
 

Chiral magnetic response to arbitrary axial imbalance

Miklós Horváth * and Defu Hou†

Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE),
Central China Normal University, Wuhan 430079, China

Jinfeng Liao‡

Physics Department and Center for Exploration of Energy and Matter, Indiana University,
2401 N Milo B. Sampson Lane, Bloomington, Indiana 47408, USA

Hai-cang Ren§

Physics Department, The Rockefeller University,
1230 York Avenue, New York, New York 10021-6399, USA

and Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE),
Central China Normal University, Wuhan 430079, China

(Received 25 November 2019; accepted 16 April 2020; published 30 April 2020)

The response of chiral fermions to time and space dependent axial imbalance and constant magnetic field
is analyzed. The axial-vector–vector–vector (AVV) three-point function is studied using a real-time
approach at finite temperature in the weak external field approximation. The chiral magnetic conductivity is
given analytically for noninteracting fermions. It is pointed out that local charge conservation plays an
important role when the axial imbalance is inhomogeneous. Proper regularization is needed which makes
the constant axial imbalance limit delicate: for static but spatially oscillating chiral charge the chiral
magnetic effect (CME) current vanishes. In the homogeneous (but possible time-dependent) limit of the
axial imbalance the CME current is determined solely by the chiral anomaly. As a phenomenological
consequence, the observability of the charge asymmetry caused by the CME turns out to be a matter of
interplay between various scales of the system. Possible plasma instabilities resulting from the gradient
corrections to the CME current are also pointed out.
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I. INTRODUCTION

Anomaly induced transport phenomena in systems with
chiral fermions have attracted wide interests ranging from
high energy physics to condensed matter physics. Among
them is the chiral magnetic effect (CME) which relates the
chiral chemical potential μ5 and the external magnetic field
B to the anomaly induced electric current density J by the
simple formula [1,2]

J ¼ e2

2π2
μ5B: ð1Þ

The predictions of CME include the electric charge
asymmetries in the final stage of the relativistic heavy
ion collisions (RHIC) [3–6] and the negative magneto-
resistance in some Weyl and Dirac semimetals [7–12].
In the former case, a strong magnetic field is generated
during an off-central collision and the chirality imbalance is
induced by the transition among different topological
sectors. Therefore, the CME is an important probe of the
topological structure of QCD. While there are experimental
evidences of CME in the context of condensed matter
physics, the situation in RHIC is far more complicated. It
remains to exclude the noisy backgrounds in order to nail
down the real CME signals.
For the past decade since the concept of CME was

proposed there have been a vast amount of theoretical
works done on the subject. For thorough reviews, see
Refs. [13–18] and the references therein. For a recent
review on the status of CME in RHIC see the relevant parts
of Ref. [18]. Considering that the CME supposed to have a
macroscopic imprint, hydrodynamic descriptions including
the effect of the anomaly have been developed in order to
simulate the modified dynamics of the medium [19–21].

*miklos.horvath@mail.ccnu.edu.cn
†houdf@mail.ccnu.edu.cn
‡liaoji@indiana.edu
§ren@mail.rockefeller.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 076026 (2020)

2470-0010=2020=101(7)=076026(22) 076026-1 Published by the American Physical Society

https://orcid.org/0000-0003-1836-0373
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.076026&domain=pdf&date_stamp=2020-04-30
https://doi.org/10.1103/PhysRevD.101.076026
https://doi.org/10.1103/PhysRevD.101.076026
https://doi.org/10.1103/PhysRevD.101.076026
https://doi.org/10.1103/PhysRevD.101.076026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The underlying assumption when applied to RHIC is that a
net macroscopic chiral charge is generated in the initial
stage of collisions and its characteristic time of variation is
much longer than the relaxation time required to establish
a local thermal equilibrium, so the formula (1) can be
applied. Hydrodynamic modeling of anomalous transport
in condensed matter systems has been actively investigated
as well [22–25].

There are several other ways to approach the trans-
port phenomena starting from the microscopic level.
Investigations have been conducted ranging from kinetic
theory (Boltzmann equations [26–32] or Wigner functions
[33–35]) to field theoretic approaches (Kubo formulas)
[36–42], even through holographic models [43–49] for an
insight of strongly coupled systems. In the equilibrium
case, all of them lead to the same answer as given in Eq. (1).
The chiral magnetic response in the nonequilibrium case,

in particular for a space-time-dependent chiral chemical
potential, turns out to be both subtle and important, for a
number of reasons. First of all, in the context of heavy ion
collisions, the initial axial charge is generally expected to
be inhomogeneous across the fireball and furthermore
necessarily evolves in time due to random gluonic topo-
logical transitions during the fireball evolution. The spatial
variation length scale and the time evolution scale are not
necessarily very large as compared with the thermal scales
of the medium. It is therefore crucial to understand the
impact of such nonequilibrium case for application to
phenomenology (e.g., for the charge asymmetry signal
of CME in these collisions). Second, as was pointed out in
Ref. [40] using proper UV regularization, connecting chiral
magnetic response under the space-time dependent chiral
chemical potential with that under static and homogeneous
chiral chemical potential could be tricky. Depending on the
order of taking static limit first or taking homogeneous limit
first, the results are completely different. What that implies
for a realistic system like the quark-gluon plasma in heavy
ion collisions, has remained unclear so far. These are the
pressing issues that we plan to explore in the present work.
In order to do this, we employ a relatively simple but

clean theoretical setup, by considering the weak external
field approximation (WFA) of a fermionic system coupled
to electromagnetic (EM) fields as well as under the
presence of space-time dependent chiral chemical potential.
We shall derive an explicit formula for the chiral magnetic
current with an arbitrary spacetime dependent μ5 in a
constant magnetic field. Based on such results, we shall
then explore its impact on the charge asymmetry transport
across a plane that is perpendicular to the magnetic field,
which mimics the situation of chiral magnetic transport
across the reaction plane in RHIC.
The rest of this paper is organized as follows. The

Schwinger-Keldysh formulation for the amplitude of the
triangle diagram, retarded with respect to the chiral
chemical potential and external magnetic field are laid

out in the next Sec. II. The explicit form of the response
function under a constant magnetic field is presented in
Sec. III and its contribution to the electric charge asym-
metry is discussed in Sec. IV. Section V concludes the
paper.

II. WEAK EXTERNAL FIELD APPROXIMATION

In this section we introduce the weak external field
approximation (WFA) of a fermionic system coupled to
electromagnetic fields as well as in the presence of axial-
vector potential. Such a model might capture the electro-
magnetic transport in a quark-gluon plasma of which the
gluon sector can have nontrivial topological features,
locally violating CP–invariance. This local CP–violation
is described through the axial-vector potential A5 under our
assumption. On the fundamental level of QCD there are no
axial gauge fields, however, focusing only on the effective
description of the EM sector, there are two contributions to
the chiral charge nonconservation. The usual EM one
proportional to E ·B, and the one from the gluonic sector:
∝ Ea ·Ba, with Ea and Ba being the components of
chromoelectric and -magnetic fields, respectively. It is
the latter contribution that is reflected in the hypothetical
axial-vector potential.
Solid state systems might happen to be affected by

similar circumstances, such as electronic systems in the
bulk of Weyl semimetals (WSM). Their low energy
behavior is described by the Dirac like equation. Since
the spatial inversion and time reversal symmetries can be
violated in such systems, depending on the details of the
material, one can introduce an axial-vector potential. It was
explicitly shown in Ref. [50] that the elastic deformations
of a WSM sample can be modeled in terms of an axial-
vector potential as well. See for example Ref. [51], Sec. 7 of
Ref. [14] or Secs. 2, 5 of Ref. [22] for more details.
The EM sector of the underlying quantum field theory

can be described by the following Lagrangian:

L ¼ −
1

4
FμνFμν þ ψ̄γμði∂μ − eAμ − γ5A5;μÞψ þ UV reg

¼ LQED − ψ̄γμγ5ψ · A5;μ; ð2Þ

with the Dirac field ψ and the electromagnetic vector
potential Aμ. It is worthwhile to mention that for A5 ¼
ð−μ5; 0Þ the coupling to the axial-vector field effectively
behaves as an axial chemical potential, i.e., A5;0 ¼ −μ5.
These are, however, two fundamentally different concepts,
since there is no need to impose the constraints of thermal
equilibrium in order to talk about an axial-vector potential
as a proxy to axial charge imbalance.
In order to investigate the dynamics of anomalous chiral

transport we expand the currents of interest up to the first
nontrivial order with respect to the external fields: to
capture anomaly induced transport, this means AA, AA5,
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and A5A5 need to be included. Since A and A5 are treated as
classical background fields, this procedure is justified as a
weak external field expansion and it can be realized as
follows (repeated indexes are summed up):

hJμi ¼ hJμJνijA;A5¼0Aν þ hJμJνJρ5ijA;A5¼0AνA5;ρ þ � � � ;
ð3Þ

hJμ5i ¼ hJμ5Jν5ijA;A5¼0A5;ν þ
1

2
hJμ5JνJρijA;A5¼0AνAρ

þ 1

2
hJμ5Jν5Jρ5ijA;A5¼0A5;νA5;ρ þ � � � ; ð4Þ

with the (axial) vector potential Aμ
ð5Þ. The ensemble average

h…i of the (axial)vector current hJμð5Þi ¼ hψ̄γμðγ5Þψi is to
be taken over a thermal ensemble of quantum states,
characterized by zero external fields. Both Eqs. (3) and
(4) are to be understood as convolutions in the space-time
arguments for inhomogeneous and time dependent sources.
In the special case of zero electric field and zero axial
magnetic field, the electric current J is solely controlled by
the response function hJiJjJ05i. The functions hJJJ5i
contains two vector and one axial-vector current operators
and will be referred to as axial-vector–vector–vector (AVV)
response from here on. From the field theoretic perspective,
this function corresponds to the fully dressed triangle
diagram (see Fig. 1) whose longitudinal component with
respect to the A-vertex is—in the constant field limit—
dictated by the chiral anomaly. As we will see in the
followings, specific orders of limits are tied to the longi-
tudinal component, but this is not the case generally, as it
was already pointed out in Ref. [39].
The contribution of the second term in Eq. (3) of the

electric current is given by the following expression:

hJiiðxÞ ¼
Z

d4y
Z

d4zAjðyÞA5;0ðzÞΓ0ij
AVVðx − y; x − zÞ

¼
Z

đ4q1

Z
đ4q2Ãjðq1ÞÃ5;0ðq2ÞΓ̃0ij

AVV

× ðq1; q2Þeix·ðq1þq2Þ: ð5Þ

Weagain point out that for any explicit calculation one needs
to regularize the theory in order to keep the electromagnetic

Uð1Þ Ward–Takahasi-identity intact. Because of the pres-
ence of γ5, we use the method of Pauli and Villars, i.e.,
coupling to the system an auxiliary fieldwith asymptotically
large massM, which although obeys Fermi-Dirac statistics,
contributes with an opposite sign to the loop integrals. So in
addition to the usual AVV triangle we have to subtract the
one with the heavy fermions.
In order to investigate the response current out of

equilibrium we need to formulate the AVV triangle in
terms of the real-time correlations of the underlying field
theory. Using the Schwinger-Keldysh (SK) formalism for
this purpose, the Fourier transformed AVV vertex Γ̃ρμν

AVV,
responsible for the retarded current response, then reads as
follows [40]:

Γ̃ρμν
AVVðq1; q2Þ

¼ −
ie2

2

Z
p
trfγμGCðpþ q2Þγργ5GAðpÞγνGAðp − q1Þþ

ð6Þ

þγμGRðpþ q2Þγργ5GCðpÞγνGAðp − q1Þþ ð7Þ

þγμGRðpþ q2Þγργ5GRðpÞγνGCðp − q1Þþ ð8Þ

þγμGCðpþ q1ÞγνGAðpÞγργ5GAðp − q2Þþ ð9Þ

þγμGRðpþ q1ÞγνGCðpÞγργ5GAðp − q2Þþ ð10Þ

þγμGRðpþ q1ÞγνGRðpÞγργ5GCðp − q2Þg ð11Þ

− fsame terms with mass M ≫ all other

scales of the systemg; ð12Þ

where GR;A;C are the retarded, advanced, and correlation
components of the fermionic propagator in the SK formal-
ism, respectively. The above vertex function is retarded
with respect to its index μ, so the response current
follows the perturbations both in A and A5. For a detailed
introduction into the formalism see for example Ref. [52].
All the propagators are to be considered at zero external
fields in thermal equilibrium. All components are linked to
the fermionic spectral density ρ ¼ iGR − iGA, iGCðpÞ ¼
ρðpÞ · ð1 − 2ñðp0ÞÞ, where we suppressed the temperature
dependence of the Fermi-Dirac distribution ñðp0Þ ¼
nFDðp0=TÞ. For the subsequent calculations, we also
introduce Γ̃ρμν

AVV ≕ gρμνm − gρμνPV , where the Pauli-Villars-term
(PV) is gρμνPV ðq1; q2Þ≡ gρμνm¼Mðq1; q2Þ, M being much larger
than any other scales q1, q2,m or T. So practicallyM is sent
to infinity while other external parameters are kept finite.
The AVV vertex satisfies the following equations due to the
Ward–Takahasi-identities:

ðq1 þ q2ÞμΓ̃ρμν
AVV ¼ q1;νΓ̃

ρμν
AVV ¼ 0; ð13ÞFIG. 1. One-loop triangle diagram with two vector and an axial-

vector vertex, indexed by μ, ν, and ρ, respectively.
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q2;ρΓ̃
ρμν
AVV ¼ iϵμναβq1;αq2;β ·

e2

2π2
: ð14Þ

The first two equations in Eq. (13) implies ∂ · J ¼ 0 at the
level of the approximation scheme, whilst Eq. (14) is the
anomalous nonconservation of the axial-vector current J5.
The above properties of the AVV vertex are the conse-
quence of the following identities:

GR;Aðpþ qÞ=qGR;AðpÞ ¼ −GR;Aðpþ qÞ þ GR;AðpÞ; ð15Þ

GCðpþ qÞ=qGR;AðpÞ ¼ −GCðpþ qÞ; ð16Þ

GR;Aðpþ qÞ=qGCðpÞ ¼ GCðpÞ: ð17Þ

Plugging Eq. (14) into Eq. (4) one obtains the well-known
anomalous Ward-identity in the chiral limit:

h∂ · J5i ¼
1

2

Z
đ4q1

Z
đ4q2Ãμðq1ÞÃνðq2Þ

× iðq1 þ q2ÞρΓ̃ρμν
AVVðq2;−q1 − q2Þeix·ðq1þq2Þ

¼ e2

2π2
E · B: ð18Þ

Setting q2 ¼ 0, Γ̃0 μν
AVVðq1; q2Þ itself becomes completely

determined by the UV sector of the theory, i.e., ruled by the
anomaly. Formally this behavior is caused by cancellation
between certain terms in the vertex function which are
equal upon a shifting of the loop momentum. The details
can be found in Appendix A. For the electric current this
means the chiral magnetic effect prevails even for time-
dependent but homogeneous μ5 and arbitrary B:

Jðt; rÞ ¼ e2

2π2
A5;0ðtÞBðt; rÞ ¼ −

e2

2π2
μ5ðtÞBðt; rÞ: ð19Þ

This anomaly driven chiral magnetic current in Eq. (19)
differs from that in Eq. (1) by a sign at a constant μ5 and
applies to a magnetic field with arbitrary spacetime
dependence. We point out that this sign difference stems
from the inclusion or absence of the PV term besides the
contribution of the triangle diagram. As the inclusion
results zero CME current in the static μ5 limit—and to
Eq. (19) in the homogeneity limit—while the absence of it
leads to Eq. (1). It is also important to point out that the role
of the PV term is UV-regularization: it keeps the electric
(vector)charge conservation ∂ · J ¼ 0 intact. Otherwise,
there is charge generation at the boundary of the system,
proportional to gradients of the axial imbalance. We note
here that in order to ensure local charge conversation it is
equivalently possible to add a so-called Bardeen-Zumino
counterterm or Chern-Simons (CS) term to the effective
action. The electric current is then going to have an

additional contribution—the Chern-Simons current—
which cancels the traditional CME current of Eq. (1).

The absence of the PV term in several kinetic theory
works from the high-energy side [29–35,38] and the early
field theory analysis like in Refs. [1,2] lead to a delayed
response current for time-dependent external fields. When
included, however, the CS current causes the response to
have an instantaneous contribution, at least in the weak
coupling approximation. The inclusion or exclusion of the
CS term reflects the different definitions of the electric
current as an operator: the consistent anomaly ensures the
vector charge to be conserved, while the covariant anomaly
defines J to transform covariantly under any gauge trans-
formation [14]. It is important to point out, that in the
context of condensed matter physics, the derivation of the
low-energy theory from the lattice regularized one will lead
essentially to a CS term, as pointed out in Ref. [53].
As is shown in Appendix B, the sign of Eq. (19) matches

the sign of the chiral magnetic current of the Maxwell-
Chern-Simons electrodynamics: when the F̃F term of the
latter is converted to the corresponding term −ψ̄γμγ5ψ · A5μ

in Eq. (2) through the anomalous Ward identity.

III. THE CASE OF CONSTANT MAGNETIC FIELD

In this section we work out the electric current
response in the presence of constant magnetic field and
axial imbalance with arbitrary spacetime dependence.
Physically, this approximation is meaningful if there is a
separation between the scales of the perturbations in the
axial imbalance field μ5 and the magnetic field: the latter
has to vary on much larger space- and timescales. In RHIC,
this is not the case for the whole lifetime of the QGP, but it
can be a good approximation describing the initial state,
when B is still large and relatively unchanged because of
the conductivity of the medium. In Ref. [54], the interested
reader can find a detailed analysis of the fluctuation pattern
of the magnetic field in RHIC. Due to the intense color
fields, a region is formed where the axial imbalance is
effectively nonzero. This region, however, is still affected
by the fast gluonic dynamics, leaving the imbalance field to
change fast as well.
As the timescale of the chiral charge creation/annihila-

tion in RHIC may be comparable to or shorter than the
thermal relaxation time, the hydrodynamic approximation
for CME breaks down and one has to consider a space-time
dependent chiral charge density. Without a first principle
treatment of the nonperturbative dynamics of the chiral
charge in QCD, a simple-minded assumption amounts to
extend the constant chiral chemical potential to a space-
time dependent one, which will be relied on in the rest of
this paper. Under this assumption, the chiral chemical
potential proxies the QCD dynamics of the axial imbalance
and can be viewed as the temporal component of an axial-
vector potential. Keeping things simple we suppose A ¼
ð0;AÞ and A5 ¼ ð−μ5; 0Þ, so there are no electric and axial
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magnetic fields present. It is straightforward to check that
Γ̃0ij
AVVðq1 ¼ 0; q2Þ≡ 0 by using the Ward-identity to trans-

form the integrand of the AVV vertex into a full derivative
with respect to integration momentum. The finite mass and
the PV-term then cancel each other out. The first contrib-

uting term in the small–q1 expansion is
∂Γ̃0ij

AVV∂q1k . Equivalently,
one can plug the time-independent AðyÞ ¼ 1

2
B × y into

Eq. (5) to obtain the relation:

hJiiðxÞ¼
Z

đ4q2μ̃5ðq2Þeiq2·x
�
−
i
2
ϵjlkBl∂Γ̃0ij

AVVðq1;q2Þ
∂q1k

����
q1¼0

�

¼
Z

∞

−∞
dt0

Z
đ3qμ̄5ðt0;qÞσ̄iAðt0− t;qÞe−iq·r: ð20Þ

where the kernel

σ̄iAðt;qÞ ¼ −
Z

∞

−∞
đq0eiq0t

i
2
ϵjlkBl∂Γ̃0ij

AVVðq1; q2 ¼ qÞ
∂q1k

����
q1¼0

ð21Þ

is the CME conductivity in the mixed representation of
spatial momentum and time, and an explicit formula of it
will be derived below. We shall omit the averaging sign h:i
in what follows if we can without causing confusion.
Before taking the derivative of Eqs. (6)–(12) with respect to
q1k, we note that the sum of Eqs. (6), (7), and (8) equals to
the sum of Eqs. (9), (10), and (11), as can be demonstrated
by transposing the matrices under the trace of the former
employing the charge conjugation property CðγTÞμC† ¼
−γμ with C ¼ γ2γ0 followed by transforming the integra-
tion momentum p → −p. The transformation of the inte-
gration momentum is legitimate as long as the regulator
terms kept in the scene. Consequently,

Γ̃ρμν
AVVðq1; q2Þ ¼ gijmðq1; q2Þ − lim

M→∞
gijMðq1; q2Þ; ð22Þ

where

gijmðq1 ¼ ð0;q1Þ; q2 ¼ qÞ ¼ −e2
Z
p
trf−γiGAðpþ qÞγ0γ5GAðp − q1ÞγjGAðpÞ · ð1 − 2ñðp0 þ q0ÞÞ

þ γiGRðpþ qÞγ0γ5GRðpÞγjGRðp − q1Þ · ð1 − 2ñðp0ÞÞ
þ γiGRðpþ qÞγ0γ5GAðpÞγjGAðp − q1Þ · ð2ñðp0Þ − 2ñðp0 þ q0ÞÞg:

Here we have replaced GCðpÞ with ð1 − 2ñðp0ÞÞðGRðpÞ −GAðpÞÞ. It follows that

∂
∂q1k g

ij
mðq1 → 0; q2 ¼ qÞ ¼ e2

Z
p
tr

�
−γiGAðpþ qÞγ0γ5GAðpÞγj ∂

∂pk
GAðpÞð1 − 2ñðp0 þ q0ÞÞþ ð23Þ

þ γiGRðpþ qÞγ0γ5GRðpÞγj ∂
∂pk

GRðpÞð1 − 2ñðp0ÞÞþ ð24Þ

þ γiGRðpþ qÞγ0γ5GAðpÞγj ∂
∂pk

GAðpÞð2ñðp0Þ − 2ñðp0 þ q0ÞÞ
�

ð25Þ

and

σ̄iAðt;qÞ ¼
Z

∞

−∞
đq0eiq0t

i
2
ϵjlkBl

�∂gijm¼0ðq1; q2Þ
∂q1k

����
q1¼0;q2¼q

− lim
M→∞

∂gijm¼Mðq1; q2Þ
∂q1k

����
q1¼0;q2¼q

�
: ð26Þ

The first step of evaluation is to determine the tensor structure of the expression. This in general would be tedious because
there are three propagators left under the trace. However, we are interested in antisymmetric combinations in jk only,
because of the contraction with the magnetic field. The details of the trace calculation can be found in Appendix C. The
resulting expression turns out to remain fairly compact:
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∂gijm
∂q1k ϵ

ljkBl ¼ −16πe2
Z
p
ð1− 2ñðp0ÞÞsgnðp0Þ

1

2jpj

×

�
ðBiðm2 − ðp0 þ q0Þp0Þ−piB · ðpþ qÞÞ 1

1þ p·q
p2

∂
∂jpj

�
1

ðp0 þ q0 þ i0þÞ2 − ðpþ qÞ2 −m2

�
δðp2

0 − p2 −m2Þ

þ ðBiðm2 −p0ðp0 þ q0ÞÞ− ðpi þ qiÞB · pÞ 1

ðp0 þ q0 þ i0þÞ2 − ðpþ qÞ2 −m2

∂
∂jpjδðp

2
0 − p2 −m2Þ

�
: ð27Þ

Here we regrouped the terms from the three propagator-products AAA, RRR, and RAA. This way it is possible to deal
with the higher-order poles by recasting part of the expression as a derivative of either ρ or GR—more details of the
calculation can be found in Appendix D. It proves to be useful to separate the components ofB parallel to q:Bk ¼ ðB · q̂Þq̂,
and perpendicular to it: B⊥ ¼ B − Bk. In this way part of the directional integration can be performed, leaving us with the
following expression, the azimuthal integration still left to be done:

∂gijm
∂q1k ϵ

ljkBl

¼ −
e2

π2

Z
∞

−∞
dp0sgnðp0Þð1− 2ñðp0ÞÞ

Z
∞

0

dpδðp2
0 −p2 −m2Þ

Z
1

−1
dx

×

� ∂
∂x

Bi
kxðp0q0 þ qpxþ ðx2 þ 1Þp2Þ þBi⊥xðp0q0 þ ð1−x2

2
þ 1Þp2Þ

ðp0 þ q0 þ i0þÞ2 −p2 − q2 − 2qpx−m2
þBi⊥

p2

ðp0 þ q0 þ i0þÞ2 −p2 − q2 − 2qpx−m2

�
:

ð28Þ

Note that the first term in the above expression is a total derivative with respect to x.
The contributions of the two terms in the integrand of Eq. (26) are calculated separately with the detailed steps laid out in

Appendix D. For the massless term, we take the Fourier transform of Eq. (28) with respect to q0 first and calculate the rest of
the integrals afterwards. All integrations can be carried out analytically for m ¼ 0 and we obtain that

Z
∞

−∞
đq0eiq0t

∂gijm¼0

∂q1k ϵljkBl ¼ θð−tÞ e
2

π2
ðBi − q̂iðB · q̂ÞÞt ∂∂t

�
sinðqtÞ
qt

�
T
Z

∞

0

dyð1 − 2nFDðyÞÞ sinð2yTtÞ: ð29Þ

For the PV term, we scale the loop momentum p by the regulator massm ¼ M as p ¼ My and take the limitM → ∞. The
rest of the integrals can be calculated analytically with the result

Z
∞

−∞
đq0eiq0t

∂gijM→∞
∂q1k ϵljkBl ¼

e2

π2

�
−BiδðtÞ þ θð−tÞ

��
Bi
k þ

Bi⊥
2

� ∂2

∂t2
�
sinðqtÞ

q

�
þ Bi⊥

2

∂
∂t

�
sinðqtÞ
qt

���
: ð30Þ

By combining the two, now we are equipped with the mixed representation of the CME conductivity in case of constant,
homogeneous magnetic field.

σ̄iAðt;qÞ ¼ −
1

2

Z
∞

−∞
đq0eiq0t

�
−
∂gijM→∞
∂q1k þ ∂gijm¼0

∂q1k
�
ϵljkBl

¼ −
e2

2π2

�
BiδðtÞ þ θð−tÞ

2

�
q sinðqtÞðBi þ q̂iðB · q̂ÞÞ − ∂

∂t
�
sinðqtÞ
qt

�
fðtTÞðBi − q̂iðB · q̂ÞÞ

��
; ð31Þ

where fðxÞ comes from the Fermi-Dirac distribution:

fðxÞ ¼ 4x
Z

∞

0

dynFDðyÞ sinð2yxÞ ¼ 1 −
2πx

sinhð2πxÞ →
�
0; x → 0

1; x → ∞
ð32Þ

Performing a Fourier transformation on Eq. (31) with respect to time, one obtains the frequency-momentum representation
of the response function
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σ̃iAðω;qÞ ¼
Z

∞

−∞
dte−iωtσ̄iAðt;qÞ

¼ −
e2

4π2

�
2Bi þ q2

ω2 − q2
½Bi þ q̂iðB · q̂Þ�

þ
Z

∞

0

dpnFDðp=TÞ
�
1

q
ln
ω2 − ð2p − qÞ2
ω2 − ð2pþ qÞ2 − 2

2p − q
ω2 − ð2p − qÞ2 − 2

2pþ q
ω2 − ð2pþ qÞ2

�
½Bi − q̂iðB · q̂Þ�

�
; ð33Þ

where the frequency ω carries an infinitesimal positive
imaginary part and the integral representation of fðtTÞ,
Eq. (32) is employed. The frequency-momentum repre-
sentation of the electric current reads

J̃iðω;qÞ ¼ σ̃iAðω;qÞμ̃5ðω;qÞ: ð34Þ
It follows from the continuity equation q · J̃ ¼ 0 that

ñðω;qÞ ¼ q · J̃ðω;qÞ
ω

¼ −
e2

2π2
μ̃5

ω

ω2 − q2
q · B; ð35Þ

where ñ is the Fourier transform of the charge density
n. Interestingly, the resulting expression is temperature
independent.
The above expressions in Eqs. (31) and (33) are the

main original contribution of this paper. Although fairly

complicated when being convoluted with a profile of μ5,
these expressions are still suitable to investigate the charge
transport in special situations as we will see in the next
section. About to be proven practical as it is, one might find
the coordinate representation of the response function more
useful in other cases. For more details on that, see
Appendix E.

A. Limiting cases

In order to gain some insights into the expression in
Eq. (31), let us first analyze its behavior in two limiting cases.
A time-independent μ5 will render the conductivity in the

zero frequency limit, which is equivalent to the integral of
σ̄iAðt;qÞ with respect to its time-argument:

Z
∞

−∞
dtσ̄iA ¼ −

e2

2π2

�
Bi þ ðBi þ q̂iðB · q̂ÞÞ 1

2

Z
0

−∞
dtq sinqt − ðBi − q̂iðB · q̂ÞÞ 1

2

Z
0

−∞
dt

∂
∂t

�
sinqt
qt

�
fðtTÞ

�

¼ −
e2

4π2
ðBi − q̂iðB · q̂ÞÞ

�
1 −

Z
0

−∞
dτ

∂
∂τ

�
sin τ
τ

�
f

�
τT
q

��
!q→0

0i: ð36Þ

In the static but inhomogeneous limit (q ≠ 0) we see that
the conductivity is perpendicular to q. On one hand this
means local charge conservation is fulfilled. On the other
hand it shows that the current has a dipolelike structure,
which has consequences regarding the long-time behavior
of the charge transport, as we shall see soon.
To approach the limit of constantμ5 by sendingq → 0 one

observes that the current vanishes, since fðx → ∞Þ ¼ 1.We
note here that this limiting behavior was already reported in
Ref. [40] and some aspects were also discussed in Ref. [39].
It is not that surprising that the electric current vanishes for
constant axial imbalance. The nonexistence of the CME at
equilibriumwas reported by several authors, see for example
Refs. [47,49,55–58]. In the context of Weyl semimetals,
where it is possible to prepare the system in such a way that
the introduction of a chiral chemical potential makes sense,
there is a consensus that in equilibrium the current of the
chiral magnetic effect (CME) vanishes—even for nonzero
μ5, see Refs. [22,55].
When the static limit is taken first, the UV-originated

anomaly contribution is canceled by the following term:

ie2
R
pð−2ñ0ðp0ÞÞtrfγ5γiGAðpÞγj ∂GAðpÞ

∂pk
g. Although we do

not go into the details here, one can show that interac-
tions will not change this expression, see for example
Refs. [57–61]. So the vanishing of the conductivity in the
mentioned limit is a general result.
For homogeneous μ5 configurations, i.e., q → 0 only the

e2

2π2
BδðtÞ term in Eq. (31) survives. This term in the end

provides the usual homogeneous current parallel to B, tied
to the anomaly. Let us expand Eq. (31) around to the first
nontrivial order in q to learn what happens if the system is
pushed away from homogeneity:

δJðt;qÞ≡ Jðt;qÞ− e2

2π2
Ā5;0ðt;qÞB

≈−
e2

4π2

Z
0

−∞
dτμ̄5ðtþ τ;qÞq2τ

��
1þ 1

3
fðτTÞ

�
Bþ

ð37Þ

�
1 −

1

3
fðτTÞ

�
ðB · q̂Þq̂

�
þOðq4Þ: ð38Þ
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The above expression is still too complicated to arrive at a
compact analytic expression. We now will assume that
there is a clear separation between the internal timescale
and temperature, namely, send T either to 0 or ∞. In both
cases we end up with the following expression:

δJðt;qÞ≈−
e2

4π2
ðC1q2BþC2ðB ·qÞqÞ

Z
0

−∞
dτμ̄5ðtþτ;qÞτ

ð39Þ

with the constants fC1; C2g being either f1; 1g for T ¼ 0

or f4
3
; 2
3
g for T → ∞. After Fourier transform one arrives at

the differential equation below:

∂2
t δJðt; rÞ ¼ −

e2

4π2
ðC1B∇2

r þ C2ðB ·∇rÞ∇rÞμ5ðt; rÞ:
ð40Þ

For homogeneous μ5 the right-hand side (RHS) of Eq. (40)
is zero, leading no deviation from the CME current in
Eq. (19). On the other hand, inhomogeneity can add to the
dynamics of the electric current. One should, however,
keep in mind that the short-time behavior of the corrections
in small q provided by our weak-coupling calculation
might be significantly modified at strong coupling [43].
Straightforward analysis shows that ∂2

t∇ × δJ is not
zero: Taking the curl of Eq. (31) it has contributions from
the temperature dependent part of the expression as well—
in contrast with the behavior of ∇ · J. In terms of the long-
wavelength approximation of Eq. (40) it is the C1–term
with nonzero curl. This means that inhomogeneous μ5 can,
even without sizable electric field or spatial dependence of
B, alter the vorticity of the current field. Depending on the
dynamics of μ5 this might cause instabilities in a laminar
charge flow, leading to the formation of vortices. Other
studies indicate various instabilities in case of the chiral
plasma is affected by dynamical EM fields, see for example
Refs. [62–64] or the recent first principle study of Ref. [65]
simulating QED plasma. Further theoretical investigation is
needed by taking the feedback of axial charge and EM
fields into account. We will address this question in a future
publication.

IV. CME CONTRIBUTION TO THE
CHARGE ASYMMETRY

The main goal of this section is to gain some insights on
the implications of our results above for possible observ-
ables of CME in heavy ion collisions. In these collisions,
the magnetic field points along the out-of-plane direction,
i.e., perpendicular to the reaction plane. The CME current
would then transport positive/negative charges in opposite
direction across this reaction plane, and eventually leads to
a charge dipole distribution. This can be measured through
charge asymmetry in hadrons’ azimuthal correlations. The

key to this observable is the amount of electric charges
being transported across the reaction plane. While we are
not simulating a heavy ion collision here, we try to obtain
some insights into this problem by analyzing the amount of
transported charge by the CME current through a transverse
area on the plane perpendicular to the magnetic field for
certain chiral charge distribution patterns motivated by
heavy ion collisions. In particular we focus on the long time
behavior of the net charge asymmetry across such trans-
verse area and discuss the implications.

A. Long-time behavior after quench

First we consider the scenario when there is a sudden
onset of the axial imbalance, corresponding to
μ̄5ðt;qÞ ¼ θðtÞμ̃5ðqÞ. Although at first such a perturbation
might seem to be out of reach for the WFA, we note that for
weak enough external fields the expressions in Eqs. (3)–(4)
are justified—any space-time dependence of A5;0 is fine,
since the response function takes all orders of gradients into
account. The electric current is given by this expression:

J̄iðt;qÞ ¼ −
e2

2π2
μ̃5ðqÞ

�
Bi −

1

2
ðBi þ q̂iðB · q̂ÞÞ

Z
t

0

dτq sinqτ

þ1

2
ðBi − q̂iðB · q̂ÞÞ

Z
t

0

dτ
∂
∂τ

�
sinqτ
qτ

�
fðτTÞ

�
;

ð41Þ

which for long times simplifies further to

J̄iðt;qÞ !t→∞ −
e2

2π2
μ̃5ðqÞ
2

�
Bi −

qiðB · qÞ
q2

�
Fðq=TÞ; ð42Þ

where

FðxÞ ¼ 1þ
Z

∞

0

dy
∂
∂y

�
sin xy
xy

�
fðyÞ

¼ 1 −
Z

∞

0

dy
sin xy
xy

f0ðyÞ

→

�
0; x → 0

1; x → ∞
ð43Þ

The function FðxÞ as plotted in Fig. 2 vanishes for small x
and approaches 1 monotonically for large x. This results
in F acting as an infrared cutoff when the Fourier trans-
form is performed to get the coordinate-space expression
for Jðt → ∞; rÞ. Note that the current is divergence
free, ∇r · Jðt → ∞; rÞ ¼ 0, as can be seen form the
q-dependence in Eq. (42), so it can be expressed as the
curl of another vector field. Such a current is usually
referred to as a magnetization current. The suppression of
the small q–domain makes J to be localized in a region
with size controlled by 1=T. In the limiting case q → 0 the
current is zero—as expected for μ5 when the homogeneity
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limit is taken after the static limit. The result is the same if
for some reason T supersedes any (inverse) spatial scales,
since T → ∞ renders J̄i to be zero through Fð0Þ ¼ 0 again.
For the other extreme, T → 0, Ji reveals a dipole pattern:

Jðt → ∞; rÞjT¼0

¼ −
e2

16π3

Z
d3r0

−1
jr − r0j∇r0 × ðB ×∇r0 Þμ5ðr0Þ

¼ −
e2

16π3

Z
d3r0

B − 3ðB·r0Þr0
ðr0Þ2

ðr0Þ3 μ5ðr − r0Þ

¼ −
e2

16π3
∇r × ðB ×∇rÞ

Z
d3r0

−μ5ðr − r0Þ
r0

: ð44Þ

One can show that this current dipole transports zero
charge in total through a large enough surface perpen-
dicular to the direction of the magnetic field. In general,
this is the consequence of the structure B − q̂ðB · q̂Þ.
However, a well-localized source is enough to explain
what happens: the “current field lines” are closed because
of ∇r · Jðt → ∞; rÞ ¼ 0 so any of them travels through
twice on a large enough surface. We can easily show this
with a pointlike source using the previous dipole formula
and integrating over the surface S⊥B:

Z
S
d2rB̂ ·Jðt→∞;rÞjT¼0∝

Z
S
d2rB̂ ·∇×

B×r
r3

¼
I
∂S
dl ·

B×r
r3

∝
1

r
!r→∞

0; ð45Þ

where we used Stokes’s theorem and in the last step we
recognized that dl and B × r are parallel and both are
proportional to r. Since this observation is based on the
long-time behavior of the current, only after sufficiently
long time it is true that the net transported charge does not
change.

An interesting side-note can be made at this point. Let us
further analyze the long-time behavior of the current by
integrating it over a spherical region SR (R being the
radius):

V · J̄ ≔
Z
SR

d3rJðt → ∞; rÞ

¼ −
e2

2π2
1

2

Z
đ3q

sin qR − qR cos qR
q3

Fðq=TÞμ̃5ðqÞ

×

�
B −

qðB · qÞ
q2

�
: ð46Þ

with the volume V of SR and Jðt → ∞; rÞ as the coordinate
representation of Eq. (42). Now we consider a source of μ5
centered in space around the origin, whose Fourier trans-
form is μ̃5ðqÞ ¼ V · μ5. After some calculation whose
details can be found in Appendix F 1 we arrive at:

J̄ ¼ −
e2

2π2
μ5

1

π

2

3
B
Z

∞

0

dQFðq=ðRTÞÞ sinQ −Q cosQ
Q

¼ −
e2

2π2
μ5B

1 − fðRTÞ
3

: ð47Þ

This expression does not carry the dipole structure
anymore. Instead, there is a suppression factor of
ð1 − fðRTÞÞ=3: for zero temperature or when the spatial
averaging is done within an asymptotically small sphere the
result is the 1=3 of the anomaly ruled current. Sending
either R or T to large values, however, renders J̄ to zero.
Generally, the expression is monotonically interpolates
between this two limiting cases depending on the relative
value of R and T.

B. Long-time charge transport parallel to B

Returning to the question of transported electric
charge, one can argue that its vanishing behavior for
long times is a generic feature. This is closely related to
the fact that the local charge conservation ∂ · J ¼ 0 is an
essential property of the system. Due to the CME there
is electric current in the direction of the magnetic field.
The system does not have any boundary, so it is quite
natural that the charge flows back somewhere: since the
current tends to be parallel to B in the presence of chiral
imbalance, the back-flow happens away from these
regions, where μ5 vanishes. We have already seen this
dipole structure at work in the previous subsection.
Therefore, taking a large enough surface perpendicular
to B, we expect that the net charge through this surface
tends to zero as time passes.
Throughout this subsection we show the vanishing of the

long-time transported charge parallel to the magnetic field.
First, by using the weak coupling result in Eq. (42), then to

FIG. 2. Functions characterizing the response function. f is
defined in Eq. (32), whereas F is derived from f in order to give
the long-time behavior of the response, see Eq. (43).
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generalize our statement beyond perturbation theory, the
local charge conservation is invoked—in terms of the
Ward-identity for the AVV vertex function, Eq. (13). In
order to put the argument onto more general grounds we
analyze the following quantity:

ΔQS ≔
Z

∞

−∞
dt
Z
S
d2rB̂ · Jðt; rÞ; ð48Þ

where the surface S is the plane with the normal vector B̂.
Utilizing the conductivity relation in Eq. (31) we can write

ΔQS ¼
Z

đ3q
Z
S
d2rB̂iσ̃

i
Aðq0 ¼ 0;qÞμ̃5ðq0 ¼ 0;qÞe−iq·r

¼ −
e2B
4π2

Z
đ3q

Z
S
d2rð1 − ðB̂ · q̂Þ2Þ

×
�
1 −

Z
0

−∞
dτ

∂
∂τ

�
sin τ
τ

�
f
�
τT
q

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Fðq=TÞ

μ̃5ð0;qÞe−iq·r:

ð49Þ

Integrating over the surface Swhen its size is large enough,
the components of q parallel to S are forced to vanish and
only the component parallel to B survives:

ΔQ¼ lim
area of S→∞

ΔQS¼−
e2B
4π2

Z
∞

−∞
đqkF


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2kþq2⊥

q
=T

�

×
�
1−

q2k
q2kþq2⊥

�
μ̃5ð0;qkB̂þq⊥Þ

����
q⊥¼0

¼0: ð50Þ

In conclusion, the net charge transported by the CME
current for any chiral imbalance in constant magnetic field
vanishes for long enough time when it is measured through
a large enough plane perpendicular to B.
It is worth pointing out that the above statement is

actually the consequence of a more general feature of the
vertex function. We can even proceed beyond the weak
coupling approximation: summing up the transported
charge for a large enough plane for long enough time
one has to get a vanishing net result because of local charge
conservation. Taking an infinitely large plane with the
normal vector n̂ the transported charge ΔQ can be written
most generally as follows:

ΔQ ¼
Z

đ4q
Z

∞

−∞
đqkn̂iΓ̃

0ij
AVVðq; q0ÞÃjðqÞÃ5;0ðq0Þ; ð51Þ

with q ¼ ðq0;qÞ and q0 ¼ ð−q0;−qþ qkn̂Þ. Now we
recognize that because of qþ q0 ¼ ð0; qkn̂Þ, the combina-
tion in the integrand of the above equation can be recast
as the first identity in Eq. (13): qkn̂iΓ̃

0ij
AVVðq; q0Þ ¼

ðqþ q0ÞμΓ̃0 μj
AVVðq; q0Þ≡ 0, rendering indeed ΔQ to vanish.

Therefore the previous statement on the vanishing of the

long-time transported charge ΔQ is generalized beyond the
weak-coupling approximation: it is a consequence of the
Ward-identity, i.e., local charge conservation, which is
valid in all orders of the perturbation theory.

C. Interplay of many scales in charge asymmetry

The transported charge shows ambiguity when a homo-
geneous time-dependent source is considered: performing
the q–integration puts the conductivity in the homogeneity
limit—ruled by the anomaly—so one gets the standard
CME current. On the other hand, performing the t–
integration first is equivalent by taking the static limit first.
Regardless of the q–dependence, the transported charge is
zero in this case because of the dipolar structure of the
integrated conductivity, as we mentioned above. The
ambiguity boils down to the fact that we have to deal with
the different orders of limits—mentioned in Sec. III A—of
q → 0 and q0 → 0 when computing the transported charge
of a homogeneous source. So it seems, ΔQ for constant μ5
is ill defined.
The apparent contradiction can be resolved by modifying

the definition of our observable by taking into account the
timescale of observation, tobs:

ΔQðtobsÞ ¼
Z

tobs=2

−tobs=2
dt
Z
S⊥B

d2rB̂ · Jðt; rÞ: ð52Þ

In order to give meaningful a physical interpretation, let
us consider the following different situations. In the case
when the observation time is way much longer than the
lifetime of the source—regardless of its spatial structure—
taking q0 → 0 first is justified, so ΔQ vanishes.
The opposite order of limits is a good approximation

only if the source is homogeneous throughout the whole
time-evolution—in that case taking q → 0 first is justified
and the charge transport is given by the CME expression in
Eq. (19). But this scenario is rather unphysical when the
observation time is very long: eventually the source μ5 has
to have boundaries in space and/or time. So to relax the
ambiguity, one should abandon the infinite-time integration
inΔQ and integrate only over a finite period while q → 0 is
a good approximation.
Let us demonstrate this phenomenon by using a simple

toy-model within which the current is induced by the axial
imbalance profile:

μ5ðt; rÞ ¼
μ0ffiffiffi
π

p e−
t2

τ2
−r2

R2 ; ð53Þ

characterized by its spatial size R and its lifetime τ. The
constant μ0 is to set the total axial charge generated by the
source throughout its time-evolution. One can think of this
profile as a very crude model of a “fireball” with Gaussian
axial charge density. However, we stress here that the above
ansatz is meant only to show how the different scales
interplay. One needs to investigate further the actual

HORVÁTH, HOU, LIAO, and REN PHYS. REV. D 101, 076026 (2020)

076026-10



underlying cause of the axial imbalance in order to give a
realistic description of the system at hand. The infinite size
of the plane S again simplifies the result, making the finite
temperature contribution vanish. The integration can be
carried out analytically with the technical details and the
lengthy formula of ΔQ presented in Appendix F 2. As
shown there, the scaled charge transport ΔQ

Cτ with C ¼
−μ0 e2

2π2
BA and A ¼ πR2—being the effective size of the

source—is a function of the dimensionless observation time
tobs
τ and the dimensionless extension of the axial imbalance
ρ ¼ R

τ . In Fig. 3, we plotted
ΔQ
Cτ versus

tobs
τ for different values

of ρ. By increasing R with fixed τ and the observation time
tobs ≫ τ, we can see the transition from the case of a well-
localized source, ρ ≪ 1 which leads to vanishing ΔQ,
to the homogeneous source limit where ρ ≫ 1 and
ΔQ ¼ −μ0 e2

2π2
BAτ. So in case of an axial imbalance source

with a very large but finite spatial size, one has to wait long
enough for the transported charge to disappear. If the
corresponding timescale, characteristic to the source, is
much larger compared to the observation time, the charge
transport is effectively described by the expression of
Eq. (1). As the difference between different orders of limit
is robust against higher order corrections, the transition
described here from a localized axial imbalance to an
extensive axial imbalance remains qualitatively valid for all
orders of perturbation theory.
We conclude this section by emphasizing again that

in order to say anything conclusive about a physically
realistic situation, one needs to know the actual evolution
of the axial imbalance. As we have seen above, depending
on the various scales of the nonequilibrium system, the
outcome can be vastly different, interpolating between
the two limiting behaviors of the CME conductivity

discussed in Sec. III A. This eventually leads to the
behavior of the transported charge interpolating between
a fast-disappearing transient and a long-lasting charge
asymmetry. All of these concerns point us to the need of
dynamically more detailed and realistic simulations of the
anomalous transport in QGP, in order to capture a real CME
signal. Our findings—although not directly applicable in
RHIC phenomenology—highlight the sensitivity of the
CME signal to the details of the axial imbalance.

V. DISCUSSION AND OUTLOOK

In this paper we analyzed the chiral magnetic current in
constant magnetic field but with an arbitrary axial charge
imbalance. In weakly coupled QED we derived the explicit
form of the real-time response function in Eq. (31), which
interpolates between the anomaly ruled CME current like in
Eq. (1)—with opposite sign compared to that—and zero
current at equilibrium, depending on the spatial pattern and
time-dependence of the axial imbalance field A5;0 ¼ −μ5.
Then we explored the consequences of Eq. (31) for
different spatio-temporal patterns of μ5. The observation
that the static chiral imbalance results zero response current
in the homogeneous limit shows the inherent nonequili-
brium nature of the CME, as was already pointed out
by others [22,40,49,55,56] and this property is robust
against higher order corrections [57–61]. The reason
behind the opposite sign of the anomaly ruled limit of
Eq. (19) is the UV regularization needed to ensure local
electric charge conservation even for an arbitrary μ5. As a
consequence, the result of the triangle diagram is com-
plemented by an additional contribution deriving from the
UV sector. A Chern-Simons term in the effective action has
the equivalent effect.
Coming to the phenomenological implications, we

computed the electric current through the plane
perpendicular to the constant magnetic field. For a localized
axial imbalance, we found that the total electric charge
transported through the plane over a long time vanishes
because of the dipolar spatial structure of the time-inte-
grated CME conductivity σiAðt; rÞ, Eq. (36), rendering the
CME signal to be captured transient in this case. Using a
simple impulselike profile for μ5, we showed that for an
axial imbalance source with large enough spatial extension
R, the nonzero transported charges persists for a timescale
comparable to R. In case when this characteristic timescale
is much larger than the observation time, the magnitude of
the charge transport is effectively described by Eq. (19).
It is also worthwhile to mention that we derived

corrections to the homogeneous electric current, which
carries structures sensitive to vorticity. Further investigation
is needed to decide how this might change the collective
behavior of the chiral plasma.
An important lesson we learned is the role of the spatial

variation in the axial imbalance, reflected in the gradients of
μ5, which has not been sufficiently addressed in previous

FIG. 3. Behavior of the transported charge ΔQ over the source
lifetime τ. tobs–dependence of ΔQ

Cτ for fixed τ and varying
R=τ¼fð0.2ðblueÞ;0.5ðpurpleÞ;1.0ðredÞ;2.0ðgoldenÞ; 3.0ðgreenÞ;
5.0ðpinkÞ;10.0ðbrownÞ;100.0ðorangeÞg: lower value leads the
response to vanish faster and in general reach smaller maximum
value. For large enough R we see the homogeneous limit behavior.
C ¼ −μ0 e2

2π2
BA
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works. In the case of homogeneous μ5—which can even be
time-dependent—the UV regularization appears optional
since it contributes to the effective action only as a total
divergence. Here, we emphasized that in the presence of a
nonzero ∇μ5, UV regularization is necessary to maintain
the local electric charge conservation, i.e., ∂ · J ¼ 0.
Without proper UV regulator, the term causing trouble
is ∂ · J ¼ e2

2π2
∇μ5 ·B. For any realistic system there is a

boundary where μ5 changes—most probably vanishes. If
there are EM fields still present around this region, a current

I ¼
I
boundary

d2S · B
e2

2π2
μ5 ð54Þ

is left to be canceled: this is what the UV-term is
responsible for in the presented approach. The issue of
EM gauge invariance was of course well-recognized in the
literature before, see Secs. 2.2–2.4 of Ref. [14], for
example. The tool to maintain it even in the case of axial
anomaly is to add the so-called Bardeen counterterms or
Chern-Simons term [24,25]: this is what our fermionic
effective action realizes via the PV regulator.
In the weak coupling limit, any time variation of external

sources will drive the system out of equilibrium. Therefore,
the calculation presented in this work approximates the
situation where the characteristic time for the variation of
the axial imbalance is shorter than the relaxation time to
equilibrium, opposite to the condition assumed in the
hydrodynamic regime. There, it is still justified to use
Eq. (1)—in the zeroth order of the gradient expansion.

As the result of the two orders of limits persists to higher
orders in the coupling, the qualitative aspect of our results,
say the quenching of the charge transport over a long time
may be carried over to the strong coupling regime. An
important limitation is our simple-minded assumption
which models a nonequilibrium axial imbalance by a
spacetime dependent axial chemical potential. A more
realistic approach without using the notion of chemical
potential is to factor in the real time QCD process of the
axial charge creation/annihilation inspired by instantons or
sphalerons. We hope to be able to report our progress along
this line in near future.
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APPENDIX A: ANOMALOUS WARD-IDENTITY

In this Appendix we show that for homogeneous chiral
imbalance the Γ̃0ij

AVV part of the AVV vertex is completely
determined by the axial anomaly. For this we first move γ5

into the front in Eqs. (6)–(11). This is done by utilizing the
Dirac-structure of the propagators, i.e., γ5Gþ Gγ5 ¼ gγ5,
where g is a scalar function. Now we can group the terms
either as type GGG or GGg:

fGGGg ¼ ie2

2

Z
p
trfγ5γiGCðpþ q2Þγ0GAðpÞγjGAðp − q1Þþγ5γiGRðpþ q2Þγ0GCðpÞγjGAðp − q1Þþ ðA1Þ

þγ5γiGRðpþ q2Þγ0GRðpÞγjGCðp − q1Þ þ γ5γiGCðpþ q1ÞγjGAðpÞγ0GAðp − q2Þþ ðA2Þ

þγ5γiGRðpþ q1ÞγjGCðpÞγ0GAðp − q2Þ þ γ5γiGRðpþ q1ÞγjGRðpÞγ0GCðp − q2Þg: ðA3Þ

In the next step we set q2 ¼ 0 and utilize Eqs. (15)–(17) and arrive at:

fGGGg ¼ ie2

2
·
1

q20

Z
p
trfγ5γið−GCðp0 þ q20;pÞÞγjGAðp − q1Þþγ5γiGCðp0;pÞγjGAðp − q1Þþ ðA4Þ

þ γ5γið−GRðp0 þ q20;pÞ þGRðp0;pÞÞγjGCðp − q1Þ þ γ5γiGCðpþ q1Þγjð−GAðpÞ þGAðp0 − q20;pÞÞþ
ðA5Þ

þ γ5γiGRðpþ q1Þγjð−GCðp0 − q20;pÞÞ þ γ5γiGRðpþ q1ÞγjGCðp − q20;pÞg: ðA6Þ
For the vertex function we have the difference of these terms and their UV-limit provided by the PV-terms. This difference is
finite, since any dangerous UV behavior is canceled. Therefore one can shift the integration variables in Eqs. (A4)–(A6) and
realize that fGGGg − fGGGgPV ≡ 0.
For the rest, we are interested only in the chiral limit. Then since gm¼0 ¼ 0, only the PV-terms contribute. The mass scale

M in these terms are larger than any other scale in the system. This allows us to replace the fermionic propagators with the
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noninteracting ones, which also leaves us with gPVðpÞ ¼ 2M
p2−M2. One can then make the observation that q2 enters only with

g, so only in the denominators. Now for the large M limit it is justified to keep q1 only in the nominator, i.e., where it
contributes to the spinor structure:

Γ̃0ij
AVVðq1; q20; 0Þ ¼ −

ie2

2

Z
p
trfγiγ5gAPVðpÞγ0GA

PVðpÞγjGA
PVðp − q1Þ þ γiγ5GA

PVðpþ q1ÞγjGA
PVðpÞγ0gAPVðpÞ

− ðA ↔ RÞgð1 − 2ñðp0ÞÞ: ðA7Þ
We can perform the trace and combine the A and R pieces together. Since the only spatial structure is in trfγiγ5γ0γj=q1g, also
the directional integration of p can be done. The result is the following:

Γ̃0ij
AVVðq1; q20; 0Þ ¼ −

1

16π4
ie2

2
8iϵ0ijkq1k2M2 · 4π

Z
∞

−∞
dp0

Z
∞

0

dpp2
1 − 2ñðp0Þ

½ðp0 − i0þÞ2 − p2 −M2�3 ¼ ðA8Þ

¼ 4e2

π3
ϵ0ijkq1kM2

Z
∞

−∞
dp0ð1 − 2ñðp0ÞÞ

Z
∞

0

dpp2
1

−8p0p
∂

∂p0

∂
∂p

1

ðp0 − i0þÞ2 − p2 −M2
¼ ðA9Þ

¼ −
e2

2π2
ϵ0ijkq1kM2

Z
∞

−∞
dp0

∂
∂p0

1 − 2ñðp0Þ
p0

Z
∞

0

dpisgnðp0Þδðp2
0 − p2 −M2Þ ¼ ðA10Þ

¼ e2

2π2
iϵ0ijkq1kM2

Z
∞

0

dp

�
2ñ0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
Þ

p2þM2
þ1−2ñð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

p
Þ

ðp2þM2Þ3=2
�
⟶
M→∞ e2

2π2
iϵ0ijkq1kþOðM−1Þ: ðA11Þ

Putting the above expression of Eq. (A11) back into Eq. (5)
we arrive at the familiar result: the equilibrium CME
current of Eq. (1)—with the substitution of A5;0 ¼ −μ5.
Although A5;0 depends only on time, the magnetic field still
can be arbitrary.
Essentially the same argument leads to the anomalous

Ward-identity of the vertex function, shown in Eq. (14): for
the contraction of q2ρΓ̃

ρμν
AVV, one moves the γ5 into the front

under the trace, then through the same steps as in Eqs. (A4)–
(A6) shows that under the integration the regulated version
of the expression vanishes—this time even without the
assumption of q2 ¼ 0. So the remaining terms are again the
PV ones, leading to q2ρ

e2

2π2
iϵρμνσq1σ, i.e., Eq. (14).

APPENDIX B: RELATION TO THE MAXWELL-
CHERN-SIMONS ELECTRODYNAMICS

Let us briefly return to the phenomenology of the QCD
matter. We already mentioned that the localCP–violation is
encoded in A5. According to the anomalous Ward-identity,
this contributes to ∂ · J5 by a source term e2

6π2
E5 ·B5. We

also know, that the gauge sector of QCD has its contribu-

tion to the balance equation as Nfg2

8π2
Ea · Ba. Now we

assume that the gluon sector affects the EM transport
through the axial imbalance, but there is no backreaction.
After the dynamics of the gauge fields is integrated out an
effective action like in Eq. (2) should emerge. Although we
do not know how the quark-gluon vertices map into the

axial gauge fields, we assume the matching of the pre-
viously mentioned sources for ∂ · J5.
Setting the fully dynamical origin of A5 aside, what we

know that it originates from the vacuum sectors with
nontrivial topology (which can be inhomogeneously dis-
tributed in space). A minimal approach to model this is to
add a so-called axion term to the original EM Lagrangian:

Lθ¼−
1

4
FμνFμνþ ψ̄γμði∂μ−eAμÞψþ e2

16π2
ϵμναβθFμνFαβ:

ðB1Þ
At this point we can impose the anomalous Ward-identity
to the system and identify the current in terms of the
fermionic fields:

e2

16π2
ϵμναβFμνFαβ¼! ∂μJ

μ
5 ¼ ∂μψ̄γ

μγ5ψ ; ðB2Þ

which after partial integration leads to L, with the axial
vector potential A5;μ ¼ ∂μθ. This special form of A5 renders
the electric response to a simple form, solely determined by
the anomaly. Using Eq. (5) and Eq. (14), we arrive at the
following expressions:

J0 ¼ e2

2π2
∇θ · B; ðB3Þ

J ¼ e2

2π2
_θB; ðB4Þ
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which are the well-known equations of motion of the
Maxwell-Chern-Simons electrodynamics [62] in the spe-
cial case of constantB and vanishingE. The above result is
in agreement with the analysis of the vertex function which
has led to Eq. (19), as _θ ¼ A5;0. As we pointed out earlier,
the vector current expression differs by its sign from Eq. (1)
if one identifies the temporal component of the axial field
by −μ5. One should, however, keep in mind that it is not
required for the system to be in thermal equilibrium. This
simple form of the electric current is the consequence of the
anomalous Ward-identity at the level of the vertex function,
i.e., Eq. (14), therefore it is not sensitive to the details of the
underlying fermionic dynamics in this case. Although this
statement remains true even if dynamical EM fields are
present, the axial current is not tied to the anomaly
anymore. As can be seen from Eq. (4), the first and third
terms vanish if A5 is a pure gradient, the second term is
sensitive to the EM-fields only. Therefore the IR behavior
of the AVV vertex becomes important for J5. But since
Fμν
5 ¼ ∂μAν

5 − ∂νAμ
5 ≡ 0 for Aμ

5 ¼ ∂μθ, there is no chiral
charge generation. So if E ·B ¼ 0 and initially Q5 is zero,
there is still a CME-like current. This might seem troubling,
however, one quickly realizes that Lθ is actually not the
system we are interested in. QCD has a θ–term for the
gluonic sector. The effective action for the EM sector, only
indicating the GG̃ part of the gluon field strength, looks
like this:

Lθ;QCD¼−
1

4
FμνFμνþ ψ̄γμði∂μ−eAμÞψþ g2

32π2
θGa

μνG̃
μν
a :

ðB5Þ

Now, Eq. (B2) is not the right anomaly relation for QCD.
Instead, one has

e2

16π2
ϵμναβFμνFαβþ

e2

32π2
ϵμναβGa;μνGa;αβ¼! ∂μJ

μ
5¼∂μψ̄γ

μγ5ψ ;

ðB6Þ

which leaves us not only with L, rather with
L − θ e2

16π2
ϵμναβFμνFαβ. We can still recast the remaining

term as e2

2π2
θ
4
∂μJ

μ
CS, with the so-called Chern-Simons

current JμCS ¼ ϵμνρσAνFρσ. It is straightforward to show,
that the same components of J generated from JCS as in
Eqs. (B3), (B4), but with opposite sign. That is, the CME-
like current vanishes. Our intuition therefore restored, there
is no CME with zero Q5.
What we can conclude is that the simplest way of taking

topological effects into account, namely by adding the θ-
term, is not sufficient. The reason is that a pure gradient
axial gauge field does not contribute to the chiral charge
balance equation. Nevertheless, a possible θ–term still can
cause fluctuations both in the vector and the axial currents.

APPENDIX C: TRACE CALCULATION

In this Appendix we give the details of calculating the
trace trfγ5γiGðpþ qÞγ0γ5GðpÞγj ∂

∂pk
GðpÞgϵljkBl for non-

interacting fermions. Using the explicit form of the propa-
gator, the trace expression can be written like this:

@¼ tr

�
γið=pþ=qþmÞγ0γ5ð=pþmÞγj ∂

∂pk

=pþm
p2−m2

�
ϵljkBl¼

1

p2−m2
ϵljkBltr

�
γið=pþ=qþmÞγ0γ5ð=pþmÞγ

jγk−γkγj

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕I

þ

ðC1Þ

þ 2

ðp2 −m2Þ2 trfγ
ið=pþ =qþmÞγ0γ5ð=pþmÞγjðp ×BÞjð=pþmÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ II

: ðC2Þ

The detailed evaluation of term I:

I ¼ 2itrfγið=pþ =qþmÞγ0γ5ð=pþmÞγ0γlγ5gBl ¼ 2itrfγið=pþ =qþmÞγ0ð−=pþmÞγ0γlgBl ¼ ðC3Þ

¼ 2im2Bltrfγiγ0γ0γlg − 2iBlðp0trfγið=pþ =qÞγ0γlg þ pmtrfγið=pþ =qÞγmγlgÞ ¼ ðC4Þ

¼ 8i½m2ηilBl − Blðp0ðpþ qÞα½ηiαη0l − ηi0ηαl þ ηilηα0� − pmð−4Þðpþ qÞα½ηiαηml − ηimηαl þ ηilηαm�Þ� ¼ ðC5Þ

¼ −8iðBi½m2 − p0ðp0 þ q0Þ − p · ðpþ qÞ� − qiB · pþ piB · qÞ: ðC6Þ
Evaluating term II:
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II ¼ ðp ×BÞjtrfγið=pþ =qþmÞγ0γ5ð=pþmÞγjð=pþmÞg ¼ ðC7Þ

¼ ðp × BÞjtrfγið=pþ =qþmÞγ0γ5ð=pþmÞð2pj − ð=p −mÞÞγjg ¼ ðC8Þ

¼ −ðp2 −m2Þtrfγið=pþ =qþmÞγ0γ5γjgðp × BÞj ðC9Þ

¼ 4iðp2 −m2Þ½ðpþ qÞ × p ×B�i ¼ 4iðp2 −m2Þ½piB · ðpþ qÞ − Biðpþ qÞ · p�: ðC10Þ
Finally, putting the contributions together we get:

@ ¼ −8i
p2 −m2

½Biðm2 − p0ðp0 þ q0ÞÞ − ðpi þ qiÞB · p�: ðC11Þ

APPENDIX D: CONSTANT B CALCULATION

Here we give the detailed calculations leading to the conductivity σ̄iAðt;qÞ in Eq. (31).

1. Manipulations of ∂gijm∂q1k
First the trace has been calculated. Then we regrouped the terms of Eqs. (23)–(25) in a combinations of AAAþ RAA and

RRRþ RAA. After recasting the higher order pole-contributions as derivatives and also changing integration variables so
one can separate ð1 − 2ñðp0ÞÞ sgnðp0Þ

2jpj , the resulting expression is

∂gijm
∂q1k ϵ

ljkBl ¼ −16πe2
Z
p
ð1 − 2ñðp0ÞÞsgnðp0Þ

1

2jpj

×

�
ðBiðm2 − p0ðp0 þ q0ÞÞ − piB · pÞ ∂

∂jpj
δðp2

0 − p2 −m2Þ
ðp0 þ q0 þ i0þÞ2 − ðpþ qÞ2 −m2

þ ðD1Þ

−
�
piB · q

∂
∂jpj

�
1

ðp0 þ q0 þ i0þÞ2 − ðpþ qÞ2 −m2

�

þ qiB · p
ðp0 þ q0 þ i0þÞ2 − ðpþ qÞ2 −m2

∂
∂jpj

�
δðp2

0 − p2 −m2Þþ ðD2Þ

−
p·q
p2

1þ p·q
p2

ðBiðm2 − p0ðp0 þ q0ÞÞ − piB · ðpþ qÞÞ ∂
∂jpj

×

�
1

ðp0 þ q0 þ i0þÞ2 − ðpþ qÞ2 −m2

�
δðp2

0 − p2 −m2Þ
�
: ðD3Þ

Equation (27) is the direct consequence of the above. We proceed by simplifying the angular integration by separating B
into components parallel and perpendicular to q:

∂gijm
∂q1k ϵ

ljkBl ¼B¼Bk
q
qþB⊥ e2

π2
Bkq̂i2

Z
∞

−∞
dp0sgnðp0Þð1 − 2ñðp0ÞÞ

Z
∞

0

dp
Z

1

−1
dx

×

� ∂
∂p ðpððm2 − p0ðp0 þ q0ÞÞ − p2x2Þ − qxp2Þ δðp2

0 − p2 −m2Þ
ðp0 þ q0 þ i0þÞ2 − p2 − q2 − 2pqx −m2

þ ðD4Þ

þ 2qpxðm2 − p0ðp0 þ q0Þ − qxp − p2x2Þ δðp2
0 − p2 −m2Þ

½ðp0 þ q0 þ i0þÞ2 − p2 − q2 − 2qpx −m2�2
�

ðD5Þ
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þ e2

π2
Bi⊥

Z
∞

−∞
dp0sgnðp0Þð1 − 2ñðp0ÞÞ

Z
∞

0

dp
Z

1

−1
dx

� ∂
∂p ðpðm2 − p0ðp0 þ q0ÞÞ − 1−x2

2
p2ÞÞ

ðp0 þ q0 þ i0þÞ2 − p2 − q2 − 2qpx −m2

þ 2qpx
m2 − p0ðp0 þ q0Þ − 1−x2

2
p2

½ðp0 þ q0 þ i0þÞ2 − p2 − q2 − 2qpx −m2�2
�
δðp2

0 − p2 −m2Þ: ðD6Þ

Regrouping terms leads to:

∂gijm
∂q1k ϵ

ljkBl ¼ −
e2

π2

Z
∞

−∞
dp0sgnðp0Þð1 − 2ñðp0ÞÞ

Z
∞

0

dpδðp2
0 − p2 −m2Þ

Z
1

−1
dx

×

�
Bi
k

�
p0q0 þ 2qpxþ ð3x2 þ 1Þp2

ðp0 þ q0 þ i0þÞ2 − p2 − q2 − 2qpx −m2
þ 2qpxðp0q0 þ qpxþ ðx2 þ 1Þp2Þ
½ðp0 þ q0 þ i0þÞ2 − p2 − q2 − 2qpx −m2�2

�
þ ðD7Þ

þBi⊥
�

p0q0þ½3
2
ð1−x2Þþ1�p2

ðp0þq0þ i0þÞ2−p2−q2−2qpx−m2
þ 2qpxðp0q0þ½1−x2

2
þ1�p2Þ

½ðp0þq0þ i0þÞ2−p2−q2−2qpx−m2�2
��

; ðD8Þ

which gives us Eq. (28) after part of the expression is written as a total derivative with respect to x.

2. Derivation of Eq. (29)

The Fourier transformation of Eq. (28) with respect to q0 can be calculated readily:

Z
∞

−∞
đq0eiq0t

∂gij
∂q1k ϵ

ljkBl ¼ θð−tÞ e
2

π2

Z
∞

−∞
dp0ð1 − 2ñðp0ÞÞe−ip0t

Z
∞

0

dpsgnðp0Þδðp2
0 − p2 −m2Þ

Z
1

−1
dx

×

� ∂
∂x x

�
Bi
k

�
p2
0 sin ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 þ 2qpxþm2
p þ ip0 cos ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

q
Þþ ðD9Þ

−
ðð1þ x2Þp2 þ qpxÞ sin ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 þ 2qpxþm2
p

�
þ ðD10Þ

þ Bi⊥
�
p2
0 sin ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 þ 2qpxþm2
p þ ip0 cos ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

q
Þþ ðD11Þ

−
�
1 − x2

2
þ 1

�
p2

sin ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 þ 2qpxþm2
p

��
− Bi⊥

p2 sin ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 2qpxþm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2 þ 2qpxþm2
p

�
:

ðD12Þ

After the p0– and x–integrations we get:

# ¼
Z

∞

−∞
đq0eiq0t

∂gijm¼0

∂q1k ϵljkBl ¼ θð−tÞ e
2

π2

Z
∞

0

dp
1 − 2ñðΩÞ

2Ω

×

�
Bi
kð2 cosðΩtÞ

�ðΩ2 − 2p2 − qpÞ sin ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ qÞ2 þm2
p þ ðΩ2 − 2p2 þ qpÞ sin ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − qÞ2 þm2
p

�
þ ðD13Þ

þ 2Ω sinðΩtÞ½cos ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þm2

q
Þ þ cos ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þm2

q
Þ�Þþ ðD14Þ

þ Bi⊥
�
2m2 cosðΩtÞ

�
sin ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ qÞ2 þm2
p þ sin ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − qÞ2 þm2
p

�
þ ðD15Þ
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þ
�
2Ω sinðΩtÞ þ 2p cosðΩtÞ

qt

�
cos ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þm2

q
Þ þ

�
2Ω sinðΩtÞ − 2p cosðΩtÞ

qt

�
cosðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þm2

q
Þ
��

;

ðD16Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Then we take the chiral limit and collect terms carefully. Only a B⊥ contribution remains:

#¼θð−tÞe
2

π2

Z
∞

0

dpð1−2ñðpÞÞ
�
Bi
k

�
−cosðptÞðsinðtðpþqÞÞþsinðtðp−qÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼2cosðqtÞsinðptÞ

þsinðptÞðcosðtðpþqÞÞþcosðtðp−qÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼2cosðqtÞcosðptÞ

�
þ

ðD17Þ

þ Bi⊥
��

sinðptÞ þ cosðptÞ
qt

�
cosðtðpþ qÞÞ þ

�
sinðptÞ − cosðptÞ

qt

�
cosðtðp − qÞÞ

��
¼ ðD18Þ

¼ θð−tÞ e
2

π2
Bi⊥

Z
∞

0

dpð1 − 2ñðpÞÞ
�
sinðptÞ2 cosðptÞ cosðqtÞ þ 1

qt
cosðptÞð−2Þ sinðptÞ sinðqtÞ

�
¼ ðD19Þ

¼ θð−tÞ e
2

π2
ðBi − q̂iðB · q̂ÞÞt ∂∂t

�
sinðqtÞ
qt

�
T
Z

∞

0

dyð1 − 2nFDðyÞÞ sinð2yTtÞ; ðD20Þ

resulting in Eq. (29) in the end.

3. Derivation of Eq. (30)

Scaling the loop momentum p of Eq. (28) by p ¼ My and taking the limit → 0, we find that:

∂gijM→∞
∂q1k

����
q1¼0

ϵljkBl ≈ −
e2

π2

Z
∞

−∞
dy0

Z
∞

0

dy
δðy0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
Þ þ δðy0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p 1

2

Z
1

−1
dx

×

� ∂
∂x x

�
ðBi

k þ Bi⊥Þ
q0

q0 −
yqx
y0

þ i0þ
þ Bi

k
qyx
y0

1

q0 −
yqx
y0

þ i0þ

− ðBi
kðx2 þ 1Þ þ Bi⊥Þy2

q20 − q2

2y20

y0
yx

∂
∂q

1

q0 −
yqx
y0

þ i0þ

�
þ ðD21Þ

− Bi⊥y2
q20 − q2

2y20

y0
yq

∂
∂x

1

q0 −
yqx
y0

þ i0þ

�
≕@ ðD22Þ

Then comes the Fourier transform and the leftover integration. Step-by-step it is done as follows:

Z
∞

−∞
đq0eiq0t@ ¼

Z
1

−1
dx

� ∂
∂x x

�
ðBi

k þ Bi⊥Þ
∂
∂t

�
−θð−tÞeixqyy0

t
�
− Bi

k
xyq
y0

iθð−tÞeixqyy0
t

−
�Bi

k
2

x2 þ 1

x
þ Bi⊥

2

1

x

�
y
y0

� ∂2

∂t2 þ q2
��

−θð−tÞ xyt
y0

ei
xqy
y0
t
��

þ ðD23Þ

þ Bi⊥
2

y
y0

1

q
∂
∂x

� ∂2

∂t2 þ q2
��

−iθð−tÞeixqyy0
t
��

≕
Z

1

−1
dx

∂
∂x ½…�: ðD24Þ

At this point one has to account for the t-derivatives in the integrand:
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½…�¼−Bi
k

�
−
�
1−

x2þ1

2

y2

y20

�
δðtÞxþθð−tÞ

��
1−

x2þ1

2

y2

y20

�
2iq

y
y0
x2−

�
1−x2

y2

y20

�
tq2

y2

y20

x2þ1

2
x

�
eiqt

y
y0
x
�
þ ðD25Þ

−Bi⊥
�
−
�
1 −

y2

y20

�
δðtÞxþ θð−tÞ

��
1 −

y2

y20

�
iq

y
y0

x2 þ
�
1 − x2

y2

y20

��
−q2t

y2

y20

x
2
þ iq

y
y0

1

2

��
eiqt

y
y0
x
�
; ðD26Þ

which we put back into the Eq. (D24) to gain the expression

Z
∞

−∞
đq0eiq0t@ ¼ Bi

k

�
1 −

y2

y20

��
2δðtÞ − θð−tÞ

�
−4q

y
y0

sin

�
y
y0

qt

�
− 2q2t

y2

y20
cos

�
y
y0

qt

���
þ ðD27Þ

þ Bi⊥
�
1 −

y2

y20

��
2δðtÞ − θð−tÞ

�
−3q

y
y0

sin

�
y
y0

qt

�
− q2t

y2

y20
cos

�
y
y0

qt

���
¼ ðD28Þ

¼
�
1−

y2

y20

��
2ðBi

kþBi⊥ÞδðtÞ−θð−tÞ
�
ð2Bi

kþBi⊥Þ
∂2

∂t2
�
tcos

�
y
y0
qt

��
þBi⊥

∂
∂tcos

�
y
y0
qt

���
: ðD29Þ

After collecting terms, Eq. (30) follows.

APPENDIX E: RESPONSE FUNCTIONS IN COORDINATE SPACE

It is possible to perform the inverse Fourier transform of Eq. (31) from the spatial momentum q to position r as well. One
needs to carefully treat term-by-term the different q-contributions:

Bq sin qt; q̂ðB · q̂Þ sin qt; B
∂
∂t

�
sinqt
qt

�
; q̂ðB · q̂Þ ∂∂t

�
sin qt
qt

�
:

After tedious but straightforward calculation, the following expression emerges:

Jðt; rÞ ¼ −
Z

d2r̂0
Z

∞

0

dr0
e2

2π2

�
Bμ5ðt; r0 þ rÞ r

0

4π

�
−

∂
∂r0 δðr

0Þ
�
þ ðE1Þ

þ B
2

ðr0Þ2
4πr0

�
μ5ðt; rþ r0Þδ0ðr0Þ þ ∂2

1μ5ðt − r0; rþ r0Þ þ ∂1ðμ5ðt − r0; rþ r0Þf̃ð−r0ÞÞ
r0

�
þ ðE2Þ

þ B
2

1

4π

�
δðrÞμ5ðt; rþ r0Þ − ∂1μ5ðt − r0; rþ r0Þ − μ5ðt − r0; rþ r0Þ − μ5ðt; rþ r0Þ

r0

�
þ ðE3Þ

þ r̂0ðB · r̂0Þ
2

1

4π

�
r0δ0ðr0Þμ5ðt; rþ r0Þ þ r0∂2

1μ5ðt − r0; rþ r0Þ − 3δðr0Þμ5ðt; rþ r0Þ þ 3∂1μ5ðt − r0; rþ r0Þþ

þ 3
μ5ðt − r0; rþ r0Þ − μ5ðt; rþ r0Þ

r0
− ∂1ðμ5ðt − r0; rþ r0Þf̃ð−r0ÞÞ

��
; ðE4Þ

where f̃ðxÞ ¼ fðxTÞ.This can be cast in a more compact form by collecting terms into the following groups:

Jðt; rÞ ¼ −
e2

2π2
fBμ5ðt; rÞ −

2

3
Bμ5ðt; rÞþ ðE5Þ

þ 1

8π

Z
d2r̂0

Z
∞

0

dr0½ðr0∂2
1μ5ðt − r0; rþ r0ÞÞðBþ r̂0ðB · r̂0ÞÞþ ðE6Þ

−
�
∂1μ5ðt − r0; rþ r0Þ þ μ5ðt − r0; rþ r0Þ − μ5ðt; rþ r0Þ

r0

�
ðB − 3r̂0ðB · r̂0ÞÞþ ðE7Þ

þ∂1ðμ5ðt − r0; rþ r0Þf̃ð−r0ÞÞðB − r̂0ðB · r̂0ÞÞ�g: ðE8Þ
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1. CME response to pointlike perturbation

The formula given in Eq. (E8) can be better understood via an example. For that, let us suppose μ5 is well-localized in
space as μ5ðt; rÞ ¼ μ5ðtÞδð3ÞðrÞ. All the remaining integration can be donewith the aid of the delta-function. The result is the
following expression:

Jðt; rÞ ¼ −
e2

2π2

�
1

3
Bμ5ðtÞδð3ÞðrÞ þ

1

2

�
μ005ðt − rÞ

r
ðBþ ðB · r̂Þr̂Þþ −

�
μ05ðt − rÞ

r2
þ μ5ðt − rÞ − μ5ðtÞ

r3

�
ðB − 3ðB · r̂Þr̂Þ

þ μ05ðt − rÞfðrTÞ − μ5ðt − rÞTf0ðrTÞ
r2

ðB − ðB · r̂Þr̂Þ
��

: ðE9Þ

There is a contribution centered at the origin, the one third of the CME current in Eq. (19). The other contributions carry
various position dependence, depicted in Fig. 4. It is interesting to observe a stationary source, i.e., μ5ðtÞ≡ μ5. In this case
the only contribution except the delta-term is a finite temperature one: the last term in the 4th line of Eq. (E9). Averaging the
current over a small region around the origin we get back the expression we already derived previously in Eq. (47): the long-
time limit of the averaged current after a quench.

APPENDIX F: OTHER SIDE-CALCS

1. Averaged longtime current of quenched local source

Here we detail the steps leading to the final form of Eq. (47).

J̄¼−
e2

2π2
μ5

1

π

2

3
B
Z

∞

0

dQFðq=ðRTÞÞsinQ−QcosQ
Q

¼ e2

2π2
μ5
B
3

2

π

Z
∞

0

dQ
sinQ−QcosQ

Q

�
1þ

Z
∞

0

dτ
∂
∂τ

�
sin τQ

RT
τQ
RT

�
fðτÞ

�
:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕IðRTÞ

ðF1Þ

To evaluate the integral IðαÞ, some of the steps need regularization. If needed, we insert a factor of e−ϵQ (ϵ > 0) or the same
for τ, and send the regulator ϵ to zero in the end of the calculation. In this way both integration can be done and leading us to
the following simple result:

IðαÞ ¼
Z

∞

0

dQ

�
−Q

∂
∂Q

sinQ
Q

��
1þ

Z
∞

0

dτ
∂
∂τ

�
sin τQ

α
τQ
α

�
fðτÞ

�
¼ ðF2Þ

¼ π

2
þ
Z

∞

0

dQ
sinQ
Q

Z
∞

0

dτ
∂
∂τ

�
cos

τQ
α

�
fðτÞ ¼ π

2
−
Z

∞

0

dQ sinQ
Z

∞

0

dτ
1

α
sin

�
τQ
α

�
fðτÞ ¼ ðF3Þ

FIG. 4. The three different vectorial structures of the electric curent for a point-like source of axial imbalance. The two dimensional
slices are parallel to the magnetic fieldB—indicated on the right panel, pointing to the y-direction—and containing the origin where the
imbalance is located: r ¼ ðx; yÞ. The three panels depict the fields Bþ ðB · r̂Þr̂, 3ðB · r̂Þr̂ − B and B − ðB · r̂Þr̂ from left to right,
respectively.
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¼ π

2
−
1

2

Z
∞

0

dxfðxαÞ
�

ϵ

ðx − 1Þ2 þ ϵ2
−

ϵ

ðxþ 1Þ2 þ ϵ2

�����
ϵ→0

¼ π

2
ð1 − fðαÞÞ: ðF4Þ

Returning to the average-current expression:

J̄ ¼ −
e2

2π2
μ5B

1 − fðRTÞ
3

: ðF5Þ

2. Charge transported by an axial imbalance impulse

In this section we elaborate on the expression of ΔQ
which results in Fig. 3 in the main text at the end of Sec. IV.
We pick up from Eq. (52) which we integrate over the
infinite plane perpendicular to B. This results in the
following expression, containing only zero temperature
contributions:

ΔQðtobsÞ ¼ −
e2B
2π2

·
1

2π

Z
tobs:=2

−tobs:=2
dt
Z

∞

−∞
dq

×

�
μ̄5ðt; qÞ þ

Z
0

−∞
dt0μ̄5ðtþ t0; qÞq sinðqt0Þ

�
:

ðF6Þ

Now we can plug in the impulselike pattern of μ̄5 given
in Eq. (53), which is normalized as

Z
∞

−∞
dt
Z

d3rμ5ðt; rÞ ¼ μ0τL3; ðF7Þ

where L3 is the effective volume of the source with the
length scale L ¼ ffiffiffi

π
p

R. In order to use the ansatz in Eq. (53)
we take its Fourier transform in the spatial variables to gain

μ̄5ðt; qÞ ¼
μ0L3ffiffiffi

π
p e−

t2

τ2
−q2R2

4 : ðF8Þ

Plugging the above formula into the first term of Eq. (F6)
and taking the limit tobs → ∞ we get the contribution of
axial imbalance without gradients:

−
e2B
2π2

·
1

2π

Z
∞

−∞
dt
Z

∞

0

dr2πrμ5ðt; rÞ ¼ −μ0
e2B
2π2

Aτ; ðF9Þ

where we defined A ¼ L2 ¼ πR2 as the effective surface
area of the source perpendicular to the magnetic field
direction. In the case of constant chiral chemical potential
we would get the exact same expression despite the minus
sign in the front. Now considering the full expression of
Eq. (F6) we find the resulting transported charge normal-
ized to the following dimensionless combination:

ΔQ
Cτ

ðτo¼ tobs=τ;ρ¼R=τÞ¼
ρe

− τ2o
4ðρ2þ1Þerf



ρτo

2
ffiffiffiffiffiffiffiffi
ρ2þ1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þ1

p ; ðF10Þ

depending only on the dimensionless quantities tobs:
τ and R

τ ,

with C ¼ −μ0 e2

2π2
BA. Its behavior for various values of R=τ

is shown in Fig. 3. The small–τo behavior is worth
mentioning:

ΔQ
Cτ

ðτo; ρÞ ≈
1ffiffiffi
π

p ρ2

ðρ2 þ 1Þ2 τo þOðτ2oÞ; ðF11Þ

again, getting a similar behavior to that caused by the CME
relation Eq. (1): the transported charge grows with τo.
Our toy model has three scales: the observation time

tobs., the spatial size R and the pulse length τ. As we have
already seen before, in the case of large tobs the trans-
ported charge goes to zero for any finite R and τ:

FIG. 5. Behavior of the transported charge ΔQ over the source lifetime τ. (left) ΔQ
Cτ for small τ, the asymptotic curve (with blue)

given by Eq. (F13), and τ=R ¼ 0.1 (with orange). (right) ΔQ
Cτ in the homogeneous source limit R → ∞, given by Eq. (F12), and

R=τ ¼ 15.0 (with orange). For observation times larger than τ there is a saturation to the transported charge value described by the
CME current in Eq. (19).
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ΔQðtobs: → ∞; τ; RÞ ¼ 0. This is the result we have already
got for ΔQ defined in Eq. (50).
For a finite length observation one can get the homo-

geneous source limit by sending R to infinity while keeping
tobs and τ finite:

ΔQðtobs:; τ; R → ∞Þ ¼ Cτerf

�
tobs:
2τ

�
; ðF12Þ

as well as the short pulse limit τ → 0 with finite tobs and R:

ΔQðtobs; τ; RÞ
τ

����
τ→0

¼ Ce−
t2
obs
4R2 : ðF13Þ

Limiting cases are depicted in Fig. (5).
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