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Abstract—Physical interaction with an object that has
internal dynamics can be challenging, both for humans and
robots. An example is carrying a cup of coffee, where the
nonlinear dynamics between the cup and the liquid can be
chaotic and unpredictable. This study examined how
nonlinearity of an object’s dynamics contributed to the difficulty
of a task and if linearization of the object dynamics facilitated
performance. Human subjects did a task in a virtual set-up with
a haptic interface using a robotic manipulandum. The task of
transporting a cup of coffee was reduced to a 2D cart-and-
pendulum model; subjects moved the cart and felt the dynamics
of the pendulum representing sloshing coffee. Performance with
the nonlinear system was compared to a linearized mass-spring
version of the system. Subjects (n=16) executed continuous
rhythmic, self-paced movements. In the linearized system
subjects chose to move at frequencies close to the resonant
frequencies and clearly avoided the anti-resonance frequency. In
the nonlinear system subjects did not avoid the anti-resonance
frequency. To evaluate performance, mutual information
quantified predictability between the interaction force and the
cup and object dynamics. Mutual information was lower in trials
when the cup moved close to the anti-resonance frequency in
both linear and nonlinear systems. The magnitudes of the
interaction forces were higher in the linear system, especially at
frequencies slightly below the anti-resonance. These results run
counter to the expectation that linearization would simplify this
task. These findings may be useful as design considerations for
robot control and human-robot interaction: if humans interact
with robots that exhibit complex dynamics in the frequency
range of human actions, linearizing a nonlinear system may
potentially disturb intuitive and low-effort cooperation.

I. INTRODUCTION

Interaction between humans and robots, traditionally
confined to the industrial sector, is gradually entering the daily
lives of all humans. There is a variety of ways that humans and
robots can interact: Supportive interaction involves providing
humans with tools or materials. An example of this is
homecare robots where direct contact is minimized.
Collaborative interactions include direct or indirect contact
through a common medium that exchanges forces between the
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human and robot [1, 2]. Recent advances in physical human-
robot interaction also include soft robotics [3-5], such as
control of passive elastic joints to improve performance [6],
adaptive control methods to cope with uncertain inertia in
robots with elastic joints [7], and adaptation of mechanical
compliance during task execution [8]. It is noteworthy, though,
that there is to date little understanding of how humans or
robots interact with objects that have internal dynamics. This
study examined human control of objects with passive internal
dynamics.

A key requirement for successful physical interaction is
that the actor, human or robot, can predict the object’s
dynamics. A large body of research, using various methods,
has investigated robot prediction of human behavior, such as
recognition of human actions and gestures using Markov
decision processes [9] and classification algorithms [10].
However, strategies for “hands-on” interaction with complex
actuated objects have yet to receive the same attention. Before
turning to actuated objects, this study examines control of
objects with passive dynamics.

Due to the instantaneous nature of interaction forces when
manipulating an underactuated object, predictability of the
object’s dynamics is paramount. This is especially the case for
complex dynamics, where nonlinearities may lead to chaotic
behavior, which is essentially unpredictable. Previous research
by our group examined human control of a ‘cup of coffee’,
where the sloshing coffee creates complex interaction forces
between hand and cup [11-13]. Using a simplified model of
the real cup of coffee, a 2D cup with a ball sliding inside,
previous research of our group reported evidence that humans
increased the predictability of a complex underactuated object
by exploiting the resonance frequencies of the system [14, 15].
These studies operationalized predictability by mutual
information which quantified the mutual dependence between
the hand and object dynamics. Results from these experiments
showed that predictability was prioritized over low interaction
forces. Three complementary studies operationalized
predictability in terms of dynamic stability, using contraction
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analysis [16-18]. Stability ensures predictability as small
errors are rejected and the system returns to its stable state.
Experimental results supported the hypothesis; human
subjects indeed increased the contraction of their trajectories
with practice.

Following that previous research, this study focused on the
effect of nonlinearity on predictability in human interactive
strategies. Typically, linear object dynamics are more
predictable as they eliminate the potential for chaotic behavior.
Hence, interaction with a linear system should be easier.

To test this hypothesis, this study again used the task of
transporting a ‘cup of coffee’. This everyday task exemplified
the challenge of controlling a nonlinear system with its
complex and potentially chaotic interactive dynamics, not only
between the hand and the cup, but also between the cup and
the liquid. The experimental system simplified the ‘sloshing
coffee’ to the well-known cart-and-pendulum system that
included nonlinear pendulum dynamics. To assess the impact
of this nonlinearity, the dynamics of the cart-and-pendulum
were linearized. The experiment compared how human
performance changed when presented with linear and
nonlinear object dynamics. Both the nonlinear and linearized
systems were implemented in a virtual environment in which
the subjects interacted with visual and haptic interfaces. The
hypothesis was that the linearized object dynamics had more
predictable behavior that would make interaction more
predictable and rendered the manipulation less effortful.

II. EXPERIMENTAL APPARATUS

A. Mechanical model of the task

Transporting the cart-and-pendulum was presented on a
projection screen as a 2D semicircular arc (cup) containing a
freely-moving ball (Fig.1A,B). Assuming that the ball did not
roll, but only slid without friction along the arc, the system was
mathematically identical to the well-studied cart-and-
pendulum system (Fig.1C). The motion of the cup was limited
to a horizontal direction, similar to previous implementations
[11, 13-15]. Although the system was markedly simpler than a
real 3D cup with sloshing coffee, it preserved two important
dynamical properties: it was underactuated and nonlinear.
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Figure 1. Real task and the two models of the task. A) Cup of coffee
interacting with the hand. B) Simplified 2D cup with a ball representing the
sloshing coffee. C) Nonlinear cart-and-pendulum model. D) Equivalent
linearized cart-and-pendulum model with the ball limited to horizontal motion.

B. Nonlinear cart-and-pendulum system

The motion of the cup was simulated as a cart with mass M
and a simple pendulum with point mass m (the ball) attached
to a massless rod of length [ (Fig.1C). The equations of motion

were.

(m+M)X = Fpaut Finter (1)
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where 6, 6 and @ represented the ball kinematics (angular
position, velocity and acceleration): x, X, and ¥ denoted the
cup position, velocity and acceleration, respectively. Fipier
was the interaction force applied to the cup by the hand; and g
was the gravitational acceleration. There were two distinct
forces that determined the motion of the cup: those applied by
the user onto the cup Fj,;., and the reaction forces generated
by the motion of the ball Fp,;. In the experimental
implementation, the values of M, m and [ were set to 2.4kg,
0.6kg and 0.45m, respectively. The angle of the ball 6 was
defined as Odeg at the downward vertical position and positive
values described the counter-clockwise direction.

C. Linearization of the system

The system dynamics were linearized using the small angle
approximation around the downward vertical position of the
pendulum. The linear behavior of the ball was enforced over
the full range of ball motion. As a result, the ball force was
generated by a linear spring; ball position was relabeled to y
(Fig.1D). In the linear case the force of the ball could grow
without bound. The ball force was multiplied by a scaling
factor ¢ to ensure that the magnitude of the ball force was not
too large; in the experiment, ¢ was set to 0.10. The resultant
equations of motion for the linearized dynamic system of the
cup-and-ball were:

(m+ M)x =cmy + Frpeer 3)
o . g
y=X- Ty (4)

D. Experimental apparatus and protocol

Sixteen healthy subjects (24.2 + 2.1yrs, 5 male) were seated
on a chair in front of a back-projection screen positioned 2.0m
in front of them; they interacted with the virtual environment
via a robotic manipulandum (HapticMaster®, Motekforce,
Amsterdam, NL). Details of the robot are reported in [19].
Using their dominant hand, subjects grasped a small knob at
the end of the HapticMaster robot with a three-finger grip to
interact with the simulated cup-and-ball system (Fig.2). The
cup was represented by a semicircular arc with a radius equal
to the pendulum length [; the arc was drawn below the ball so
that the ball appeared to roll in the cup. The ball could not
escape from the cup and would continue swinging around the
cup if the pendular rotation exceeded 90deg. Both the linear
and nonlinear system showed the same ‘cup’ display. Two
green rectangular targets were displayed on the screen as
amplitude targets. The on-screen minimum distance between
the centers of each target was 66.8cm, but the target width
provided a large tolerance, allowing a maximum movement
amplitude of 82.5cm. This permitted subjects to freely move
at their preferred amplitude and frequency. The actual
physical distance traversed with the robot manipulandum
between the target centers was only 16.7cm due to the screen-
scaling factor of 4.



Participants applied force on the knob of the robotic arm
Finter to control the 1D horizontal position of the virtual cup
x. Participants sensed the ball’s reaction force Fj,;; via the
haptic force feedback from the robotic manipulandum [20]. A
custom-written C++ program based on the HapticAPI (Moog
FCS Control Systems) computed the ball kinematics and the
virtual display as well as the feedback force.

III. EXPERIMENTAL PROTOCOL

Subjects were instructed to move the cup back and forth
rhythmically and as comfortably as possible between the two
green target boxes; they were encouraged to freely choose
their amplitude (Fig.2). In the self-paced (SP) trials, subjects
were also free to choose their frequency of oscillations.
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Figure 2. Experimental apparatus and protocol. The participant used the
HapticMaster robot to interact with the virtual cup-and-ball system. The
position of the end-effector of the robot was mapped to the position of the

cup.
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These 16 self-paced trials were interleaved with
metronome-paced (MET) trials set to one of seven different
frequencies: 0.6, 0.7, 0.8, 0.9, 1, 1.1 and 1.2Hz (Fig.2). The
purpose of these paced trials was to expose subjects to a wide
range of frequencies and discourage them from continuing at
their initial choice of frequency. Subjects performed 2
experimental sessions on 2 consecutive days. On one day they
manipulated the nonlinear system, on the other day the
linearized system; the order of the two conditions was
counterbalanced across subjects. Each session comprised 2
self-paced trials followed by 4 metronome-paced trials at 2
randomly selected frequencies, again succeeded by 2 self-
paced trials. This sequence of un-paced and paced trials was
repeated until every MET frequency was presented 4 times;
this summed to a total of 44 trials, each lasting 35s. In each
trial the cup started at the center of the left target box with the
ball positioned at the bottom of the cup. This paper presents
analysis of only the self-paced trials.

A. Estimation of mechanical hand impedance

The interactive dynamics that coupled the hand and object
were approximated by a stiffness & in parallel with a damping
b both set to constant value as shown in Fig.3. This impedance
system served to minimize the errors between the actual cup
trajectory and the cup trajectory desired by the human.
Humans are imperfect actuators and due to the internal
dynamics of the system their cup trajectories were not always
accurate. The impedance served as a simple proportional-

derivative controller to minimize the human error. The
trajectories were simulated by forward dynamics with the
force Fjpzer 0f the hand applying force onto the system. In the
following equation, x is the actual cup position, x4, is the
desired cup position, x is the actual cup velocity, and X4, is
the desired cup velocity.

Finter = — k(x — Xges) — b(X — Xges) ®)

Since the parameters for hand impedance & and b could not
be measured directly, their values were estimated by an
optimization procedure. This procedure identified the best fit
between the simulated and experimental trajectories (see [14]).
To determine the impedance parameters, an optimization
procedure was conducted that tested £ and b values in the
ranges: 50 < k <350 N/m, step size: 2 N/m, 3 <b <53 N-s/m,
step size: 1 N-s/m. The simulations were performed for all
combinations of £ and 5. Each simulation run matched the
frequency of the respective trial. For each trial, those k and b
values were selected that yielded the smallest root mean
square errors rms of the 4 state variables x(t), %(t), 6(t), 6 (t):

rms(x¢-x%)  rms(x€-x5)

. llxell., el
= 2 rms(0¢-6°%) = rms(6¢—6%) ©)
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where superscript s and e denotes simulation and experiment,
respectively. The two impedance parameters were obtained
for each individual trial and then averaged across trials. The
average parameter values were: £=92.9433.8 N/m,
b=38.8+21.4 N-s/m, which were consistent with values from
the literature [21, 22]. Using these estimated parameters in the
coupled model (Fig.3), a frequency response analysis of the
linearized system could be conducted.
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Figure 3. Control model of the cart-and-pendulum system-iwi'th desired
trajectory and hand impedance.

The internal degree of freedom of the cup-and-ball interacted
with the hand impedance to produce two resonant
frequencies. Due to bidirectional interactions, both resonant
frequencies were determined by the subjects’ interactive
dynamics as well as the object dynamics. These two
resonances were separated by an anti-resonance, a dynamic
zero. For both the linear and nonlinear system, the anti-
resonance was independent of subjects’ interactive dynamics,
determined by the natural behavior of the pendulum when the
cart was stationary:
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B. Data processing and analysis

The force applied by the subject and the position, velocity,
and acceleration of the cup and ball were recorded at 120Hz
for offline analysis. To eliminate transients only the last 25s
of each trial were analyzed. All data processing and analysis
was performed in MATLAB v.2017b and Simulink v.9.0 (The
Mathworks, Natick, MA). The force data were smoothed
using a second-order Savitzky-Golay FIR filter.

Each subject’s behavior was characterized by three
measures: 1) frequency of cup oscillation, 2) mutual
information between interaction force and cup motion as a
measure of predictability, 3) magnitude of interaction force
between hand and cup to quantify exerted effort.

Movement frequency: FEach trial’s frequency was
determined by finding the zero crossings of cup velocity x,
calculating the period of each cycle and its inverse, and
averaging the values over the last 25s.

Mutual information: To quantify the predictability of the
object dynamics mutual information M1, a measure of mutual
dependence between two variables, was calculated between
the cup movement and the interaction force Fiy;r-(t). The cup
dynamics was represented by its phase ¢@(t) =
arctan (x/2fmx).

(¢ Finter)
MI ((ﬂ ’ Finter) = .U P((ﬂ ’ Finter) In [m] d(deinter (8)

where p denotes the probability density functions for ¢(t)
and Fi..r(t). The probability density functions were
estimated by linear interpolation of nonlinear Gaussian
smoothing kernels, using Silverman’s method for finding the
parameters [23].

Interaction force: The continuous interaction force was
measured and the root mean square (RMSF) over the trial’s
time series was calculated:

1 T
RMSF = 7 [ Fier* e ©)
0

where T was the 25s duration of the trial.
IV. RESULTS

A. Time series of kinematics

Fig.4 shows exemplary time series of ball kinematics and
interaction forces at three different frequencies: 1) below anti-
resonance, 2) near anti-resonance, and 3) above anti-
resonance, for 15s each. For both linear and nonlinear
systems, the cup and ball positions were in-phase at
frequencies below the anti-resonance, and in anti-phase
relation at frequencies above the anti-resonance. This was
confirmed via forward simulations of the model. Near anti-
resonance the ball and cup kinematics showed erratic
behavior, reflecting the subjects’ inability to achieve
consistent movements due to unpredictable interaction forces.

There were no visible differences between the time-series in
the linear and nonlinear trials, except near the anti-resonance
frequency. There were also no visible differences in the
chosen amplitudes of cup movements.
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Figure 4. Exemplary time series data. Linear system with the cup frequency
below, near, above anti-resonance. Nonlinear system with the cup frequency
below, near, above anti-resonance. For the given parameters of the cup and
ball system in the lower frequency strategy, the cup and ball position are in
phase. For the high frequency strategy, the cup and ball position are in anti-
phase. Near the anti-resonance the system exhibits quasi-chaotic behavior.

B. Histogram of chosen cup frequencies

The histograms in Fig.5 show the preferred frequencies of
cup motions for the self-paced trials for all subjects; each
count represents the mean frequency per trial (bin size=0.08
Hz). The visible bimodal distribution for the linear system
indicates that subjects avoided frequencies around 0.74Hz,
the anti-resonance frequency. In contrast, in the nonlinear
system the preferred frequencies were distributed more
evenly and did not show this ‘dip’. The Hartigan’s dip test, a
statistical test for unimodality, confirms that the linear system
was bimodally distributed (D=0.0509, p=1.4e-4), and the
nonlinear system was not (D=0.0329, p=0.0810), where
p<0.05 indicates significant bimodality. This suggests that the
linear system presented more challenges for interactions as it
appeared to discourage subjects from moving at frequencies
close to the anti-resonance.

To interpret the frequency preferences of subjects in the
linear system, a frequency response was calculated using the
mean estimated impedance parameters (k=92.9 N/m, b=38.8
N-s/m). The cup amplitude/input force was overlaid on the
histogram (not to scale). The frequency response of the cup
movement matched the frequency peaks in the histogram for
the linear system, although the model peaks were not as



pronounced (Fig.5A,B). This analysis was not conducted for
the nonlinear system as a more complex, amplitude-
dependent response is observed.

C. Mutual information and predictability

Fig.6A shows the mutual information values for each trial
plotted against its mean frequency for all 16 subjects. The
pattern of mutual information across frequencies was similar
for the linear and nonlinear systems, showing a marked
decrease of MI at the anti-resonance frequency. However, in
the nonlinear system there were a few trials with frequencies
close to the anti-resonance. In contrast, in the linear system
subjects completely avoided moving at the anti-resonance.
Especially at frequencies slightly higher than 0.74Hz, the M1
values were very low indicating that hand-object dynamics
was more complex and less predictable. Note that these data
do not support the hypothesis that the linear system provided
the subject with more predictable dynamics.
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Figure 5. Histogram of chosen frequencies and the frequency response
calculated from the model. A) Chosen cup frequencies in the linear system.
B) Chosen cup frequencies in the nonlinear system. C) Histogram of the
linear system with the frequency response from the coupled model (the hand
impedance coupled to the cup and ball system).

D. Interaction force and effort

Fig.6B shows the root mean square of the continuous
interaction force RMSF as a measure of the exerted effort. The
RMSF value of each trial was plotted versus its mean
frequency for all 16 subjects. In the linear system, RMSF
steeply increased from the lower frequency range to the anti-
resonance at 0.74Hz. In contrast, in the nonlinear system,
RMSF did not show the same sensitivity to the frequency; it
only gradually increased at the higher frequencies,
independent of the anti-resonance. This pattern was counter
to the expectation that subjects could lower their interaction
forces in the linear system.

LINEAR NONLINEAR

] s ] A)
1.6 . e iy Myt .
-y h 1 e
_12 5,| "‘e." :.:' §'.§‘
) H \"‘.
0.8 B .ﬁﬁ
0.4 Ll : }
5 i B}
Z20 N
o i o |
2 HIRE" | 3l
210 T . P
...-'F | i . 5 :;; 4_{&3;."‘.’-" e
0 . . , I ;
0.4 0,8 1.2 1604 0.8 1.2 1.6
Frequency {Hz} Frequency (Hz)

Figure 6. Mutual information and root mean square interaction force (RMSF)
for all 16 subjects. A) Mutual information between the interaction force and
object kinematics for the linear and nonlinear system, plotted across chosen
frequencies. Each dot represents a trial. B) RMSF for the linear and nonlinear
system across the chosen frequencies. The dotted vertical lines indicate the
anti-resonance frequency.

60
40

LINEAR
F o (N)

NONLINEAR
Fater (N}
<

20 24 28 32 36 40
Time (s)
Figure 7. Zero dynamics force solution for the linear and nonlinear system
both at 0.74 Hz. The time series starts 20s after the beginning of the trial to
eliminate the initial transients.

E. Anti-resonance and zero dynamics

In both the linear and nonlinear cases at anti-resonance,
reaction forces from the pendulum induce zero dynamics, a
time-history of non-zero input force that yields zero cup
motion. Why did the linear system seem to present more
difficulties at the anti-resonance frequency? To address this
question the two input force profiles that resulted in zero
output motion of the cup were computed. Fig.7 shows that the
zero-dynamics profile for the linear system was a simple
sinusoidal function, whereas for the nonlinear system the
input force had more than one frequency component. As the
cup movements were instructed to be approximately
sinusoidal, the zero-dynamics condition could be relatively
easily met in the linear system, leading to a significant
disruption or even cancelling of the intended movement.



Also, in the linear system the input that resulted in the zero-
dynamics condition had much higher force values relative to
the zero-dynamics condition in the nonlinear case. Therefore,
subjects may have avoided the anti-resonance because Fpay at
0.74Hz transmitted relatively high forces onto the hand. In
contrast, in the nonlinear system the zero-dynamics profile
was easier to miss as it was less likely that subjects would
follow the more complex profile for any length of time to
experience the disruptive zero dynamics. With the task-
instructed sinusoidal force subjects could be at, or close to this
frequency without encountering the nulling effect.

V. DISCUSSION

This study examined strategies adopted by humans when
manipulating objects with both linear and nonlinear internal
dynamics. The hypothesis was that when humans
manipulated objects with linear dynamics the interactions
would be more predictable and less effortful. To test human
behavior in these two cases the experimental instruction did
not specify frequency or amplitude, but rather examined the
range of preferred movements that humans adopted. Counter
to the hypothesis, the interactions were more effortful in the
linear system. Also contrary to prior belief, the linear system
afforded only a restricted range of frequencies due to its
disruptive zero dynamics and relatively high forces at the anti-
resonance. Therefore, for human-robot cooperation, linear
dynamics may not necessarily simplify interaction.

The frequencies that subjects adopted showed a clear
bimodal distribution in the linearized system, while in the
nonlinear system participants visited the whole range of
frequencies, including the system’s dynamic zero, or anti-
resonance. This highlighted that the ‘simple’ dynamics of the
linear system actually may have made the system more
difficult to manipulate for the human participant. The zero-
dynamics condition is an important consideration in the
design and analysis of nonlinear control systems, e.g. in
feedback linearization. The nonlinear system required a more
complex interaction force to achieve its zero-dynamic state.
Subsequently, subjects could move the cup at anti-resonance
in the nonlinear system because they were unlikely to match
the interaction force profile that would cause zero cup motion.

Note that a previous study on the same experimental
paradigm reported a bimodal distribution of frequencies for
the nonlinear system [14]. However, in the previous study the
amplitude of cup movement was fixed, which limited the
movement frequency choices above and below the anti-
resonance frequency.

It is important to note that the two resonances were
generated by the coupled system that included the impedance
of the hand. Thus, the location of these resonant frequencies
could be influenced by the subjects’ movements and their
chosen impedances. Note, however that anti-resonance is
determined solely by the natural behavior of the pendulum.
For the simulations reported here, the impedance values were
obtained from an optimization procedure estimating the best

fit to the state variables of the system [14]. The frequency
response was calculated for the mean impedance parameters.
As the parameters tended to be different for the lower and
higher frequencies, a better fit on the peaks of the histogram
may be obtained if two different response functions were
calculated for the lower and higher frequencies [14].

One corollary of the hypothesis about predictability was
that the human interaction force would be less effortful when
interacting with the linear model. The results did not support
this expectation. In the nonlinear case, the ball force was
limited by its periodic dependence on ball angle. The
linearized model had no comparable limitation. The
linearized spring forces were not bounded by the circular
motion of the pendulum as in the nonlinear model.

In summary, the main expectations of this study were that
linearity affords less effortful performance and easier
prediction of the system dynamics. Counter to expectations,
movements with the linearized system created relatively
higher forces, especially at the anti-resonant frequency.
Assessing predictability by mutual information, the metric
showed that, contrary to prior assumptions, there were no
clear differences between the linear and the nonlinear system
except at anti-resonance. Simulations confirmed that for the
linear system a simple sinusoidal input force at the anti-
resonant frequency would cause the zero-dynamic state. As
such a simple sinusoid coincided with the task-instructed
movement, subjects avoided moving at the anti-resonant
frequency.

VI. CONCLUSION

This study investigated the strategies that human
participants adopted to interact with a non-rigid object with
complex dynamics during a rhythmic manipulation task.
Specifically, the study examined how the system’s
nonlinearity contributed to the challenge of controlling a
complex object by contrasting the human’s interaction with
nonlinear and linear systems. Contrary to our hypothesis,
linearized object dynamics were neither more predictable, nor
less effortful to interact with. In the linear system the chosen
cup movements clearly avoided the zero-dynamic frequency
which restricted the range of interaction frequencies.

These results suggest that it may not always be necessary
to linearize haptic feedback in human-robot interaction.
Although enforcing linear behavior might be useful for
certain controller designs, e.g. feedback linearization, this
may potentially restrict interactive behavior, especially if
dynamic zeros coincide with the frequency range of human
actions. These results may inform the design of a range of
robotic  applications  including assisted  industrial
manipulation, collaborative assembly, home assistance and
rehabilitation.
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