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Abstract: 
The topological structure of vacuum is the cornerstone of non-Abelian gauge theories describing 
strong and electroweak interactions within the standard model of particle physics. However, 
transitions between different topological sectors of the vacuum (believed to be at the origin of the 
baryon asymmetry of the Universe) have never been observed directly. An experimental 
observation of such transitions in Quantum Chromodynamics (QCD) has become possible in 
heavy-ion collisions, where the chiral magnetic effect converts the chiral asymmetry (generated 
by topological transitions in hot QCD matter) into an electric current, under the presence of the 
magnetic field produced by the colliding ions. The Relativistic Heavy Ion Collider program on 
heavy-ion collisions such as the Zr-Zr and Ru-Ru isobars, thus has the potential to uncover the 
topological structure of vacuum in a laboratory experiment. This discovery would have far-
reaching implications for the understanding of QCD, the origin of the baryon asymmetry in the 
present-day Universe, and for other areas, including condensed matter physics. 
 
 
 
1. Introduction 
 
Quantum physics not only rules the microscopic world, but is also responsible for the defining 
properties, and quite possibly the very creation, of the entire Universe. We owe our existence to 
the baryon asymmetry generated shortly after the Big Bang in the newly created hot Universe. In 
1967, Andrei Sakharov formulated three necessary ingredients of baryogenesis [1]: baryon number 
violation, violation of C(charge) and CP(charge-parity) symmetries and interactions out of thermal 
equilibrium. The latter condition was satisfied in the early Universe due to its rapid expansion, 
while quantum effects in the topologically non-trivial vacuum of the standard model (and its 
extensions) are crucial for satisfying the former two conditions. The existence of topologically 
distinct vacuum sectors is a direct consequence of the gauge symmetry that underlies the standard 
model. The compact nature of non-Abelian groups describing the electroweak and strong 
interactions allows for topologically non-trivial maps from the gauge space onto the Euclidean 
space-time [2], that in Minkowski space describe the tunnelling transitions [3] between the 



topological sectors of vacuum [4,5] characterized by different Chern-Simons numbers [6]. These 
quantum transitions (assisted by finite temperature [7]) constitute the crucial ingredient of the 
baryogenesis [8], and thus of our world.   
 
The height of the potential barriers separating different vacuum sectors of the electroweak theory 
in our present world are set by the Higgs condensate. These barriers are most likely too high for 
collider experiments (although there are suggestions that this is not necessarily the case[9,10]), so 
the baryon number violation is probably not amenable to a direct experimental observation.  
Fortunately, the vacuum of Quantum Chromodynamics (QCD) possesses analogous topological 
vacuum sectors that are separated by much lower, and more easily penetrable, barriers. The 
experimental study of quantum transitions between these sectors can be performed in heavy-ion 
collisions that create a hot and rapidly expanding (thus out-of-equilibrium) QCD plasma. Heavy-
ion experiments could thus recreate the conditions that existed in the early Universe a few 
microseconds after the Big Bang – and one of the most exciting possibilities that they provide is 
uncovering the structure of the vacuum responsible for baryogenesis.  Of course, quantum 
transitions between the vacuum sectors of QCD do not generate a baryon number violation – but 
they do lead to  an analogue violation of chirality. Away from equilibrium, this can result in a 
chiral asymmetry, the difference between the numbers of right- and left-handed quarks in the 
plasma.  
 
Chirality (or handedness) is a key property of light fermions that is related to the sign of the 
projection of the fermion’s spin onto its momentum – if this projection is positive, the fermion is 
right-handed, and if it is negative, the fermion is left-handed. In the case of anti-fermions, the 
positive (negative) projection corresponds to the left (right) chirality. In a classical theory, the 
chirality of massless fermions is conserved, but the quantum chiral anomaly [11,12] enables the 
transfer of chirality between fermions and gauge fields. This is what happens during quantum 
transitions between the vacuum sectors – in such transitions, the chirality of fermions is transferred 
to the chirality of the vacuum gauge fields, or vice versa. Since right- and left-handed fermions are 
related to each other by parity transformation P, the topological vacuum transitions thus induce 
violation of P and of combined charge C and parity CP symmetries. In direct analogy with the 
Sakharov criteria [1], the deviation from thermal equilibrium (driven by the rapid expansion of the 
produced matter) then enables a generation of net chirality in heavy ion collisions [13] – a 
“chirogenesis”.  
 
It is important to emphasize that QCD, in spite of the CP-violating vacuum transitions described 
above, does not possess a global CP violation. This means that micro-universes created in heavy-
ion collisions will contain a net chirality of random sign – some will be produced preferentially 
right-handed, and some left-handed. It is not known what would happen to the sign of the baryon 
asymmetry in the Universe if it were repeatedly re-created – but heavy-ion collisions open the 
possibility to re-create billions of micro-universes, and to study the generation of the net chirality 
in this large statistical ensemble.  
 
Although the opportunity to study an analogue of baryogenesis in a laboratory experiment is 
fascinating, the key problem in heavy-ion collisions is detecting the produced net chirality. After 
the created QCD matter expands and cools down, the chiral quarks become bound in massive 
hadrons, and the spontaneous breaking of chiral symmetry in the confined phase of QCD makes 



the net chirality unobservable. This looks like an insurmountable obstacle to the observation of 
“chirogenesis” – but a possible way of detecting it has been found [13].  
 
The idea is based on the fact that quarks, apart from colour charge and chirality, possess an electric 
charge. Since the electric charge is strictly conserved, it is not affected by the conversion of quarks 
into hadrons – in other words, the electric charge of a blob of quark-gluon matter will be inherited 
by the produced hadrons. Electrically charged quarks also interact with external electromagnetic 
fields, and if chirality affects the flow of electric charge in an external magnetic field, this flow 
can be directly detected by measuring the electric charge of the final-state hadrons [13-16]. It 
appears that this possibility can indeed be realized in heavy-ion experiments (see Ref. [17] for a 
review), as we will describe below. 
 
 
 
2. The chiral magnetic effect  
 
Chirality plays a key role in QCD. In fact, the understanding of the role of chiral symmetry in 
strong interactions was key to formulating QCD. The theory possesses six `flavors‘ of quarks (u 
(up), d (down), s (strange), c (charm), b (bottom), t (top)), and three of them (u, d, s) are light on 
the characteristic scale of strong interactions, ΛQCD ~ 200 MeV. Because of this, a reasonable 
approximation of the physical world is an idealized theory with three massless quarks. The 
Lagrangian of this theory does not possess a single dimensionful parameter. Quantum effects due 
to the interactions with gluons, however, break down the scale symmetry of the theory, and induce 
the decrease of the coupling constant at short distances – this is the celebrated `asymptotic 
freedom‘ [18, 19] of QCD. As a result, the dimensionful scale ΛQCD emerges (`dimensional 
transmutation‘) and therefore, a symmetry present in the Lagrangian is broken by quantum effects. 
This phenomenon is described as a quantum `scale anomaly‘ [20,21]. A similar phenomenon 
affects the chiral property of massless quarks. 
 
Because the massless quarks can be right- or left-handed, the theory possesses UR(3)×UL(3) chiral 
symmetry (U being the unitary group) describing two parallel worlds of right- and left- handed 
quarks. One may also express the corresponding symmetry group in a different way by introducing 
the vector JV=JR + JL and axial JV A=JR - JL currents as superpositions of the currents of the right- 
and left-handed quarks, JR  and JL. In terms of vector and axial symmetries, UR(3)×UL(3) = 
SUV(3)×SUA(3)× UV(1)×UA(1) (SU being the special unitary group). The vector parts of this 
symmetry manifest in the world of hadrons but there is no evidence for the axial part of the 
symmetry, which appears heavily broken –no mirror images (parity doublets) exist in the hadron 
spectrum. The ways in which the octet SUA(3) and the flavor-singlet symmetries UA(1) are broken 
in the physical world, however, are radically different. The octet part of the symmetry is broken 
spontaneously, akin to the way the rotational symmetry of a ferromagnet is broken below the Curie 
temperature. This breaking leads to the emergence of eight Goldstone bosons – pions, kaons, and 
the η mesons, and gives masses to other hadrons. This dynamically generated mass accounts for 
about 99% the mass of a proton or neutron, and thus for about 99% the mass of the visible matter 
in the Universe.    
 



It is likely that this spontaneous breaking of the chiral symmetry occurs due to the effective 
interaction induced by instantons (see Ref. [22] for a review). The resulting Goldstone bosons play 
a key role in binding the nucleons in atomic nuclei. The flavor-singlet part of the symmetry UA(1) 
is broken by quantum interactions with gluons, similarly to the scale anomaly. This breaking is 
referred to as the chiral anomaly [11,12] discussed before. Because quarks possess both color and 
electric charges, the dynamics of the chiral anomaly can be explored not only with gluons, but also 
with photons. The photons can be directly observed in experiment; they can also be used to 
diagnose the behavior of quark-gluon matter through the chiral anomaly, which thus becomes a 
keyhole into the dynamics of quarks and gluons, and the way they exchange chirality. 
 
 
 

                                  
 
Fig.1 An illustration of the mechanism that underlies the Chiral Magnetic Effect (CME) in 
quantum chromodynamics (QCD) matter [13-16]. The QCD vacuum has a periodic structure, 
with minima corresponding to different Chern-Simons numbers that characterize the topology of 
color fields. An `instanton‘ [2] or `sphaleron‘ [7] transition between such energy-degenerate, 
but topologically distinct, vacuum sectors (shown by the curved dark blue arrow) is 
accompanied by the change of chirality of the chiral fermions. In an external magnetic field (𝑩""⃗ ) 
that pins down the direction of spin (blue arrows), the change of chirality has to be accompanied 
by the change in the direction of momentum (red arrows). If the numbers of left- and right-
handed fermions are different, this results in an electric current along the direction of magnetic 
field – this is the CME. 
 
 
Indeed, consider a system of massless quarks in a strong magnetic field. Quantum charged particles 
in a magnetic field occupy a discrete set of Landau levels – closed orbits with different energies. 
For massless quarks, the lowest Landau level (LLL) has zero energy – the result of the cancellation 
between the positive kinetic energy of rotation and a negative Zeeman energy of the interaction of 
the quark’s spin with a magnetic field. The direction of the quark’s spin on the LLL is thus 
completely determined by its electric charge – the positive quarks (or antiquarks) will have their 



spins aligned along the magnetic field (see Fig. 1), and the negative ones – opposite to the magnetic 
field direction. The motion of quarks along the magnetic field is unrestricted – so, for the magnetic 
field pointing out of the plane of the Fig. 1, the quarks can move both out and into the plane, with 
an equal number of out- and into-the-plane movers in equilibrium. If a positive quark (with spin 
directed out of the plane) moves out of the plane, its projection of spin on momentum is positive, 
and we are dealing with a right-handed quark. If it moves into the plane, it is a left-handed quark. 
For negatively charged (anti)quarks with spin directed into the plane, the situation is the opposite 
– if they move out of the plane, they are left-handed, and if they move into the plane, they are 
right-handed. In equilibrium, the numbers of right- and left-handed quarks are equal, and there is 
thus no net electric current. 
 
However, if there is an asymmetry between the densities of right- and left-handed quarks, this 
results into an electric current directed either along or against the direction of magnetic field, 
depending on the sign of asymmetry: 
 
𝐽 = !!

"	$!
	𝜇%	𝐵"⃗                              (1) 

 
 – this is the Chiral Magnetic Effect (CME) [13-16] where 𝐽 is the electric current and 𝐵"⃗  is the 
magnetic field,  the chiral chemical potential 𝜇% =	𝜇& −	𝜇'		characterizes the difference between 
the chemical potentials of the right- and left-handed quarks. For the effect to exist, the difference 
between the numbers of right- and left-handed quarks should not be conserved – in other words, 
the chirality of quarks should be transferable to the chirality of the gauge field configuration 
(described by the topological Chern-Simons number), and vice versa. This transfer is the essence 
of both the chiral anomaly and of the CME. In equilibrium, when the chiral chemical potential is 
fixed, the current in eq. (1) vanishes [23]. 
 
The simplest chiral configuration of electromagnetic fields is provided by parallel electric and 
magnetic fields. Indeed, the scalar product of electric and magnetic fields in the Coulomb gauge 
is proportional to the time derivative of the magnetic helicity (the Abelian Chern-Simons number) 
that measures the linking between the lines of magnetic flux [24, 25]. Parallel electric and magnetic 
fields thus pump chirality into the system, and due to chiral anomaly, the chirality of the gauge 
field can be transferred to the chirality of fermions, resulting in the CME. The reconnections of 
magnetic flux thus induce the chiral magnetic current [26].  
 
In condensed matter physics, the analogs of chiral anomaly in the 3He – A superfluid phases have 
been discussed in Ref. [27]. 3D Dirac and Weyl semimetals possess emergent chiral quasiparticles 
(for reviews, see Refs. [28,29]) and thus offer the possibility to study the CME in a well-controlled 
setting. The CME was observed in experiments with 3D Dirac [30,31] and Weyl [32] semimetals 
where it leads to the longitudinal magnetoconductivity that grows quadratically with the strength 
of magnetic field. In very strong magnetic fields, this dependence is expected to become linear 
[16]. One also expects a new kind of quantum oscillations [33] (in addition to conventional 
Shubnikov – de Haas ones) resulting from the relation between the chiral chemical potential (that 
enters the formula for the chiral magnetic current) and the chiral density that is created due to the 
chiral anomaly. An interesting way to observe both the CME and the diffusion of the chiral charge 
through the material is a nonlocal transport measurement proposed in Ref. [34] and observed in 
Ref. [35]. A different way to use the chiral anomaly for the generation of the chiral magnetic 



current is to use circularly polarized light [36]. The correspondence between the currents induced 
by the chiral anomaly in different physical systems is shown in the Table 1 below.    
 
 
 
Table 1: The currents induced by the chiral anomaly in different physical systems. The sources of 
chirality, the current carriers, the type of the induced anomalous current, and experimental 
signatures are indicated. 

 
System: The 

Universe 
Quark-Gluon 
Plasma 

Dirac/Weyl  
semimetals 

Superfluid 3He-A 

Source of 
chirality: 

Topological 
transitions 
in hot 
electroweak 
matter: 
sphalerons, 
… 

Topological 
transitions in 
hot QCD 
matter: 
sphalerons, … 

External electric 
and magnetic fields 

Effective electric and 
magnetic fields 
induced 
by the time-
dependent 
orbital angular 
momentum 

Current 
carriers: 

Quarks Quarks Electronic 
quasiparticles 

Atoms in the 
superfluid 

Type of the 
current: 

Baryon Electric Electric Linear momentum 

Experimental 
signatures: 

Baryon 
asymmetry 
of the 
Universe; 
Helical 
magnetic 
fields at 
intergalactic 
scales 

Angular 
correlations of 
charged 
hadrons in 
relativistic 
heavy ion 
collisions 

Negative 
longitudinal 
magnetoresistance; 
Non-local chiral 
transport; Chiral 
magnetic 
photocurrent 

Dynamics of vortex 
motion 

 
 
 
The observation of CME in condensed matter systems establishes it as a calibrated tool that can 
be used to detect topological transitions in the QCD vacuum. In heavy-ion collisions, topological 
transitions are enhanced due to finite-temperature effects (`sphaleron‘ transitions analogous to 
thermal excitation processes). Because the produced matter has a finite size and expands rapidly, 
the system deviates from thermal equilibrium, therefore realizing the analogs of Sakharov criteria 
[1] for `chirogenesis‘. Because the colliding heavy ions also creates an extremely strong magnetic 
field, the CME can occur and can be detected experimentally, as we will explain below. 
 
 
 
 



3.. CME in the quark-gluon plasma  
 
From hadrons to quark-gluon plasma  
 
A non-perturbative scale ΛQCD, on the order of 200 MeV, emerges due to the scale anomaly of 
QCD. Around this energy scale (or equivalently at distances around 1 fm = 10()%m), the QCD 
color force becomes very strong — about a hundred times stronger than the electromagnetic 
Coulomb force at the same distance. As a result, the quarks and gluons get confined within hadrons 
(for example, protons and neutrons), which thus become `cages‘ spanning about 1 fm across.  
 
 

                    
 
Fig.2 Transition from hadron gas to quark-gluon plasma. At low temperature, the phase of 
nuclear matter is a hadron gas where quarks (u, d) and gluons are confined within hadrons such 
as protons, neutrons and pions (see left-hand-side). At high temperature, hadrons melt and quarks 
and gluons get liberated to form a new phase of nuclear matter called a quark-gluon plasma 
(QGP) (see right-hand-side). First-principle lattice simulations of Quantum Chromodynamics 
(QCD) [37,38], shown in the plot, find this deconfinement transition to be a rapid crossover at a 
temperature of about 155 MeV (on the order of 10)" Kelvin). The chiral symmetry of QCD is 
spontaneously broken in the low-temperature phase, where it generates most of the hadrons’ 
masses. It gets restored around the temperature of deconfinement; in the high-temperature phase, 
the light-flavor quarks become (nearly) massless. Figure adapted with permission from Ref. [38]. 
 
 
To penetrate the `iron curtain‘ set by ΛQCD  and access quarks and gluons more directly, we need a 
high energy probe is needed. One way of doing this is to shoot a high energy electron or hadron at 
a proton or nuclear target. Another way is to heat up a chunk of QCD matter to a temperature 
exceeding T ~ ΛQCD  which can be achieved by colliding relativistic heavy ions. It was envisioned 



in late 1970s that a new phase of matter — the quark-gluon plasma (QGP) — must emerge at some 
asymptotically high temperature scale. Powerful supercomputers have enabled the first-principle 
lattice QCD simulations that indeed confirm this idea and provide a fully quantitative 
understanding of QCD thermodynamics [37,38] (see Fig.2). The low temperature phase is a hadron 
gas composed of baryons (such as protons and neutrons) and mesons (such as pions and kaons), 
whereas the high temperature phase is a plasma of deconfined quarks and gluons. The 
deconfinement transition is a rapid crossover at temperature around 155 MeV (about 10)" Kelvin). 
Such temperatures were available a few microseconds after the birth of the Universe, so the QGP 
in fact is a `primordial‘ phase of matter. Today’s high energy nuclear collision experiments at the 
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have recreated the 
QGP in the laboratory and have determined many key properties of this primordial matter (see 
Ref. [39] for a review). 
 
The high temperature not only liberates the quarks from hadrons, but also leads to the restoration 
of chiral symmetry, much like the rotational symmetry of a ferromagnet is restored above the Curie 
point. This implies that the quarks become very light (and nearly massless for the up and down 
flavors) in the QGP phase. Because chirality is a well-defined property of massless quarks, the 
QGP thus provides the appropriate environment to explore the quantum chiral dynamics. Consider 
a heavy-ion collision in which a droplet of QGP is created in the overlapping `fireball‘ zone, (see 
Fig.3a). Due to the aforementioned topological fluctuations, the QGP randomly acquires a nonzero 
initial chiral charge. That is, on an event-by-event basis, a chiral QGP forms, with equal 
probabilities for its left-handed and right-handed guises. The fireball explodes rapidly outward 
with a radial flow velocity that could be as large as 60% or so of the speed of light. This rapid 
expansion, analogous to the expansion of the early Universe, allows the chiral charge to stay away 
from its zero equilibrium value (the `chirogenesis`).  Therefore, it is expected that the quark-gluon 
plasma created in each single event of a heavy-ion collision is chiral. 
 
Now the question is: can we observe the CME in the chiral QGP? For the CME to occur, one needs 
an external magnetic field, in addition to the chiral asymmetry. Fortunately, heavy-ion collisions 
not only create the highest man-made temperature, but also generate a pulse of very strong 
magnetic field [15]. The spatial distribution of magnetic field as computed in Ref. [40] is illustrated 
in Fig.3b. The initial nuclei in such a collision carry a large positive charge (for example atomic 
number Z=79 for the gold nucleus and Z=82 for the lead nucleus) and move at nearly the speed of 
light. As a result each of the colliding nuclei carries a huge magnetic field. In the overlap zone 
upon their collision, the magnetic fields 𝐁""⃗  of the nuclei add coherently, and the resulting total 
magnetic field is orthogonal to the reaction plane, pointing in the out-of-plane (y) direction (see  
Fig.3a). Both simple estimates and quantitative simulations suggest that the magnitude of this 
magnetic field is on the order of 10)%	Tesla, which is much stronger than the magnetic field on the 
surface of a magnetar (the previous record holder). For magnetic fields of this magnitude, 
electromagnetic interactions driven by this field are as strong as QCD interactions – in other words, 
the effects of magnetic field are no longer tiny corrections to strong interaction dynamics. The 
magnetic field, coupled with the chiral charge of the QGP, is thus expected to induce a CME 
current along the 𝐁""⃗  field that transports charges across the reaction plane (x-z plane in Fig.3a). 
This process results in a specific dipole pattern of the electric charge distribution corresponding to 
an out-of-plane charge separation, with experimentally measurable consequences that we will 
discuss next. The created magnetic field rapidly decays in time, making experimental observation 



more challenging. The time dependence of the in-medium magnetic field [41,42] is currently a 
major source of uncertainty in theoretical predictions.      
 
 
 

                
 
Fig.3 Extremely strong magnetic field in a heavy-ion collision. a. A 3D illustration of a typical 
off-central heavy-ion collision is shown in the left panel. Two large nuclei initially travel at 
almost the speed of light down the beamline (z-axis) in opposite directions, with their centers 
displaced with respect to each other along the x-axis. Shortly after the impact, a hot quark-gluon 
plasma (QGP) forms in the overlap fireball   zone (indicated as the ellipsoidal shape in the 
middle) where significant amount of kinetic energy from the initial nuclei is deposited and 
transformed into thermal energy. The side portions of the nuclei, with spectator nucleons not 
actively involved in the collision, continue to move along and part ways with the fireball. The 
spectator protons create a brief pulse of extremely strong magnetic field 𝑩""⃗  that penetrates the 
QGP. This field points approximately along the out-of-plane direction (y-axis) that is 
perpendicular to the reaction plane spanned by x-z axes [40]. b. Quantitative simulation results 
for the distribution of magnetic field direction (indicated by small arrows) and strength 
(indicated by color scheme) on the x-y plane for gold-gold (AuAu) collisions at Relativistic 
Heavy Ion Collider (RHIC). In the center of the created QGP, the 𝑩""⃗  field reaches an extreme 
magnitude, on the order of 10)%Tesla or more, which is the strongest magnetic field known in 
today’s Universe. New effects arising from such extreme magnetic field have been explored both 
experimentally and theoretically [43-48]. Panel a is adapted with permission from Ref. [69]; 
panel b is adapted with permission from Ref. [39]. 
 
 
The colliding system in a (typically non-central) heavy-ion collision possesses a large angular 
momentum arising from the fact that the two incident nuclei carry large and opposite momenta 
with a nonzero displacement between their respective centers of mass. Simulations show that the 
fireball carries an angular momentum on the order of 10*~%ℏ (that is hundred thousand times the 
angular momentum of a proton) at RHIC (and even larger at LHC) over a volume just about 
hundred times that of a proton. A fraction of this angular momentum stays within the QGP and 
leads to very rich fluid vorticity patterns. Like the magnetic field, such vorticity is at extreme, as 



large as ~10""	𝑠() at RHIC. This is much faster than any other known fluid rotation, and thus the 
fireball in heavy-ion collisions is also considered “the most vortical fluid”[49]. Vorticity leads to 
a number of interesting effects, including the Chiral Vortical Effect [14,50-54] that is similar to 
the CME. In 2017, the STAR Collaboration at RHIC discovered the global spin polarization of 
produced hadrons, induced by the fluid vorticity at the subatomic scale[49]. This result has 
attracted a lot of interest and led to a number of new developments in the quantum theory of 
rotating fluids. Some of these effects were also observed experimentally in condensed matter 
systems, see for example Refs [27,55,56].  
 
 
Hunting for CME in heavy ion collisions  
 
Let us now focus on the search for CME signals in heavy-ion collisions. The CME predicts a 
separation of positive and negative charges in the QGP fireball along the axis of magnetic field. 
To illustrate how this happens in a real-world collision event, the charge separation in the x-y plane 
transverse to the beam axis z is shown in Fig.4a. Due to fluctuations in the positions of the nucleons 
inside the incident nuclei, the shape of the created fireball does not really look almond–shaped as 
depicted in simple cartoons (as in Fig.3a), but instead looks lumpy and distorted. Nevertheless, 
one could experimentally identify a `principal axis‘ (indicated by Ψ" in Fig.4a) for the dominant 
elliptic shape in each collision event. This axis and the beam axis together define the event plane. 
Similarly, due to fluctuations, the direction of magnetic field  𝐁""⃗  is close to, but is not perfectly 
aligned along the y-axis. Such azimuthal fluctuations and the correlations between the 𝐁""⃗  and Ψ" 
directions can be quantified: on average, they are perpendicular to each other, but with a sizable 
spread [40]. As we shall see, these fluctuations are important to take into account in experimental 
measurements. In practice, experimentalists identify Ψ" in every event and infer the 𝐁""⃗  direction 
with the help of simulations.   
 
The CME induces a charge separation along  𝐁""⃗  field for the quarks in the QGP, for example with 
more positive quarks on one side of the fireball and more negative quarks on the other side. Upon 
hadronization (the conversion process from QGP into a hadron gas) at the late time of a collision, 
the charge separation pattern is inherited by the resulting charged hadrons. This geometric pattern, 
coupled with a strong radial flow (driven by the pressure gradients in QGP) leads to a specific 
signal: for a given event, the positive hadrons are preferably emitted along 𝐁""⃗  , whereas the negative 
hadrons are emitted in the opposite direction, or vice versa. To make an analogy, this is measuring 
an electric dipole moment (EDM) of the entire QGP.   
 
Depending on the chirality of the QGP fireball, the CME current is either parallel or anti-parallel 
to 𝐁""⃗  . That means that the correspondence between positive/negative charges and north/south 
emission angles would flip from event to event with equal probability for the two configurations. 
Simply measuring the anticipated dipole pattern of the charged hadrons by averaging over many 
collision events would give a null result. This is not surprising: as previously mentioned, QCD 
does not break parity globally and thus on average the QGP should have zero EDM. All we can 
hope for is to measure the variance ( that is the `square‘) of this event-by-event charge separation 
pattern.  
 



 
 

                 
 
Fig.4 Experimental measurements of the Chiral Magnetic Effect (CME). a. An illustration of 
the hadron angular correlation pattern in the (x-y) plane transverse to the beam axis z in a heavy-
ion collision. The CME induces an asymmetry in the emission of positive and negative hadrons 
along the axis of magnetic field 𝑩""⃗  that is approximately orthogonal to the event plane angle 𝛹" . 
b. Possible CME signal, as extracted from the measured charge asymmetry ` 𝛾 −correlator‘ (see 
text for the definition), is shown for heavy-ion collisions at Relativistic Heavy Ion Collider (RHIC)  
and Large Hadron Collider (LHC) over a broad range of the center-of-mass energies per nucleon 
pair √𝑠,, . The data in panel b was compiled by the authors based on the experimental results 
published in Refs. [65,66,71,78,79], comprising different centrality ranges and with various 
background assumptions.   Panel a is reproduced with permission from Ref. [88]. 
 
 
 
Experimentalists found a clever way of doing just this, by measuring the angular correlations 
between charged hadrons. Despite the dipole orientation being either along or against the direction 
of magnetic field, the emission pattern (see Fig.4a) is such that along the axis  perpendicular to the 
event plane Ψ" , the strong radial flow pushes extra positive charges to move together in one 
direction, while the extra negative charges move together in the opposite direction.     As a result, 
two same-sign (SS) hadrons tend to be produced side-by-side whereas two opposite-sign (OS) 
hadrons tend to be produced back-to-back. These charge-dependent two-hadron correlation 
patterns remain the same despite flipping the orientation of the CME-induced dipole in the fireball. 
The difference between the angular correlations of SS and OS pairs can thus be a signal of the 
CME, as first proposed in Ref. [57]. Such charge asymmetry correlation measurements can be 
done through a number of carefully crafted observables, for example the so-called 𝛾 −  and 
𝛿 −correlators [57] (and their variants [58-62]), event-by-event shape analysis [63-66], the R-
correlator [67] and charged balance function [68]. Extensive experimental efforts have been 
carried out at both RHIC and LHC over the past decade to measure these observables for collisions 
spanning a wide range of center-of-mass energies [64-66,69-77]. Although they do demonstrate 
sensitivity to the CME signal, it turns out that they are unfortunately susceptible to a number of 
background correlations, see further discussion in Refs [17,39,58,78,79,80]. For example, many 
hadron resonances emerging from the collision decay into secondary hadrons which often contain 



OS pairs and rarely contain SS pairs. Furthermore, these decay products are correlated in their 
momentum directions as they inherit a fraction of the parent resonance’s momentum that is 
affected by hydrodynamical flow of the QGP. As a result, the resonance decays give a background 
(that is, non-CME) contribution to the charge asymmetry correlation. A few other identified 
background contributions exist as well.  
 
To make it worse, a detailed analysis shows that in the overall charge asymmetry correlation, non-
CME backgrounds dominate, and the CME signal is relatively weak. The hunt for the CME thus 
faces a signal isolation challenge similar to the search for the Higgs boson in hadronic collisions 
or the search for tiny temperature fluctuations in the cosmic microwave background radiation. 
Luckily the background contribution and the CME signal are driven by different features of a 
collision event, with the former controlled by the fireball’s elliptic anisotropy while the latter 
controlled by the magnetic field. Based on this difference, a number of strategies were developed 
to separate the signal and background in the measured correlation. Such analyses indeed confirm 
that the CME signal is relatively small, likely accounting for not more than 10% of the total 
correlation. A compilation of the current extractions of possible CME signal for collisions at 
various beam energies is presented in Fig.4b. Caution must be taken as these extractions are often 
subject to model assumptions and/or poorly controlled systematic uncertainties. Nevertheless, 
these experimental results, although far from being conclusive, are strongly suggestive of a 
detectable CME signal, especially in the RHIC energy region.        
 
There exist other interesting effects that could be measurable. A notable example is the so-called 
Chiral Magnetic Wave (CMW), which is a manifestation of CME through a gapless collective 
mode of the chiral density wave [81]. The CMW is predicted to induce a quadrupole pattern of 
charge distribution in the QGP fireball [82,83] which can be measured via charge asymmetry in 
the quadrupole component of the hadrons’ angular distribution (the `elliptic flow‘ coefficient). 
Intriguing evidence for this effect was also reported at RHIC and LHC [84,85].     
 
To summarize, the challenge in the search for CME is the isolation of the weak signal embedded 
in strong backgrounds. Different approaches were developed to overcome this difficulty, the 
majority focusing on ways to separate the backgrounds from the signal in the measured 
correlations, based on their differing dependence on collision environments (for example, beam 
energy, system size, event shape) or on observable kinematics (for example, the invariant mass 
of hadron pairs). This method, applied to the large amount of available data, helps achieving a 
systematic quantification of both signal and backgrounds, but suffers from uncertainties due to 
various model assumptions about the origin of the backgrounds. There are also attempts to 
devise observables arguably insensitive to backgrounds which look very promising, but need a 
more in-depth scrutiny to be fully validated. CMW measurements can provide alternative 
evidence for the CME, but they require considerably more statistics and further examination of 
potential background contributions. Apart from all these, it is highly desirable to have a `clean‘, 
essentially model-independent method that can decisively reveal the existence of CME even if 
the backgrounds are not completely understood. The isobar collision experiment provides such 
an opportunity, as we discuss next.             
 
 
 



4. The isobar collision experiment   
 
Observing CME in heavy-ion collisions is of paramount importance, but the corresponding 
measurements face a severe challenge due to a strong background contamination. This situation 
calls for a new experimental approach, and for a quantitative characterization of both signal and 
background.    
 
On the experimental front, the idea to collide and contrast a pair of isobar nuclei emerged, matured 
and was realized [86,87,88]. A dedicated isobar collision run was successfully carried out at RHIC 
in 2018. This experiment can be decisive in the search for the CME. In this experiment, one 
compares the outcome of Ruthenium-Ruthenium (RuRu) and Zirconium-Zirconium (ZrZr) 
collisions. Ru and Zr are so-called isobar nuclei, with the same number of nucleons (A=96 for 
both), but different number of protons (Z=44 for Ru and Z=40 for Zr). This means that Ru and Zr 
nuclei have roughly the same size and mass so that the bulk fireball created in RuRu and ZrZr 
collisions would be nearly identical. However, the magnetic field strength, which is proportional 
to the nuclear charge Z, would differ by about 10% between the isobar pairs. This expectation is 
indeed confirmed by quantitative simulation results in Fig.5a, where the relative difference 
between the two colliding systems is found to be negligible for the fireball geometric anisotropy 
(shown as Δ〈𝜖"〉) and to be around (10~20)% for the square of magnetic field (shown as Δ〈B-.〉). 
The contrast between RuRu and ZrZr thus offers a unique opportunity for the CME search. This 
is because the CME signal is driven by the magnetic field whereas the background is controlled 
by the fireball elliptic anisotropy. One would then expect that for the charge asymmetry correlation 
measurement, there should be an equal amount of background contributions in both RuRu and 
ZrZr systems whereas a different amount of CME signal contributions, as illustrated in Fig.5b. So 
a detectable variation of the charge asymmetry correlation from RuRu to ZrZr collisions should 
only arise from CME and can thus serve as its unambiguous signature.          
 
The precise amount of difference in the charge asymmetry correlation between RuRu and ZrZr 
would depend upon the signal-to-background ratio. If the background level is too high, the isobar 
contrast might become too small to be detected. Fortunately, during the 2018 isobar run the STAR 
Collaboration collected about 3 billion collision events for each system, providing a very strong 
differentiating power enabled by high statistics. The STAR Collaboration projection for the 
experimentally measurable isobar difference level as a function of background contribution is 
shown in Fig 5c. As a benchmark, if the background contribution is no more than 86%, then the 
isobar measurement would discover the CME with 5𝜎 significance.  
 
On the theory front, significant progress was made in describing chiral transport in and out of 
equilibrium [89-96], and in phenomenological applications for isobar collisions [97-105]. In 
particular, a state-of-the-art simulation tool, known as EBE-AVFD (event-by-event anomalous-
viscous fluid dynamics) [97-99], has been developed in the last couple of years. This framework 
allows a quantitative characterization of both the CME signal and the background contribution in 
realistic heavy ion collision environment. The tool is now widely used for studying CME-related 
observables. A set of predictions for isobar collision experiment has been made from EBE-AVFD 
[99] (see Fig 5d). These predictions provide valuable inputs for the ongoing isobar analysis and 
demonstrate specific features of the CME signal that will soon be tested in experiment [106].     
 



    
 
Fig.5 Chiral Magnetic Effect (CME) in isobar collisions. a. Simulations of the RuRu and ZrZr 
collisions [99] show a negligible relative difference for the fireball geometric anisotropy 𝛥〈𝜖"〉  
and a sizable difference for the square of magnetic field 𝛥〈𝐵/0〉. The bands indicate uncertainty 
arising from fluctuations and ambiguity in the initial nuclear geometry [100-102]. b. The 
background contribution to the charge asymmetry correlation measurement is controlled by bulk 
geometric anisotropy and thus expected to be identical between RuRu an ZrZr systems. However, 
the CME signal is driven by magnetic field and should be different. c. The projection for the isobar 
difference level in experimental observables estimated as a function of background contribution 
[87]. The grey band indicates uncertainty from calculated geometric anisotropy and magnetic 
field for RuRu and ZrZr systems while the error bars indicate expected statistical uncertainty, 
assuming 3 billion collision events for each colliding system recorded by STAR in 2018. √𝑠,,  is 
the center-of-mass energy per nucleon pair. d. Quantitative predictions from event-by-event 
anomalous-viscous fluid dynamics (EBE-AVFD) simulations [99] for the difference in 𝛾- and 𝛿-
correlators between the isobar pairs. Panels b, c are reproduced with permission from Ref. [88]; 
panel d is reproduced with permission from Ref [87].  
 
 
 
5. Perspectives   
 
If the isobar experiment at RHIC establishes the existence of the Chiral Magnetic Effect driven 
by topological transitions in the quark-gluon plasma, this discovery will open new research 
pathways in nuclear physics and beyond. In nuclear physics, one will be able to study topological 



transitions in baryon-rich matter, and possibly in the vicinity of the critical point on the QCD 
phase diagram, using the beam energy scan that is underway at RHIC. These measurements will 
also allow to extract the rate of topological transitions that is poorly known theoretically – this 
may offer unique insights into the dynamics of baryogenesis.. In condensed matter physics, the 
study of Chiral Magnetic Effect and the underlying topology has already begun but has been 
limited so far to transport measurements. In the near future, these studies will be extended to 
chiral magnetic currents driven by light and strain. Among the possible future applications of 
Chiral Magnetic Effect are the ``chiral qubits” and quantum sensors. 
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