
weight is equal to the mutual reachability distance between the two points. Formula 2 shows the
calculation of the mutual reachability distance (MRD) between points a and b based on K nearest
neighbor.

MRDy(a,b) = max{Corey(a), Corex(b), Dist(a,b)} (2)

where Corey(a) and Corey(b) represent the distance between a/b and its k' nearest neighbor,
respectively; Dist(a, b) is the distance between a and b, measured by the widely-used Euclidean
distance. Under MRD, dense points remain the same distance from each other, but sparser points
are pushed away to be at least their core distance away from any other point. Then, HDBSCAN
builds the minimum spanning tree of the weighted graph via Prim’s algorithm [68], as shown in
Figure 3a. Based on the minimum spanning tree, a completely connected graph is transformed
to a hierarchy of connected components by ranking the tree edges in the ascending order of the
distances and iterating via creating a new merged cluster for each edge, as shown in Figure 3b. Next,
it condenses down the large cluster hierarchy into a smaller tree based on minimum cluster size,
which is one parameter of HDBSCAN, as shown in Figure 3c. Finally, it extracts the stable clusters
from the condensed tree by calculating the stability score of each cluster. Based on HDBSCAN,
PACE divides test inputs into different groups and different groups are more likely to have different
testing capabilities. Moreover, some test inputs are not clustered into any group and constitute the
minority space.
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Fig. 3. Visualization of main stages in HDBSCAN clustering

Please note that, when the dimension of features increases, the performance of HDBSCAN could
be largely decreased [66]. Therefore, PACE incorporates the process of dimension reduction for high-
dimensional features before clustering. More specifically, PACE uses the FastICA algorithm [71]
to perform dimension reduction. FastICA aims to find independent components and is helpful to
find underlying factors, by maximizing the negative entropy defined by Formula 3. In this formula,
YGauss 1s a Gaussian random variable with the same variance as a random variable Y, E[.] is to
calculate the mean values, and ¢(.) is a nonlinear function used to approximate the differential
entropy.

Ng(Y) = {E[9(Y) ~ E[g(Ycauss)]1}? ®)

3.3 MMD-critic Based Prototype Selection

After dividing test inputs with different testing capabilities into different groups, PACE then selects
test inputs from each group to constitute the small set of test inputs. Since it is hard to perfectly
discriminate different testing capabilities via clustering, each group could have noise, i.e., the test
inputs that should not be divided into this group. To bypass the impact of noise in each group,
it is interpretable to select the test inputs that can best represent the testing capability of the
group, which are also called prototypes. To augment the interpretability of the selected test inputs
from each group, PACE utilizes the MMD-critic algorithm [44], a state-of-the-art example-based
explanation algorithm (which is used for the interpretability of a machine learning model including
classification and clustering), to select prototypes from a group.

More specifically, it selects prototypes by calculating the difference between the prototype
distribution (denoted as P) and the group distribution (denoted as G). The selected prototypes
should have the minimum difference. The MMD is a measure of the difference between P and
G, given by the supremum over a function space ¥ of the differences between the expectations
with respect to the two distributions, which is shown in Formula 4. Besides, PACE also selects
criticisms, which are the test inputs differing the most from the prototypes in the group, based on
the MMD-critic algorithm. The criticisms together with the prototypes are able to help developers
build a better mental model to understand the group, and thus the interpretability of the selection
can be improved.

MMD(¥, P,G) = ;UI;(Exw [f (O] = Ey-c[f(Y)]) (4)
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In this way, PACE selects the required number of prototypes from each group to constitute the
small set, and also selects the corresponding criticisms to help understand the complex test-input
space in the group.

3.4 Adaptive Random Exploration for Minority Space

The test inputs in the minority space are also the constituent part of the whole testing set, and thus
the selected small set should also contain a part of these test inputs, so as to better represent the
whole testing set. However, it is challenging to select a part of these test inputs to represent the
whole minority space since these test inputs are likely to have different testing capabilities with
each other. To explore the minority space as sufficiently as possible using the required number of
test inputs, PACE borrows the idea of adaptive random testing [22]. In this way, PACE can achieve
great diversity of testing capabilities under the required number of test inputs so that the whole
minority space can be represented by the required number of test inputs as much as possible. More
specifically, it calculates the distance between an unselected test input and each already selected
test input, and uses the minimum distance as the distance of the unselected test input with the
already selected test inputs. Then, it selects the test input that has the maximum distance with the
already selected test inputs as the next one. This adaptive-random strategy has been demonstrated
to be more effective than other adaptive-random strategies in the existing study [42]. Following the
used distance in clustering (presented in Section 3.2), PACE also uses Euclidean Distance to calculate
the distance between test inputs. Formula 5 presents the calculation at each time of selection,
where U and S represent the set of unselected test inputs and the set of already selected test inputs,
respectively, and EucDist(,) aims to calculate the Euclidean distance between two test inputs.

d = max{min EucDist(x,y)} (5)
yeU x€S

Traditional adaptive random testing randomly selects the first sample, but PACE selects the first
test input determinately in order to make it more practical and interpretable. More specifically,
PACE selects the test input that has the most unique testing capability as the first one, which has
the largest distance with all the groups. In particular, this test input is the one at the Top-1 position
by ranking the test inputs in the minority space based on their outlier_scores_ (measuring the
distance with all the groups) values provided by the HDBSCAN clustering algorithm.

3.5 Usage of PACE

In this subsection, we present the usage of PACE and Algorithm 1 shows high-level pseudo code of
PACE. The input of PACE includes a DNN under test denoted as D, a whole testing set denoted as
T whose size is denoted as st (as presented in Section 3.2), and a required number representing
the size of the small set of selected test inputs denoted as n. To construct a small set of test inputs
that can precisely estimate the accuracy of the whole set, PACE first transforms each test input
into a feature vector by extracting features (e.g., ORI or FL), shown in Lines 2-4 in Algorithm 1.
Then, PACE pre-processes the set of vectors including normalization or dimension reduction,
and divides them into m groups and the minority space by clustering (Lines 5-6 in Algorithm 1).
Here, we denote the size of the i*" group as s; and denote the size of the minority space as sm,
where Y s; + sm = st. The selected small set of test inputs should contain both test inputs from
each group and those from the minority space. Here, we define a threshold « to determine the
proportional distribution of them. That is, the number of selected test inputs from groups is « - n
and the number of selected test inputs from the minority space is (1 — @) - n (which is smaller than
sm). Further, PACE selects test inputs from each group according to the proportion of different
group sizes in order to maintain the similar distribution of testing capabilities. That is, the number
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Algorithm 1: High-level pseudo code of PACE

Input :D:the DNN model under test

T: the whole testing set, whose size is st

n: the required number of selected test inputs from T
Output: X: a set of selected test inputs, whose size is n

1 X=0
2 foreach t; in T do
3 ‘ f, — extractFeatures(ti, D)/* transforming a test input to a feature vector */
4+ end
5 {fl/,le, .. ’fs,t} — Process(fl,fz, .. .,f;t)/* pre-processing these feature vectors */
6 {gl,gz, - s 9ms M} — cluster(fl’, fz/, .. ‘>fs/t)/* clustering all the feature vectors into m groups

G {g1,8-.-, gm} and the minority space M */

N}

foreach g; in G do
selectedNumber «— Z"S‘
J

~(a . n)/* determining the required number of selected test inputs from gr */

=

K
=15

©

selectedInput <— MMDselection(gy., selectedNumber)/= conducting MMD-critic based selection from g

*/
10 X.add(selectedInput)
11 end
12 selectedNumber «— (l - 0{) + n/* determining the required number of selected test inputs from M */

13 selectedInput < ARTselection(M, selectedNumber)/x conducting adaptive random selection from M */
14 X.add(selectedInput)
15 return X

of selected test inputs from the k** group is ﬁ(a - n). After determining the number of selected
test inputs from each group or the minority ls_f)ace, PACE selects them based on the MMD-critic
based prototype selection method (Lines 7-11 in Algorithm 1) or the adaptive random selection
method (Lines 12-14 in Algorithm 1), and finally constructs the small set of test inputs, which is
the output of PACE (Line 15 in Algorithm 1). Developers can just label this small set of test inputs
to estimate the accuracy of the whole testing set in practice.

4 EVALUATION DESIGN
In this study, we aim to address the following five research questions:

RQ1: How does PACE perform in terms of effectiveness and efficiency?

RQ2: What is the impact of different features on PACE?

RQ3: What is the impact of the threshold & on PACE?

RQ4: What is the impact of dimension reduction (including different dimension numbers
and different dimension reduction algorithms) on PACE?

RQ5: Does each component contribute to PACE?

4.1 DNN models and Datasets

In our study, we used 24 pairs of DNN models under test and testing sets as subjects in total. The
used DNN models are trained based on 8 popular datasets (i.e., MNIST, CIFAR-10, CIFAR-100,
SVHN, Driving, Fashion-MNIST, ImageNet, and Speech-Commands), respectively, which have been
widely used in the existing studies [55, 91, 99]. More specifically, MNIST is a handwritten digit
dataset®, CIFAR-10 is a 10-class ubiquitous object dataset?, CIFAR-100 is a 100-class ubiquitous object

3 http://yann.lecun.com/exdb/mnist/.
4 http://www.cs.toronto.edu/~kriz/cifar.html.
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dataset®, SVHN is a street view house number dataset collected from real-world scenes®, Driving
is an autonompus driving dataset provided by Udacity’, Fashion-MNIST is a 10-class product
dataset provided by the research department of Zalando, a German fashion technology company?,
ImageNet is an image dataset organized according to the WordNet hierarchy, which is more realistic
and complex’, and Speech-Commands is a sequential dataset, which contains a set of one-second
.wav audio files collected using crowdsourcing, each containing a single spoken English word!°.
Table 1 presents the detailed information of the used models and their testing sets. In this table, the
last five columns represent the size of the model, the size of the whole testing set for the model, the
accuracy achieved by the whole testing set for the model, the task of the model (classification or
regression), and the type of test inputs (original, mutated, or automatically generated test inputs),
respectively. Since the practical scenario is very complex, we tried to construct a comprehensive
benchmark in our study.

First, we considered different types of test inputs: the original test inputs, the mutated test inputs
(i.e., Driving-patch and Driving-light), and the automatically generated test inputs (i.e., Autogen-
MNIST, Autogen-CIFAR-10, Autogen-SVHN, and Autogen-Fashion). The mutated test inputs aim
to simulate the different physical environments when a model is applied in practice. Following the
existing work [55], for the models Dave-orig and Dave-drop trained based on Driving, we produced
Driving-patch by randomly blocking some parts of each test input in Driving to simulate block some
parts of a camera, and produced Driving-light by randomly changing the intensities of lights for
each test input in Driving. Currently, automatically generating testing inputs (also called adversarial
examples) is also a popular method to test a DNN model. Therefore, we also used the automatically
generated test inputs in our study. Following the existing work [91], we used the Basic Iterative
Method [46] to automatically generate test inputs. More specifically, based on MNIST, CIFAR-10,
SVHN, and Fashion-MNIST, we constructed Autogen-MNIST, Autogen-CIFAR-10, Autogen-SVHN,
and Autogen-Fashion, respectively, each of which contains 5,000 test inputs generated automatically
and 5,000 test inputs selected randomly from the original testing set, following the practice of the
existing work [91].

Second, we considered the DNN models with different accuracy, i.e., high-accuracy models
and low-accuracy models. Here, we define the model whose accuracy is smaller than 80% as
a low-accuracy model; otherwise, the model is a high-accuracy model. The existing work [55]
produced mutated models to simulate low-accuracy models. Following this existing work, we also
adopted their mutated models (i.e., LeNet-5-M1, LeNet-5-M2, and LeNet-5-M3) in our study. More
specifically, the three mutated models were produced based on three mutation strategies. The first
mutation strategy is to exchange the labels “8” and “0” in the training data, and then build the
mutated model LeNet-5-M1. The second one is to exchange the labels “7” and “1” in the training
data, and then build the mutated model LeNet-5-M2. The third one is to exchange the labels “9”
and “3” in the training data, and then build the mutated model LeNet-5-M3. Besides, we used three
real-world low-accuracy models, i.e., ResNet-20 based on CIFAR-100, VGG-19 based on ImageNet,
and ResNet-50 based on ImageNet, as models under test in our study. Also, the mutated test inputs
and the automatically generated test inputs provided some low-accuracy models, including Dave-
orig with Driving-patch, Dave-drop with Driving-patch, Dave-drop with Driving-light, ResNet-20
with Autogen-CIFAR-10, LeNet-5 with Autogen-SVHN, and LeNet-5 with Autogen-Fashion.

5 http://www.cs.toronto.edu/~kriz/cifar.html.

% http://ufldl.stanford.edu/housenumbers/.

7 https://udacity.com/self-driving-car.

8 https://github.com/zalandoresearch/fashion-mnist.

% http://www.image-net.org.

10 https://github.com/bjtommychen/Keras_DeepSpeech2_SpeechRecognition.
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Table 1. DNN models and testing sets

ID ‘ Testing set Model Size(KB) #Tests Accuracy(%) Task Test Type
1 LeNet-1 113 10,000 94.86 classification

2 LeNet-4 947 10,000 96.79 classification

Dl e e
5 LeNet-5-M2 1,093 10,000 77.27 classification

6 LeNet-5-M3 1,093 10,000 79.14 classification

Do o mmm e
9 ‘ CIFAR-100 ResNet-20 10,615 10,000 71.42 classification original
10 ‘ SVHN LeNet-5 522 26,032 87.90 classification original
11 Driving Dave-orig 8,306 5,614 90.34 regress%on original
12 Dave-drop 12,832 5,614 91.82 regression

o Do e T ke
R
17 ‘ Fashion-MNIST LeNet-5 385 10,000 89.88 classification original
18 ‘ Autogen-MNIST LeNet-5 1,093 10,000 49.35 classification  generated
19 ‘ Autogen-CIFAR-10 ResNet-20 3,507 10,000 42,92 classification  generated
20 ‘ Autogen-SVHN LeNet-5 522 10,000 43.69 classification  generated
21 ‘ Autogen-Fashion LeNet-5 385 10,000 45.31 classification generated
22 ‘ ImageNet VGG-19 562,176 50,000 64.73 classification original
23 ‘ ImageNet ResNet-50 100,352 50,000 68.27 classification original
24 ‘ Speech-Commands DeepSpeech 6,734 6,417 94.53 classification original

" The accuracy of ImageNet models in our study is slightly smaller than that in the existing paper [92], since the pre-processing
methods used in our study and that paper are slightly different. More specifically, to obtain the fixed-size 224x224 input images
from ImageNet, that paper randomly crops images from rescaled images, while we resize images without cropping following the
method provided by official Keras examples.

Third, we considered the DNN models with different tasks, i.e., classification models and regres-
sion models, in our study, where we adopts the regression models used in the existing work [55],
i.e., Dave-orig and Dave-drop (ID: 11-16), and the other models used in our study are classification
models. In particular, DeepSpeech is a multi-label classification model while the other classification
models are single-label classification models. Moreover, we also considered both CNN and RNN
models, where DeepSpeech is a RNN model while the other models are CNN models.

4.2 Independent Variables
In the study, we considered the following seven independent variables:

eCompared Approaches. In our study, we considered three compared approaches in total, in-
cluding one baseline (i.e., SRS) and two state-of-the-art approaches (i.e., CES and CSS).
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SRS (Simple Random Sampling) randomly selects a required number of test inputs from the
whole testing set, where each test input has the same probability to be selected. SRS is regarded as
the baseline in our study.

CES (Cross Entropy-based Sampling) [55] selects a required number of test inputs by minimizing
the cross entropy between the selected set and the whole testing set to guarantee the distribution
similarity. In particular, CES transforms each test input into a feature vector by extracting its
last-hidden-layer features. CES is the state-of-the-art approach to selecting a small set of test inputs
to estimate the accuracy of the whole testing set.

CSS (Confidence-based Stratified Sampling) [55] is based on the confidence features of test inputs.
CSS first divides the confidence values into different intervals, and then selects test inputs based on
their confidence values in different intervals, so as to guarantee the distribution similarity between
the selected set and the whole testing set. CSS is also regarded as a state-of-the-art approach.

The existing work [55] has compared the three approaches, and the experimental results demon-
strated that in general CES is the most effective approach among them. However, CSS performs
better than CES for high-accuracy models, while the former performs worse than the latter, even
worse than SRS for low-accuracy models since the confidence is not reliable for low-accuracy mod-
els. Also, CSS cannot be applied to regression models and multi-label classification models, while
CES and SRS can be applied to regression models, single-label classification models, and multi-label
classification models. That is, in our study CSS cannot be applied to Dave-orig, Dave-drop, and
DeepSpeech. In particular, all the three compared approaches involve randomness, and thus we
repeated them 50 times following the existing work [55].

eVariants of PACE. To investigate the contribution of each component in PACE, we proposed
four variants of PACE as follows.

PACEfan 4 replaces the MMD-critic based selection from the groups with random selection in
PACE. That is, PACEfan , randomly selects test inputs from each group after clustering. This variant
aims to investigate the contribution of the MMD-critic based selection in PACE.
replaces the adaptive random selection from the minority space with random selection
in PACE. That is, PACE”"  randomly selects test inputs from the minority space. This variant aims
to investigate the contribution of the adaptive random selection in PACE.

To investigate the contribution of clustering in PACE, we proposed PACE,,,,,s and PACE,,;.
The former directly selects test inputs based on the MMD-critic algorithm from the whole testing
set without clustering, while the latter directly selects test inputs based on the adaptive random
method from the whole testing set without clustering.

PACE‘fan & PACE:’; nd’ and PACE,,; involve randomness, and thus they were repeated 50 times.
Here, PACE,,; randomly selects the first test input.

eNumber of Selected Test Inputs. Similar to the existing work [55], we set different sizes of
the selected testing set, i.e., ranging from 50 to 180 with the interval of 10, to investigate the
effectiveness of PACE more sufficiently.

eFeatures. We studied four types of features in our study, including ORI, FL, LHL, and CON
(presented in Section 3.1). Here, we used LHL as the default feature in PACE.

eThreshold o Values. We investigated the impact of the threshold « in our study. Intuitively,
the number of selected test inputs from the minority space should be smaller than that from the

clustered groups, and thus we considered the « value to be 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.
Here, we used 0.8 as the default setting in PACE.
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eDimension Numbers. We investigated the impact of different dimension numbers of the FastICA
algorithm on PACE. Here, we studied four different dimension numbers, i.e., 2, 4, 8, and 16, and our
result recommends 2 as the default number of the FastICA algorithm in PACE.

eDimension Reduction Algorithms. We investigated the impact of different dimension reduc-
tion algorithms on PACE. Here, we studied four popular dimension reduction algorithms, including
the PCA algorithm, the NMF algorithm, the FA algorithm, and our currently used FastICA algo-
rithm. More specifically, the PCA (Principal Component Analysis) algorithm projects the data
to a lower dimensional space by keeping only the most significant singular vectors [101]. The
NMF (Non-Negative Matrix Factorization) algorithm conducts dimension reduction by finding two
non-negative matrices whose product approximates a non-negative matrix via factorization [48].
The FA (Factor Analysis) algorithm [83] aims to identify certain unobservable factors from the
observed variables to conduct dimension reduction. In our study, we set the dimension number
of all these algorithms to be 2 and used the default settings of the other parameters provided by
sklearn [5].

4.3 Measurements

The goal of PACE is to estimate the accuracy of the whole testing set using a small set of test inputs,
and thus following the existing work [55], we used Mean Squared Errors (MSE) to measure the
effectiveness of PACE, the compared approaches, and the variants of PACE. Although the goal
of DNN testing also contains “revealing potential errors” and “covering the corner cases”, these
actually are the target of test input prioritization as presented in Section 2.2 rather than test input
selection that our work focuses on. Therefore, we did not use these measurements to evaluate the
effectiveness of these test input selection approaches in the study. Since some approaches were
repeated 50 times due to randomness, the calculation of the MSE for them is shown in Formula 6.
In this formula, aéc; and acc refer to the estimated and actual accuracy, respectively. PACE and
PACE, ;g are also calculated based on Formula 6, but they evaluate to | acc — acc | since they are
deterministic and we ran them only once. The smaller the MSE value is, the better the effectiveness
of a selection approach is.

50
1
MSE = = ; | aée; — acc |? (6)

Besides, we also measured the efficiency of each selection approach by recording the time cost
spent on selection.

4.4 Implementations

We implemented PACE using Python and extracted features based on Keras 2.2.4 [3] with Tensor-
Flow 1.14.0 [6]. We adopted the implementations of the HDBSCAN algorithm, various dimension
reduction algorithms, and the MMD-critic algorithm provided by hdbscan 0.8.22 [2], sklearn [1], and
the authors of the MMD-critic algorithm [4], respectively. For the parameters in HDBSCAN, we set
min_cluster_size to be 80 and min_samples to be 4 for all the subjects in our study, based on a small
dataset. As demonstrated by the existing work [66], HDBSCAN is robust to parameter selection.
The performance of HDBSCAN could be largely decreased when the dimension of features is high,
and thus PACE performs dimension reduction before clustering in this case based on FastICA. More
specifically, when the number of produced groups by HDBSCAN is very small (i.e., no more than 3)
or a large portion of test inputs (i.e., more than 80% test inputs) are divided into the same group,
indicating the poor performance of clustering, PACE conducts dimension reduction for them. Here,
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we also implemented a tool to automatically determine the application of dimension reduction. For
the compared approach SRS, CES, and CSS, we adopted the existing implementations released by
the existing work [55].

Our experiments are conducted on the Intel Xeon E5-2640 machine with 128GB RAM, CentOS
7.6. All the code and data in our work are available at the project homepage: https://github.com/p
ace2019/pace.

4.5 Process

We present the process of our study for each model under test and its whole testing set as follows.

First, we ran each selection approach (including PACE, three compared approaches, and four
variants of PACE) to produce a set of selected test inputs, under the size ranging from 50 to 180
with the interval of 10. The small set of selected test inputs are used to estimate the accuracy of
the whole testing set. For the approaches involving randomness, we ran them 50 times. We then
calculated the MSE value and the time cost spent on selection for each approach. Based on these
results, we can answer RQ1 (comparing PACE with SRS, CES, and CSS) and RQ5 (comparing PACE
with its four variants).

To investigate the effectiveness of different features in RQ2, we ran PACE by using ORI, FL, and
CON to select test inputs under different sizes, respectively. We then calculated the MSE value for
PACE with each type of feature.

To investigate the impact of the threshold « on PACE in RQ3, we ran PACE with different «
values, ranging from 0.5 to 0.9 with the interval of 0.1, to select test inputs under different sizes,
respectively. We then calculated the MSE value for PACE with each « value.

To investigate the impact of dimension reduction on PACE in RQ4, we ran PACE with different
dimension numbers (i.e., 2, 4, 8, and 16) of the FastICA algorithm and ran PACE with different
dimension reduction algorithms (i.e., the PCA algorithm, the NMF algorithm, and the FA algorithm)
to select test inputs under different sizes, respectively. We then calculated the MSE value for PACE
with different dimension numbers and different dimension reduction algorithms.

5 RESULTS AND ANALYSIS
5.1 Overall Effectiveness

Table 2 and Table 3 present the comparison results among PACE, SRS, CES, and CSS in terms of
effectiveness (i.e., the MSE values). Due to the space limit, we separated the comparison results
into two tables. In the two tables, we highlighted the best effectiveness among all the compared
approaches for each number of selected test inputs using and calculated the average improve-
ment of PACE at all the studied numbers of selected test inputs over each compared approach
shown in Column “N;,,,”. From the two tables, for all the 336 cases (24 subjects X 14 settings for the
number of selected test inputs), PACE performs the best in 87.80% (295 out of 336) cases, while SRS
performs the best in 2.08% (7 out of 336) cases, CES performs the best in 6.55% (22 out of 336) cases,
and CSS performs the best in 3.57% (12 out of 336) cases, demonstrating the dominant superiority of
PACE. We also calculated the average results on all the subjects and found that PACE outperforms
all the three compared approaches on average at each studied number of selected test inputs. In
particular, the average MSE values of PACE only range from 1.181% to 2.302%, demonstrating
that PACE indeed is able to estimate the accuracy of the whole testing set very precisely using a
small number of selected test inputs. Moreover, PACE improves the effectiveness by 51.06%, 50.94%,
and 70.12% compared with SRS, CES, and CSS on average, respectively. In practice, the accuracy
of a DNN model is very important, especially in safety-critical domains. Therefore, the achieved
improvements by PACE are indeed important and valuable.
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Table 2. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of MSE (%) (ID: 1~12)

Number of selected test inputs
ID | App- 50 60 70 80 90 100 110 120 130 140 150 160 170 180 im(%)
SRS 2423 2.040 1.679 1.741 1.827 1.699 1739 1.672 1595 1492 1509 1.465 1.440 1.333 76.94
1 CES 2.540 2.160 1913 1.837 1880 1816 1.742 1.613 1529 1445 1326 1334 1.289 1.262 76.94
CSS 2.409 2308 1.925 1916 1.747 2222 2.004 1.847 1.694 1579 1.730 1.652 1.572 1.502 78.89
PACE | 0.742 0.222 0.494 1110 0.295 0.190 0.315 0.181 0.163 0.574 0.158 0.202 0.434 0.385 -
SRS 3.010 2576 2.438 2434 2147 1978 1.852 1770 1.680 1.567 1.520 1.591 1419 1.368 57.30
2 CES 2,447 2.027 1975 1.813 1.757 1.681 1483 1446 1416 1408 1330 1217 1217 1.216 48.68
CSS 1485  1.260 1.145 1.073 1.015 0944 0.848 0.800 0.717 0.739 0.677  0.631 0.642 0.658 6.84
PACE | 1.249 1790 1.076 0.494 0.087 0.240 0.483 0.731 0.920 1.082  0.561 0.710 0.871 0.988 -
SRS 1418 1310 1.258 1.154 1.047 1.043 1.107 1.034 0.954 0.919 0.957 0.896 0.838 0.821 52.13
3 CES 1.227 1120 1.063 0.985 0911 0934 0903 0.902 0.886 0.825 0.839 0.755 0.703 0.709 44.73
CSS 0.764 0.736  0.627 0.599 0.549 0.548 0.542 0.524 0.526 0.502 0.475 0.447 0.449 0.443 8.74
PACE | 0.603 0.319 0.088 0.070 0.245 0.320 0.419 0.487 0.551 0.611 0.653 0.703 0.732 0.764 -
SRS 4514 4805 4.491 4.170 | 3.494 3.157 3.312 3.297 3.219 3.089 2941 2987 2795 2751 34.94
4 CES 3.784 3821 3.612 3.640 3.496 3.597 3.444 3.426 3.282 3.380 3.433 3.541 3.586 3.535 33.25
CSS 8.795 8.173 8202 7.778 7.390 7.128 6.595 6.009 5.688 5.750 5.402 5.168 5.166 4.590 65.64
PACE | 4470 3.803 3.569 2748 3.616 2470 2288 2823 1720 1.899 1.803 1.095 0.470 0.580 -
SRS 5.435 4757 4.425 4.176 3.988 3.983 4.250 3.960 3.603 3.454 3.649 3.610 3358 3.210 36.72
5 CES 5.199 4.702 4.436 4.259 4.576 4.486 4.544 4.580 4.255 4.272 4353 4.297 4.253 4.397 44.37
CSS 9.872 9.857 9.074 7.943 7.148 6.644 6.368 6.228 5917 5676 5249 5102 5.008 4.756 61.42
PACE | 1.161 2.730 2.440 2.730 2.730 3.730 2.730 2.730 2.730 2.016 2.200 2360 2.262 2.060 -
SRS 5.520 5.333 4.674 4.084 3.606 3.578 3.456 3.119 2965 2914 2981 3.097 3.307 3.373 78.67
6 CES 4211 4.230 4.121 3.755 3.633 3.583 3476 3274 3.004 3.038 3.111 2969 3.036 3.067 76.90
CSS 7.991 7.083 7.307 7.290 6.767 6.683 5.974 5.809 5.422 4.935 4.767 4.658 4.746 4.609 86.95
PACE | 3.140 0.807 0.569 0.390 1.080 1.860 1.217 0.027 0.705 0.293 0.330 0.879 0.316 0.134 -
SRS 1.681 1551 1456 1391 1324 1.187 1.086 1.019 0.994 0.901 0.812 0.762 0.690 0.690 83.71
7 CES 1.120 1.019 0977 0.968 0.973 0.895 0.827 0.836 0.760 0.698 0.708 0.681 0.650 0.636 79.60
CSS 0.795 0.731 0.666 0.596 0.537 0.552 0.574 0.496 0.484 0.500 0.459 0.408 0.382 0.377 67.61
PACE | 0.080 0.008 0.123 0.051 0.259 0.026 0.232 0.483 0.262 0.309 0.085 0.137 0.044 0.169 —
SRS 4175 3372 3.098 2879 2636 2337 2311 2181 2168 2159 2202 2.093 2.123 2.136 46.02
3 CES 4.277 3779 3492 2942 2894 2.663 2555 2510 2296 2272 2274 2.095 2.108 1.968 48.14
CSs 3.506 3.719 3.229 2850 2.683 2471 2317 2323 2203 2128 2226 2215 2.118 2.026 45.56
PACE | 2.668 0353 0.099 1.143 0.241 1351 2261 1367 1374 1379 1.384 0.767 1976 1.947 -
SRS 6.189 5963 5.672 5.276 4.796 4.560 4.214 3.829 3.794 3.641 3.684 3.399 3.092 3.017 40.37
9 CES 6.177 6.053 5595 5.054 5.063 4.784 4.522 4.244 4.065 3.600 3.358 3.224 3.228 3.118 41.24
CSS 9.345 8.407 8.075 8.536 8.631 8.601 8.237 7.866 7.301 6.799 6.556 6.418 6.258 6.529 66.55
PACE | 5.051 3.990 3.228 1.050 1420 2420 2051 3.387 1954 1916 3.208 1.855 2596 1.807 -
SRS 4598 4297 3344 3295 3.253 3.019 2590 2389 2406 2423 2408 2402 2.152 2.049 74.47
10 CES 5.846 5.858 5.577 5.295 5.159 4.915 5011 4.783 4578 4.604 4.643 4.636 4786 4.726 85.54
CSS 4.170 3903 3.767 3.876 3.949 3.677 3.376 3.248 3.126 2.902 2964 2.895 2.782 2.662 78.26
PACE | 1.578 0.164 1.578 1.639 0.646 0.676 0.070 0.008 0.164 0.396 0.968 0.779 0.612 1.082 —
SRS 1.813 1.505 1411 1.288 1.363 1.267 1176 1.199 1.152 1.077 1.081 1.026 1.008 0.939 27.79
1 CES 1.599 1.344 1.220 1.195 1.101 1.013 1.066 1.082 1.022 0.975 1.011 1.022 0.949  0.879 18.86
Css | — — — - — — — — — — — — — — —
PACE | 1415 1389 1455 1.255 1382 1.126 1.049 0.717 0.244 0.093 0.400 0.649 0.696 0.954 —
SRS 1.647 1469 1398 1.293 1.143 1.083 1.012 1.027 0.991 0.999 0.991 0.941 0.831 0.799 50.06
12 CES 1572 1511 1311 1181 1.077 1.037 1.011 0973 0.869 0.852 0.795 0.747 0.729 0.702 45.50
Css | — — — — — — — — — — — — — — —
PACE | 1.770 1286 0.521 1.581 0.889 0.350 0.106 0.069 0.123 0.290 0.474 0.333 0.364 0.391

" Columns 3-16 presents the MSE values (%) for different numbers of selected test inputs. The cell marked with the shading
represents the best effectiveness among all the compared approaches in the case. “—” represents the approach cannot be applied in
the case. Column “f7,,,” represents the average improved rate of the MSE value of PACE at all the studied numbers of selected test
inputs over each of the three compared approaches.
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Table 3. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of MSE (%) (ID: 13~24)

Number of selected test inputs

b ‘APP‘ ‘50 60 70 80 90 100 110 120 130 140 150 160 170 180 | Mm(%)
SRS | 5.007 4448 4099 3557 3.204 3115 3.071 2885 2949 2741 2811 2701 2479 2418 | 5204
13 | CES [4607 " 4321 3905 3302 2845 2755 2695 2470 2333 2207 2309 2334 2199 2200 | 4511
css | — — — — - — - — — - — - — — —
PACE ‘ 6.034 3015 0897 2672 0663 0563 0844 0277 2796 2280 0.943 1796 0536 0.269 —
SRS | 6587 5572 4.895 5400 5130 4.996 4.882 4.885 4573 4238 4.087 3.750 3.560 3.358 | 80.38
14 |CES |5516 5108 4912 4549 4325 3960 3897 3512 3392 3309 3344 3205 3113 3.062 | 7692
css | — — — — - — - — — — — - — — —
PACE 3798 0830 1970 0459 1740 1578 0.246 0444 0.153 0716 0.610 0492 0.883 0.021 —
SRS | 3.057 2799 2606 2467 2330 2149 2165 1975 1824 1732 1740 1716 1597 1518 | 5591
;5 | CES | 2580 [2316 2079 1917 1738 1699 1616 1564 1481 1404 1438 1459 1407 1364 | 4447
css | — — — — - — - — — — — - — — —
PACE 2479 2438 1138 1695 1483 1342 1611 0992 0824 0496 0.175 0.020 0.010 0.005 —
SRS | 7.360 7.536 7.023 6447 5859 5733 5335 5.108 4743 4722 4425 4.280 4068 3.944 | 40.47
L6 | CES (5746 5238 5030 [4930 | 4940 4653 4489 4335 4.003 3.988 3852 3.676 3580 3300 | 2598
css | — — — - - — - — — — — - — — —
PACE | 6.131 5832 [3957 5318 |3.996 3.708 2667 3.77 3235 2298 1.000 0.796 2573 2.665 —
SRS | 4438 4205 3617 3451 3433 2911 2578 2396 2148 2176 2254 2294 2165 2160 | 61.47
;7 | CES | 4976 4432 3993 3863 3969 3593 3.403 3174 3203 2974 2901 2854 2838 2855 | 69.08
CSS | 5450 4673 4258 3821 3.829 3.528 3.246 3.308 3.093 3.088 3.107 3.008 2893 2745 | 69.34
PACE 0316 0284 1669 1478 2428 2199 1111 0203 1330 0518 1.801 1.060 0.406 0.175 —
SRS | 8067 7.652 6993 6876 6244 5700 5179 4810 4801 4423 4112 4074 3.832 3.589 | 45.88
s | CES | 7426 6008 5914 5099 4579 4727 4467 4.197 [B961 3.665 3.566 3402 (3280 3.232 | 36.09
CSS | 13.815 12785 11.538 10.262 9.640  8.657 8.055 7.325 7.015 6567 6720 6380 6.177 6.089 | 65.59
PACE 1979 3079 2594 1728 0115 1148 3.380 3.545 4.141 3.171 3.033 2.882 3.629 2.608 —
SRS | 6452 5998 6039 5549 4911 | 4331 4229 3985 3767 | 3.886 3.676 3.643 3.387 3.190 | 23.55
lo | CES |7256 673 6345 6231 6210 6008 5469 5.146 5073 4817 4423 4198 4040 3941 | 3855
CSS | 12653 12.011 11722 10714 9.812 8.658 8540 7.798 7.875 7.418 7.017 6.877 6409 6.268 | 61.26
PACE 0920 2080 4223 3330 3.147 4.605 7.080 6247 4772 | 2794 2413 1734 2.109 0.726 —
SRS | 7279 5974 5280 5393 5051 4561 4374 4.142 3973 3.628 | 3549 3503 3.508 3.304 | 57.35
o |CES | 6443 5963 5668 5625 5131 5212 4802 4452 4686 4694 4719 4591 4363 4421 | 6507
CSS | 12256 12.070 11.720 10.181 9.179  7.510 7.347 7.252 7.238 6568 6377 5962 6.080 6.281 | 76.06
PACE 2310 0357 0596 1190 0357 0.690 0.855 0477 2464 3453 4310 3.810 1.604 1.310 —
SRS | 7919 7478 6621 6417 5646 5466 4890 4331 4.028 4198 4.038 4.161 4.086 3.929 | 36.23
,; |CES | 6258 5993 5327 5332 5164 [5120 5284 5115 4985 4802 4796 4819 4648 4586 | 37.67
CSS | 14.096 12718 11.967 11.351 10762 9.782 9.638 9.234 8501 7.995 8301 8.111 7.742 7.741 | 66.73
PACE 1310 3870 3986 4057 3.005 5185 4240 3429 3527 2917 2341 1274 2619 3.042 —
SRS | 6262 5324 5376 4792 4179 4315 4526 4396 4.114 3794 3556 3.408 3.300 3.057 | 62.95
,, |CES |5348 5101 4520 4219 4030 3870 3523 3200 2976 |2805 2656 2599 2522 2539 | 5327
CSS | 11.089 10.264 9.075 9.012 8730 8.548 7.897 8.092 7.604 7.004 6476 6421 6717 6355 | 80.39
PACE 0667 1716 1315 2093 1364 0185 0816 1161 1937 23838 2786 0933 1747 1.399 —
SRS |7.231 6515 6084 5568 5835 5538 5176 5070 4.627 4430 4216 4.023 3.855 3.858 | 43.28
,3 |CES | 6581 5555 4999 4949 4867 4629 4475 4111 3848 3666 3524 3340 3241 [3021| 3208
CSS | 9709 9.646 9300 9.108 8788 7.959 7.247 6.865 6311 6.126 5980 6325 6.053 5735 | 61.37
PACE 3980 1599 3792 4737 3.003 0647 0430 3750 2594 2988 2.682 2412 2948 3.785 -
SRS | 3.043 2584 2806 2837 2680 2473 2504 2244 2122 1892 1729 1.674 1686 1.642 | 43.07
by | CES |3068 3102 3016 2893 2693 2686 2690 2679 2620 2574 2452 2483 2512 2453 | 5249
css | — - — — - — - — - — — - — — -
PACE 1389 2192 2613 1812 0976 1587 1.801 0298 0890 0506 0.865 1.040 1304 1.075 -
SRS | 4797 4377 4033 3831 3551 3341 3209 3.030 2883 2771 2705 2.646 2524 2435 | 51.06
Avg | CES | 4408 4062 3792 3576 3459 3347 3225 3068 2939 2845 2798 2728 2679 2633 | 5094
Bl css | 7541 7.079 6682 6289 5950 5536 5224 5001 4748 4487 4381 4275 4188 4.080 | 70.12
PACE 2302 1840 1833 1.868 1465 1591 1596 1542 1649 1493 1466 1.197 1323 1.181 -

" Row “Avg” represents the average results on all the subjects. Please note that CSS cannot be applied to regression models and multi-label
classification models, and thus the average results for CSS are based on all the classification models except DeepSpeech and the average

improvement of PACE over CSS is also based on all the classification models except DeepSpeech.
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Table 4. Statistical analysis of the effectiveness of PACE compared with SRS, CES, and CSS

PACE v.s. ‘ 50 60 70 80 90 100 110 120 130 140 150 160 170 180

SRS 0.828 0.835 0.826 0.814 0.839 0.800 0.806 0.788 0.752 0.774 0.776 0.828 0.786 0.806
CES 0.788 0.821 0.813 0.783 0.835 0.799 0.804 0.786 0.752 0.792 0.786 0.819 0.795 0.807
CSS 0.855 0.869 0.841 0.824 0.862 0.837 0.820 0.806 0.789 0.792 0.785 0.803 0.803 0.817

" Each cell represents the A;5 value and the bold value indicates that PACE indeed significantly outperforms the compared approach.
The statistical analysis for PACE v.s. SRS and PACE v.s. CES is conducted on all the subjects while the statistical analysis for
PACE v.s. CSS is conducted on all the classification models except DeepSpeech since CSS cannot be applied to regression models
and multi-label classification models.

Furthermore, we found that the performance of PACE has fluctuations to some extent on different
numbers of selected test inputs. We analyzed the possible reasons for the fluctuations in PACE,
which are twofold. First, during the clustering process, it is challenging for PACE to divide all test
inputs with different testing capabilities into different groups. That is, there may be noise during the
clustering process in PACE. Second, PACE determines the number of test inputs selected from each
group according to the proportion of group sizes. However, for the studied numbers of selected test
inputs in this work (which is similar to the existing work [55]), it may not always exactly divide
each studied number into these groups. That is, there may exist the cases of rounding, which could
lead to performance fluctuations especially when the number of selected test inputs is small. Please
note that despite such fluctuations in PACE, PACE still outperforms all the compared approaches
in most cases (i.e., 87.80% cases). Therefore, PACE is a more reliable choice for DNN test input
selection among all these existing approaches. Besides, during the practical usage, when users
select the number (that can be exactly divided into each group without rounding) of test inputs,
the performance of PACE could become more stable.

Please note that, as presented in Section 3.1, PACE does not rely on the classes, but instead relies
on the input features of test inputs, and thus the performance of PACE is not affected by the number
of classes. Moreover, same as the existing work [55], PACE aims to estimate the accuracy of the
whole testing set rather than the accuracy for each class. Therefore, PACE is able to perform well
regardless of the number of classes (e.g., 10 classes for CIFAR-10 or 1,000 classes for ImageNet).

Statistical analysis. To further confirm our observations, we performed a paired sample Wilcoxon
signed-rank test [100] at the significance level of 0.05 to investigate whether PACE can significantly
outperform each compared approach across all the subjects, and then performed the Vargha-Delaney
effect size measure [96] to investigate the difference degree between PACE and each compared
approach. Following the existing work [65], the difference degree is characterized as small, medium,
and large when the effect size Alg is larger than 0.56, 0.64, and 0.71, respectively. Table 4 shows the
results of statistical analysis. From this table, we found that all the values are bold, indicating that
PACE is able to significantly outperform all the compared approaches at each studied number of
selected test inputs. Moreover, all the effect size values are larger than 0.71, demonstrating that the
differences between PACE and all the compared approaches are large at each studied number of
selected test inputs.

Effectiveness on classification models and regression models. We considered the models
conducting different tasks, including regression (ID: 11~16) and classification, to evaluate the effec-
tiveness of PACE in our study. Table 5 shows the average results of PACE on classification models
and regression models, respectively. From this table, we find that on average, PACE outperforms
all the three compared approaches for classification models at each studied number of selected
test inputs. The average MSE values of PACE only range from 1.335% to 1.892%, improving the
effectiveness by 49.95%, 52.26%, and 68.54% compared with SRS, CES, and CSS, respectively. For
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Table 5. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of the average MSE values (%)
for classification models and regression models

Number of selected test inputs

Task ‘ App- ‘ 50 6 70 80 9 10 110 120 130 140 150 160 170 180 | 1m(*)
SRS | 4981 4541 4.186 3971 3672 3435 3298 3.091 2942 2833 2766 2727 2613 2526 | 49.95
o | CES | 4677 4314 4030 3820 3721 3622 3479 3316 3190 3086 3023 2946 2906 2871| 5226
CSS | 7541 7079 6682 6289 5950 5536 5224 5001 4748 4487 4381 4275 4.188 4.080 | 68.54
PACE | 1867 1631 1892 1769 1390 1640 1765 1741 1789 1648 1755 1368 1482 1.335 -
SRS | 4245 3888 3572 3409 3186 3.057 2940 2847 2705 2585 2522 2402 2257 2.162 | 54.53
R | CES |[36030 3306 3076 2846 2671 2520 2462 2323 2183 2123 2125 2074 1998 1918 | 4603
css |- - - - - - - - -
PACE | 3.604 2465 1656 2163 1692 1445 1087 0.946 1229 1029 0.600 0681 0844 0.717 -

" Rows “C” and “R” represent the average results on all the classification models and regression models, respectively. Please note that
CSS cannot be applied to multi-label classification models, and thus the average results of CSS for classification models do not include
DeepSpeech and the average improvement of PACE over CSS for classification models also do not include DeepSpeech.

Table 6. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of the average MSE values (%)
for high-accuracy models and low-accuracy models

Number of selected test inputs

50 60 70 80 90 100 110 120 130 140 150 160 170 180 Mim(7%)

Acc. ‘App. ‘

SRS 2.846 2519 2283 2203 2107 1922 1829 1719 1.640 1576 1.564 1.533 1450 1.405 57.82
CES 2.841 2.606 2420 2263 2.196 2085 2028 1960 1.878 1.821 1.792 1.753 1.744 1.706 61.76

High CSS 2.654 2476 2231 2104 2.044 1992 1844 1792 1.692 1.634 1.662 1.608 1548 1.488 58.34
PACE | 1.299 0950 0.987 1.121 0.812 0.855 0.860 0.503 0.622 0.569 0.684 0.582 0.677 0.721 -
SRS 6.448 5950  5.513 5208 4.772 4.541 4376 4.140 3935 3782 3.671 3.587 3.433 3.308 48.66
Low CES 5.735  5.294 4953 4.688 4.528 4.414 4.237 4.006 3.836 3.711 3.650 3.553 3.469 3.417 46.46

CSS 10.962 10301 9.798 9.218 8.685 8.017 7.590 7.248 6.887 6.484 6.284 6.142 6.036 5.895 70.60
PACE | 3.150  2.593 2,549 2500 2.018 2214 2219 2421 2518 2275 2128 1717 1.869 1.570 -

" Rows “High” and “Low” represent the average results on all the high-accuracy models and low-accuracy models, respectively. Since CSS
cannot be applied to regression models and multi-label classification models, the results of CSS and the improvement of PACE over CSS
are based on all the corresponding classification models except DeepSpeech.

regression models, PACE also outperforms all the three compared approaches at almost all the
studied numbers of selected test inputs (except 50) on average. For 50, the average MSE value of
PACE (i.e., 3.604%) is just slightly larger than the best effectiveness (i.e., 3.603%). Also, the average
improvements of PACE compared with SRS and CES achieve 54.53% and 46.03%, respectively. These
results demonstrate that, regardless of classification models and regression models, PACE has
extremely small deviation for estimating the accuracy of the whole testing set using a small number
of selected test inputs.

Effectiveness on high-accuracy models and low-accuracy models. We then analyzed the
effectiveness of PACE for the models with different accuracy since in practice the models with
various accuracy may exist. Table 6 shows the average results of PACE on high-accuracy models and
low-accuracy models. From this table, we found that PACE is able to outperform all the compared
approaches at each studied number of selected test inputs on average for both high-accuracy models
and low-accuracy models, achieving at least 46.46% improvements. More specifically, for the low-
accuracy models produced via mutation (ID: 4 ~ 6), the existing work has demonstrated that CES
performs better than CSS and SRS, and our study further demonstrated that PACE outperforms the
state-of-the-art CES as shown in Table 2. Moreover, from Table 2, for the real-world low-accuracy
model (ID: 9, 22, and 23), PACE performs the best among all the approaches for each studied number
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Table 7. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of the average MSE values (%)
for different types of test inputs

Number of selected test inputs

Type | App- ‘50 60 70 80 90 100 110 120 130 140 150 160 170 180 | Mm(*®
SRS | 3.687 3.285 3.049 2877 2743 257 2452 2325 2211 2113 2071 1998 1.892 1836 | 54.05

o | CES |3598 3312 305 2861 2798 2655 2555 2428 2313 2208 214 2076 2059 2007 | 5560
© | Ccss | 4872 4565 4207 4139 4046 3.905 3.6290 3537 3.306 3.137 3.065 3.042 2986 2.903 | 67.04
PACE 1654 1178 1389 1424 1018 0870 0857 0988 0962 1.039 1233 0.891 1133 1148 -

SRS | 5503 5089 4.656 4468 4.153 3.998 3.863 3713 3.522 3.358 3.266 3.112 2926 2.809 | 56.99

Mut | CES | 4612 4246 3981 3674 3462 3267 3074 2970 2802 2727 2736 2668 2577 2481 4829
“less |- - - - - - - - - - - - - -
PACE 4610 3029 1990 253 1971 1798 1342 1222 1752 1448 0.682 0776 1.000 0.740 -

SRS | 7.429 6775 6233 6059 5463 5014 4.668 4317 4.142 4034 3844 3.845 3703 3503 | 41.00

Gen | CES | 6846 6174 5813 5571 5271 5267 5006 4728 4676 4495 4376 4253 4083 4045 | 4452
CSS | 13205 12396 11737 10.627 9.848 8.652 8395 7.902 7.657 7.137 7.104 6832 6.602 6595 | 67.38
PACE 1630 2346 2.850 2576 1656 2.907 3.889 3424 3726 3.084 3024 2425 2490 1921 -

" Rows “Ori, “Mut” and “Gen.” represent the average results on all the original test inputs, mutated test inputs, and automatically generated
test inputs, respectively. Since CSS cannot be applied to regression models and multi-label classification models, the results of CSS and the
improvement of PACE over CSS are based on all the corresponding classification models except DeepSpeech. In particular, since the models
with mutated test inputs are all regression models in our study, CSS cannot be applied to them.

of selected test inputs. That is, PACE is able to outperform the other three approaches for both
mutated low-accuracy models and real-world low-accuracy models.

Effectiveness on different types of test inputs. We further analyzed the effectiveness of PACE
for different types of test inputs (including original test inputs, mutated test inputs, and automatically
generated test inputs), whose results are shown in Table 7. From this table, we found that on average,
PACE performs the best among all the approaches at each studied number of selected test inputs for
various types of test inputs, and all the average improvements of PACE over the other approaches
are larger than 41.00%. More specifically, from Table 3, for the mutated test inputs (ID: 13~16), we
first confirmed the conclusion from the existing work [55], i.e., CES outperforms SRS in this scenario.
Also, we found that PACE performs better than both CES and SRS in most cases, demonstrating the
effectiveness of PACE for the mutated test inputs. For the automatically generated test inputs (ID: 18
~ 21), our work is the first one to investigate the effectiveness of various selection approaches in this
scenario. We found that PACE also outperforms the other three approaches, and surprisingly, the
baseline SRS performs better than the state-of-the-art CES and CSS for the automatically generated
test inputs. To sum up, PACE is able to stably perform the best for various types of test inputs.

Efficiency comparison. It is also interesting to investigate the efficiency of these approaches. We
reported the time cost spent on selection for each approach on each subject in Table 8, where we
recorded the time cost spent on selecting 180 test inputs as the representative. From this table,
although the average, minimum, and maximum time costs spent on selecting 180 test inputs on
all the subjects for PACE are larger than those for the other three compared approaches, PACE
just spent several minutes, which is acceptable in practice. In particular, the most costly part of
PACE is clustering, but it is performed only once in the beginning and then the selection part is
incrementally performed based on the clustering result. That is, the time cost of PACE does not
largely increase when the required number of selected test inputs increases. By taking subject 24
(DeepSpeech based on Speech-Commands) as an example, when the number of selected test inputs
is 180, the time cost of PACE is 16.395 minutes while when the number of selected test inputs is
1,000, the time cost of PACE is 17.363 minutes, which further confirms the above hypothesis.

In summary, PACE is able to precisely estimate the accuracy of the whole testing set using a
small number of selected test inputs with only 1.181%~2.302% deviations on average, significantly
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Table 8. Efficiency comparison among PACE, SRS, CES, and CSS in terms of the time cost spent on selecting
180 test inputs (minutes)

ID SRS CES CSS PACE
1 2.667E-06  0.043  0.040 6.518
2 9.200E-06  0.030  0.040 3.238
3 1.667E-06  0.021 0.034 1.267
4 2.333E-06  0.028  0.034 1.202
5 4.633E-06  0.028  0.034 1.092
6 3.667E-06  0.028  0.034 1.197
7 2.983E-06  0.340  0.596 0.547
8 3.733E-06  0.421 0.794 1.437
9 3.917E-06 1.479 2.761 3.335
10 1.667E-05  0.068  0.101 9.650
11 3.667E-06  0.052 - 0.153
12 3.333E-06  0.099 - 0.452
13 2.767E-06  0.052 - 0.227
14 2.767E-06  0.096 — 0.317
15 3.100E-06  0.064 - 0.142
16 2.983E-06  0.033 - 0.583
17 1.717E-06 ~ 0.029  0.027 3.342
18 2.750E-06  0.033  0.034  4.157
19 3.317E-06  0.420  0.808 3.155
20 2.867E-06  0.040  0.037 1.237
21 1.750E-06 ~ 0.036  0.028 1.542
22 2.026E-05 36.372 29.327 46.138
23 1.965E-05 22.552 20.945 26.587
24 1.931E-05 2.594 —  16.395
Avg. | 5.905E-06 2707  3.275 5.579
Min. | 1.667E-06  0.021 0.027 0.142
Max. | 2.026E-05 36.372 29.327 46.138
Std. 6.038E-06 8.329 8137 10.339

outperforming all the three compared approaches. In particular, PACE achieves great effectiveness
for various types of models and various types of test inputs, fitting complex scenarios in practice
very well. Therefore, PACE is indeed a practical approach with the best effectiveness and acceptable
efficiency.

5.2 Impact of Different Features

We investigated the impact of different features on PACE, whose results are shown in Figure 4.
In this figure, the x-axis represents the different numbers of selected test inputs and the y-axis
represents the MSE values. The box plots show the median and interquartile ranges of the MSE
values on all the subjects. From this figure, we found that the CON feature performs the worst
among the four types of features, because CON is actually the prediction result for a test input and
cannot reflect the testing capability of the test input well. For the other three types of features,
ORI and our default setting LHL perform better than FL. That demonstrates that LHL indeed is a
good choice for the default setting of PACE. In the meanwhile, the most basic feature ORI performs
surprisingly good, indicating that such basic feature is enough to reflect the testing capabilities of
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test inputs well. In particular, ORI is a kind of static features, and thus it provides an opportunity
to make PACE more efficient by avoiding running the DNN models.

5.3 Impact of Threshold «

We investigated the impact of different values of the threshold «, whose results are shown in
Figure 5. From this figure, we found that the « values setting of 0.5 performs the worst among all
the « values. This is because, the size of the minority space tends to be smaller than that of the
grouped test inputs actually, and thus this setting leads to poor performance. Moreover, we found
that the « values of 0.7 and 0.8 perform relatively better than those of 0.6 and 0.9, indicating the
effectiveness of the default threshold @ in PACE. Also, we found that for different subjects, the best
a values may be different, and thus in the future we plan to propose to set the o value dynamically
by considering the characteristics of the used subject.
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Fig. 6. The MSE values of PACE with different dimension numbers of FastICA

5.4 Impact of Dimension Reduction

We investigated the impact of different dimension numbers of the FastICA algorithm on PACE,
whose results are shown in Figure 6. Here, we studied four different dimension numbers and the case
without dimension reduction (represented by “original” in Figure 6). From this figure, we found that
PACE without dimension reduction performs the worst, demonstrating that dimension reduction
indeed improves the effectiveness of PACE. Also, with the dimension number decreasing, the
effectiveness of PACE becomes better in general. The reason is that the performance of HDBSCAN
can be affected by the dimension of features. When the dimension of features is high, its performance
could be largely decreased [66]. Therefore, according to Figure 6, setting the dimension number to
be 2 is a reasonable choice, and achieves the best effectiveness among all the studied dimension
numbers in general.

We then investigated the impact of different dimension reduction algorithms on PACE, whose
results are shown in Figure 7. From this figure, we found that FastICA performs the best among the
four studied dimension reduction algorithms, demonstrating that FastICA is indeed a good choice
for dimension reduction in PACE. This is because FastICA aims to find independent components
and is able to find underlying factors, while the other three dimension reduction algorithms fail to
find those underlying factors. Therefore, FastICA performs better than them. Actually, our approach
PACE is not specific to FastICA. For example, in Figure 7, NMF achieves similar effectiveness to
FastICA when the number of selected test inputs is small. Therefore, it is also possible to use other
effective dimension reduction algorithms to further improve the effectiveness of PACE. Currently,
we used FastICA as the default dimension reduction algorithm in PACE due to its effectiveness.

5.5 Contribution of Each Component in PACE

PACE consists of three main components: clustering, MMD-critic based selection, and adaptive
random selection. We investigated the contribution of each component in PACE, whose results
are shown in Figure 8. From this figure, first of all, we found that PACE performs better than all
the four variants of PACE, demonstrating the contributions of all the components. By comparing
PACE‘EM 4 and PACE” the former performs worse than the latter, indicating that the MMD-critic
based selection for groups is more important than the adaptive random selection for the minority
space. This is as expected, because the size of the grouped test inputs is larger than that of the
minority space, and thus the selection method for the former makes more contributions. In addition,
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Fig. 8. Comparison results between PACE and its variants in terms of the MSE values

by comparing PACE,,;,4 and PACE,,;, the former performs worse than the latter, indicating that
without clustering the adaptive random selection method is able to achieve better effectiveness
than the MMD-critic based selection method for the whole testing set. This is because without
clustering, all the test inputs with different testing capabilities are mixed together, and the adaptive
random selection method is more likely to select the test inputs with various testing capabilities by
selecting the test inputs with the largest distances.

6 DISCUSSION
6.1 Extensions of PACE
Our experiments have demonstrated that PACE achieves great effectiveness for estimating the
accuracy of the whole testing set by selecting a small number of test inputs. There are some possible
directions to further improve PACE.

First, as demonstrated by Section 5.2, the static feature ORI is able to achieve the similar effective-
ness with our default setting of LHL. Each of them can perform better than the other in some cases.
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Therefore, it is intuitive that combining them may produce better effectiveness. In particular, we
made the first attempt to combine LHL and ORI by simply concatenating the two feature vectors for
each test input, and then conducted a preliminary study using the two DNN models (i.e., VGG-16
and ResNet-20) with the testing set CIFAR-10. The experimental results showed that the average
deviation achieved by PACE with the combined features on the two models at all the studied
numbers of selected test inputs is 0.299%, improving PACE with the default LHL feature by 13.80%.
That demonstrated that combining them is indeed a promising direction to improve PACE. In the
future, we will explore more effective methods to combine different types of features so as to further
improve PACE.

Second, in PACE the HDBSCAN algorithm is adopted to perform clustering due to several reasons
presented in Section 3.2. However, the efficiency of PACE performs worse than the compared
approaches due to the cost of clustering. In the future, we may explore other clustering algorithms
with very low overhead to make PACE more practical. In addition, it is possible for the HDBSCAN
algorithm to produce the extreme case that almost all the test inputs are not clustered into any
group due to its noise-assignment-supporting mechanism [66]. Such poor performance of clustering
may lead to poor performance of PACE. However, such extreme case is rare, even does not occur
in our study for all the used 24 pairs of DNN models and testing sets. In case such extreme case
occurs, we can try to relieve it by tuning the parameters of this algorithm or using other effective
clustering algorithms.

Third, the current goal of PACE is to precisely estimate the accuracy of the whole testing set,
which is a single-objective problem. In practice, there are several objectives that are required to
be satisfied, e.g., keeping the same coverage with the whole testing set. In the future, we plan to
extend PACE to solve the problem of test input selection with multiple objectives.

Fourth, in our study we evaluated the performance of PACE in the domains of normal image
classification, autonomous driving, and speech-to-text engine, but our approach could be generalized
to more other domains such as natural language processing. This is because PACE only relies on
input features, e.g., the output of the last hidden layer in a DNN (LHL features), and it is feasible
for all the inputs to extract these features. In the future, we will further evaluate the performance
of PACE in various domains.

6.2 Threats to Validity

The internal threat to validity mainly lies in the implementations of PACE and the compared
approaches, and the experimental scripts in our study. To reduce this threat, we adopted the
implementations of the compared approaches released by the authors, implemented PACE based on
some existing libraries (presented in Section 4.4), and carefully checked the code of our approach
PACE and experimental scripts.

The external threats to validity mainly lie in the DNN models under test and the testing sets used
in our study. Regarding the used DNN models, we adopted the models trained based on popular
datasets (including MNIST, CIFAR-10, CIFAR-100, SVHN, Driving, Fashion-MNIST, ImageNet, and
Speech-Commands). To reduce the threat from the DNN models, we considered different types of
models from several aspects, including classification models and regression models, high-accuracy
models and low-accuracy models (real-world low-accuracy models and mutated low-accuracy
models), and CNN models and a RNN model (i.e., DeepSpeech). Regarding the used testing sets, we
also considered different types of test inputs, including the original test inputs, the mutated test
inputs, and the automatically generated test inputs. To further reduce these threats, we will apply
PACE to more DNN models and testing sets with great diversity in the future.

The construct threats to validity main lie in the parameters in PACE, randomness, the mea-
surements used in our study, the studied numbers of selected test inputs, the used method for
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Table 9. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of estimating Top-5 accuracy
by taking subjects 22 and 23 as examples

Number of selected test inputs

ID | App. :
‘ PP ‘50 60 70 80 9 10 110 120 130 140 150 160 170 180 | ()

SRS 5.088 4.890 4.730 4.602 4.394 3.863 3.307 3.222 3.164 2948 3.008 2883 2.725 2.676 48.29
CES 4.608 4.288 4.266 4.185 4.112 4.100 4.137 3.890 3.893 3.841 3.766 3.582 3.582 3.411 49.57

22 CSS 7.141 6.382 5.681 5.948 5.947 5353 5.094 5006 4.720 4.345 4.064 4.102 3.900 3.639 62.17
PACE | 4.632 5060 3.464 3.464 1724 1337 2689 1386 0375 0.747 1.169 0942 0.655 0.936 -
SRS 4384 4.087  3.602 3.458 3.408 3.077 2.873 2.873 2.707 2.513 2546 2.388 2.496 2.487 29.28

23 CES 4.128 3.849 3.823 3.621 3.477 3.271 2945 3.029 3.049 2999 2.673 2477 2436 2.396 30.98

CSS 6.347 5863 5322 4704 4300 3.603 3488 3358 3342 2974 2864 3.058 3.068 3.046 45.40
PACE | 4449 5531 3.697 3.357 2.118 2.068 2.027 1915 1.891 1.870 0.553 0.616 1.187 1.209 -

automatically generating adversarial inputs, and the studied feature type. PACE involves several
parameters, such as the threshold « and the clustering parameters. Regarding the threshold a, we
conducted a study to evaluate the impact of different & values, and the results demonstrate that the
default setting of & (i.e., 0.8) is a good choice (presented in Section 5.3). Regarding the clustering
parameters, we set them based on a small dataset and used the same parameters for all the subjects.
Also, our used clustering algorithm HDBSCAN is demonstrated to be robust to parameter selection.
We presented the specific settings of the parameters in Section 4.4. Moreover, in Section 4.4 we also
presented the conditions of applying dimension reduction. In the future, we will further investigate
the impact of these parameters. To reduce the threat from randomness involved in our study
(including the three compared approaches and three variants PACEfan o PACE”  PACE,), we
repeated each of them 50 times and calculated the effectiveness using Formula 6. Regarding the
measurements used in our study, we used both Mean Squared Errors and the time cost spent on
selection to measure the effectiveness and efficiency of each approach, respectively. To reduce
this threat, in the future we will use more metrics to measure the effectiveness of each approach
more sufficiently, such as measuring the interpretability by communicating with the persons that
are responsible to label test inputs. In particular, the accuracy estimated by both our work and
the existing work [55] refers to Top-1 accuracy, and it is actually also interesting to investigate
the effectiveness of PACE for estimating Top-n accuracy. Here, we conducted an experiment by
taking subjects 22 and 23 and Top-5 accuracy as examples to investigate it, whose results are
shown in Table 9. From this table, in terms of estimating Top-5 accuracy, for subject 22 PACE
improves the effectiveness by 48.29%, 49.57%, and 62.17% compared with SRS, CES, and CSS on
average, respectively, while for subject 23 PACE improves the effectiveness by 29.28%, 30.98%, and
45.40% compared with SRS, CES, and CSS on average, respectively. The results demonstrate that,
regardless of Top-1 accuracy or Top-5 accuracy, PACE is able to significantly outperform all the
three compared approaches.

Regarding the studied numbers of selected test inputs, we studied 14 different numbers of selected
test inputs similar to the existing work [55] in our study, which range from 50 to 180 with the
interval of 10. However, the studied numbers may not represent other numbers of selected test
inputs. To reduce this threat, we further evaluated the effectiveness of PACE using larger numbers
of selected test inputs. Here, we take subjects 22 and 23 as examples and the number of selected
test inputs ranges from 100 to 1,000 with the interval of 100, whose results are shown in Table 10.
From this table, when the number of selected test inputs ranges from 100 to 1,000, PACE always
performs better than all the three compared approaches for both subjects 22 and 23. On average,
PACE improves the effectiveness by 68.33%, 64.79%, and 90.31% compared with SRS, CES, and
CSS respectively for subject 22 , while improves the effectiveness by 68.08%, 73.67%, and 69.68%
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Table 10. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of the average MSE values (%)
when the selected number ranges from 100 to 1,000 by taking ImageNet as an example

Number of selected test inputs

ID | App.
PP 100 200 300 400 500 600 700 800 900 1000

ﬂlm(%)

SRS 4315 2.730 1.569 1.625 1.586 1.511 1.429 1415 1.224 1.352 68.33
CES 4.629 2478 2478 1452 0.631 0.851 0.930 0.827 0.951 1.369 64.79

22 CSS 8.548 7.395 7.103 6.395 5.070 3.478 3.556 4.083 3.687 3.595 90.31
PACE | 0.185 1.124 1.495 1.139 0.200 0.289 0.556 0.024 0.103 0.340 -
SRS 5.538 3.802 3.417 1734 2.036 1382 1.691 1.896 1.901 1.397 68.08

93 CES 4.629 2548 3.282 2414 2975 3.019 2.789 2152 2.064 1.985 73.67

CSS 6.126 4411 5375 3.508 1473 1.415 2570 1.692 1.730 1.353 69.68
PACE | 0.647 1.102 0.599 1.26 1466 0.067 0.020 0.016 0.488 1.166 -

Table 11. Effectiveness comparison among PACE, SRS, CES, and CSS in terms of the average MSE values (%)
when using FGSM and C&W by taking CIFAR-10 and ResNet-20 as an example

Number of selected test inputs

60 70 80 90 100 110 120 130 140 150 160 170 180 | 1(%)

Adv. ‘App. ‘ 50

SRS 6.362 5.300 5.000 4508  4.853  4.285 3.972 4338 4.327 4.118 3.660 3.588 3.732 3.498 48.94
FGSM CES 6.656  6.122 5432 5292 5273 4866 4.956 5.049 4891 4.695 4.540 4.560 4.409 4.191 54.97
CSS 12.193  11.577 10.722 10.330 10.062 9.147 8.603 8.709 8.116 8338 7.703 7.421 7.552 7.844 75.89

PACE | 5585 7.840  6.220 4.090 2840 1426 0.113 0493 0.532 0.697 0.493 1259 1278 1.604 -

SRS 7.533 6.722 5748 5498 5.083 4.834 5.118 5.076 4.677 4.647 4.685 4.448 4.250 4.353 66.66
Cc&wW CES 6.881 6.425 5.804 5440 5028  4.641 4.696 4.923 4423 4224 3984 3.784 3.537 3.350 63.43
CSS 12953 11.762 11.165 9.922  9.171 8.813 8.486 7.431 7455 7.148 6.067 5.664 5.129 5.100 78.46

PACE | 7.160 3.827 1.446 2160 1.604 1160 0.113 1.173 0.237 1411 1507 1590 1.664 1.173 -

compared with SRS, CES, and CSS respectively for subject 23. The results demonstrate that PACE
also performs the best among all these approaches when the number of selected test inputs is large.

Regarding the used method for automatically generating adversarial inputs, we have evaluated
the effectiveness of PACE on the testing sets including adversarial inputs generated via Basic
Iterative Method (BIM) in our study (ID: 18-21). However, this adversarial input generation method
may not represent other adversarial input generation methods. To reduce this threat, we further
investigated the effectiveness of PACE on the testing sets including adversarial test inputs generated
via the other two widely-used adversarial input generation methods, i.e., FGSM [33] and C&W [10],
by taking CIFAR-10 and ResNet-20 as an example following the process described in Section 4.1.
Table 11 shows the effectiveness of PACE on the testing sets including adversarial test inputs
generated via the two adversarial input generation methods (i.e., FGSM and C&W). From this table,
we found that PACE still performs the best among all the compared approaches on average when
using both FGSM and C&W, and all the average improvements of PACE over the other approaches
are larger than 48.94%, demonstrating the effectiveness of PACE when using different adversarial
input generation methods.

Regarding the studied feature type, we used input features in PACE rather than coverage features
as explained in Section 3.1. Here, we conducted an experiment to further investigate whether
coverage features can perform better than input features. In particular, besides CSS and CES, Li et
al. [55] also preliminarily studied the effectiveness of coverage features (i.e., surprise coverage [45],
the state-of-the-art coverage) used in a similar way to CSS. We call the method of surprise coverage
CSS-COV. Following this existing work [55], we also compared PACE with CSS-COV by taking the
subjects whose ID is 3 and 4 as example following the existing work [55], whose results are shown in
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Table 12. Effectiveness comparison between PACE and CSS-COV in terms of the average MSE values (%) by
taking the subjects whose ID is 3 and 4 as example

Number of selected test inputs

ID | App.
‘ PP ‘50 60 70 80 90 100 110 120 130 140 150 160 170 180

‘ ﬂlm(%)

PACE 0.603 0.319 0.088 0.070 0.245 0.320 0.419 0.487 0.551 0.611 0.653 0.703 0.732 0.764

CSS-COV | 8.437 7.617 7.033 6.377 6.025 5973 5877 5749 5480 5244 4759 4785 4747 4.842
PACE 4470 3.803 3.569 2.748 3.616 2.470 2.288 2.823 1.720 1.899 1.803 1.095 0.470 0.580

‘CSS-COV‘S.OﬁS 2.586 2256 2359 2353 2125 1996 1.840 1.714 1.611 1.527 1455 1388 1‘336‘ 72.65

61.68

Table 12. From this table, we found that PACE always performs better than CSS-COV at each studied
number of selected test inputs for both of the subjects, and the average improvements of PACE
over CSS-COV are 72.65% and 61.68% for the two subjects, respectively. The results demonstrate
that the effectiveness of coverage features is not good to some degree, which is consistent with the
conclusion from the existing work [55].

7 RELATED WORK
7.1 Deep Neural Network Testing

Besides improving the efficiency of DNN testing, there are a large number of studies focusing on
proposing various metrics to measure test adequacy for DNN and designing various approaches to
generate adversarial inputs in the literature [26, 40, 60-62, 73, 95, 98, 103, 107, 112, 115, 116].

Regarding to DNN testing metrics, Pei et al. [73] proposed the metric of neuron coverage and a
white-box testing framework based on this metric. Ma et al. [60] further proposed Deepgauge, a set
of multi-granularity testing metrics for DNN. Kim et al. [45] proposed SADL to measure the test
adequacy for DNN, including SA (Surprise Adequacy) and SC (Surprise Coverage). Du et al. [26]
proposed two similarity metrics and five coverage criteria for stateful DL systems by modeling
an RNN as Discrete-Time Markov Chain. Gerasimou et al. [30] proposed the Importance-Driven
Coverage criterion in order to cover various combinations of the behaviors of important neurons.
Sekhon and Fleming [87] proposed a coverage criterion in order to capture all possible parts of the
logic of DNN. Also, Du et al. [27] and Ma et al. [59] proposed state coverage and t-way combination
coverage for DNN, respectively.

Regarding to adversarial input generation, Xie et al. [103] proposed Deephunter, which is a
coverage-guided fuzz testing framework for DNN. It generates new semantically retained test
inputs through metamorphic testing. Guo et al. [35] proposed to maximize the neuron coverage
and generate more adversarial inputs via mutation and differential testing. Sun et al. [94] utilized
concolic testing to generate test inputs for DNN. Wang et al. [97] proposed to find adversarial inputs
by proposing a measure of sensitivity and integrating statistical hypothesis and model mutation.
Zhang et al. [113] proposed a condition-guided adversarial generative testing tool, called CAGTest,
to efficiently generate test inputs for DNN, and CAGTest does not generate a large number of
invalid test inputs. Currently, adversarial input generation has been widely used in various fields,
including image recognition [9, 32, 38, 102], natural language processing [56, 72, 82], and speech
recognition [74, 84, 106].

Different from them, our work aims to improve the efficiency of DNN testing by reducing
labeling costs. More specifically, our work proposed PACE to select a small set of test inputs that
can precisely estimate the accuracy of the whole testing set for DNN and then reduce labeling costs
by just labeling this small set.

In addition, there are some related work to ours in DNN space. Active learning is a semi-
supervised method, between unsupervised (i.e., 0% labeled data) and fully supervised (i.e., 100%
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labeled data) in terms of the amount of labeled data for training [67, 88]. More specifically, active
learning aims to iteratively label a small set of data for training so as to achieve similar (or greater)
performance to using a fully supervised training set. For example, Lewis and Gale [51] proposed
to select the data for labeling, whose label has the largest uncertainty. Bouneffouf [8] proposed a
sequential algorithm called exponentiated gradient (EG)-active to improve the selection of data for
labeling by an optimal random exploration. However, different from active learning, our work aims
to improve the DNN testing process by labeling a small number of test inputs to precisely estimate
the accuracy of the whole testing set. That is, both goal and usage scenario between our work and
active learning are totally different.

7.2 Test Optimization for Traditional Software

In traditional software testing [16, 58], test optimization is also an important direction to improve
the efficiency of testing, including topics on test selection, test prioritization, and test-suite reduction.
Please refer to a survey by Yoo and Harman for more details [104].

Test selection in traditional testing refers to selecting and running tests that are affected by
software changes in regression testing, since the tests that are not affected by code changes should
have the same results with previous runs [31, 50, 76-78, 109]. For example, Gligoric et al. [31]
proposed a file-level dynamic test selection approach for Java projects based on the changes of
bytecode class files, while Legunsen et al. [49] conducted an extensive study to compare different
static test selection approaches. More recently, Zhang [108] proposed the first hybrid test selection
approach by combining the strengths of existing dynamic test selection approaches at different
granularities.

Test prioritization in traditional testing aims to prioritize all the tests in order to reveal software
bugs as early as possible [7, 12-14, 28, 39, 58, 80, 81, 86, 105]. For example, Li et al. [53] proposed a
search-based test prioritization approach by utilizing search-based algorithms to find the optimal
order of test execution based on code coverage information. Jiang et al. [42] proposed an adaptive
random test prioritization approach, which defines test distance to determine which test should
be selected as the next one during prioritization. Chen et al. [20] conducted an empirical study to
compare various test prioritization approaches and further proposed a machine-learning based
approach to recommending the optimal test prioritization approach for a specific project based on
test distribution information.

Test-suite reduction aims to remove redundant tests from a test suite with respect to some
testing requirements (e.g., code coverage) [15, 23, 24, 79, 90, 110]. For example, Harrold et al. [36]
proposed a test-suite reduction approach by identifying the tests that are essential to cover some
statements, called essential tests. Gotlieb and Marijan [34] proposed to remove tests from a test
suite via searching among network maximum flows. Shi et al. [89] proposed to reduce a test suite
by utilizing killed mutants.

Our work is more closely related to the topic of test-suite reduction since our work also tries to
reduce certain tests (although of different forms). Different from traditional test-suite reduction,
our work aims to select a small set of test inputs that can represent the accuracy of the whole
testing set for deep neural network testing, where the traditional test-suite reduction cannot apply
due to the intrinsic differences between deep neural networks and traditional software systems.

8 CONCLUSION

To improve the efficiency of deep neural network (DNN) testing, we aim to select a small set of
test inputs that can precisely estimate the accuracy of the whole testing set, and then just label
this small set instead of the whole testing set. To achieve this goal, we propose PACE, a novel and
practical approach to selecting such a small set of test inputs. To make PACE more practical, PACE
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incorporates clustering to interpretably discriminate test inputs with different testing capabilities
into different groups, and then utilizes the MMD-critic algorithm to interpretably select prototypes
from each group and borrows the idea of adaptive random testing to select test inputs from the
minority space (i.e., test inputs that are not clustered into any group) by considering diversity,
so as to constitute the final small set of selected test inputs. We conducted an extensive study
to evaluate the performance of PACE based on 24 pairs of DNN models and testing sets. This
benchmark is comprehensive by considering different types of DNN models and different types of
test inputs. The results demonstrate that PACE achieves great accuracy estimation effectiveness of
only 1.181%~2.302% deviations on average, significantly outperforming all the compared approaches
(i-e., SRS, CES, and CSS) with the average improvements of 51.06%, 50.94%, and 70.12%, respectively.
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