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Abstract
We study chiral magnetic effect in collisions of AuAu, RuRu and ZrZr at

√
s = 200GeV. The

axial charge evolution is modeled with stochastic hydrodynamics and geometrical quantities are

calculated with Monte Carlo Glauber model. By adjusting the relaxation time of magnetic field,

we find our results in good agreement with background subtracted data for AuAu collisions at the

same energy. We also make prediction for RuRu and ZrZr collisions. We find a weak centrality

dependence of initial chiral imbalance, which implies the centrality dependence of chiral magnetic

effect signal comes mainly from those of magnetic field and volume factor. Our results also show

an unexpected dependence on system size: while the system of AuAu has larger chiral imbalance

and magnetic field, it turns out to have smaller signal for chiral magnetic effect due to the larger

volume suppression factor.
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I. INTRODUCTION

The anomalous transport of chiral magnetic effect (CME) has gained significant

attention over the past few years [1, 2]. If local parity odd domain is present in quark-

gluon plasma produced in heavy ion collisions, CME leads to charge separation along the

magnetic field generated in off-central collisions:

je =
∑
f

Ncq
2
f

2π2
µAB, (1)

with the chiral imbalance µA characterizing local parity violation. This offers the possi-

bility of detecting local parity violation in quantum chromodynamics (QCD). The charge

separation has been actively searched experimentally [3–5]. However, we are still far from

consensus in the status of CME largely due to the difficulty in determine CME both exper-

imentally and theoretically, see [6–9] for recent reviews. Experimentally, charge separation

needs to be measured through charged hadron correlation on event-by-event basis. Un-

fortunately the charged hadron correlation is dominated by flow related background with

different possible origins [10–12]. Different observables and experimental techniques have

been proposed and implemented to exclude flow related background [13–16]. In addition,

STAR collaboration proposes to search for CME in isobar collisions [17]. Since the isobar

contain the same atomic number but different proton numbers, the corresponding colli-

sions are supposed to generate the same flow background but different magnetic field and

thus different charge separation, providing an unambiguous way of distinguishing the CME

contribution.

Theoretical description of CME is also difficult: both µA and B contain large un-

certainties. While their peak values are known to be set by respectively axial charge

production in glasma phase [18, 19] and moving charge of spectators [20], their further

evolution is model dependent. Different theoretical frameworks such as AVFD (anomalous

viscous fluid dynamics) [21–24], chiral kinetic theory [25–27] and multiphase transport

model [28, 29] have been employed to study the time evolution of axial/vector charges.

All of these frameworks treat axial charge as an approximately conserved quantity in the

absence of parallel electric and magnetic fields. However, it is also known that axial charge

is not conserved due to gluon dynamics. In fact, it is the same origin for initial axial

charge. In [30], three of us incorporated both fluctuation and dissipation of axial charge

in the framework of stochastic hydrodynamics. It has been found that independent of the

initial condition, the variance of axial charge always approaches thermodynamic limit in
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sufficient long time due to interplay of fluctuation and dissipation. In [30], we use the

thermodynamic limit for the axial charge to model CME. While being model independent,

the study misses an important fact: most charge separation occurs at very early stage of

quark-gluon plasma, when both µA and B have not decayed appreciably. The purpose of

this study is to incorporate the initial axial charge and investigate the coupled dynamics

of axial and vector charge. In particular, we will give prediction for CME contribution for

isobar collisions.

This paper is organized as follows: in Section 2, we generalize the stochastic hydro-

dynamics framework to include both axial and vector charge, which are coupled through

anomalous effect in the presence of magnetic field. We will justify for phenomenological

relevant magnetic field the back-reaction of vector charge to axial charge is negligible. In

Section 3, we derive axial charge evolution with a non-vanishing initial value. The obtained

axial charge is used for calculating charge separation. We will make prediction for CME

in isobar collisions using AuAu collisions as a reference. We conclude and discuss future

directions in Section 4.

II. STOCHASTIC HYDRODYNAMICS FOR AXIAL AND VECTOR CHARGES

The stochastic hydrodynamic equations for axial charge in the absence of magnetic

field have been written down in [30]. In the presence of magnetic field, axial charge are

coupled to vector charge through chiral magnetic effect and chiral separation effect. The

full stochastic hydrodynamic equations for axial and vector charges are given by
∇µJµA = − nA

τCS
− 2ξq

JµA = nAu
µ + λnV eB

µ − σTPµν∇ν
(
nA
χAT

)
+ ξµA,

(2)

and 
∇µJµV = 0

JµV = nV u
µ + λnAeB

µ − σTPµν∇ν
(
nV
χV T

)
+ ξµV ,

(3)

Here nA and nV are axial and vector charge density respectively. The axial current is not

conserved due to topological configuration of gluons, which gives rise to the dissipative term

∼ nA
τCS

and fluctuating noise term ∼ ξq. The constitutive equations for axial and vector
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current consist of co-moving term, anomalous mixing term, diffusive term and thermal noise

term. uµ is the fluid velocity, which defines the projection operator Pµν = gµν + uµuν and

the magnetic field in the fluid cell Bµ = −1
2
εµναβ√
−g Fαβuν . The ξA, ξV and ξq are taken to be

Gaussian white noises:

〈ξµA(x)ξνA(x′)〉 = Pµν2σAT
d4(x− x′)√
−g

,

〈ξµV (x)ξνV (x′)〉 = Pµν2σV T
d4(x− x′)√
−g

,

〈ξq(x)ξνq (x′)〉 = ΓCS
d4(x− x′)√
−g

,

〈ξµA(x)ξq(x
′)〉 = 〈ξνV (x)ξq(x

′)〉 = 0, (4)

with ΓCS being the Chern-Simon diffusion constant characterizing the magnitude of topo-

logical fluctuation.

For application to CME in heavy ion collisions, we fix the parameters as follows: we

use free theory limit for axial and vector charge susceptibilities χA = χV = =̧NfNcT
2/3.

The coefficient of the mixing term λ are determined by chiral magnetic/separation effect

as λ = 1
χ
Nc
2π2 . The quark mass effect on CSE can be neglected [31]. For three flavours,

we have =̧3T 2 and λ = 1
2π2T 2 . ΓCS is the Chern-Simon diffusion constant, for which we

take from the extrapolated weak coupling results ΓCS = 30α4
sT

4 [32] with αs = 0.3. The

relaxation time of axial charge τCS is fixed by the Einstein relation as τCS = Ţ
2ΓCS

. σA and

σV are conductivities for axial and vector current. We will not need their values in our

analysis below.

The axial/vector charge is considered as perturbation in the background hydrody-

namic flow. We will consider heavy ion collisions at top RHIC collision energy
√
sNN =

200GeV and use Bjorken flow as the background. In Milne coordinates (τ, η, x, y), the

fluid velocity reads uµ = (1, 0, 0, 0). We can show the total axial charge is conserved up-to

mixing term and the topological fluctuation induced terms. To see that, we substitute the

constitutive equation into the conservation equation in (2) and integrate over the volume∫
τdηd2x⊥ =

∫ √
−gdηd2x⊥. Using the identity ∇µV µ = 1√

−g∂µ (
√
−gV µ) and dropping

the boundary terms, we obtain∫
dηd2x⊥

(
∂τ (τnA)− ∂τ

(
σATP

τν∇ν
(
nA
Ţ

))
+ ∂τ (τξτA)

)
=

∫
dηd2x⊥

(
−τnA
τCS
− 2τξq

)
.

(5)
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Note that Pµνuν = 0 and ξµAξ
ν
A ∼ Pµν , thus P τν = 0 and ξτA = 0. We then arrive at

∂τNA = −NA

τCS
−
∫
dηd2x⊥2τξq, (6)

with NA =
∫
τdηd2x⊥. The absence of diffusive term, thermal noise term and mixing term

is consistent with the picture that these terms only lead to redistribution of axial charge.

The counterpart for vector charge is simpler: ∂τNV = 0 because vector charge is strictly

conserved.

A. The Back-Reaction from the Vector Current

We will assume the following distribution of axial charge: the initial axial charge

created by chromo flux tube is homogeneous in transverse plane. The boost invariant

Bjorken expansion maintains a homogeneous distribution in longitudinal direction. The

homogeneous axial charge gives rise to charge separation via CME. This simplified picture is

modified by three effects: diffusion, thermal noise and CSE. The thermal noise and diffusion

correspond to fluctuation and dissipation of charge, which bring the charge to equilibrium.

The CSE is not balanced by other effect. We show now its effect is sub-leading.

Let us compare the axial charge nA and the CSE modification ∼ λBnV . Since

χA = χV , it is equivalent to compare µA and λBµV . Since B drops quickly with time, the

CSE effect is maximized at initial time. We estimate the initial nA following [21] as

√
〈nA(τ0)2〉 '

Q4
s(πρ

2
tubeτ0)

√
Ncoll

16π2S⊥
, (7)

where Qs is the saturation scale and ρtube ' 1fm is the width of the flux tube. τ0 is the

initial proper time. For AuAu collisions, we take Qs ' 1GeV and τ0 = 0.6fm. The number

of binary collisions Ncoll and the transeverse overlap area S⊥ and calculated using Monte

Carlo Glauber model [33–36] with the centrality dependence listed in Table I.

The initial temperature is taken as T0 = 350MeV. These combined give µA ' 36MeV

with very weak centrality dependence. On the other hand, µV is estimated from [38]

µB(s) ' a

1 +
√
s/b

, (8)

with a ' 1.27GeV and b ' 4.3GeV. At
√
sNN = 200GeV, µB ' 27MeV, corresponding

to µV ' 9MeV. Taking peak value of B ' 10m2
π, we find λeBµV /µA ' 3%. Since the
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TABLE I. Geometrical quantities from MC Glauber model for Au, Ru and Zr. Ncoll, S⊥ and

L⊥ are number of binary collisions, transverse overlap area, and the width of the participants’

region along the cross-line between the transverse plane and the reaction plane. S⊥ is taken to be

the projection of the nucleon-nucleon cross-section σNN onto the transverse plane [37], and L⊥ is

calculated through the same algorithm as S⊥. 10k events are run to generate the datas. Averages

are done using the impact parameter b as the weight factor.

Centrality 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

Au

Ncoll 1049.8 843.9 594.8 369.1 217.4 121.6 62.2 29.2 12.7

S⊥(fm2) 147.9 128.9 106.1 83.0 64.8 49.7 36.6 25.5 16.2

L⊥(fm) 13.2 11.9 10.3 8.6 7.3 6.1 5.0 4.1 3.1

Ru

Ncoll 387.5 316.3 228.9 146.6 90.9 53.6 30.0 15.8 8.1

S⊥(fm2) 92.5 81.6 67.8 53.8 42.3 32.8 24.7 17.6 12.1

L⊥(fm) 10.5 9.5 8.3 7.0 6.0 5.1 4.3 3.5 2.9

Zr

Ncoll 395.6 322.5 232.1 149.0 91.8 54.0 30.1 15.7 8.0

S⊥(fm2) 91.3 80.5 67.0 53.1 41.8 32.5 24.4 17.4 11.9

L⊥(fm) 10.4 9.4 8.2 7.0 6.0 5.0 4.2 3.5 2.9

magnetic field decays rapidly with time, a more realistic estimation for the back-reaction

is to use time-averaged magentic field. Assuming the following functional form of magnetic

field [39, 40],

eB(τ) =
eB0

1 + (τ/τB)2
, (9)

and averaging between initial time τ0 = 0.6fm and freeze-out time τ = 7fm, we obtain

λeBavgµV /µA ' 1% for τB = 2fm and λeBavgµV /µA ' 0.4% for τB = 1fm. Therefore we

can safely neglect the CSE effect on axial charge redistribution. Similar analysis shows the

same is true for isobar collisions.

B. The Evolution of the Axial Chemical Potential

Since the back-reaction from vector charge is negligible, we can simply trace the evo-

lution of total axial charge and use it to determine the average µA for CME phenomenology.

In [30], we have derived the hydrodynamic evolution of the total axial charge with an initial
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value. It is given by

〈NA(τ)2〉 = 〈NA(τ0)2〉e
3

(
1−

(
τ
τ0

)2/3
)(

τ0
τCS0

)
+

∫
dη d2x⊥2Γ0τ0τCS0

(
1− e

3

(
1−

(
τ
τ0

)2/3
)(

τ0
τCS0

))
.

(10)

The initial condition for Au+Au collisions at
√
sNN = 200GeV has been discussed in the

previously subsection. The counterpart for isobars scales accordingly. We adopt the scaling

of Qs with system size in [41] and the initial time for Bjorken hydrodynamics in [42]. The

freeze-out time is determined by the same freeze-out temperature Tf = 154MeV. We list

the scalings as follows,

Qs ∼ A
1
6 , T0 ∼ Qs ∼ A

1
6 ,

τ0 ∼ 1/Qs ∼ A−
1
6 , τf ∼ A

1
3 .

(11)

The axial chemical potential is calculated using the average axial charge

µA(τ) =

√
〈nA(τ)2〉

(̧τ)
=

√
〈NA(τ)2〉
V (τ) (̧τ)

, (12)

with V (τ) = S⊥τ∆η being the total volume. The rapidity span is taken to be |η| < 2 with

∆η = 4. It determines the axial chemical potential as

µA(τ) = µA0

(
τ

τ0

)− 1
3

√√√√e
3

(
1−

(
τ
τ0

)2/3
)(

τ0
τCS0

)
+

3T 3
0

τ0 ∆η S⊥ n
2
A0

[
1− e

3

(
1−

(
τ
τ0

)2/3
)(

τ0
τCS0

)]
,

(13)

where the square root factor is a modification to the simple τ−1/3 dependence when relax-

ation of axial charge is ignored. The initial axial chemical potential is determined by the

initial axial charge density nA0 given in equation (7) via µA0 = nA0
χ0

= nA0

3T 2
0

.

Then we determine the scalings of the initial axial charge density and chemical

potential. From the empirical scaling for AuAu collisions [33, 37] in Glauber model,

S⊥ ∼ N
2
3

part, Ncoll ∼ N
4
3

part, (14)

where Npart is the number of participant nucleons, we have

S⊥ ∼
√
Ncoll. (15)

Thus from (7) nA0 has only weak centrality dependence. The system size dependence of

nA0 and µA0 can be easily obtained using (11)

nA0 ∼ A
1
2 , µA0 ∼ A

1
6 . (16)
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The centrality dependence of initial chemical potential µA0 for Au and isobars are listed

in Table II. Indeed we see weak centrality dependence for AuAu and slightly enhanced

dependence for Ru and Zu due to deviation from the empirical scaling (14). The system

size dependence (16) is approximately consistent with Table II.

TABLE II. The centrality dependence of µA0(MeV).

Centrality 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

Au 36.11 37.15 37.90 38.14 37.53 36.56 35.49 34.97 36.19

Ru 31.13 31.89 32.63 32.93 32.99 32.63 32.45 33.06 34.55

Zr 31.85 32.62 33.29 33.62 33.51 33.08 32.89 33.35 34.84

III. CHIRAL MAGNETIC EFFECT IN ISOBAR COLLISIONS

A. The Effective Electrical Chemical Potential for Isobars

Now we can calculate the chiral magnetic current using (1), whose time integral gives

the total charge separation

Qe =

∫ τf

τ0

dτ τ dηL⊥ CeµA eB = Ce∆η L⊥

∫ τf

τ0

dτ τµA(τ) eB(τ), (17)

where Ce =
∑

f

q2f
e
Nc
2π2 and L⊥ is the width of the participants’ region along the cross-

line between the transverse plane and the reaction plane, sampled from the MC Glauber

Model, see Table I. Hence
∫
τdηL⊥ represents the area that the CME current penetrates

in the reaction plane. We integrate it from initial thermalization time τ0 to freeze-out time

τf , with their values determined in (11). The effective electric chemical potential is then

induced by the total electric charge asymmetry as,

µe(τf ) =
Qe

Vf χe(τf )
=

3L⊥
π2 eS⊥τf T

2
f

∫ τf

τ0

dττµA(τ) eB(τ), (18)

where Vf = S⊥τf∆η/2 and χe(τf ) = 1
3

∑
f q

2
fNcTf

2 denoting the volume of QGP above

the reaction plane and the electric charge susceptibility at freeze-out time.

The magnetic field in the lab frame is calculated from the Liénard-Wiechert poten-

tials as

eB(t, r) =
e2

4π

∫
dr′

3
ρZ(r′)

1− v2

[R2 − (R× v)2]3/2
v ×R (19)
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where R = r − r′(t) is the vector pointing from the proton position r(t) at time t to

the position r of the field point. v is the velocity of the protons, chosen to be v2 =

1 − (2mN/
√
s)2, where

√
s/2 is the energy for each nucleon in the center-of-mass frame,

and mN is the mass of the nucleon. The impact parameter vector is set to be along

the x-axis so that the x − z plane would serve as the reaction plane and x − y as the

transverse plane. We sample the positions of protons in a nucleus in the rest frame by the

Woods-Saxon distribution,

ρZ(r′) ∝ 1

1 + exp
(
r′−R0
a

) , (20)

where R0 = 6.38fm and a = 0.535fm for Au, and R0 = 5.085fm and 5.020fm for Ru and

Zr respectively, and a = 0.46fm for both isobars. The homogeneous and boost invariant

power-decaying form of the magnetic field is assumed by equantion (9) with the peak value

eB0 set by equation (19) at t = r = 0 along the y-axis. Dependence on nucleus shape

discussed in [43] is not included in our analysis. As a result, the centrality dependence of

eB0 for Au, Ru and Zr are shown in Figure 1. We see that the magnitude of the magnetic

field is suggested by the proton numbers of the corresponding nucleaus, and the difference

between isobars is indicated as ∼ 10%.
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FIG. 1. Centrality dependence of the event-averaged magnetic field oriented out of the reaction

plane, with triangles for Au, squares for Ru and circles for Zr.

The characteristic decay time of the magnetic field τB has a large uncertainty in

different models [44–46], we treat it as a fitting parameter and fix it by matching the CME
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signal for AuAu collisions calculated in our model to the flow-excluded charge separation

measurement by the STAR collaboration at
√
sNN = 200GeV [5], see Section III C. This

gives τB = 1.65fm. We will assume the same τB for isobars at the same collision energy,

and use our model to make predictions for CME signals for Ru and Zr.

Finally, we obtain a eµe for different centralities in Figure 2. Despite the system

of AuAu having larger µA0 and eB, it gives smaller eµe than the systems of Ru and Zr.

This is due to the larger volume factor in (18). We will obtain the scaling in the following

subsection.

▲
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▲ Au
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FIG. 2. Centrality dependence of the event-averaged electric chemical potentials induced by the

chiral magnetic effect, with triangles for Au, squares for Ru and circles for Zr.

B. The scaling relationship of the electrical chemical potential for different

heavy-ions

To determine the scalings of the magnitude of the electric chemical potential for

different heavy-ions, we plug equation (9) and (13) into equation (18) and sort it into

several blocks as

µe(τf ) =
3

π2 T 2
f

L⊥B0

S⊥

1

τf

∫ τf

τ0

dτ
τ

1 + (τ/τB)2
µA0

(
τ

τ0

)− 1
3

×√√√√e
3

(
1−

(
τ
τ0

)2/3
)(

τ0
τCS0

)
+

3T 3
0

τ0 ∆η S⊥ n
2
A0

[
1− e

3

(
1−

(
τ
τ0

)2/3
)(

τ0
τCS0

)]
. (21)
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The first block 3
π2 T 2

f
holds the same for three types of nucleus. The second block L⊥B0

S⊥
is

determined entirely from the geometry of the nuclei, i.e, the distribution of nucleons. The

third block 1
τf

∫ τf
τ0

accounting for the integral average scales as
τf−τ0
τf
∼ 1. The fourth block

µA0

(
τ
τ0

)− 1
3

is determined by the initial condition from the glasma, for which we already

discussed in Section 2. The square root factor accounts for the damping and fluctuation

in our stochastic model.

We first determine the scaling of the geometrical term L⊥B0
S⊥

. Throughout the fol-

lowing analysis, the empirical proportionality relationship R0 ∼ A1/3 is implied. For L⊥

and S⊥, the geometrical property from the Glauber model is straightforward,

S⊥ ∼ R2
0 ∼ A2/3, L⊥ ∼ R0 ∼ A1/3, (22)

which is also in agreement with equation (14), if we assume the number of participants

scales with the volume Npart ∼ R3 ∼ A.

To analyze the magnetic field, we have to know its dependence on the centrality. Note

that equation (19) is the dependence on the impact parameter, but at a given centrality,

the averaged impact parameter is different for three types of nuclei. Since we are comparing

the signal in each fixed centralities, we have to know how the averaged impact parameter

scales for different nuclei in each centrality.

Following from [33], the distribution of the total cross section σtot holds well for

b < 2R0 ,

dσtot

db
' 2πb, (23)

thus the total cross section scales as,

σtot ∼
∫ R0

b db ∼ R2
0 ∼ A2/3, (24)

which is a reasonable scaling in term of dimensions. Then quoting from [47], the following

geometric relation between centrality c and the impact parameter b also holds to a very

high precision for b < 2R0,

b(c) '
√
c · σtot

π
, (25)

thus for a given centrality c, the average impact parameter for different nucleus scales with

b(c) ∼ σ1/2
tot ∼ A1/3. (26)
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To proceed to determine the scaling of the magnetic field, we take the multiple-pole ex-

pansion of equation (19) and treat the monopole as our scaling of the magnetic field for

different nucleus at a given centrality c, thus it is given by

B0(c) ∼ Z/b(c)2 ∼ ZA−2/3. (27)

Therefore the geometrical combination block scales as

L⊥B0

S⊥
∼ Z

A
. (28)

Next, we look at the chemical potential block, without damping and fluctuation

effect. The scaling of the initial chemical potential is already discussed in Section 2, it’s

µA0 ∼ A1/6, but considering the volume expansion which contains τ0, it scales as

µA0

(
τ

τ0

)− 1
3

∼ A1/9. (29)

Lastly, the most ambiguous block is the square root factor accounting for the damp-

ing and fluctuation effect. From the above analysis, the scaling of the fluctuation is set

by

3T 3
0

τ0 ∆η S⊥ n
2
A0

∼ A−1. (30)

But fluctuation is generally small compared to initial contribution from the glasma, so if

we neglect it, the square root factor just scales with 1. Incorporating contribution from

both of them, we may write the scaling of the square root factor as A−ζ , with 0 < ζ < 1
2 .

Putting all the above together, we have the scaling of the electric chemical potential

as

µe(τf ) ∼
(
Z

A

)
A

1
9A−ζ = ZA−(ζ+ 8

9
), (31)

with 0 < ζ < 1
2 . When we consider only the CME from the initial condition, ζ = 0;

when we consider only the fluctuation effect ζ = 1
2 ; otherwise, ζ lies between them. Our

numerical datas for Au and isobars suggest a rough value of ζ ' 1
4 ; but note that there’re

deviations in each centrality mainly due to our simplified scaling of the magnetic field using

the monopole.
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C. The CME signal to be compared in experiments

To proceed, we would firstly need Cooper-Frye freeze-out procedure [48] to give the

spectrum of the single particle distribution as,

E
dN

d3p
=

g

(2π)3

∫
pµ d3σµf(x, p), (32)

where g is the degeneracy factor, taken to be 1 for each species of mesons (K±, π±)

produced in QGP respectively. The 4-momentum of the particle and the Bjorken spacetime

4-velocity are given by

pµ = (m⊥ cosh y, p⊥,m⊥ sinh y), uµ = (cosh η, 0, 0, sinh η), (33)

with m⊥ =
√
p2
⊥ +m2. Note that y is the particle rapidity and η is the spacetime rapidity.

Thus we could expand the Cooper-Frye formula as

dN

dφ dyp⊥ dp⊥
=

g

(2π)3

∫
τf dη d2x m⊥ cosh(η − y)f(x, p). (34)

The phase-space distribution of the i-th particle species at freeze-out time is given in

Boltzmann approximation as,

fi(x, p) = e(pµuµ±eµe(τf )+µi)/Tf , (35)

where ±µe(τf ) is the positive or negative electric chemical potential at freeze-out time

caused by CME, see Figure 2, which is much smaller than the freeze-out temperature

Tf ' 154MeV [49], and µi is the chemical potential for i-th species, here we consider only

pions and kaons in our calculations with respect to heavy-ion collisions, with µπ ' 80MeV

for pions and µK ' 180MeV for kaons. Thus we can approximate the distribution to the

lowest order in µe as

δfi(x, p) = fi(µe = 0)
±eµe(τf )

Tf
, (36)

this leads to the azimuthal distribution of the ith positive or negative charged particle N i
±

created from CME as

δ
dN i
±

dφ
=
gi S⊥
(2π)3

∫
dm⊥m

2
⊥

∫
τf dy dη cosh(η − y)fi(µe = 0)

±eµe(τf )

Tf
, (37)
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where we used the fact that p⊥ dp⊥ = m⊥ dm⊥. The lower bound of m⊥ integration being

the rest mass of corresponding meson. The integration domain for particle-rapidity should

be taken according to experiments as |y| < 1, and the space-time rapidity as |η| < 2. Note

that the sign difference on the RHS of the above equation, the charge asymmetry of the

particle distribution is due to CME. Since the magnetic field points to the upper half of the

QGP region from the lower half across the reaction plane, positive charge accumulates in the

above and negative in the below, thus µe changes sign cross the reaction plane. Similarly,

the multiplicity of charged particles from the background is obtained consistently from

equation (34) as

dN i
±

dφ
=
gi S⊥
(2π)3

∫
dm⊥m

2
⊥

∫
τf dy dη cosh(η − y)fi(µe = 0), (38)

where there shows no sign difference between positive and negative charges, indicating that

the background is electric-neutral.

To get the total charged particle multiplicity from CME ∆± and from the neutral

background N bg
± , the index i should be summed over different species, thus we define

∆± ≡
∑
i

δN i
±, N bg

± ≡
∑
i

N i
±, (39)

where again ± denotes positive or negative charge. Note that since we assume the whole

QGP is electric-neutral, the fluctuation of the electric chemical potential is averaged to be

zero, 〈µe(τf )〉 = 0, but the two-point correlation is taken to be the square of the electric

chemical potential itself, 〈µe(τf )2〉 ' µe(τf )2. Also note that our electric chemical potential

µe calculated in Section 2 is an effective quantity, it’s not η-dependent and decouples in

the integrals. Then from equations (37), (38) and (39), denoting α, β = ± and σ± = ±1,

we have the following average and proportionality relations as

〈∆α〉 = 0,
〈∆α∆β〉
〈N bg

α 〉〈N bg
β 〉
' σασβ

(eµe(τf ))2

T 2
f

. (40)

The average relation on the left is interpreted straightforward as the conservation of electric

charge. The proportionality relation on the right is a measurement of the asymmetry. The

CME induced term ∆± is treated as a perturbation to the electric-neutral background as

heat bath with temperature Tf .

To move on, we analyze the background angular distribution d〈N±〉/dφ, which re-

flects the charge-independent evolution of the medium determined by the event-by-event

14



fluctuating initial state. In this point, we take the Fourier expansion of the background

angular distribution as

d〈N bg
± 〉

dφ
=
〈N bg
± 〉

2π

[
1 + 2

∑
n=1

vn cosn(φ−Ψn)

]
, (41)

where Ψn indicates the participant plane angle of order n. Note that we have dropped the

sine term in the Fourier decomposition due to the fact that the distribution is symmetric

about the participant plane. The coefficient vn is defined as the nth order harmonic flow.

Typically, the directed flow v1 is generally chosen to be 0 if the distribution is measured

in a symmetric rapidity region [13, 50], thus in the following calculation we only kept the

next leading term from the elliptic flow v2.

To proceed, we assume the following ansatz [1] for the total generated charged single-

particle spectrum originated from both the background and the CME,

dN±
dφ

=
d〈N bg

± 〉
dφ

+
1

4
∆± sin(φ−ΨRP ), (42)

where the form of the CME-induced term is proportional to sin(φ−ΨRP ) owing to the sym-

metry of the distribution about the magnetic field, which is perpendicular to the reaction

plane, and the factor 1/4 is consistent with our definition (39).

Different from our previous work [30], we choose our correlated two-particle spectrum

not just as a product of the single spectrum, but also including an underlying correlation

term proposed in [13] as

ρ(φ1, φ2) =

〈
dNα

dφα1

dNβ

dφβ2

〉[
1 +

∞∑
n=0

an cosn(φ1 − φ2)

]
, (43)

with α, β = ±. The cosine correlation term is reaction-plane-insensitive. Here we only

take the leading term a1 into consideration (with normalization leading to a0 = 0).

With all of these, the two types of the two particle correlations γ and δ, measured

in the heavy-ion collision experiments are given as{
γαβ = 〈cos(φα1 + φβ2 − 2ΨRP)〉

δαβ = 〈cos(φα1 − φ
β
2 )〉,

(44)

where the average 〈cosϕ〉 of the angle ϕ = (φα1 + φβ2 − 2ΨRP) or (φα1 − φ
β
2 ) is taken over

events, i.e, integrated over φ1 and φ2 as

〈cosϕ〉 =

∫
ρ(φ1, φ2) cosϕ dφα1 dφβ2∫

ρ(φ1, φ2) dφα1 dφβ2
. (45)
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This will result in 
γαβ = 〈v2a1 cos 2(Ψ2 −ΨRP )〉 − π2

16

〈∆α∆β〉
〈N bg

α 〉〈N bg
β 〉

δαβ = 〈a1

2
(1 + v2

2)〉+
π2

16

〈∆α∆β〉
〈N bg

α 〉〈N bg
β 〉

.

(46)

These forms of γ and δ correlators are consistent with the proposal in [5, 13]:{
γαβ = κv2Fαβ −Hαβ

δαβ = Fαβ +Hαβ ,
(47)

with Fαβ denoting the background and Hαβ denoting the CME contribution, and κ is

an undetermined factor ranging from 1 to 2. Therefore, by matching the above sets of

equations and using equation (40), we claim that the CME signal takes the following form

Hαβ =
π2

16

〈∆α∆β〉
〈N bg

α 〉〈N bg
β 〉
' σασβ

π2

16

(eµe(τf ))2

T 2
f

. (48)

The difference between the same charge correlation HSS and the opposite charge correlation

HOS is thus expressed as

(HSS −HOS) ' 2 · π
2

16

(eµe(τf ))2

T 2
f

. (49)

The centrality dependence of 104 (HSS −HOS) for Au and isobars are shown in Figure 3.

We also plot the signal for AuAu collision at 200GeV with datas extracted from STAR, by

solving equation (47) as

Hαβ =
κv2δαβ − γαβ

1 + κv2
, (50)

where κ is taken to be 1, numerical values of γ and δ are taken from [51], and values

of v2 are taken from [52]. We see that by adjusting the τB parameter, the CME signal

from our model is in a good agreement with that from experiments. And with the same

τB(' 1.65fm), we predict the signal for Ru and Zr, which are larger than that of Au, due

to the square of the scaling of µe(τf ) as Z2A−2(ζ+ 8
9

), with roughly ζ ' 1
4 , as we discussed

in Section III B.
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FIG. 3. Centrality dependence of the CME signal from our stochastic model for AuAu and isobaric

collision at
√
sNN = 200GeV, with triangles for Au, squares for Ru and circles for Zr. We also list

the datas for AuAu collisions at
√
sNN = 200GeV, extracted from STAR [51, 52], with pentacles,

for comparison.

IV. CONCLUSION

We have calculated axial charge evolution using stochastic hydrodynamics model,

and used it to get chiral magnetic effect in off-central collisions of AuAu, RuRu and ZrZr.

By matching results from our model with background subtracted experimental data, we fix

the relaxation time for magnetic field. We use the same relaxation time to make prediction

for CME signal for collisions of RuRu and ZrZr. Two interesting results have been obtained

in our analysis.

Firstly, while the axial charge and vector charge are coupled through chiral magnetic

effect and chiral separation effect, we found the influence of vector charge to axial charge

is negligible at top RHIC collision energy. This allows us to decouple the evolution of axial

charge from the vector charge.

Secondly, we study the centrality and system size dependences of the CME signal.

The initial chiral imbalance µA0 is found to have only weak centrality dependence. The

centrality dependence of the CME signal comes mainly from the magnetic field and the

QGP volume factor. As for the system size dependence, although larger system gives

enhanced magnetic field and chiral imbalance, the electric charge asymmetry characterized

by eµe is suppressed due to larger volume factor. Consequently we found larger absolute

charged particle correlation in isobar collisions than that in AuAu collisions.
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The present study readily generalizes to collision of large nucleus at higher energies

where we expect Bjorken flow approximation is still good. It would be interesting to see

if the energy dependence matches with current experiment data at different energies. At

lower energies, the Bjorken flow approximation becomes inaccurate. A possible approach

is to implement the stochastic noises numerically in the existing AVFD model. We will

report studies along this line in the future.
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