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ABSTRACT: Proteins are dynamic molecules which perform diverse molecular
functions by adopting different three-dimensional structures. Recent progress in
residue—residue contacts prediction opens up new avenues for the de novo protein
structure prediction from sequence information. However, it is still difficult to
predict more than one conformation from residue—residue contacts alone. This is
due to the inability to deconvolve the complex signals of residue—residue contacts,
i.e, spatial contacts relevant for protein folding, conformational diversity, and
ligand binding. Here, we introduce a machine learning based method, called , >
FingerprintContacts, for extending the capabilities of residue—residue contacts. Closed State Open State
This algorithm leverages the features of residue—residue contacts, that is, (1) a

single conformation outperforms the others in the structural prediction using all the top ranking residue—residue contacts as
structural constraints and (2) conformation specific contacts rank lower and constitute a small fraction of residue—residue contacts.
We demonstrate the capabilities of FingerprintContacts on eight ligand binding proteins with varying conformational motions.
Furthermore, FingerprintContacts identifies small clusters of residue—residue contacts which are preferentially located in the
dynamically fluctuating regions. With the rapid growth in protein sequence information, we expect FingerprintContacts to be a
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powerful first step in structural understanding of protein functional mechanisms.

B INTRODUCTION

Proteins are dynamic entities that undergo significant
conformational changes while performing diverse cellular
functions such as drug binding,'™* enzyme catalysis,’~" and
nutrient transport.°~'’ Conformational changes often involve
transitions among two or more alternative structures.
Characterization of the conformational ensemble is critical
for deciphering the relationship between protein structure and
functional mechanisms.'"'> The past few years have seen
substantial progress in characterizing protein conformations
both experimentally and computationally.>~"> However, the
prediction of protein conformational ensembles still remains
challenging. Experimental techniques such as X-ray crystallog-
raphy or nuclear magnetic resonance (NMR) spectroscopy can
only provide a few snapshots from the conformational
ensemble. In principle, molecular dynamics (MD) simulation
is an attractive alternative due to its capability to model the
behavior of proteins in full atomic detail.'® However, there are
still several major challenges that limit its applicability. First,
MD simulation requires at least one starting structure, but only
0.2% of known protein sequences'’ have structures deposited
in Protein Data Bank (PDB)'® as of 2018." Second, the
accessible time scales in MD are still shorter than time scales
for many functionally relevant conformational transitions.
Third, the limited accuracy of force field models employed
in simulations could impact the sampling of proper conforma-
tional ensemble.
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Recently, rapid growth in sequence data has enabled us to
exploit the evolutionary information embedded within multiple
sequence alignments (MSAs) for computational prediction of
native contacts in proteins.zo_24 As proteins evolve, they are
subjected to evolutionary pressure to conserve their structures
and functions, which can lead to covariance between residue
pairs. These coevolving residue pairs are usually close in the
native three-dimensional (3D) structure of the protein. The
successful contact prediction from coevolving residue pairs has
driven dramatic improvements in de novo protein structure
prediction.”™>* According to Critical Assessment of Structure
in Proteins (CASP),” the flagship experiment of protein
structure prediction, the average precision of contact
prediction has increased from 22% in 2012 to 70% in 2018.
The current methods for contact prediction can be divided
into two groups: evolutionary coupling analysis (ECA) and
supervised machine learning (SML).”® ECA methods rely on
sequence information alone to identify the coevolved residues
as contacts, such as EVfold,*' PSICOV,*’ CCMpred,28 and
Gremlin.”” These ECA methods have been successfully applied
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to protein complexes,”” RNA structure prediction,’’ and
mutagenesis analysis.”> However, the quality of ECA methods
highly depends on the quality of the multiple sequence
alignments, and it is required that the number of nonredundant
sequences should be at least 64 times the square root of the
length of the target protein.”” SML methods offer one
promising avenue in these cases by integrating a variety of
sequence-dependent and sequence-independent information.
Popular SML methods include: SVMSEQ,** CMAPpro,*
PconsC2,*® MetaPSICOV,”” PhyCMAP,*® CoinDCA-NN,*’
and RaptorX-contact.** SML methods have been found to be
especially effective on proteins without many sequence
homologues.*"** The increase in the accuracy of predicted
residue—residue contacts has fueled the substantial improve-
ments in de novo protein structure prediction.43

The question then becomes whether residue—residue
contacts can be used to predict more than one conformation.
Current techniques can only predict one single structure from
residue—residue contacts due to the challenge of deconvolut-
ing coevolutionary signals coming from different conforma-
tions. Considering the structural diversity of proteins, the
coevolutionary signals contained in multiple sequence align-
ments could be a complex blend of different structural
constraints imposed by the conformational ensemble.**
Recently, coevolutionary signals have been combined with
physical models of proteins such as structure-based models
(SBMs) to capture different conformational states.*>™*” These
studies have shown that conformational diversity is embedded
in coevolutionary signals. Unfortunately, the paradigm of
integration of coevolutionary signals and protein physical
models is applicable only when at least one conformation of
the protein is available. In other words, current methods
cannot identify more than one conformation from coevolution
information alone.

Here, we propose a method called FingerprintContacts that
combines residue—residue contacts and machine learning to
quickly explore a small set of contacts that are relevant for
conformational dynamics and predict alternative conforma-
tions of the protein by including or excluding these contacts as
structural constraints. This algorithm was inspired by our
previous work** ™ where we demonstrated that a small set of
residue—residue contacts are sufficient to characterize complex
conformational dynamics of proteins involved in folding and
conformational change processes. However, pinpointing a few
dynamically crucial contacts among the many evolutionarily
coevolving residues without a priori knowledge remains a
major challenge. To address this challenge, we hypothesized
that the different selective pressures acting on a protein by the
conformational ensemble are likely to result in a single
conformation that dominates the structural prediction using all
the top contacts. For example, we expect that the default
structure, predicted using all the top contacts, will be
structurally more similar to one conformer instead of being
equally distant from two different alternative conformations. If
the best conformer, the conformation that is the most similar
to the default structure, exists, then it should be possible to
identify another alternative conformation by removing a set of
contacts maximizing the structural dissimilarity from the
default structure while ensuring similar amount of contact
satisfaction. Literature on protein sectors has shown that
coevolving residues can be clustered into physically connected
groups relevant for various biological functions, such as protein
stability, enzymatic efficiency, or allostery.”"**
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The FingerprintContacts leverages these ideas (1) to predict
the default structure using all of the top contacts as the best
conformer, (2) to cluster all top scoring residue—residue
contacts into small communities based on their physical
positions, (3) to define a reward function which quantifies the
potential of a newly predicted structure being an alternative
conformation, (4) to explore few small communities of
residue—residue contacts that maximize the reward function,
and (S) to predict an alternative conformation by relaxing the
structural constraints imposed by these small communities of
residue—residue contacts. This approach differs from existing
techniques for predicting protein conformational diversity
using coevolutionary information in that it seeks to explore
distant conformations of the protein by using the coevolution
information alone rather than integrating it with structural
information or dynamic simulation models. This is an
important distinction because it offers two advantages: (1)
widest scope, ie., being able to obtain alternative conforma-
tions even for proteins without a PDB structure, and (2)
computational efficiency, i.e., without tedious computational
sampling of the enormous conformational space of protein. To
test FingerprintContacts, we have applied it to eight ligand
binding proteins due to the large conformational diversity and
the availability of experimental structures for verification of our
predictions. We begin by analyzing the default structure and
contacts obtained from existing techniques to assess the two
assumptions underlying the proposed algorithm. Then, we test
FingerprintContacts’s ability to identify dynamically relevant
residue—residue contacts and to predict alternative con-
formers.

B METHODS

The main goal of this work was to develop a method that
predicts distant conformations from residue—residue contacts
alone. Our strategy is based on the analysis of residue—residue
contacts to identify small clusters of contacts, fingerprint
contacts, that cause significant structural perturbations in the
default structure. Revealing such fingerprint contacts is critical
because it may reflect the underlying dynamics involved in the
conformational transition between two distant conformations.
Furthermore, these fingerprint contacts can be excluded from
structural constraints to predict an alternative conformation.
Due to the hierarchical nature of protein evolution, a machine
learning strategy particularly suited for this task is hierarchical
clustering, which builds a hierarchy of clusters.”” Here we use
agglomerative clustering to cluster residue—residue contacts
based on their spatial closeness, which is a bottom-up
approach, merging up pairs of clusters as moving up the
hierarchy.” The model parameters used for the eight test cases
are listed in the SI (Table S1).

FingerprintContacts Algorithm. The protocol devel-
oped, as outlined in Figure 1, is based on four consecutive
stages. The algorithm parameters n_clusters range, bound,
zscore_thres, and reward_thres can be modified in the input file
(see the SI for details). These parameters will affect the
running time and the performance of the algorithm. The
algorithm is implemented in the Python language and uses
Numpy,54 Pandas,” and Sklearn®® as dependencies. Due to the
parallelizable nature, FingerprintContacts is considerably fast
at predicting alternative conformations for the protein.

(1) Identify the Default 3D structure (the best structure
predicted) and Default contacts (the set of top ranking
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Figure 1. Overview of FingerprintContacts.

)

)

contacts that predicts the best structure). Finger-
printContacts requires two inputs: predicted contacts
and predicted secondary structure (see in Contact and
Secondary Structure Prediction section for details). At
stage 0, we feed the two inputs to Confold2,>” a
powerful contact-driven ab initio protein structure
prediction tool. The detailed description of Confold2
has been summarized elsewhere.”” To determine the
Default contacts, we build 20 models for each contact set
consisting of top 0.1 L, 0.6 L, .., up to the top 4 L
contacts (L: sequence length). The best model based on
the satisfaction score of the top L/S long-range contacts
is then selected as the Default 3D structure, and the
corresponding subset of contacts is selected as the
Default contacts.

Cluster the Default contacts using agglomerative
clustering. At stage 1, we cluster the Default contacts
based on the Cartesian coordinates of the centers of the
residue pairs using agglomerative clustering. To
effectively explore all of the small clusters, we perform
agglomerative clustering with varied numbers of clusters.
The algorithm parameter n_clusters_range specifies
different numbers of clusters to use in the agglomerative
clustering. For example, n_clusters_range = [10, 100, 10]
provides 10 different number of clusters: 10, 20, 30, ...,
100.

Select the small and nonredundant clusters. The
previous agglomerative clustering generates a list of
clusters which could be redundant due to the multiple
clustering procedures performed using different numbers
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of clusters. We choose all of the small and nonredundant
clusters which satisfy the algorithm parameter bound.
bound specifies the minimum and maximum size of a
cluster. For example, bound = [0.005, 0.0S, 0.1]
constrains the size of a cluster in this stage to be no
smaller than 0.005 of the size of Default contacts and be
no larger than 0.05 of the size of Default contacts.
(4) Predict new structures by removing structural con-
straints. For each small cluster obtained from the
previous step, we generate a new contact file where
the small cluster of contacts is removed from the Default
contacts. We then feed the new contact file and the
predicted secondary structure file to Confold2 in order
to predict a new 3D structure. This results in a total of M
new structures, where M is the number of small clusters.
(5) Evaluate stage 1 structures and select candidate clusters.
For each of the M clusters, we compute the reward
function and zscore of rewards (see in Scoring Metric
section for details). We choose clusters with zscore_re-
ward greater than zscore_ thres as candidate clusters for
stage 2.
(6) Generate new clusters by combining candidate clusters.
At stage 2, we generate all the possible combinations of
candidate clusters and select nonredundant combina-
tions of clusters with size satisfying the algorithm
parameter bound. As mentioned in step 3, bound
constrains the size of clusters. For example, bound =
[0.005, 0.05, 0.1] constrains the size of cluster in this
stage to be no smaller than 0.005 of the size of Default
contacts and be no larger than 0.1 of the size of Default
contacts.
(7) Predict new structure by removing structural constraints.
Similarly to step 4, we predict N new structures by
removing N different sets of contacts. N is the number of
new clusters generated in step 6. This allows the
algorithm to explore new structures by combining
different communities of residue—residue contacts.
(8) Evaluate stage 2 structures. For each of the N new
clusters, we compute the reward function and zscore of
rewards (see in Scoring Metric section for details).
(9) Select high scoring structures from stage 1 and stage 2.
At stage 3, we select high scoring structures with reward
function greater than reward thres from stage 1 and
stage 2.

It is important to note that we consider all of the
combinations among candidate clusters at step 6. This allows
the algorithm to run multiple jobs in parallel to increase its
efficiency. If the set of candidate clusters is very large or
multiple processors are not available, this algorithm can be
easily modified by growing the clusters in series. For example,
we can combine two candidate clusters and then select high
scoring combinations for the pairwise combination at the next
step. This will dramatically decrease the total number of jobs.

Clustering Metric. The clustering metric we selected for
agglomerative clustering is based on the 3D position of center
of each contact residue pair (c).

nt+r
2

c =

(1)

where r; and r, correspond to the Cartesian coordinates of
residue 1 and residue 2, respectively.
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Table 1. Protein Used for Benchmarking
uniprot name PDB-closed (chain) PDB-open (chain) residues motion ™

KAD_AQUAE 3SRO (B)*° 2RHS (A)* 206 concerted 0.7100
KAD_ECOLI 1AKE (A)** 4AKE (A)® 214 concerted 0.6841
LIVK_ECOLI 1USI (A)** 1USG (A)®* 346 open-close 0.6461
RBSB_ECOLI 2DRI (A)* 1BA2 (A)* 271 open-close 0.6071
AROA_ECOLI 2AAY (A)Y 1EPS (A)® 427 rotation-close 0.6166
ARGT_SALTY 1LST (A)® 2LAO (A)® 238 open-close 0.7044
KAD4_HUMAN 3NDP (B)” 2AR7 (A)” 231 rotation-close 0.6794
KAD2_YEAST 2AKY (A)” 1IDVR (B)” 220 concerted 0.8224

Scoring Metric. To measure how many Default contacts are
satisfied in the given structure, we calculate the weighted
contact satisfaction score (Q,):

Q

Q ()

where Q is the sum of weights of satisfied contacts in the given
structure and Q,,,, corresponds to the sum of weights of all of
the Default contacts. Q, ranges from 0 to 1, from satisfying the
least to the most number of contacts. The weights of residue—
residue contacts are the probabilistic contact scores provided
in the input contact file (see in Contact and Secondary
Structure Prediction section for details). The weights are
added to prefer the satisfaction of top ranking residue—residue
contacts due to the rapid decay of true positive rate.

To measure the protein structural similarity, we computed
template modeling score (TMscore) because it is independent
of protein length and provides a clear quantitative cutoff
(TMscore = 0.5) for protein fold definition.”® To be specific,
proteins with TMscore > 0.5 can be considered to have the
same fold whereas proteins with TMscore < 0.5 do not have the
same fold. TMscore is calculated using the equation:

Q=

Lai 1
TMscore = — —
L p 1+ di /dO (3)
where L is the length of the target protein and L is the
number of shared residues in two proteins. d; is the distance of
ith pair of shared residues between two structures, and d, is
defined to normalize TMscore to (0, 1]. The higher the
TMscore is, the stronger the similarity is between two protein
structures.

To quantify the relative likelihood of a new structure being
an alternative conformation, we define the reward function by
including both the contact satisfaction score Q, and structural
diversity score TMscore between the new structure and the
Default structure. The Q, component allows FingerprintCon-
tacts to ensure the new structure is correctly folded since
previous studies suggested that the majority of residue—residue
contacts are relevant for protein folding and are shared among
different conformations. The TMscore component encourages
FingerprintContacts to explore other conformations that are
structurally different from the Default structure. The reward
function is defined as

1

tmscore

=1, iftmscore > tmy,, and Q > Qsy,,

reward =
0, otherwise
(4)
where tmscore is TMscore between the new structure and the
Default 3D structure. Q, is the weighted contact satisfaction
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score as defined above. The user-defined tmy,,, should be no
smaller than 0.5 since the different conformations of the same
protein usually share the same fold. By default, we choose
tMy,e = 0.5 to ensure reward ranges from 0 to 1.

To determine which clusters to select as candidates for the
stage 2, we computed zscore of the reward, which measures the
number of standard deviations a given point from the mean of
all rewards.”’ Using zscore facilitates the identification of
significant clusters based on the distribution of the reward
instead of explicitly specifying the number of clusters. In this
work, zscore_reward is defined as

reward — y
zscore_reward = ——

©)
where zscore_reward is the zscore of reward, reward is the
reward for a given cluster, y is the mean of rewards, and o is
the standard deviation of rewards.

Contact and Secondary Structure Prediction. We
predicted contacts and secondary structures using the
RaptorX-Contact web server."” RaptorX-Contact applies an
ultradeep convolutional residual neural network to predict
contacts and assigns each contact pair a weight, quantifying the
possibility of the Cf—Cp distance (Ca for GLY) to be at or
below 8 A. We used these contact pair weights for the
calculation of weighted contact satisfaction score Q.

Protein Data Set. To validate the FingerprintContacts
algorithm, we tested its capability to predict known alternative
conformations for eight proteins with varying conformational
movements (Table 1).

o

B RESULTS AND DISCUSSION

Default Structure Strongly Resembles the Closed
Conformer. It is important to recognize that protein adopts
an ensemble of conformers instead of a single unique
structure.”* Many researchers have noted that residue—residue
contacts are a com4plex blend of signals from the conforma-
tional ensemble.”>*> Therefore, we wondered whether the
default structure, the structure that maximally satisfies the
residue—residue contacts, is equally distant from different
protein conformations. In other words, whether the conforma-
tional specific contacts from different conformers impact the
final structure prediction to the same degree.

We calculated the TMscore, a measure of protein structural
similarity, of the default structure against alternative protein
structures (Table 2). Whereas the default contacts belong to
both open and closed conformations (Table 3), default
structure is structurally more similar to the closed than the
open state of the protein (Table 2). We observed that
TMscore in reference to the closed state is much higher than
TMscore compared to the open state, with a difference around
0.17 on average (Tables 2 and S2). For a closer examination of

https://dx.doi.org/10.1021/acs.jpcb.9b 11869
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Table 2. Comparison of default structure against Both
Conformers of a Protein

uniprot name TM_closed TM open TM closed—TM open
KAD_ AQUAE 0.7514 0.6585 0.0929
KAD_ECOLI 0.7911 0.6236 0.1675
LIVK_ECOLI 0.9198 0.6372 0.2826
RBSB_ECOLI 0.8613 0.5824 0.2789
AROA_ECOLI 0.7975 0.6011 0.1964
ARGT_SALTY 0.8021 0.6390 0.1631

KAD4 HUMAN 0.6271 0.5964 0.0307
KAD2_YEAST 0.7919 0.6733 0.1186

the results, we superimposed the default structure (green) and
the open structure (magenta) onto the closed structure (blue;
Figures 2 and S1). We found that default structure is similar in
overall structure to the known closed conformation in all eight
cases but distinct from the known open structure.

It is established that the closed conformer is relevant for
ligand binding and protein biological activities. Thus, it is
possible that the closed conformation is under the strongest
selective pressure during evolution. This explains why the
structure predicted using all of the top ranking residue—residue
contacts, a mixture of signals from the conformational
ensemble, is associated with the closed conformer. Taken
together, this evidence supports the hypothesis that there exists
a single conformation (closed conformation for the ligand
binding protein) that dominates the structural constraints
derived from multiple sequence alignments and consequently
the prediction of default structure. Given that the default
structure captures the closed conformation, we anticipate that
the removal of the residue—residue contacts only consistent
with the closed conformation from the folding calculation
might help to identify the open conformation.

Conformation Specific Contacts: Small but Mighty.
Due to the bias of the default structure toward the closed
conformation, we next ask how many residue—residue contacts
are conformation specific contacts. To this end, we classified
the default contacts based on their C; distances in the
alternative conformations (Table 3 and Figures 3 and S2).
We considered a residue pair in contact if C/, distance <8 A.
We defined the following groups: (1) conformation specific
contacts, that is, contacts that only exist in one of the
conformers; (2) shared contacts, that is, contacts that exist in
both of the alternative conformations; and (3) false positives,
that is, contacts that do not exist in either of the
conformations.

We observe that a large fraction of the residue—residue
contacts (~80% on average) are shared between the alternative

conformers, which could be intraprotein contacts defining the
fold of the protein family (Table 3). Second, a relatively small
fraction of the residue—residue contacts (~5% on average) are
specific to a single conformer (Table 3). Third, conformation
specific contacts rank lower among all of the default contacts,
which indicates that conformation specific residue pairs might
coevolve less strongly than the shared residue pairs (Figures 3
and S2). This observation is consistent with a previous study
which shows that the most strongly coupled residue pairs
correspond to intraprotein contacts defining the fold of
proteins.”*”> Fourth, although the default structure is more
similar to the closed conformation, the number of satisfied
residue—residue contacts in closed structure is not relatively
higher than those satisfied in the open structure (Table 3). On
the contrary, the weighted contact satisfaction score (Q,) in
the closed conformation is equivalent to Q, in the open
conformation (Figure S3). In the case of KAD_ AQUAE,
KAD ECOLI, KAD4 HUMAN, and KAD2 YEAST, the
weighted contact satisfaction score (Q,) in the closed
conformation is actually smaller than Q, in the open
conformation. This indicates that the strength, instead of the
number of conformation specific contacts, affects the final
prediction results.

The above observations imply that there are two character-
istics of conformation specific contacts: (1) a small fraction of
the default contacts and (2) low ranking score. In this work, we
utilize these features to explore the alternative open structure
by identifying and excluding the fingerprint contacts, a small
set of contacts that cause large structural deviations from the
default structure without sacrificing the satisfaction of default
contacts. To avoid the prediction of an incorrectly folded
structure, we constrained the size of the set of removed
contacts and added the weighted contact satisfaction score
(Q,) to the reward function, which quantifies how many default
contacts are realized in the new structure (as described in the
Methods section).

FingerprintContacts Captures the Alternative Open
State. Having demonstrated the two assumptions underlying
our proposed method, that is, (1) the default structure
resembles the closed conformation and (2) the conformation
specific contacts are a small fraction of the default contacts, we
then analyzed the performance of FingerprintContacts on eight
ligand binding proteins (Tables 4 and S3 and Figure S4) which
undergo large conformational changes when transitioning
between open and closed state. Ligand binding proteins are
a particularly interesting class of proteins because they can
potentially be used in many medicinal applications, e.g., drug
targeting and biosensing of disease markers.”® Therefore, the

Table 3. Groups of Residue—Residue Contacts

conformation specific

Q
uniprot name optimal number closed open
KAD_AQUAE 330 0.7693 0.7767
KAD_ECOLI 235 0.8877 0.9068
LIVK_ECOLI 484 0.9480 0.9178
RBSB_ECOLI 650 0.8923 0.8693
AROA_ECOLI 640 0.8203 0.7993
ARGT_SALTY 262 0.9699 0.9553
KAD4 HUMAN 254 0.8051 0.8487
KAD2_YEAST 506 0.6940 0.6945
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(%)
closed open shared contacts (%) false positives (%)
6.67 6.67 68.18 18.48
3.40 5.53 84.68 6.38
4.13 1.03 90.50 4.34
4.77 2.46 82.92 9.85
391 1.72 77.66 16.72
2.29 0.76 94.66 2.29
6.78 6.36 78.81 8.05
6.57 6.37 57.17 29.88
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/\\ Default structure
/\\ Closed structure
Open structure

Figure 2. Structural superposition of default structure against both conformers of a protein. (A) KAD AQUAE, (B) KAD_ECOLI, (C)
LIVK_ECOL] and (D) RBSB_ECOLL Default structure, closed, and open structures are represented in green, blue, and magenta. The black lines

represent the conformational motions.
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Figure 3. Distribution of conformation specific contacts in the alternative conformers of a protein. (A) KAD_AQUAE, (B) KAD_ECOLI, (C)
LIVK_ECOL] and (D) RBSB_ECOLL All of the default contacts and residue—residue contacts unique to closed and open structures are shown in

green, blue, and magenta, respectively.

Table 4. Summary of FingerprintContacts Results

uniprot name PDB-A (chain) PDB-B (chain)

KAD_AQUAE 3SRO (B)*° 2RHS (A)
KAD_ECOLI 1AKE (A)® 4AKE (A)®
LIVK_ECOLI 1USI (A)** 1USG (A)**
RBSB_ECOLI 2DRI (A)*® 1BA2 (A)®°
AROA_ECOLI 2AAY (A)Y 1EPS (A)®®
ARGT_SALTY 1LST (A)® 2LAO (A)%’
KAD4 HUMAN 3NDP (B)”° 2AR7 (A)7
KAD2_YEAST 2AKY (A)”? IDVR (B)”

blind top best
TM_ closed TM_open TM_closed TM_open
0.6303 0.7823 0.6702 0.8362
0.5548 0.6842 0.6445 0.7625
0.5032 0.5907 0.5831 0.7361
0.5154 0.6502 0.5676 0.6961
0.4862 0.5921 0.5663 0.7757
0.5060 0.5879 0.6063 0.6343
0.5371 0.5790 0.5913 0.6758
0.6795 0.7779 0.6795 0.7779

prediction of alternative conformations could provide bio-
physical insight into the underlying mechanisms of ligand
binding and create new therapeutic opportunities.

Overall, FingerprintContacts reliably predicts the open
conformation for all the eight proteins, with template modeling
(TM) scores of 0.6—0.8 in reference to the open crystal
structure (Table 4). As a control, we refolded the structures by
removing contacts unique to the closed state (Table S4 and
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Figure SS). In all of the eight test cases, FingerprintContacts
outperforms the baseline results, with TM_open increase by
0.09 on average (Table S4 and Figure SS). Moreover,
FingerprintContacts successfully identified the open state for
LIVK_ECOLIL, RBSB_ECOLIL and KAD2 YEAST, which
were not achieved by excluding all the contacts unique to
the closed state (Figure SS). This suggests that Finger-
printContacts may detect additional contacts that are crucial
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/\\ Predicted structure
Closed structure
Open structure

Figure 4. Structural superposition of predicted new structure against both conformers of a protein. (A) KAD_AQUAE, (B) KAD_ECOLI (C)
LIVK_ECOLJ and (D) RBSB_ECOLI. Predicted open structure, closed, and open structures are represented in orange, blue, and magenta. The

black lines represent the conformational motions.
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Figure S. Cj distance distribution of removed contacts in both conformers. (A) KAD_AQUAE, (B) KAD_ECOLI (C) LIVK_ECOL] and (D)
RBSB_ECOLL The horizontal and vertical dashed lines represent the cutoff (8 A), which is used to define whether a contact is true or not. The
diagonal dashed line represents the case when Cy distances are the same in both open and closed structures. All of the default contacts are shown in
gray. The removed clusters of residue—residue contacts are marked in blue, orange, and green.

for the structural rearrangements from closed to open state. To
further probe the predicted new structure, we superimposed
the predicted structure onto the two available crystal
structures. We find significant structural similarity between
the predicted new structures and the open conformation
(Figures 4 and S1). Specifically, we observe the dramatic
domain opening in the predicted structure with respect to the
experimental closed state while conserving the same
topological features.

Taken together, these results demonstrate that Finger-
printContacts provides a powerful and automatic way to
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predict alternative conformations (open and closed state)
using residue—residue contact information alone.
FingerprintContacts Identifies Small Communities of
Dynamically Important Residues. As FingerprintContacts
outperforms the baseline results achieved by simply removing
the conformation specific contacts, we wondered what type of
contacts were removed by the algorithm. Many proteins
undergo large-scale structural rearrangements through con-
certed motions of residues. As a result, we reasoned that the
removed contacts could potentially correlate with the
conformational fluctuations.”” To assess this, we investigated
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the relationship between removed contacts and moving
residues, characterized by the changes of C; distances
(/A\dist_Cp) in the alternative protein conformations (Figure
5). We observe a small number of clusters of residue—residue
contacts, which is consistent with our hypothesis that a small
set of contacts can be removed to identify the alternative
conformation. Consistent with our expectation, our results
suggest that the removed contacts are likely to represent
residue pairs that experience large fluctuations (large
/\dist_Cjz). Another interesting observation is that there is a
small fraction of removed contacts that are not true contacts in
either conformations, termed as false positives previously
(Figure SA,C,D). Remarkably, we find that these removed false
positives are actually spatially clustered with conformation
specific contacts in the open state and have large Adist_Cj
values. These “false positives” could exist in other intermediate
conformational states and be crucial for the conformational
transitions.”® This could potentially explain why removing
conformation specific contacts in the closed state alone was
not sufficient to predict the open conformation (Figure SS).
To better illustrate the correlation of the removed contacts
and dynamically flexible regions, we take KAD AQUAE as an
example. We mapped the removed clusters of residue—residue
contacts on the protein structures (Figures 6 and S6—S8). We

¢ Cluster 1
i Cluster 2

Cluster 174> ¢/

X

&

Y Cluster3  45°
-\
_::""Cluster 2

D
::""bluster 3

Figure 6. Illustration of detailed analysis for KAD_AQUAE. (A)
Visualization of the three detected clusters in both closed (PDB:
3SRO_B*’) and open (PDB: 2RH5_A®) crystal structures. (B—D)
Enlarged view of clusters 1—3. The open structure is superpositioned
onto the closed structure.

observe that contacts removed in FingerprintContacts are
preferentially located in the functionally dynamic regions. This
insight could be of great use for extracting protein dynamics
information from protein sequence. Previous studies have
shown that coevolving residue pairs provide information about
the spatial contacts within the 3D protein structure, conforma-
tional diversity, ligand binding, and protein oligomerization.””
However, it has been challenging to distinguish different
signals of residue—residue contacts. Our results highlight the
value of FingerprintContacts for identifying dynamically
relevant residue—residue contacts. These discovered contacts
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could also aid in the a priori prediction of collective variables™
for molecular dynamics (MD) simulations, a powerful tool to
characterize the conformational dynamics of proteins.
Currently, the capabilities of MD simulations are severely
constrained by two major problems: (1) sufficient sampling
and (2) interpretation of high dimensional MD data. The
detected residue—residue contacts could help in both cases by
serving as collective variables to enhance the sampling or to
represent the high dimensional MD data for human insights.

B CONCLUSIONS

We have introduced FingerprintContacts, a simple and
efficient procedure to predict alternative protein conformations
from residue—residue contacts alone. This algorithm was
inspired by our previous work that few residue—residue
contacts suffice to capture the complex conformational
dynamics associated with protein folding and conformational
changes.®’ = We have validated our approach on eight ligand
binding proteins with varying conformational movements.
These proteins adopt two structurally distinct conformations:
open and closed state. Analysis of the default structure,
structure maximally satisfying the residue—residue contacts,
and the default contacts, the corresponding subset of residue—
residue contacts, provides two valuable insights: (1) the default
structure strongly resembles the closed conformer despite the
existence of similar number of conformation specific contacts
and (2) conformation specific contacts are only a small fraction
of the default contacts (around $%) and rank lower among the
default contacts, which results in the similar contact satisfaction
score between the open and closed states. We leverage these
observations to (1) predict the default structure as the closed
conformer, (2) explore a small set of residue—residue contacts
that perturb the default structure while satisfying similar amount
of the default contacts, and (3) explore the alternative open
conformation by removing these contacts from the structure
prediction constraints.

To test FingerprintContacts, we compared the predicted
structures with experimental alternative conformations and
compared its performance to the previously reported approach,
which refolds the structure by removing residue—residue
contacts unique to the closed conformation. In all eight cases,
FingerprintContacts outperforms the baseline results, with an
increase in TMscore by 0.09 on average. It is worth
mentioning that no structural information is required for
FingerprintContacts, whereas the baseline approach identifies
the conformation specific contacts by comparing alternative
conformations. The superposition of the predicted open
structure shows significant similarity with the experimental
open conformation. Moreover, the residue—residue contacts
removed by FingerprintContacts shows clear correlation with
dynamically fluctuating residues. Compared with current
methods, FingerprintContacts provides two clear advantages:
(1) widest scope, being applicable to proteins with only
sequence information available, and (2) computational
efficiency, being able to avoid the long-time scale simulations.

Because proteins perform diverse functions by adopting
different conformations,®** we expect FingerprintContacts to
serve as a powerful and cheap first step in the analysis of
protein functional mechanisms. Beyond the prediction of
alternative conformations, FingerprintContacts has provided
important insights about the dynamically relevant residue—
residue contacts (termed fingerprint contacts), offering many
practical implications. With the rapid growth in protein
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sequence databases driven by next-generation sequencing, we
expect FingerprintContacts will be widely applied to obtain a
first glimpse of protein conformational diversity.
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