
MatRaptor: A Sparse-Sparse Matrix Multiplication

Accelerator Based on Row-Wise Product

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang

School of ECE, Cornell University

Email: {nks45, hj424, jl3952, dha7, zhiruz}@cornell.edu

Abstract—Sparse-sparse matrix multiplication (SpGEMM) is a
computation kernel widely used in numerous application domains
such as data analytics, graph processing, and scientific comput-
ing. In this work we propose MatRaptor, a novel SpGEMM
accelerator that is high performance and highly resource efficient.
Unlike conventional methods using inner or outer product as
the meta operation for matrix multiplication, our approach
is based on row-wise product, which offers a better trade-
off in terms of data reuse and on-chip memory requirements,
and achieves higher performance for large sparse matrices. We
further propose a new hardware-friendly sparse storage format,
which allows parallel compute engines to access the sparse data in
a vectorized and streaming fashion, leading to high utilization of
memory bandwidth. We prototype and simulate our accelerator
architecture using gem5 on a diverse set of matrices. Our
experiments show that MatRaptor achieves 129.2× speedup over
single-threaded CPU, 8.8× speedup over GPU and 1.8× speedup
over the state-of-the-art SpGEMM accelerator (OuterSPACE).
MatRaptor also has 7.2× lower power consumption and 31.3×

smaller area compared to OuterSPACE.

Index Terms—sparse matrix multiplication, sparse formats,
spatial hardware

I. INTRODUCTION

Sparse-sparse matrix-matrix multiplication (SpGEMM) is a

key computational primitive in many important application do-

mains such as graph analytics, machine learning, and scientific

computation. More concretely, SpGEMM is a building block

for many graph algorithms such as graph contraction [14], re-

cursive formulations of all-pairs shortest-paths algorithms [9],

peer pressure clustering [44], cycle detection [60], Markov

clustering [50], triangle counting [5], and matching algo-

rithms [41]. It has also been widely used in scientific com-

puting such as multigrid interpolation/restriction [8], Schur

complement methods in hybrid linear solvers [57], colored

intersection searching [23], finite element simulations based

on domain decomposition [19], molecular dynamics [21], and

interior point methods [24].

SpGEMM often operates on very sparse matrices. One

example is the Amazon co-purchase network [26], which is a

graph where each product is represented as a node and the like-

lihood of two products being bought together is represented as

an edge. This network consists of 400K nodes and 3.2M edges

forming an adjacency matrix of 400K × 400K with a density

of 0.002%. With such a high sparsity, the SpGEMM compu-

tation becomes highly memory-bound and requires effective

utilization of memory bandwidth to achieve high performance.

Traditionally, SpGEMM computations have been performed

on CPUs and GPUs [12], [38], [51], both of which have low

energy efficiency as they allocate excessive hardware resources

to flexibly support various workloads. Hardware accelerators

tackle this energy efficiency problem through specialization.

However, there are three key challenges in designing an

accelerator for SpGEMM computation: (1) the inner product

and outer product algorithms, which perform well for dense

matrix multiplication, are not necessarily the ideal algorithms

for SpGEMM due to the low densities of the sparse matrices

involved in the computation; (2) the SpGEMM computation

is highly memory-bound and the traditional sparse storage

formats such as CSR, CSC and COO perform random data

accesses when used with multiple compute units in parallel,

which results in low memory bandwidth utilization; (3) the

output of SpGEMM is also a sparse matrix for which the

number of non-zeros are not known ahead of the time, and

hence contiguous data allocation for different rows/columns

that are being computed in parallel requires synchronization.

In this work, we analyze the different dataflows for

SpGEMM and compare them in terms of data reuse and on-

chip memory requirements. We argue that row-wise product

approach has the potential to outperform other approaches

for SpGEMM for very sparse matrices. We further propose

a new sparse storage format named cyclic channel sparse

row (C2SR), which enables efficient parallel accesses to the

main memory with multiple channels. Using the row-wise

product approach and the new sparse format, we describe the

design of MatRaptor, a highly efficient accelerator architecture

for SpGEMM. According to our experiments on a diverse

set of sparse matrices, MatRaptor can achieve significant

performance improvement over alternative solutions based on

CPUs, GPUs, and the state-of-the-art SpGEMM accelerator

OuterSPACE [39].

The key technical contributions of this work are as follows:

(1) We systematically analyze different dataflows of

SpGEMM by comparing and contrasting them against data

reuse and on-chip memory requirements. We show that a

row-wise product approach, which has not been explored in

the design of SpGEMM accelerators, has the potential to

outperform the existing approaches.

(2) We introduce C2SR, a new hardware-friendly sparse

storage format that allows different parallel processing engines



(PEs) to access the data in a vectorized and streaming manner

leading to high utilization of the available memory bandwidth.

(3) We design a novel SpGEMM accelerator named Ma-

tRaptor, which efficiently implements the row-wise product

approach and fully exploits the C2SR format to achieve high

performance. Our experiments using gem5 show that MatRap-

tor is 1.8× faster than OuterSPACE on average with 12.2×
higher energy efficiency. Our accelerator is also 31.3× smaller

in terms of area and consumes 7.2× less power compared to

OuterSPACE.

II. ANALYSIS OF SPGEMM DATAFLOWS

In matrix multiplication, since each of the input matrices can

be accessed in either a row-major order or column-major order,

there are four possible ways to perform matrix multiplication

— inner product (row times column), outer product (column

times row), row-wise product (row times row), and column-

wise product (column times column) as shown in Fig. 1.

In the following subsections, we will discuss each of these

four approaches in terms of the data reuse and their on-chip

memory requirements. We define data reuse as the number

of multiply-accumulate (MAC) operations performed when a

single byte of data is read/written from/to the memory. For the

sake of simplicity, we assume that: (1) each of the input and

the output matrices have dimensions of N ×N ; (2) both the

input matrices have nnz number of non-zeros; (3) the output

matrix has nnz′ number of non-zeros; and (4) the number

of non-zero elements for each row/column are the same and

equal to nnz
N for input matrices and nnz′

N for output matrix.

A. Inner Product

This is arguably the most widely-known approach for com-

puting matrix multiplication, where a dot product is performed

between a sparse row from the first matrix and a sparse

column from the second matrix as shown in Eq. (1). With this

approach, we can parallelize the computation of multiple dot

products across different PEs. Fig. 1a shows the inner product

approach for SpGEMM computation and the parallelization

strategy.

C[i, j] =

N∑

k=0

A[i, k] ∗B[k, j] (1)

This approach reads a row of sparse matrix A and column

of sparse matrix B each of which has nnz
N non-zeros, and

performs index matching and MACs. As the number of non-

zeros in the output matrix is nnz′, the probability that such

index matching produces a useful output (i.e., any of the two

indices actually matched) is nnz′

N2 . Thus the data reuse for the

inner product approach is O(nnz
′/N2

nnz/N ) which is O(nnz
′

nnz .
1

N ).

Since N can be very large and nnz′ is similar to nnz, the

data reuse of inner product approach is very low for large

matrices. The on-chip memory requirements for this approach

is O(nnzN ). Since N can be of the order of 100K − 10M and
nnz
N is of the order of 10−100s the data reuse for inner product

approach is low; however, the on-chip memory requirements

are also low.

Thus, inner product approach has three major disadvantages

for SpGEMM:

(1) The two input matrices need to be stored in different

formats, one row major and another column major.

(2) It attempts to compute each element of the output matrix.

However, in case of SpGEMM, the output matrix is typically

also sparse, which leads to a significant amount of wasted

computation. For example, in Fig. 1 when the inner product is

performed between the last row of matrix A and last column

of matrix B, none of the indices match and the output is a

zero.

(3) It performs a dot product of two sparse vectors, which is

very inefficient since it requires index matching where a MAC

is performed only when the indices of the non-zero elements

from the two vectors match; for example in Fig. 1a the inner

product of first row of A and second column of B requires

three index matching operations but performs only one MAC.

B. Outer Product

With this approach, an outer product is performed between

a sparse column of the first matrix and a sparse row of the

second matrix to produce partial sums for the entire output

matrix as shown in Eq. (2). The outer product approach

parallelizes the computation of different outer products across

different PEs. Fig. 1b shows the outer product approach and

the parallelization strategy.

C[:, :] =

N∑

k=0

A[:, k] ∗B[k, :] (2)

This approach reads a column and a row of the sparse

input matrices A and B, each with nnz
N non-zeros and per-

forms an outer product with (nnzN )2 MAC operations. Thus

the data reuse for outer product approach is O(nnzN ). The

on-chip memory requirement for outer product approach is

O(nnzN + nnz′), where the first term is the on-chip storage

required for rows/columns of input matrices and the second

term is on-chip requirement for the output matrix. Thus, using

typical ranges of nnz
N from 10-100 and for nnz′ from 100K-

10M, the outer product approach reuses the data read/written

from/to the memory 10-100 times; but it requires an on-chip

memory size of hundreds of mega-bytes.

The outer product algorithm solves two major problems

with the inner product approach by computing only non-zero

entries of the output matrix and not performing any index

matching while multiplying the inputs. However, it has three

major disadvantages:

(1) The two input matrices still need to be stored in different

formats, one column major and another row major.

(2) Multiple PEs produce the partial sums for the entire

output matrix, as shown in Fig. 1b, which requires syn-

chronization among them. This limits the scalability of the

hardware.





wise product approach over outer product approach are

significant.

The row-wise product approach also has some disadvan-

tages: (1) on-chip data-reuse for for matrix B is low as com-

pared to outer product; and (2) just like the other approaches

row-wise product needs to cope with the load imbalance issue

among multiple PEs. The low on-chip data reuse has more

impact on the performance when the density of matrix B is

high. This, however, is not the case with most of the SpGEMM

algorithms where both the operand matrices are highly sparse.

The load imbalance issue can mostly be solved using a round-

robin row allocation strategy discussed in Section IV-A.

D. Column-Wise Product

In column-wise product approach, all the non-zero elements

from a single column of matrix B are multiplied with the non-

zero entries from the corresponding columns of matrix A and

the results are accumulated in the corresponding column of the

output matrix as shown in Eq. (4). Fig. 1d shows the column-

wise product approach and the parallelization strategy.

C[:, j] =

N∑

k=0

A[:, k] ∗B[k, j] (4)

This approach is similar to the row-wise product approach

and has the same data reuse and on-chip memory requirements

as in case of row-wise product approach. The rest of the paper

focuses on row-wise product approach for SpGEMM as it has

low on-chip memory requirements and does not lose much in

terms of data reuse compared to the outer product approach,

especially for very sparse large matrices.

III. SPARSE MATRIX FORMAT

By using row-wise product, we can achieve high compute

utilization and low on-chip storage requirements. In this sec-

tion, we further propose a new hardware-friendly sparse stor-

age format to achieve high utilization of the off-chip memory

bandwidth, which is essential for high-performance SpGEMM

computation. For scalability and high performance, the on/off-

chip memories are often divided into smaller memory banks

to achieve lower memory latency and higher bandwidth. We

abstractly represent such memory banks as channels in our

discussion and assume that data is interleaved in these channels

in a cyclic manner. These channels can be later mapped to

different DRAM channels and scratchpad banks.

A. Limitations of CSR Format

Fig. 3 shows the same sparse matrix A as in Fig. 2 using its

dense form (Fig. 3a) and the conventional compressed sparse

row (CSR) format (Fig. 3b). Here the CSR format consists

of (1) an array of (value, column id) pairs for the non-zero

elements in the matrix and (2) an array of row indices, where

the ith index points to the first non-zero element in the ith row

of the matrix. In Fig. 3, we illustrate how the (value, column

id) array can be mapped to a memory with two channels.

Fig. 3e shows how two PEs read the data from matrix A

and Fig. 3f shows how these PEs write the output matrix C

using the row-wise product approach depicted in Fig. 2. We

assume that the channel interleaving is 4 elements and each

PE sends 4-element wide requests (2 non-zero values and 2

column ids) to the memory. As shown in Fig. 3e and Fig. 3f,

the CSR format has several major limitations: (1) a vectorized

memory request can be split among different channels, leading

to non-vectorized memory access within each channel; (2)

multiple PEs may send the memory read requests to the same

channel resulting in memory channel conflicts; (3) a vectorized

memory read can read wasteful data which does not belong to

that PE; and (4) for writing the output matrix, each PE writing

the ith row to the memory needs to wait for all the PEs writing

rows < i to finish, which leads to synchronization issues.

B. The Proposed C2SR Format

To overcome the aforementioned limitations, we propose a

new sparse storage called channel cyclic sparse row (C2SR),

where each row is assigned a fixed channel in a cyclic manner.

Fig. 3c shows the cyclic assignment of rows to the channels

and Fig. 3d shows the corresponding C2SR format. This new

format consists of an array of (row length, row pointer) pairs

and an array of (value, column id) pairs. The (value, column

id) array stores the non-zero elements from the sparse matrix

along with their column ids. The ithentry in the (row length,

row pointer) array stores the number of non-zeros in the ith

row and the pointer to the first non-zero element from that

row in the (value, column id) array. To store a sparse matrix in

C2SR format, first each row is assigned to a fixed channel in a

cyclic manner and then for each channel all non-zero elements

are written serially to the memory locations corresponding to

that channel in the (value, column id) array. For example in

Fig. 3c, rows 0 and 2 are assigned to channel 0 and hence their

non-zero elements are stored at the locations corresponding

to channel 0 in the (value, column id) array in Fig. 3d. The

reading of matrix A and writing to output matrix C are shown

in Fig. 3e and 3f. The C2SR storage format has the following

three key properties:

• No Channel Conflicts: Each row is assigned to a unique

channel, which means that the rows mapped to different

channels do not have memory channel conflicts and can

be accessed in parallel. This is in contrast to CSR for-

mat, where different rows are not necessarily mapped to

distinct channels and result in memory channel conflicts.

• Vectorized and Streaming Memory Reads: All the

rows mapped to a channel are stored sequentially in that

channel, resulting in high spatial locality when accessing

these rows in a row major order.

• Parallel Writes to the Output Matrix: The rows of the

sparse matrix mapped to a channel can be written to that

channel without requiring any information about the rows

mapped to other channels. For example in Fig. 3f, with

C2SR format PE0 and PE1 do not wait for each other and

can write to the results to their corresponding channel in

parallel. While using CSR format, PE1 needs to wait for







changes, then the entries in all the queues need to be merged

and written back to the main memory. To merge the data in

all the queues, the queue with the smallest column index is

popped and the data is streamed to the main memory. In the

case when multiple queues have the same minimum column

index at the top of the queue, all such queues are popped and

the sum of popped elements is streamed to the main memory,

as shown in Fig. 4. After the last non-zero element from the

first row of matrix A is processed, queue 0 and queue 1 are

merged and the results are streamed to the DRAM.

B. Architectural Details of MatRaptor

Fig. 5a shows the micro-architecture of MatRaptor. It con-

sists of Sparse Matrix A Loaders (SpAL), Sparse Matrix B

Loaders (SpBL), and the compute PEs. SpALs, SpBLs, and

the PEs implement a one-dimensional systolic array with N

rows. The rows of the input matrix A are assigned to the rows

of the systolic array in a round-robin fashion.

Each SpAL reads the non-zero elements aik from a row of

matrix A and sends it along with its row and column indices

to SpBL. SpBL uses the column index k received from SpAL

to fetch the non-zero elements from kth row of matrix B (i.e.,

bkj), and sends aik, bkj , i and j to the main compute PEs. The

PE performs multiplication and merge computations where

it multiplies aik and bkj and merges the results and writes

them to the main memory. A crossbar connects the SpALs,

SpBLs and PEs to the main memory. Since each SpAL and

PE is connected to only one HBM channel, the crossbar is

not a full crossbar and its design is much simplified. The

following subsections describe each component of MatRaptor

micro-architecture in more detail.

Sparse Matrix A Loader. SpAL is configured with the

number of rows N in the sparse matrix A and the pointer to

the beginning of the arrays containing the (row length, row

pointer) pairs in the C2SR storage of matrix A. SpAL first

sends a memory read request to fetch the (row length, row

pointer) pair for a row of matrix A. Then it sends multiple

memory read requests using the row pointer to fetch the

(value, column id) pairs in that row. To achieve high memory

bandwidth, SpAL sends wide memory read requests for (value,

column id) pairs such that size of the memory request is the

same as the channel interleaving size and thus implements

vectorized memory reads. SpAL also implements outstanding

requests and responses queue to avoid stalling for the memory

responses and thus is able send and receive memory requests

and responses in a pipelined manner. Once a (value, column

id) pair is read from the memory, SpAL sends the values along

with its row and column indices, namely, (aik, i, k) to SpBL.

Sparse Matrix B Loader. SpBL receives (aik, i, k) values

from SpAL and sends a memory read request for the (row

length, row pointer) pair in kth row of matrix B. It then

uses the row pointer to send multiple memory read requests

for the (value, column id) pairs in kth row of the B matrix.

Similar to SpAL, SpBL also loads the (value, column id) pairs

in vectorized streaming manner and maintains outstanding

requests and responses queue. When a (value, column id) pair

is read from the memory, SpBL sends the values aik, bkj , i

and j to the PE.

Processing Element. Each PE receives (aik, bkj , i, j) values

from SpBL and performs the multiply and merge operations.

Fig. 5b shows the design of a single PE. It consists of

a multiplier to calculate the product of aik and bkj and

produce the partial sum ckij . It also consists of two sets of

Q queues, where each queue contains (data, col id) pairs.

The reason behind having two set of queues is that the merge

operations in Fig. 4 can be divided into two phases: Phase I,

when the multiplications are performed and the result of the

multiplication is merged with the (data, col id) values in one

of the queues; and (b) Phase II, when all the partial sums for

a single output row have been written to one of the queues

and the (data, col id) values in different queues are merged

together and streamed out to the DRAM.

Since Phase II stalls the multiply operations, this can lead

to poor utilization of the multipliers. With two sets of queues,

when Phase I is completed, the multipliers can start computing

the results for the next output row in a different set of queues

while the results from the current queues are merged and

written to the DRAM. With this kind of double buffering,

Phase I and Phase II can be performed in parallel, which

results in higher compute utilization.

All the queues within a set are connected to a multiplexer,

which is used to select the queue with least number of entries.

The queues within a set are also connected to an adder tree and

minimum column index selection logic. The minimum column

index logic outputs a Q-bit signal where each bit represents

whether the corresponding queue has the minimum column

index. The output of minimum column index logic is then sent

to the controller which configures the adder tree to accumulate

the data values from the selected queues. The controller also

pops an element from each of these queues. Fig. 5b shows the

PE when the set of the queues on the left are involved in Phase

I computation and the set of queues on the right are involved

in Phase II of the computation. The inactive components from

both the sets are shown with gray color and dotted lines.

If the number of rows of the systolic array is an integer

multiple of the number of channels, then each row of the

systolic array will read/write the elements of matrix A/C

from/to a unique channel; however, multiple rows of the

systolic array can access the data from the same channel. If

the number of channels is an integer multiple of the number

of rows of the systolic array, then no two rows of the systolic

array will share a channel while a single row of systolic array

will be assigned more than one channel. For the cases when

the number of rows in the systolic array and the number

of channels are the same, each row of the systolic array is

assigned one channel.

V. EXPERIMENTAL SETUP

To evaluate the performance of MatRaptor, we model our

architecture consisting of SpALs, SpBLs, PEs, and HBM using

the gem5 simulator [7]. We implement the systolic array with













and illustrated high performance than existing algorithms for

sparse matrix multiplication for CPUs. Nagasaka et al. [36]

mitigates multiple bottlenecks with memory management and

thread scheduling for SpGEMM kernel on Intel Xeon Phi.

The works involving GPU acceleration of SpGEMM compu-

tation include [10], [15], [31], [34], [37]. Kiran et al. [34]

explore the load-balancing problem that only considers the

band matrices. Weifeng and Brian [31] apply the techniques

such as GPU merge path algorithm and memory pre-allocation

to improve the performance and the storage issue. Felix et

al. [15] reduce the overhead of memory access by merging

several sparse rows using the main kernel. Steven et al. [10]

decompose the SpGEMM operations and leverage bandwidth

saving operations like layered graph model. They also perform

the SpGEMM in a row-wise product method to balance the

workload and improve the performance. Nagasaka et al. [37]

proposed a fast SpGEMM algorithm that has small memory

footprints and achieves high performance.

Custom Accelerators. For sparse-dense and sparse-sparse

matrix-matrix and matrix-vector accelerators, prior works in-

volving FPGA implementations include [33], ESE [17], [65]

and [13]. Lu et al. [33] proposed a CNN accelerator with

sparse weights. ESE [17] proposed an FPGA-accelerator for

SpMV in LSTMs. Prasanna et al. [65] and Fowers et al. [13]

proposed SpMV accelerators for very sparse matrices. Lin

et al. [29] proposed an FPGA-based architecture for sparse

matrix-matrix multiplication. T2S-Tensor [48] proposed a

language and compilation framework to generate high per-

formance hardware for dense tensor computations such as

GEMM. Rong et al. [42] extended this language to add support

for SpMV.

Several prior efforts involved ASIC implementations. Exam-

ples include Cambricon-S [63], Cnvlutin [2], SCNN [40], [4],

OuterSPACE [39] and ExTensor [20]. Cambricon-S [63] im-

plements hardware accelerator for SpGEMM in CNNs where

both weight matrices and neurons are sparse. SCNN [40]

proposes a SpGEMM accelerator for CNNs which can also

exploit the sparsity in both weights and neurons. Anders et

al. [4] proposed accelerator designs for SpGEMM. EIE [18]

proposes SpMSpV (sparse matrix sparse vector multiplication)

accelerator for fully connected layers in CNN and show

significant performance gains over CPU and GPU. However,

all these works focused on deep learning application where the

density is really high. TPU [22] implemented a 2-d systolic

array for GEMM. Tensaurus [47] proposed a hardware accel-

erator for sparse-dense tensor computations such as SpMV and

SpMM.

OuterSPACE [39], ExTensor [20] and SpArch [62] are few

recent works that propose hardware accelerators for SpGEMM

computation on very sparse matrices. However, OuterSPACE

applies the outer product approach and ExTensor applies the

inner product approach for SpGEMM, the inefficiencies of

which have been discussed in Section II. SpArch attempts to

improve the outer product approach by matrix-condensing and

Huffman trees. However, this results in a complicated design

that has more area and power, and lower performance/watt,

compared to our approach based on row-wise product. Their

simulation infrastructure is also different from OuterSPACE

and ours where they use custom models for HBM instead of

open-source gem5 HBM memory model. In this work, we do

not perform detailed performance comparison with SpArch

because of difference in our HBM models.

Yavits and Ginosar [59] and [58] explored content address-

able memory (CAM) and RAM-based compute for SpMSpV

and SpGEMM. One of the major limitations of the CAM-

based approach is that the output elements are not produced

in a sorted order of their indices and thus require extra sorting

hardware. We conjecture that although the CAM itself might

be more efficient, CAM along with the sorting hardware will

be more expensive in terms of both area and energy compared

to MatRaptor. Zhu et al. [64] introduced a 3D-stacked logic-

in-memory system by placing logic layers between DRAM

dies to accelerate a 3D-DRAM system for sparse data access

and built a custom CAM architecture to speed-up the index-

alignment process of column-wise product approach.

IX. CONCLUSION

In this work, we propose a novel row-wise product based

accelerator (MatRaptor) for SpGEMM which achieves high

performance and energy-efficiency over CPU, GPU and state-

of-the-art SpGEMM accelerator OuterSPACE. It also has 7.2×
lower power consumption and 31.3× smaller area compared to

OuterSPACE. To achieve this, we introduce a new hardware-

friendly sparse storage format named C2SR, which improves

the memory bandwidth utilization by enabling vectorized

and streaming memory accesses. We also implement a novel

sorting hardware to merge the partial sums in the SpGEMM

computation. We prototype and simulate our MatRaptor using

gem5 on a diverse set of matrices.

ACKNOWLEDGEMENT

This research was funded in part by CRISP, one of six cen-

ters in JUMP, a Semiconductor Research Corporation (SRC)

program sponsored by DARPA, under NSF Awards #1453378,

#1909661, and by AFRL and DARPA under agreement num-

ber FA8650-18-2-7863. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied,

of AFRL and DARPA or the U.S. Government.

REFERENCES

[1] K. Akbudak and C. Aykanat, “Exploiting locality in sparse matrix-
matrix multiplication on many-core architectures,” Trans. on Parallel

and Distributed Systems, 2017.

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, 2016.

[3] AnandTech. https://www.anandtech.com/show/9883/gddr5x-standard-
jedec-new-gpu-memory-14-gbps.



[4] M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal,
S. Hsu, and R. Krishnamurthy, “2.9 TOPS/W Reconfigurable Dense/S-
parse Matrix-Multiply Accelerator with Unified INT8/INTI6/FP16 Dat-
apath in 14NM Tri-Gate CMOS,” 2018.

[5] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” Workshop in Int’l Symp. on Parallel

and Distributed Processing, 2015.

[6] R. Balasubramonian. (2014) Lecture on memory wall. https://my.eng.
utah.edu/∼cs7810/pres/14-7810-02.pdf.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, 2011.

[8] W. L. Briggs, S. F. McCormick et al., “A multigrid tutorial,” 2000.

[9] P. D’alberto and A. Nicolau, “R-Kleene: A high-performance divide-
and-conquer algorithm for the all-pair shortest path for densely con-
nected networks,” Algorithmica, 2007.

[10] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix—matrix
multiplication for the gpu,” Trans. on Mathematical Software (TOMS),
2015.

[11] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” Trans. on Mathematical Software (TOMS), 2011.

[12] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the sparse basic
linear algebra subprograms: The new standard from the BLAS technical
forum,” Trans. on Mathematical Software (TOMS), 2002.

[13] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” IEEE Symp. on Field Programmable Custom Computing

Machines (FCCM), 2014.

[14] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A unified framework
for numerical and combinatorial computing,” Computing in Science &

Engineering, 2008.

[15] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“GPU-accelerated sparse matrix-matrix multiplication by iterative row
merging,” SIAM Journal on Scientific Computing, 2015.

[16] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” Trans. on Mathematical Software (TOMS),
1978.

[17] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2017.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” Int’l Symp. on Computer Architecture (ISCA), 2016.

[19] V. Hapla, D. Horák, and M. Merta, “Use of direct solvers in TFETI
massively parallel implementation,” Int’l Workshop on Applied Parallel

Computing, 2012.

[20] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Accelerator
for Sparse Tensor Algebra,” Int’l Symp. on Microarchitecture (MICRO),
2019.

[21] S. Itoh, P. Ordejón, and R. M. Martin, “Order-N tight-binding molecular
dynamics on parallel computers,” Computer physics communications,
1995.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter perfor-
mance analysis of a tensor processing unit,” Int’l Symp. on Computer

Architecture (ISCA), 2017.

[23] H. Kaplan, M. Sharir, and E. Verbin, “Colored intersection searching via
sparse rectangular matrix multiplication,” Int’l Symp. on Computational

Geometry, 2006.

[24] G. Karypis, A. Gupta, and V. Kumar, “A parallel formulation of interior
point algorithms,” Int’l Conf. on Supercomputing, 1994.

[25] S. E. Kurt, V. Thumma, C. Hong, A. Sukumaran-Rajam, and P. Sadayap-
pan, “Characterization of data movement requirements for sparse matrix
computations on gpus,” Int’l Conf. on High Performance Computing

(HiPC), 2017.

[26] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The Dynamics of
Viral Marketing,” Trans. on the Web (TWEB), 2007.

[27] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” Int’l Conf. for High Performance Computing, Networking,

Storage and Analysis, 2018.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” Int’l Symp. on

Microarchitecture (MICRO), 2009.

[29] C. Y. Lin, N. Wong, and H. K.-H. So, “Design space exploration for
sparse matrix-matrix multiplication on FPGAs,” International Journal

of Circuit Theory and Applications, 2013.

[30] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified
optimization approach for sparse tensor operations on gpus,” Int’l Conf.

on Cluster Computing (CLUSTER), 2017.

[31] W. Liu and B. Vinter, “An efficient GPU general sparse matrix-
matrix multiplication for irregular data,” Int’l Parallel and Distributed

Processing Symposium, 2014.

[32] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified framework
for vertically integrated computer architecture research,” Int’l Symp. on

Microarchitecture (MICRO), 2014.

[33] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An Effi-
cient Hardware Accelerator for Sparse Convolutional Neural Networks
on FPGAs,” IEEE Symp. on Field Programmable Custom Computing

Machines (FCCM), 2019.

[34] K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse matrix-
matrix multiplication on modern architectures,” Int’l Conf. on High

Performance Computing, 2012.

[35] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP laboratories, 2009.

[36] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “High-performance
sparse matrix-matrix products on Intel KNL and multicore architec-
tures,” Int’l Conf. on Parallel Processing Companion, 2018.

[37] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-performance and
memory-saving sparse general matrix-matrix multiplication for nvidia
pascal gpu,” Int’l Conf. on Parallel Processing (ICPP), 2017.

[38] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” GPU Technology Conference, 2010.

[39] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE:
An outer product based sparse matrix multiplication accelerator,” Int’l

Symp. on High-Performance Computer Architecture (HPCA), 2018.

[40] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” Int’l

Symp. on Computer Architecture (ISCA), 2017.

[41] M. O. Rabin and V. V. Vazirani, “Maximum matchings in general graphs
through randomization,” Journal of Algorithms, 1989.

[42] H. Rong, “Expressing Sparse Matrix Computations for Productive Per-
formance on Spatial Architectures,” arXiv preprint arXiv:1810.07517,
2018.

[43] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance evaluation of
sparse matrix multiplication kernels on intel xeon phi,” Int’l Conf. on

Parallel Processing and Applied Mathematics, 2013.

[44] V. B. Shah, “An interactive system for combinatorial scientific com-
puting with an emphasis on programmer productivity,” University of

California, Santa Barbara, 2007.

[45] A. Shilov. (2016) Jedec publishes hbm2 specification. http://www.
anandtech.com/show/9969/jedec-publisheshbm2-specification.

[46] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” Int’l Symp.

on Parallel and Distributed Processing, 2015.

[47] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor
Computations,” Int’l Symp. on High-Performance Computer Architecture

(HPCA), 2020.

[48] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Al-
bonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. H. Herr,
C. Hughes, T. Mattson, and P. Dubey, “T2S-Tensor: Productively Gen-
erating High-Performance Spatial Hardware for Dense Tensor Com-



putations,” IEEE Symp. on Field Programmable Custom Computing

Machines (FCCM), 2019.
[49] P. D. Sulatycke and K. Ghose, “Caching-efficient multithreaded fast

multiplication of sparse matrices,” Proceedings of the First Merged In-

ternational Parallel Processing Symposium and Symposium on Parallel

and Distributed Processing, 1998.
[50] S. M. Van Dongen, “Graph clustering by flow simulation,” 2000.
[51] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,

“Intel math kernel library,” High-Performance Computing on the Intel®

Xeon Phi™, 2014.
[52] WikiChip, “14 nm lithography process,” https://en.wikichip.org/wiki/14

nm lithography process.
[53] WikiChip, “16 nm lithography process,” https://en.wikichip.org/wiki/16

nm lithography process.
[54] WikiChip, “28 nm lithography process,” https://en.wikichip.org/wiki/28

nm lithography process.
[55] WikiChip, “32 nm lithography process,” https://en.wikichip.org/wiki/32

nm lithography process.
[56] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful

Visual Performance Model for Multicore Architectures,” Commun. ACM,
2009.

[57] I. Yamazaki and X. S. Li, “On techniques to improve robustness and
scalability of a parallel hybrid linear solver,” Int’l Conf. on High

Performance Computing for Computational Science, 2010.
[58] L. Yavits and R. Ginosar, “Accelerator for sparse machine learning,”

IEEE Computer Architecture Letters, 2017.
[59] L. Yavits and R. Ginosar, “Sparse matrix multiplication on CAM based

accelerator,” arXiv preprint arXiv:1705.09937, 2017.
[60] R. Yuster and U. Zwick, “Detecting short directed cycles using rectan-

gular matrix multiplication and dynamic programming,” SIAM Symp. on

Discrete Algorithms, 2004.
[61] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,

and Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,”
Int’l Symp. on Microarchitecture (MICRO), 2016.

[62] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient
Architecture for Sparse Matrix Multiplication,” Int’l Symp. on High-

Performance Computer Architecture (HPCA), 2020.
[63] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,

T. Chen, and Y. Chen, “Cambricon-S: Addressing Irregularity in Sparse
Neural Networks through A Cooperative Software/Hardware Approach,”
Int’l Symp. on Microarchitecture (MICRO), 2018.

[64] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accel-
erating sparse matrix-matrix multiplication with 3D-stacked logic-in-
memory hardware,” Int’l Conf. on High Performance Extreme Comput-

ing (HPEC), 2013.
[65] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on

FPGAs,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2005.


