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Abstract

Strong inductive biases allow children to learn in fast and adaptable ways. Children
use the mutual exclusivity (ME) bias to help disambiguate how words map to
referents, assuming that if an object has one label then it does not need another. In
this paper, we investigate whether or not vanilla neural architectures have an ME
bias, demonstrating that they lack this learning assumption. Moreover, we show
that their inductive biases are poorly matched to lifelong learning formulations
of classification and translation. We demonstrate that there is a compelling case
for designing task-general neural networks that learn through mutual exclusivity,
which remains an open challenge.

1 Introduction

Children are remarkable learners, and thus their inductive biases should interest machine learning
researchers. To help learn the meaning of new words efficiently, children use the “mutual exclusivity”
(ME) bias — the assumption that once an object has one name, it does not need another [1] (Figure 1).
In this paper, we examine whether or not vanilla neural networks demonstrate the mutual exclusivity
bias, either as a built-in assumption or as a bias that develops through training. Moreover, we examine
common benchmarks in machine translation and object recognition to determine whether or not a
maximally efficient learner should use mutual exclusivity.

When children endeavour to learn a new word, they rely on inductive biases

to narrow the space of possible meanings. Children learn an average of Show me the “dax”
about 10 new words per day from the age of one until the end of high school

[2], a feat that requires managing a tractable set of candidate meanings. A ’ )
typical word learning scenario has many sources of ambiguity and uncer- Q 4
tainty, including ambiguity in the mapping between words and referents.

Children hear multiple words and see multiple objects within a single scene,
often without clear supervisory signals to indicate which word goes with  Figure 1: The mutual
which object [3]. exclusivity task used in

.. . L cognitive development re-
The mutual exclusivity assumption helps to resolve ambiguity in how words (.~ [1]. Children tend

map to their referents. Markman and Watchel [1] examined scenarios like ¢, .scociate the novel
Figure 1 that required children to determine the referent of a novel word. word (“dax”) with the
For instance, children who know the meaning of “cup” are presented with  novel object (right).

two objects, one which is familiar (a cup) and another which is novel (an

unusual object). Given these two objects, children are asked to “Show me a

dax,” where “dax” is a novel nonsense word. Markman and Wachtel found that children tend to pick
the novel object rather than the familiar one. Although it is possible that the word “dax’ could be
another word for referring to cups, children predict that the novel word refers to the novel object —
demonstrating a “mutual exclusivity” bias that familiar objects do not need another name. This is only
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a preference; with enough evidence, children must eventually override this bias to learn hierarchical
categories: a Dalmatian can be called a “Dalmatian,” a “dog”, or a “mammal” [1, 4]. As an often
useful but sometimes misleading cue, the ME bias guides children when learning the words of their
native language.

It is instructive to compare word learning in children and machines, since word learning is also a
widely studied problem in machine learning and artificial intelligence. There has been substantial
recent progress in object recognition, much of which is attributed to the success of deep neural
networks and the availability of very large datasets [5]. But when only one or a few examples of a
novel word are available, deep learning algorithms lack human-like sample efficiency and flexibility
[6]. Insights from cognitive science and cognitive development can help bridge this gap, and ME
has been suggested as a psychologically-informed assumption relevant to machine learning [7]. In
this paper, we examine vanilla, task-general neural networks to understand if they have an ME bias.
Moreover, we analyze whether or not ME is a good assumption in lifelong variants of common
translation and object recognition tasks.

2 Related work

Children utilize a variety of inductive biases like mutual exclusivity when learning the meaning of
words [2]. Previous work comparing children and neural networks has focused on the shape bias —
an assumption that objects with the same name tend to have the same shape, as opposed to color or
texture [8]. Children acquire a shape bias over the course of language development [9], and neural
networks can do so too, as shown in synthetic learning scenarios [10, 11] and large-scale object
recognition tasks [12] (see also [13] and [14] for alternative findings). This bias is related to how
quickly children learn the meaning of new words [9], and recent findings also show that guiding
neural networks towards the shape bias improves their performance [15]. In this work, we take initial
steps towards a similar investigation of the ME bias in neural networks. Compared to the shape bias,
ME has broader implications for machine learning systems; as we show in our analyses, the bias is
relevant beyond object recognition.

Closer to the present research, previous cognitive models of word learning have found ways to
incorporate the ME bias [16, 17, 18, 19, 20], although in ways that do not generalize to training deep
networks. Other work in natural language processing for cross-situational learning has incorporated
ME directly into loss functions [21, 22, 23] or augmented the final choice function in ways that do not
influence the learning/ training process [23, 24]. Although related to our aims, it is not straightforward
to apply these approaches outside of cross-situational word learning, and the choice methods cannot
alone make training/ learning more efficient. Nevertheless, we see these results as important and
encouraging, raising the possibility that ME could aid in training vanilla deep learning systems.

3 Do neural networks reason by mutual exclusivity?

In this section, we investigate whether or not vanilla neural architectures have a mutual exclusivity
bias. Paralleling the developmental paradigm [1], ME is analyzed by presenting a novel stimulus
(““Show me the dax”) and asking models to predict which outputs (meanings) are most likely. The
strength of the bias is operationalized as the aggregate probability mass placed on the novel rather
than the familiar meanings.

Our analyses relate to classic experiments by Marcus on whether neural networks can generalize
outside their training space [25, 26]. Marcus showed that a feedforward autoencoder trained on
arbitrary binary patterns fails to generalize to an output unit that was never activated during training.
Our aim is to study whether standard architectures can recognize and learn a more abstract pattern
— a perfect one-to-one mapping between input symbols and output symbols. Specifically, we are
interested in model predictions regarding unseen meanings given a novel input. We also test for
ME using modern neural networks in two settings using synthetic data: classification (feedforward
classifiers) and translation (sequence-to-sequence models; as reported in Appendix A).
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Figure 2: Evaluating mutual exclusivity in a feedforward (a) and seq2seq (b) neural network. (a) After training
on a set of known objects, a novel label (“dax”) is presented as a one-hot input vector. The network maps this
vector to a one-hot output vector representing the predicted referent, through an intermediate embedding layer
and an optional hidden layer (not shown). A representative output vector produced by a trained network is
shown, placing almost all of the probability mass on known outputs. (b) A similar setup for mapping sequences
of labels to their referents. During the test phase a novel label “dax” is presented and the ME Score at that output
position is computed.

3.1 Classification

Synthetic data. We consider a simple one-to-one mapping task inspired by Markman and Watchel
[1]. Translating this into a synthetic experiment, input units denote words and output units denote
objects. Thus, the dataset consists of 100 pairs of input and output patterns, each of which is a one-hot
vector of length 100. Each input vector represents a label (e.g., ‘hat’, ‘cup’, ‘dax’) and each output
vector represents a possible referent object (meaning). Figure 2a shows the input and output patterns
for the ‘dax’ case, and similar patterns are defined for the other 99 input and output symbols. A
one-to-one correspondence between each input symbol and each output symbol is generated through a
random permutation, and there is no structure to the data beyond the arbitrary one-to-one relationship.

Models are trained on 90 name-referent pairs and evaluated on the remaining 10 test pairs. No model
can be expected to know the correct meaning of each test name — there is no way to know from
the training data — but several salient patterns are discoverable. First, there is a precise one-to-one
relationship exemplified by the 90 training items; the 10 test items can be reasonably assumed to
follow the same one-to-one pattern, especially if the network architecture has exactly 10 unused input
symbols and 10 unused output symbols. Second, the perfect one-to-one relationship ensures a perfect
ME bias in the structure of the data. Although the learner does not know precisely which new output
symbol a new input symbol refers to, it should predict that the novel input symbol will correspond to
one of the novel output symbols. An ideal learner should discover that an output unit with a known
label does not need another — in other words, it should utilize ME to make predictions.

Mutual exclusivity. We ask the neural network to “Show me the dax” by activating the “dax” input
unit and asking it to select amongst possible referents (similar to Figure 1). The network produces a
probability distribution over candidate referents (see Figure 2a), and can make relative (two object)
comparisons by isolating the two relevant scores. To quantify the overall propensity toward ME, we
define an “ME score” that measures the aggregate probability assigned to all of the novel output
symbols as opposed to familiar outputs, corresponding to better performance on the classic forced
choice ME task. Let us denote the training symbol by ), drawn from the data distribution (X', ) ~ D
and the held out symbols )’ drawn from (X, )’) ~ D’. The mutual exclusivity score is the sum
probability assigned to unseen output symbols )’ when shown a novel input symbol = € X’

1
ME Score = 2 Z Z P(fret(x) = ylai), ey

(%4,y:)€D’ yeY”’

averaged over each of the test items. An ideal learner that has discovered the one-to-one relationship
in the synthetic data should have a perfect ME score of 1.0. In Figure 2a, the probability assigned to
the novel output symbol is 0.01 and thus the corresponding ME Score is 0.01. The challenge is to get
a high ME score for novel (test) items while also correctly classifying known (training) items.
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Figure 3: Evaluating mutual exclusivity on synthetic categorization tasks. ME Score (solid blue) and the
cross-entropy loss (solid red) are plotted against the epochs of training. The configurations in the settings shown
were: (a) Results for a model with an embedding, hidden, and classification layers, (b) Results for a model with
embedding and classification layers trained with a weight decay factor of 0.001, and (c) Results for a model with
an embedding and classification layer trained with an entropy regularizer.

Neural network architectures. A wide range of neural architectures are evaluated on the mutual
exclusivity test. We use an embedding layer to map the input symbols to vectors of size 20 or
100, followed optionally by a hidden layer, and then by a 100-way softmax output layer. The
networks are trained with different activation functions (ReLLUs [27], TanH, Sigmoid), optimizers
(Adam [28], Momentum, SGD), learning rates (0.1,0.01,0.001) and regularizers (weight decay,
batch-normalisation [29], dropout [30], and entropy regularization (see Appendix B.1)). The models
are trained to maximize log-likelihood. All together, we evaluated over 400 different models on the
synthetic ME task.

Results. Several representative training runs with different ar-
chitectures are shown in Figure 3. An ideal learner that has
discovered the one-to-one pattern should have a mutual exclu- vanilla
sivity of 1; for a novel input, the network would assign all the e,
probability mass to the unseen output symbols. In contrast, ntropy
none of the configurations and architectures tested behave in ~ Resularized
this way. As training progresses, the mutual exclusivity score  mitial score
(solid blue line; Figure 3) tends to fall along with the training
loss (red line). In fact, almost all of the networks acquire a

strong anti-mutual exclusivity bias, transitioning from an initial oo ME Score e
neutral bias to placing most or all of the probability mass on

familiar outputs (seen in Figure 4). An exception to this pat- Figure 4: Ideal and untrained ME
tern is the entropy regularized model, which maintains a score ~scores compared with the ME scores
equivalent to an untrained network. In general, trained models ©f @ few learned models.

strongly predict that a novel input symbol will correspond to a

known rather than unknown output symbol, in contradiction to ME and the organizing structure of
the synthetic data.

Ideal

Further informal experiments suggest our results cannot be reduced to simply not enough data: these
architectures do not learn this one-to-one regularity regardless of how many input/output symbols are
provided in the training set. Even with thousands of training examples demonstrating a one-to-one
pattern, the networks do not learn this abstract principle and fail to capture this defining pattern in
the data. Other tweaks were tried in an attempt to induce ME, including eliminating the bias units
or normalizing the weights, yet we were unable to find an architecture that reliably demonstrated
the ME effect. A similar pattern of results was observed in recurrent seq2seq networks for various
standard trainind settings (see Appendix A).

3.2 Discussion

The results show that vanilla neural networks and recurrent seq2seq neural networks fail to reason by
mutual exclusivity when trained in a variety of typical settings. The models fail to capture the perfect
one-to-one mapping (ME bias) seen in the synthetic data, predicting that new symbols map to familiar
outputs in a many-to-many fashion. Although our focus is on neural networks, this characteristic is
not unique to this model class. We posit it more generally affects any discriminative model class
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Figure 5: Analysis of mutual exclusivity in machine translation datasets. The plots show the conditional
probability of encountering a new word in the target sentence, if a new word is present in the source sentence
(y-axis; red line). Also plotted is the base rate of encountering a new target word (blue line). These quantities
are measured as at different points during training (x-axis). Errors bars are standard deviations.

trained to maximize log-likelihood (like multi-class softmax regression, decision trees, etc.). In a
trained network, the optimal activation value for an unused output node is zero: for any given training
example, increasing value of an unused output simply reduces the available probability mass for the
target output. Using other loss functions could result in different outcomes, but we also did not find
that weight decay and entropy regularization of reasonable values could fundamentally alter the use
of novel outputs. In the next section, we investigate if the lack of ME could hurt performance on
common learning tasks such as machine translation and image classification.

4 Should neural networks reason by mutual exclusivity?

Mutual exclusivity has implications for a variety of common learning settings. Mutual exclusivity
arises naturally in lifelong learning settings, which more realistically reflect the “open world” charac-
teristics of human cognitive development. Unlike epoch-based learning, a lifelong learning agent
does not assume a fixed set of concepts and categories. Instead, new concepts can be introduced at
any point during learning. An intelligent learner should be sensitive to this possibility, and ME is one
means of intelligently reasoning about the meaning of novel stimuli. Children and adults learn in an
open world with some probability of encountering a new class at any point, resembling the first epoch
of training a neural net only. Moreover, the distribution of categories is neither uniformly distributed
nor randomly shuffled [31]. To simulate these characteristics, we construct lifelong learning scenarios
using standard benchmarks as described below.

4.1 Machine translation

In this section, we investigate if mutual exclusivity could be a helpful bias when training machine
translation models in a lifelong learning paradigm. From the previous experiments, we know that
the type of sequence-to-sequence (seq2seq) models used for translation acquire an anti-ME bias
over the course of training (see Appendix A). Would a translation system benefit from assuming
that a single word in the source sentence maps to a single word in the target sentence, and vice-
versa? This assumption is not always correct since synonymy and polysemy are prevalent in natural
languages, and thus the answer to whether or not ME holds is not absolute. Instead, we seek to
measure the degree to which this bias holds in lifelong learning on real datasets, and compare this
bias to the inductive biases of models trained on these datasets. The data for translation provides an



Name Languages Sentence Pairs ~ Vocabulary Size

IWSLT’14 [32] Eng.-Vietnamese ~133K 17K(en), 7K(vi)
WMT’ 14 [33] Eng.-German ~4.5M 50K(en), 50K(de)
WMT’15 [34] Eng.-Czech ~15.8M 50K(en), 50K(cs)

Table 1: Datasets used to analyze ME in machine translation.

approximately natural distribution over the frequency at which different words are observed (there
are words that appear much more frequently than the others). This allows us to use a single pass
through the dataset as a proxy for lifelong translation learning.

Datasets. We analyze three common datasets for machine translation, each consisting of pairs of
sentences in two languages (see Table 1). The vocabularies are truncated based on word frequency in
accordance with the standard practices for training neural machine translation models [32, 33, 34].

Mutual exclusivity. There are several ways to operationalize mutual exclusivity in a machine
translation setting. Mutual exclusivity could be interpreted as whether a new word in the source
sentence (“Xylophone” in English) is likely to be translated to a new word in the target sentence
(“Xylophon” in German), as opposed to a familiar word. Since the word alignments are difficult
to determine and not provided with the datasets, we instead measure a reasonable proxy: if a new
word is encountered in the source sequence, is a new word also encountered in the target sentence?
For a source sentence S and an arbitrary novel word Ng, and a target sentence 7" and a novel word
Nr, we measure a dataset’s ME Score as the conditional probability P(Ny € T|Ng € 5). A
hypothetical translation model could compute whether or not Ng € S by checking if the present word
is absent from the vocabulary-so-far during the training process. Thus this conditional probability is
an easily-computable cue for determining whether or not a model should expect a novel output word.
For the three datasets, we consider both forward and backward translation to get six scenarios for
analysis. The probability P(Np € T|Ng € S) is estimated for a sample of 100 randomly shuffled
sequences of the dataset sentence pairs. See Appendix B.3 for details on calculating the base rate
P (NT € T)

Results and Discussion. The mea-

sures of conditional probability in =g = "o e T e TS T R T Encs CsEn
the six scenarios are shown in Ta-

ble 2. There is a consistent pat- 0.9 03K 2K 4K 3K 4K 3K
tern through the trajectory of early 0.5 3K 40K 37K 30K 40K 30K
learning: the conditional probability 0.1 90K 120K 120K 140K 130K 150K

P(Np € T|Ng € S) is high initially

for thousands of initial sentence pre- Table 2: Number of sentences after which the ME Score P(NT €
sentations, but then wanes as the net- T'|Ns € S) falls below threshold.

work encounters more samples from

the dataset. For a large part of the initial training, a seq2seq model would benefit from predicting that
previously unseen words in the source language are more likely to map to unseen words in the target
language. Moreover, this conditional probability is always higher than the base rate of encountering
a new word, indicating that conditioning on the novelty of the input provides additional signal for
predicting novelty in the output. Nevertheless, even the base rate suggests that a model should expect
novel words with some regularity in our settings. This is in stark contrast to the synthetic results
showing that seq2seq models quickly acquire an anti-ME assumption (see Appendix A), and their
expectation of mapping novel inputs to novel outputs decays rapidly as training progresses (Appendix
Figure 8).

4.2 TImage classification

Similar to translation, we examine if object classifiers would benefit from reasoning by mutual
exclusivity during training processes that mirror lifelong learning. To study this, when selecting
an image for training, we sample the class from a power law distribution (see Appendix B.2) such
that the model is more likely to see certain classes [31]. Ideally, we would model the probability
that an object belongs to a novel class based on its similarity to previous samples seen by the model
(e.g., outlier detection). Identifying that an image belongs to a novel class is non-trivial, and instead



040 I — = — Figure 6: Analysis of mutual ex-
€ —— Classifier 2014 — Classifier e o : '
037 | —— Data E —— Data clusivity in classification datasets.
g oo 2 0'10 The plots show the probability
g T that a new input image belongs
0.08
200 2 to an unseen class P(N|t), as a
n 0 0.06 . .
801 ki function of the number of images
Y010 L 0.04 . ..
z z t seen so far during training (blue).
coo coo This measure is contrasted with
000 e #0600 60300 80600 100000 120000 140000 160900 0.00 4 a0 400000 600000 800000 1003000 1203000 1405000 the ME score of a neural network
Number of samples seen Number of samples seen . . .
classifier trained through a similar
. run of the dataset (orange).
(a) Omniglot (b) Imagenet ( ge)

we calculate the base rate for classifying an image as “new” while a learner progresses through the
dataset. The set of classes not seen by the model are referred to as “new’ here. This measure can
be seen as a lower bound on the usefulness of ME through the standard training process, since this
calculation assumes a blind learner that is unaware of any novelty signal present in the raw image.
Additionally, we also train a model using an oracle which tells the model if an input image is from a
“new” class. Using the signal from the oracle, we implement an ME rule by adding a bias to the “new”
classes. This setup allows us to understand the utility of the ME bias in the situation where the model
is capable of identifying an input as “new”.

Datasets. This section examines the Omniglot dataset [35] and the ImageNet dataset [36]. The
Omniglot dataset has been widely used to study few-shot learning, consisting of 1623 classes of
handwritten characters with 20 images per class. The ImageNet dataset consists of about 1.2 million
images from 1000 different classes.

Mutual exclusivity. To measure ME throughout the training
process, we examine if an image encountered for the first time

while training belongs to a class that has not been seen before. 09 T E‘i"a:i:sl.

This is operationalized as the probability of encountering an 181 — pias=5.

image from a new class N as a function of the number of im-  * MN’
ages seen so far ¢, P(N|t) (see Appendix B.4). This analysis %"

is agnostic to the content of the image and whether or notitisa = * M ‘
repeated item; it only matters whether or not the class is novel. b W‘M&M
As before, the analysis is performed using ten random runs Z

through the dataset. We contrast the statistics of the datasets

0 200 400 600 800 1000

by comparing them to the ME Score (Equation 1) of neural Classes Seen
network classifiers trained on the datasets. The probability o
mass assigned to the unseen classes by the network is recorded ~Figure 7: Classification loss for when

after each optimizer step, as computed using Equation 1. @ “hew” class is first observed during
online learning on Omniglot, for vary-

For Omniglot, a convolutional neural network was trained on ing values of the oracle ME bias. Error
1623-way classification. The architecture consists of 3 convo- bars are standard deviations.

lutional layers (each consisting of 5 X 5 kernels and 64 feature

maps), a fully connected layer (576 x 128) and a softmax clas-

sification layer. It was trained with a batch size of 16 using an Adam optimizer and a learning rate of
0.001. For Imagenet, a Resnet18 model [37] was trained on 1000-way classification with a batch size
of 256, using an Adam optimizer and a learning rate of 0.001.

If an architecture were capable of reason-
ing by ME, what would be the expected
benefits? To answer this question, we im-

Score Omniglot Omniglot Imagenet Imagenet

. Classifier Classifier
plement an ME rule in the presence of an
oracle, adding a constant bias to the logits 0.2 24,304 2,144 1,280 2,048
of the unseen classes whenever the oracle 0.1 99,248 22912 8,448 3,072

tells the model that the input is “new”. We 0.05 160,608 43,328 111,872 8,960

compare the classification loss for the in-

stances where a new class is observed. We Table 3: Number of images after which the ME Score falls
do this for a range of bias values. The ar- Pbelow threshold.

chitecture in these experiments consisted

of 3 convolutional layers (each consisting of 5 x 5 kernels and 64 feature maps), a fully connected




layer (576 x 128) and a softmax classification layer. When an input from an unseen classs was
observed, a bias was added to the pre-softmax activations. The results presented are over 10 runs
with different initializations.

Results and Discussion. The results are summarized in Figure 6 and Table 3. The probability that a
new image belongs to an unseen class P(N|t) is higher than the ME score of the classifier through
most of the learning phase. Comparing the statistics of the datasets to the inductive biases in the
classifiers, the ME score for the classifiers is substantially lower than the baseline ME measure in
the dataset, P(N|t) (Table 3). For instance, the ImageNet classifier drops its ME score below 0.05
after about 8,960 images, while the approximate ME measure for the dataset shows that new classes
are encountered at above this rate until at least 111,000 images. These results suggest that neural
classifiers, with their bias favoring frequent rather than infrequent outputs for novel stimuli, are not
well-suited to lifelong learning challenges where such inferences are critical. Although we examined
classifiers trained in an online fashion, we would expect similar results when we train them using
replay or epoch-based training setups, where repeated presentation of past examples would only
strengthen the anti-ME bias. These classifiers are hurt by their lack of ME and their failure to consider
that new stimuli likely map to new classes.

To further quantify the benefits of ME, we analyze a model trained with an oracle ME rule (see Figure
7). The ME model has lower loss during online predictions when the added bias is increased to 5 from
0 (a vanilla network). For larger values, we do not observe any additional changes in the observed
loss. We notice that the model is assisted by the ME rule. Ideally, a learning algorithm should be
capable of leveraging the image content, combined with its own learning maturity, to decide how
strongly it should reason by ME. Instead, typical models and training procedures do not provide these
capabilities and do not utilize this important inductive bias observed in cognitive development.

5 General Discussion

Children use the mutual exclusivity (ME) bias to learn the meaning of new words efficiently, yet
vanilla neural nets trained to maximize likelihood learn very differently. Our results show that they
lack the ability to reason with ME, including feedforward networks and recurrent seq2seq models
with common regularizers. Beyond simply lacking this bias, these networks learn an anti-ME bias,
preferring to map novel inputs to familiar and frequent (rather than unfamiliar) output classes. Our
results show that these characteristics are poorly matched to more realistic lifelong learning scenarios
where new classes can appear at any point, as demonstrated in the experiments presented here. Neural
nets may be currently stymied by their lack of ME bias, ignoring a powerful assumption about the
structure of learning tasks.

ME is relevant elsewhere in machine learning. Recent work has contrasted the ability of humans
and neural networks to learn compositional instructions from just one or a few examples, finding
that neural networks lack the ability to generalize systematically [38, 7]. The authors suggest that
people rely on ME in these learning situations [7], and thus few-shot learning approaches could be
improved by utilizing this bias as well. In our analyses, we show that NN tend to learn the opposite
bias, preferring to map novel inputs to familiar outputs. More generally, ME might be fruitfully
generalized from applying to “novel versus familiar” stimuli to instead handling “rare versus frequent”
stimuli. The utility of reasoning by ME could be extended to early stages of epoch based learning
too. For example, during epoch-based learning, neural networks take longer to acquire rare stimuli
and patterns of exceptions [39], often mishandling these items for many epochs by mapping them to
familiar responses. We posit that the ME assumption will be increasingly important as learners tackle
more continual, lifelong, and large-scale learning challenges [40].

Mutual exclusivity is an open challenge for deep neural networks, but there are promising avenues
for progress. The ME bias will not be universally helpful, but it is equally clear that the status quo is
sub-optimal: models should not have a strong anti-ME bias regardless of the task and dataset demands.
Ideally, a model would decide autonomously how strongly to use ME (or not) based on the demands
of the task. For instance, in our synthetic example, an ideal learner would discover the one-to-one
correspondence and use this perfect ME bias as a meta-strategy, e.g., [41, 42]. If the dataset has more
many-to-one correspondences, it would adopt another meta-strategy. This meta-strategy could even
change depending on the stage of learning, yet such an approach is not currently available for training
models. For instance, the meta learning model of Santoro et al. [43] seems capable of learning an
ME bias, although it was not specifically probed in this way. Recent work by Lake [44] indicates
that DNNs can make the ME inference if trained explicitly to do so, showing these abilities are



within the repertoire of modern tools. While promising, these recent demonstrations of ME in neural
models show ME only when it is built-in or trained explicitly on tasks such as Markman’s behavioral
ME paradigm. These setups are unsuitable for large-scale learning and there are no compelling
demonstrations that these ME results aid downstream learning, as occurs in cognitive development.
A general solution would improve zero-shot predictions and the speed of learning after just a few
examples, by mitigating the strong bias to familiar responses.

In conclusion, vanilla deep neural networks do not naturally reason by mutual exclusivity. Two
leading accounts in cognitive development posit ME as either an innate constraint or a bias learned
through experience [45], but vanilla DNNs trained with MLE seem inconsistent with both. Designing
them to use ME could lead to faster and more flexible learners. There is a compelling case for
building models that learn through mutual exclusivity.
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Broader Impact

Our challenge highlights how biases learned by a model fail to align with the structure of the data.
A model that successfully reasons with ME, through either prior knowledge or learning via a meta-
strategy, would better on tail-end distributions where models map rare examples to frequent ones. By
representing the structure of the data more accurately allows for quicker generalization, there is also
potential for models to learn a wider range of undesirable biases present in the training data.
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