Diastereoselective sp³ C-O Bond Formation via Visible Light-Induced, Copper-Catalyzed Cross Couplings of Anomeric Alkyl Bromides with Aliphatic Alcohols

Fei Yu, ¹ Jalen L. Dickson, ^{2‡} Ravi S. Loka, ^{1‡} Hengfu Xu, ^{1‡} Richard N. Schaugaard, ¹ Long Luo, ^{1,# ID} H. Bernhard Schlegel, ^{1,# ID} Hien M. Nguyen*^{1,# ID}

¹Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States ²Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States

Email: hmnguyen@wayne.edu

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

KEYWORDS

Copper Catalysis, Visible Light, C(sp³)-O Bond, Cross Coupling, Stereoselective

ABSTRACT

Copper-catalyzed cross coupling reactions have become one of the most powerful methods for generating carbon-heteroatom bonds, an important framework of many organic molecules. However, copper-catalyzed $C(sp^3)$ -O cross coupling of alkyl halides with alkyl alcohols remain elusive because of the sluggish nature of oxidative addition to copper. To address this challenge, we have developed a catalytic copper system, which overcomes the copper oxidative addition barrier with the aid of visible light and effectively facilitates the cross couplings of anomeric alkyl bromides with aliphatic alcohols to afford $C(sp^3)$ -O bonds with excellent levels of α -1,2-cis diastereoselectivity. Importantly, this catalytic system leads to a general method for stereoselective construction of the biologically relevant α -1,2-cis oligosaccharides, which are of paramount importance, but challenging. In general, stereochemical outcomes in α -1,2-cis glycosidic bond-forming processes are unpredictable and dependent on the steric and electronic nature of protecting groups bound on carbohydrate coupling partners. In our approach, earth-abundant copper not only acts as a photocatalyst and a bond-forming catalyst, but also enforces stereocontrolled formation of anomeric C-O bonds. This cross-coupling protocol is not confined to highly specific substrates and enables diastereoselective access to a variety of α -1,2-cis and α -2-deoxy-2-fluoroglycosides as well as biologically relevant α -glycan oligosaccharides. Our work provides a foundation

for developing novel methods for the stereoselective construction of natural and unnatural anomeric carbon(sp³)-heteroatom bonds.

INTRODUCTION

Copper has been considered a privileged metal because it is non-toxic and abundant. In addition, high-valent Cu(III) complexes have the propensity to undergo facile reductive elimination with a variety of coupling partners.¹ As a result, copper-catalyzed cross coupling reactions have become one of the most versatile carbon-heteroatom bond-forming methodologies² for constructing pharmaceutical targets, agrochemicals, and polymers.³ For instance, Buchwald and others illustrated the utility of copper catalysis in the cross couplings of aryl halides with alkyl alcohols (Scheme 1A) as a powerful method for C(sp²)-O bond formation.⁴ However, the incorporation of alkyl halides to generate C(sp³)-O bonds remains elusive. The limited capacity of copper to promote C(sp³)-O bond formation could be attributed to its relatively slow rate of oxidative addition to alkyl halide to generate the alkylcopper(III) intermediate, which has been determined to be the rate-determining step in such catalytic cycles.⁵ Although studies in ligand design have improved the rates of the copper oxidative addition, the scope of copper-catalyzed carbon-oxygen cross coupling has remained largely restricted to aryl halides.⁶

A. Previous work: copper-catalyzed coupling of aryl halides with aliphatic alcohols⁴

$$R \xrightarrow{X} + OH \xrightarrow{Catalytic} \xrightarrow{L_nCuX} R^2$$

$$X = Br, I$$

B. This work: visible-light mediated copper-catalyzed coupling of anomeric alkyl bromides with aliphatic alcohols

$$(RO)_{n} \xrightarrow{V} + OH \qquad Catalytic \\ L_{n}Cul \qquad (RO)_{n} \xrightarrow{2} 1 \qquad R^{2}$$

$$R^{1} \xrightarrow{R^{1}} R^{1} \xrightarrow{25 \text{ °C}, 24 - 48 \text{ h}} \text{ Blue LED}$$

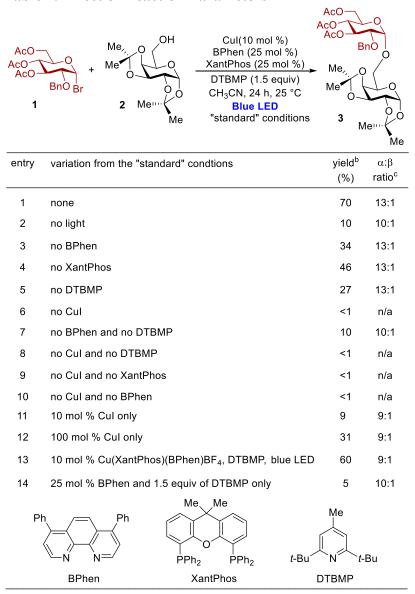
$$R^{1} \xrightarrow{R^{1}} R^{2}$$

$$R^{1} \xrightarrow{R^{2}} R^{1} \xrightarrow{R^{2}} R^{2}$$

Scheme 1. Copper-Catalyzed C-O Bond Formation

Recently, Fu and coworkers reported the photoinduced copper-catalyzed cross couplings of alkyl halides with nitrogen nucleophiles to form $C(sp^3)$ -N bonds.⁷ Their method effectively overcomes the copper oxidative addition problem with a copper(II) species capturing alkyl radicals, which are generated from carbon-halide bond cleavage in the presence of light and copper. Realizing that this concept could be adapted to afford $C(sp^3)$ -O bonds, we sought to design a copper-catalyzed cross coupling of the anomeric alkyl carbon of a glycosyl bromide with an aliphatic alcohol under excitation by a blue light-emitting diode (LED) (Scheme 1B). We recognized that this light-driven copper catalysis process could

lead to a general method for diastereoselective construction of α -1,2-cis linkages via a glycosyl radical which tends to favor α -substitution. Despite extraordinary efforts and significant advances over the past several decades, the translation of most modern organic methodologies to diastereoselectively construct anomeric α -1,2-cis carbon-oxygen bonds remains challenging. Most current coupling methods rely on the nature of the protecting groups bound to the carbohydrate substrates to effect stereoselectivity, thereby, requiring highly specialized coupling partners. Catalyst controlled approaches have been examined to generate challenging α -1,2-cis linkages without protecting groups to direct selectivity, though these methods are still limited. In


In the field of photoredox catalysis, utilization of anomeric alkyl halides in cross coupling reactions with aliphatic alcohols to form $C(sp^3)$ -O bonds has never been achieved. Therefore, it was apparent at the outset of our investigations that the adaptation of the visible-light mediated copper catalysis system to anomeric C-O bond formation would present several obstacles. First, although it has been reported that copper-nucleophile complexes can undergo excitation in the photoinduced process, it was unclear if a complex formed between a copper catalyst and carbohydrate alkyl alcohol would have the necessary absorption and reactivity profile to engage in a copper-catalyzed C-O bond formation. Another issue is whether the coupling proceeds via a radical mechanism, wherein the anomeric carbonhalide bond is cleaved in the presence of copper and light to form alkyl radical. Finally, questions still remain concerning how this approach could provide catalyst control of the selectivity for α -1,2-cis C-O bond formation. As a consequence, the development of method that simultaneously construct anomeric $C(sp^3)$ -O bonds and control α -1,2-cis stereochemistry is of paramount importance, although challenging. Here, we describe a distinct approach for stereocontrolled formation of α -1,2-cis anomeric carbon-oxygen bonds, through the action of a visible-light-mediated copper catalyst. Many of the synthetic limitations for the synthesis of these anomeric C-O linkages are overcome by this method.

RESULTS AND DISCUSSION

In our pursuit of photoinduced copper-catalyzed anomeric $C(sp^3)$ -O bond formation, we initially evaluated various combinations of ligands, copper sources, acid scavenger, solvents, and reaction time (Figure S1-S7). This search revealed that blue LED irradiation of α -1-bromo-D-glucoside (alkyl bromide) $\mathbf{1}^{13}$ and primary alcohol $\mathbf{2}$ of D-galactoside nucleophile as model substrates with CuI (10 mol %), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (XantPhos, 25 mol %), 4,7-diphenyl-1,10-phennathroline (BPhen 25 mol %), and acid scavenger di-*tert*-butylmethyl pyridine (DTBMP) in acetonitrile at 25 °C for 24 h afforded the coupling product $\mathbf{3}$ in good yield with excellent levels of diastereoselectivity (70%, α : β = 13:1, Table 1, entry 1). Control experiments established that copper, both ligands (XantPhos and BPhen), acid scavenger (DTBMP), and blue LED irradiation are essential to achieve anomeric $C(sp^3)$ -O

bond formation (entries 2-10). Interestingly, coupling proceeded in a simple 10 mol% CuI solution to provide 3 in 9% yield as a 9:1 mixture of α and β -diastereomers (entry 11), suggesting that the coupling proceeds through a conventional oxocarbenium intermediate, wherein CuI serves as a Lewis acid and the selectivity is a result of thermodynamic control. Employing stoichiometric amount of CuI only provided 31% of the desired product 3 with a similar selectivity (entry 12).

Table 1. Effect of Reaction Parameters^a

^a The reaction was conduct with 1 (1 equiv) and 2 (1.5 equiv).

^b Isolated yield. ^c Diastereoselective (α : β) ratio of the isolated product determined by ¹H NMR.

 $^{^{31}}P$ NMR was conducted on the *in situ* generated complex to probe the active catalyst in the reaction. The chemical shift was determined to be $\delta = -11.99$ ppm, generated from the combination of

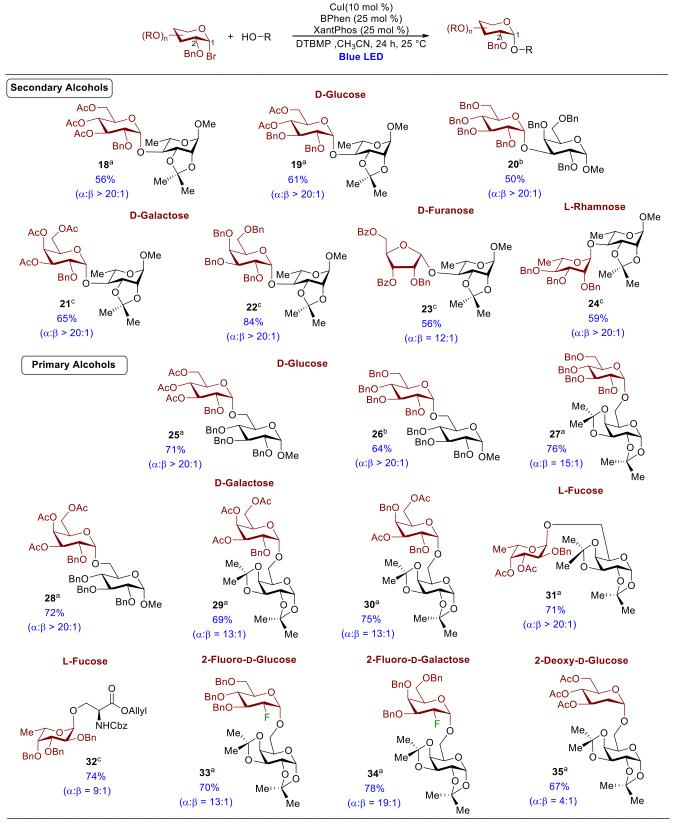
CuI, BPhen, and Xantphos, and this chemical shift matched with that of the isolated complex, $[Cu(BPhen)(Xantphos)]BF_4$, $(\delta = -11.87 \text{ ppm})$. As such, we conducted the cross coupling of **1** with **2** in the presence of $[Cu(BPhen)(Xantphos)]BF_4$ (Table 1, entry 13), and the 1,2-*cis* product **3** was obtained in similar yield and α -selectivity (60%, α : $\beta = 9:1$) to that promoted by *in situ* generated copper catalyst from the combination of CuI, BPhen, and Xantphos. This result suggest that the $[Cu(BPhen)(Xantphos)]^+$ complex is likely to be active in catalysis. We recently reported the use of BPhen as the organocatalyst to promote the coupling of **1** with **2** at 50 °C. ^{11b} To validate that the cross coupling is promoted by the copper complex, we conducted the reaction of **1** with **2** in the presence of 25 mol % BPhen (Table 1, entry 14) and the product **3** was isolated in less than 5% yield.

Having established the ability of the photoinduced copper catalyst to promote the formation of anomeric C(sp³)-O bond with high levels of diastereoseletivity, we set out investigating the advantage of the current system over our previously developed phenanthroline-catalyzed stereoselective glycosylation method. 11b There are two major limitations associated with the phenanthroline-catalyzed method. 11a First, the reaction must be conducted at 50 °C to achieve high conversion. 11a Second, the diastereoselectivity of the coupling products decreases when sterically hindered alcohols are coupled to the electron-rich alkyl bromides. 11a Our computational and experimental studies indicate a double S_N2 pathway involving phenanthroline-catalyzed reaction with α -alkyl bromide wherein a covalent β -glycosyl phenanthrolium ion is the key intermediate, and the S_N1-S_N2 reaction paradigm was slightly shifted in the presence of the hindered alcohols. 11a Since the visible light-mediate copper catalysis is unlikely to proceed through the traditional S_N2-S_N1 pathway and the stereochemical outcome of the coupling product is likely to be controlled by the [Cu(BPhen)(Xantphos)]⁺ complex, we hypothesize that this catalytic copper system could overcome the limitations previously associated with the phenanthroline system. To validate our hypothesis, the coupling of α -alkyl bromide of glucoside 4^{13} with the hindered C4-hydroxy of Lrhamnoside 5 was conducted under standard photoinduced copper conditions to afford the coupling product 6 (Table 2, entry 1) in good yield and excellent levels of diastereoselectivity (74%, α : β >20:1). In contrast, our previous phenanthroline-catalyzed stereoselective method provided 6 in only 42% yield with $\alpha:\beta = 7:1$. Similar outcome was observed with the coupling of α -fucosyl bromide 7 with the secondary alcohol 5 (entry 2). To our excitement, the photoinduced copper system is more suited with the challenging α -alkyl bromide of glucuronic acid 9 (entry 3). While copper catalysis provided the coupling product 10 in 53% yield with $\alpha:\beta > 20:1$ (entry 3), phenanthroline catalysis provided 10 in 11% yield with moderate selectivity (α : β = 5:1). To further demonstrate the broad applicability of the visible lightmediated copper method, we investigated the coupling of both α -alkyl bromides of glucoside 4 and galactoside 11 with the most hindered C4-hydroxyl of glucoside 11 (entries 4 and 5). As expect, the copper

catalysis (12 and 14, $\alpha:\beta > 20:1$) is much more α -selective than the phenanthroline catalysis (12, $\alpha:\beta = 7:1$ and 14, $\alpha:\beta = 5:1$). We previously observed that α -alkyl bromide of tribenzyl L-arabinoside 15 (entry 6) decomposed during the course of the reaction under phenanthroline-catalyzed conditions (17, 47%). As such, we questioned whether α -alkyl bromide 15 is a suitable substrate under photoinduced coppercatalyzed conditions. Accordingly, the coupling of 15 with 16 proceeded smoothly to provide product 17 in much higher yield (79%, entry 6)). Overall, these results in Table 2 highlights that the visible-light-mediated copper system is more efficient and highly selective than the phananthroline method for the cross couplings of the electron-rich α -alkyl bromides with the hindered alcohols of carbohydrates. More importantly, this photoinduced copper method is conducted at room temperature and highly effective for constructing anomeric C(sp³)-O bond with reduced levels of waste through use of sub-stoichiometric amounts of metal and a high reaction concentration (0.5 M).

Moving forward, we evaluated the scope of the electron-withdrawing α -alkyl bromides with respect to aliphatic alcohols. In contrast to the previous phenanthroline-catalyzed reactions, the electronwithdrawing α-alkyl bromides proceeded can proceed efficiently at room temperature under visible-lightmediated copper conditions. (Table 3). We first chose to explore couplings with hindered secondary alcohols as they have been reported to provide the anomeric C-O bond products with poor to moderate levels of diastereoselectivities. ¹⁶ Accordingly, α-alkyl bromides of p-glucose substrates bearing acetyl and benzyl protecting groups were examined with C4- and C3-hydroxys of carbohydrates. In all cases, the reactions proceeded at room temperature to provide the desired coupling products (18 to 20) in good yields (50% to 60%) and excellent stereocontrol (α : $\beta > 20:1$), highlighting the advantage of the copper system over the phenanthroline system. For instance, while both systems produced the coupling product 19 in comparable yield and selectivity, the phenanthroline-catalyzed reaction was conducted at 50 °C for 48 h. 11a In addition, this photoinduced catalytic copper method is much more α-selective in the coupling with the hindered alcohols than the traditional sulfide-mediated glycosylation approach. ¹⁶ A similar trend was also observed when variation in the structure of α -alkyl bromides of carbohydrate substrates was tested, delivering the C-O bond products containing D-galactose (21 and 22) and L-rhamonose (24) with excellent α -diastereoselectivity (α : $\beta > 20:1$). Interestingly, this visible-light-mediated copper system is also effective at promoting the coupling with five-membered ring alkyl bromide to provide the desired product 23 with high 1,2-cis selectivity (α : β = 12:1).

Table 2. Comparative Studies Between Photoinduced Copper Catalysis and Organocatalysis


Condition A: Cul(10 mol %), BPhen (25 mol %), XantPhos (25 mol %), DTBMP (1.5 equiv), CH₃CN, 24 h, 25 °C, Blue LED Condition B: BPhen (30 mol %), IBO (2 equiv), MTBE, 48 h, 50 °C

entry	electrophiles	nucleophiles	products	condition A yield ^b $(\alpha:\beta)^c$	condition B yield ^b $(\alpha:\beta)^c$
1	BnO O BnO Br 4	HO Me O Me Me 5	BnO OMe BnO OMe 6 OMe Me''' Me	74% (α:β > 20:1)	42% (α:β = 7:1)
2	Me OBn OBn 7	5	Me OBn Me Me Me	57% (α:β > 20:1)	58% (α:β = 4:1)
3	BnO 2 BnO BnO Br	5	BnO OMe BnO Me 10 Me Me Me Me Me Me Me Me Me M	53% (α:β > 20:1)	11% (α:β = 5:1)
4	4	BnO OMe	BnO BnO BnO OMe	60% (α:β > 20:1)	55% (α:β = 7:1)
5	BnO OBn BnO Br 13	11	BnO OBn BnO OBn OBnO OBnO OBnO OMe	61% (α:β > 20:1)	43% (α:β = 5:1)
6	BnO O BnO Br	BnO OMe 16	BnO BnO O BnO O BnO O O O O O O O O O O	79% (α:β > 20:1)	47% (α:β > 20:1)

^a The reaction was conduct with 1 equiv of electrophiles and 1.5 equiv of nucleophiles. ^b Isolated yield. ^c Diastereoselective (α:β) ratio determined by ¹H NMR analysis.

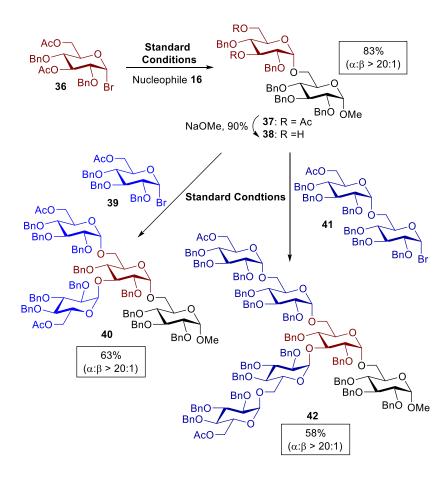
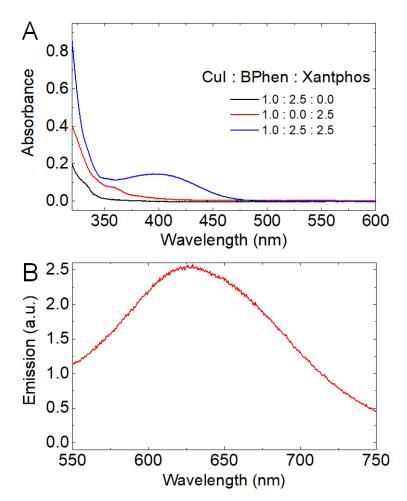

Motivated by the high efficiency of the photoinduced copper system, we next examined the cross couplings of a variety of electron-withdrawing and electron-donating α -alkyl bromides with primary alcohols. As can be seen in Table 3, the reactions were highly diastereoselective to produce the coupling C-O products (25 to 31) in good yields and excellent selectivity, underscoring broad applications of the visible-light mediated copper-catalyzed anomeric C(sp³)-O bond formation. For instance, α-alkyl bromide of D-galactose whose axial C4-benzyl protecting group has been recently reported¹⁷ to favor the β -1,2-trans product¹⁴ provided the desired α -1,2-cis product **30** with excellent stereocontrol (α : β = 13:1). Although these results are comparable to those obtained under phenanthroline-catalyzed conditions, 11a these reactions can be conducted at room temperature to achieve high conversion. An additional feature that highlights this system is the tolerance of the method to protected serine nucleophiles, delivering glycoconjugate 32 (74%, α : β = 9:1), which is a thrombospondin type 1 repeating unit associated with an autosomal recessive disorder. 18 To compare, the phenanthroline-catalyzed method provide 32 in 80% vield with $\alpha:\beta = 6:1.^{11a}$ Next, we explored the effect of the C2 substituents of α -alkyl bromides on the selectivity (Table 3). The ability of a C2-F bond to have an impact on the diastereoselectivity of anomeric C-O bond formation has been reported. 19 The tetrabenzylated D-glucose and D-galactose substrates, having the C2-fluoro group, are highly β-selective under Lewis acid-mediated conditions. ¹⁹ In contrast, the copper-catalyzed approach provided the 1,2-cis C-O bond products containing D-glucose (33) and Dgalactose (34) with excellent α -diastereoselectivity (Table 2). Because of conformational flexibility of 2deoxy-D-glucose, α-alkyl bromide of this substrate lacking C2-oxygen still exhibited moderate selectivity (35, α : β = 4:1). In contrast, 35 was isolated as a 1.5:1 mixture of α - and β -diastereomers under phenanthroline-catalyzed conditions (Figure S8).

Table 3: Scope of Aliphatic Alcohols and Glycosyl Bromides. [a]

^a Reactions performed with R-Br (1 equiv.) and R-OH (2 equiv). Yields isolated. The diastereomeric ratios (α:β) were determined by ¹H NMR. ^b R-Br (1 equiv), R-OH (1.5 equiv). ^c R-Br (1.5 equiv), of R-OH (1 equiv). ^c R-Br (2 equiv), R-OH (1 equiv).

We expect that the visible-light-induced copper approach will be particularly useful when applied to the synthesis of biologically relevant α -glycans. Well-defined construction of the oligosaccharide motifs of these natural α -glycans will allow to study these bioactive fragments as potential prebiotics. To illustrate this potential, the stereocontrolled synthesis of the branched dextran oligosaccharides 40 and 42 was investigated (Scheme 2). Accordingly, we subjected α -1-bromo D-glucoside 36 and glucoside nucleophile 16 to the standard photoinduced copper conditions. In this case, 1,2-cis disaccharide 37 was isolated in 83% yield with excellent α -selectivity (α : $\beta > 20$:1). It is worth mentioning that this reaction was done on a gram scale and still maintained an excellent result, illustrating the scalability and reproduciblity of our method. Subsequent hydrolysis of 37 provided the corresponding diol 38, which serves as a nucleophilic coupling partner for another cross-coupling iteration with α -alkyl bromides 39 and 41 to afford tetrasaccharide 40 and hexasaccharide 42, respectively, as α -products (α : $\beta > 20$:1) under standard conditions.

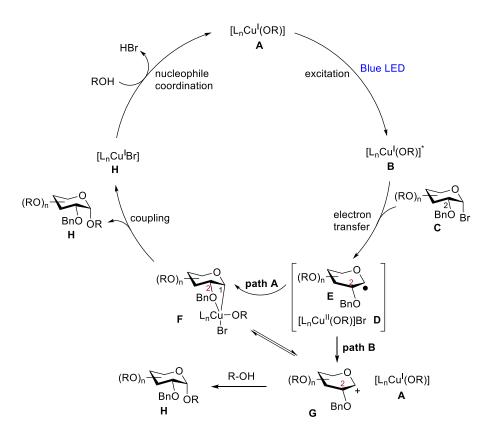
Scheme 2. Copper-Catalyzed Oligosaccharide Synthesis


Although reaction development is the major focus of this investigation, we performed preliminary mechanistic studies. It has been reported that an anomeric C1-radical generated in the coupling reaction would undergo a 5-exo-trig cyclization with a C2-pendant olefin to generate the bicyclic product.²¹ As

such, we conducted the cross coupling of α-alkyl bromide **34** (Scheme 3A) bearing a C2-pendant olefin with C6-hydroxy of galactoside **2**. The coupling product **36** was, however, observed in the reaction, and no cyclization product was isolated. Kochi and coworkers have previously demonstrated that carbon radicals can be oxidized rapidly by copper complex to generate alkyl copper intermediates. Therrefore, it is possible that oxidation of anomeric C1-radical by a copper(II) complex to form alkylcopper(III) complex (*vide infra*, Scheme 5) is faster than a radical 5-*exo*-trig cyclization. Next, we hypothesize that if C-O bond formation occurs through out-of-cage coupling of an anomeric radical with a copper(II) complex, addition of TEMPO (5 equiv.) to the reaction mixture would lead to formation of a TEMPO adduct. As can be seen in Scheme 3B, the TEMPO-trapping product **45** was not detected in the coupling reaction, suggesting that electron transfer and subsequent interactions with anomeric radical intermediate are likely to take place within the same solvent cage.

Scheme 3. Control Experiments

In UV/Vis absorption experiments, the *in situ* generated copper catalyst from the combination of CuI, BPhen, and Xantphos in the ratio of 1:2.5:2.5 shows broad absorption (Figure 5A) in the visible region (λ_{max} =408 nm) whereas the mixture of CuI and BPhen or of CuI and Xantphos shows no absorption, suggesting the importance of these two ligands in forming the complex. The same absorption peak in the visible light region was also observed for the isolated copper complex, [Cu(BPhen)(Xantphos)]BF4 (Figure S9). This isolated copper catalyst was also effective at promoting the coupling to provide 1,2-*cis* product **3** (entry 13, Table 1) in similar yield and α -selectivity to that promoted by *in situ* generated copper catalyst (entry 1, Table 1) from the combination of CuI, BPhen, and Xantphos. These results suggest that the [Cu(BPhen)(Xantphos)]⁺ complex is the primary photoreductant in the visible light-mediated copper-catalyzed cross-coupling. In addition, we observed the clear peak in 630 nm in emission spectra of the *in*


situ generated copper complex under the irradiation of 450 nm (Scheme 4B), suggesting the existence of the excited state copper species. The emission spectra of [Cu(BPhen)(Xantphos)]BF₄ (Figure S10) shows a similar trend to those of the *in situ* generated copper catalyst (Figure 4B), further supporting that [Cu(BPhen)(Xantphos)]⁺ is the active catalyst.

Scheme 4. (**A**) UV/Vis absorption spectra for CuI, BPhen, and Xantphos with different mole ratios. The spectra were acquired with a 0.5 nm interval. (**B**) Emission spectra of the copper complex (CuI:BPhen:Xantphos = 1:2.5:2.5) at 0.1 mM concentration with an excitation wavelength of 450 nm.

On the basis of the aforementioned preliminary results (Schemes 3 and 4), an outline of a proposed mechanism for the visible-light-mediated copper-catalyzed anomeric $C(sp^3)$ -O bond formation is outlined in Scheme 5. The first step involves the coordination of the aliphatic oxygen nucleophile to the Cu(I) center to form the corresponding copper(I)-oxygen complex A. Photoexcitation of A could result in an excited-state copper(I) species B that could engage in electron transfer with the anomeric α -alkyl bromide C. This irradiation step corresponds well to the broad absorption and emission observed experimentally (Scheme 4). However, the results obtained with control experiments (Scheme 4) suggest that the coupling

reaction may not proceed via a copper(II) complex **D** and a long-lived anomeric radical **E**.⁷ As such, the anomeric radical can either react with copper(II) complex **D** to form a copper(III) species **F** (path A)²⁷ or be oxidized by copper(II) complex **D** to generate oxocarbenium ion **G** (path B).²⁸ Dissociation of the alkylcopper(III) complex **F** could also provide the oxocarbenium ion intermediate **G** in path B. If path A is operative, reduction elimination from complex **F** affords C(sp³)-O bond **H** and a copper(I) species **H**. The copper(I) complex **A** is regenerated to reset the cycle. Alternatively, nucleophilic attack onto the oxocarbenium ion (path B) also results in the formation of the desired product **H**.

Scheme 5. Proposed Mechanism

The results from the radical trap experiments in Scheme 4 indicate that the photoreduced coppercatalyzed C-O cross-coupling may not proceed via a long-lived radical intermediate such as complex **E** (Scheme 5). As such, the high levels of α -1,2-*cis* diastereoselectivity observed in the coupling products could be rationalized due to an interaction between the Cu center and C2-oxygen (complex **F**, Scheme 5).²³ Kochi and coworkers have previously demonstrated that carbon radicals are oxidized by copper near a diffusion control to form the alkylcopper intermediate, ^{26,27} further supporting the proposed copper(III) complex **F**. To further support that copper(III) species **F** is likely to form in the reaction, the C2-oxygen atom of alkyl bromide was replaced with fluorine atom as fluorine has been proposed to coordinate to the Cu center.²⁴ The 2-fluro-2-deoxy alkyl bromides also favored the α -1,2-*cis* products (33 and 34, Table 3).

On the other hand, if path B in Scheme 5 is operative, the coupling products should be obtained with low levels of selectivity as a nucleophile can attack on either face of the oxocarbenium intermediate G.²⁵ Anomeric radicals are more easily oxidized to cations than the carbon radicals investigated by Kochi.²⁸ As such, we hypothesized that substitution of the C2-oxygen with H atom could further facilitate the formation of the 2-deoxy oxocarbenium ion resulted either from dissociation from a copper(III) complex or from oxidation of the anomeric radical by copper(II) complex. If 2-deoxy cation is generated in the reaction, an alcohol nucleophile can approach on either its α - or β -face to provide a mixture of 1,2-cis and 1,2-trans diastereomers,²⁵ which was confirmed by an experimental result obtained with the coupling product 35 (Table 3).

CONCLUSIONS

Utilization of visible light to overcome the relatively slow rate of oxidative addition in copper catalysis has facilitated the development of the cross couplings of anomeric α -alkyl bromides with alkyl alcohols to stereoselectively generate the challenging anomeric $C(sp^3)$ -O bonds of α -1,2-cis glycoside products, the important framework of many bioactive carbohydrate molecules. In contrast to nearly all catalytic glycosylation reactions which typically proceeds via either S_N1 or S_N2 pathway, this method utilizes copper catalyst induced by visible light to effect diastereoselective sp³ C-O glycosidic linkage formation. We anticipate this method would be widely adopted for generating other types of anomeric bond formations and provide a foundation for investigating cross-couplings of non-carbohydrate alkyl halides with sp³-hydridized nucleophiles. The detailed mechanism of this visible-light-mediated coppercatalyzed cross couplings of α -alkyl bromides of carbohydrates with alcohol nucleophiles is under investigation and will be reported in due course.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: Experimental details, characterization, and spectral data (PDF)

Corresponding Author

*hmnguyen@wayne.edu

Author Contributions

† Equal contributions

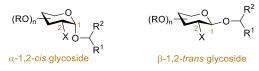
Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This research is supported by NIH (U01 GM120293 for H.M.N.) and NSF (CHE1856437 for H.B.S.). We thank the Wayne State University Lumigen Center for instrumental assistance.

ORCID


Long Luo: 0000-0003-2177-2969

H. Bernhard Schlegel: 0000-0001-7114-2821 Hien M. Nguyen: 0000-0002-7626-8439

REFERENCES

- (1) (a) Casitas, A.; Ribas, X. The Role of Organometallic Copper(III) Complexes in Homogeneous Catalysis. *Chem. Sci.* **2013**, **4**, 2301. (b) Hickman, A. J.; Sanford, M. S. High-Valent Organometallic Copper and Palladium in Catalysis. *Nature* **2012**, **484**, 177-185.
- (2) (a) Monnier, F.; Taillfer, M. Catalytic C-C, C-N, and C-O Ullmann-Type Coupling Reactions. *Angew. Chem. Int. Ed.* **2009**, *48*, 6954. (b) Beletskaya, I. P.; Cheprakov, A. V. Copper in Cross-Coupling Reactions: The Post-Ullmann Chemistry. *Coord. Chem. Rev.* **2004**, *248*, 2337.
- (3) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Aerobic Copper-Catalyzed Organic Reactions. *Chem. Rev.* **2013**, *113*, 6234. (b) Evano, G.; Blanchard, N.; Toumi, M. Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis. *Chem. Rev.* **2008**, *108*, 3054.
- (4) (a) Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Copper-Catalyzed Coupling of Aryl Iodides with Aliphatic Alcohols. *Org. Lett.* **2002**, *4*, 973. (b) Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald, S. L. An Improved Cu-Based Catalyst System for the Reactions of Alcohols with Aryl Halides *J. Org. Chem.* **2008**, *73*, 284. (c) Liu, Y.; Park, S. K.; Xiao, Y.; Chae, J. Copper(II)-Catalyzed C–O Coupling of Aryl Bromides with Aliphatic Diols: Synthesis of Ethers, Phenols, and Benzo-Fused Cyclic Ethers. *Org. Biomol. Chem.* **2014**, *12*, 4747. (d) Zheng, Y.; Zou, W.; Luo, L.; Chen, J.; Lin, S.; Sun, S. Ligand-Free Cu-Catalyzed O-Arylation of Aliphatic Diols *RSC Adv.* **2015**, *5*, 66104.
- (5) (a) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. Computational Explorations of Mechanisms and Ligand-Directed Selectivities of Copper-Catalyzed Ullmann-Type Reactions. *J. Am. Chem. Soc.* **2010**, *132*, 6205. (b) Yu, H.-Z.; Jiang, Y.-Y.; Fu, Y.; Liu, L. Alternative Mechanistic Explanation for Ligand-Dependent Selectivities in Copper-Catalyzed *N* and *O*-Arylation Reactions. *J. Am. Chem. Soc.* **2010**, *132*, 18078. (c) Giri, R.; Brusoe A.; Troshin, K.; Wang, J. Y.; Font, M.; Hartwig, J. F. Mechanism of the Ullman Biaryl Ether Synthesis Catalyzed by Complexes of Anionic Ligands: Evidence for the Reaction of Iodoarenes with Ligated Anioinic Cu^I Intermediates. *J. Am. Chem. Soc.* **2018**, *140*, 793.
- (6) (a) Amal Joseph, P. J.; Priyadarshini, S. Copper-Mediated C–X Functionalization of Aryl Halides. *Org. Process Res. Dev.* **2017**, *21*, 1889. (b) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Y. Jiang, Y.; Ma, D. Selected Copper-Based Reactions for C–N, C–O, C–S, and C–C Bond Formation. *Angew. Chem. Int. Ed.* **2017**, *56*, 16136.
- (7) (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Photoinduced Ullman C-N Coupling: Demonstrating the Viability of a Radical Pathways. *Science* **2012**, *338*, 647. (b) Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles. *Angew. Chem. Int. Ed.* **2013**, *52*, 5129. (c) Do, H.-Q.; Bachman, S.; Bissember, A. C.; Peters, J. C.; Fu. G. C. Photoinduced, Copper-Catalyzed Alkylation of Amides with Unactivated Secondary Alkyl Halides at Room Temperature. *J. Am. Chem. Soc.* **2014**, *136*, 2162. (d) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Asymmetric Copper-Catalyzed C-N Cross-Coupling Induced By Visible Light *Science* **2016**, *351*, 681. (e) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. Photoinduced, Copper-Catalyzed Decarboxylative C-N Coupling to Generate Protected Amines: An Alternative to the Curtius Rearrangement. *J Am. Chem. Soc.* **2017**, *139*, 12153.
- (8) Dupuis, J.; Giese, B.; Ruegge, D.; Fischer, H.; Korth, H.-G.; Sustmann, R. Conformation of Glycosyl Radicals: Radical Stabilization by β-CO Bonds *Angew. Chem. Int. Ed.* **1984**, *23*, 896.
- (9) Nigudkar, S. S.; Demchenko, A. V. Stereocontrolled 1,2-Cis Glycosylation As the Driving Force of Progress in Synthetic Carbohydrate Chemistry. Chem. Sci. 2015, 6, 2687.

- (10) (a) Kim, J. H.; Yang, H.; Park, J.; Boons, G. J. A General Strategy for Stereoselective Glycosylation. *J. Am. Chem. Soc.* **2005**, *127*, 12090. (b) Yasomanee, J. P.; Demchenko, A. V. Effect of Remote Picolinyl and Picoloyl Substituents on the Stereoselectivity of Chemical Glycosylation. *J. Am. Chem. Soc.* **2012**, *134*, 20097.
- (11) (a) Mensah, E. A.; Yu, F.; Nguyen, H. M. Nickel-Catalyzed Stereoselective Glycosylation with C(2)-N-Substituted Benzylidene D-Glucosamine and Galactosamine Trichloroacetimidates for the Formation of 1,2-cis-2-Amino Glycosides. Applications to the Synthesis of Heparin Disaccharides, GPI Anchor Psuedodisaccharides, and α-GalNAc. J. Am. Chem. Soc. 2010, 132, 14288. (b) Sletten, E. R.; Tu, Y-J.; Schlegel, H. B.; Nguyen, H. M. Are Bronsted Acids the True Promoter of Metal-Triflate-Catalyzed Glycosylations? A Mechanistic Probe into 1,2-cis-Aminoglycoside Formation by Nickel Triflate? ACS Catal. 2019, 9, 2110. (c) Yu, F.; Li, J.; DeMent, P. M.; Tu, Y.-T.; Schlegel, H. B.; Nguyen, H. M. Phenanthroline-Catalyzed Stereoretentive Glycosylations. Angew. Chem. Int. Ed. 2019, 58, 6957.
- (12) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W. C. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis. *Nature* **2015**, *524*, 330.
- (13) We choose to test the scope with benzyl and acetyl protected substrates so that we can compare our method with others based on the agreement with several groups funded by NIH Glycoscience.
- (14) Two possible diastereomers could be generated from the visible-light mediated copper-catalyzed $C(sp^3)$ -O cross coupling:

Major Diastereomer (α)

Minor Diastereomer (β)

- (15) Coupling of anomeric alkyl bromides with alkyl alcohols has been reported to proceed in the presence of stoichiometric amount of tetraethylammonium bromide under reflux conditions, see: R. U. Lemiexu, K. B. Hendriks, R. V. Stick, K. James, *J. Am. Chem. Soc.* **1975**, *97*, 4056.
- (16) Nguyen, H. M.; Chen, Y.; Duron, S. G.; Gin, D. Y. Sulfide-Mediated Dehydrative Glycosylation. *J. Am. Chem. Soc.* **2001**, *123*, 8766.
- (17) Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H. An Empirical Understanding of the Glycosylation Reaction. *J. Am. Chem. Soc.* **2018**, *140*, 11942.
- (18) Vasudevan, D; Takeuchi, H.; Johar, S. S.; Majerus, E.; Haltiwanger, R. S. Peters Plus Syndrome Mutations Disrupt a Noncanonical ER Quality-Control Mechanism. *Curr. Biol.* **2015**, *25*, 286.
- (19) (a) Bucher, C.; Gilmour, R. Fluorine-Directed Glycosylation. *Angew. Chem. Int. Ed.* **2010**, *49*, 8724. (b) Durantie, E.; Bucher, C. Gilmour, R. Fluorine-Directed beta-Galactosylation: Chemical Glycosylation
- Development by Molecular Editing. Chem. Eur. J. 2012, 18, 8208.
- (20) Sarbini, S. R.; Kolida, S.; Deaville, E. R.; Gibson, G. R.; Rastall, R. A. Potential of Novel Dextran Oligosaccharides as Prebiotics for Obesity Management through *in vitro* Experimentation. *British J. Nutrition.* **2014**, *112*, 1303.
- (21) (a) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Diastereoselective Metal-Catalyzed Synthesis of *C*-Aryl and *C*-Vinyl Glycosides. *Angew. Chem. Int. Ed.* **2012**, *51*, 11101. (b) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Osozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K.; M.; Nakamura, M. Synthesis of Aryl C. Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals *J. Am. Chem. Soc.* **2017**, *139*, 10693.
- (22) Lakhani, C.; Mathew, L.; Warkentin, J. Rate Constant for Hydroxylation of a Primary Alkyl Radical by Induced Decomposition of an Alpha Hydroperoxyalkyl Diazene. *Can. J. Chem.* **1987**, *65*, 1748.
- (23) Karyakarte, S. D.; Um, C.; Berhane, I. A.; Chemler, S. R. Synthesis of Spirocyclic Ethers by Enantioselective Copper-Catalyzed Carboetherification of Alkenols. *Angew. Chem. Int. Ed.* **2018**, *57*, 12921.
- (24) Zhang, Z.; Wang, F.; Mu, X.; Chen, P.; Liu, G. Copper-Catalyzed Regioselective Fluorination of Allylic Halides. *Angew. Chem. Int. Ed.* **2013**, *52*, 7549.

(25) Competing pathway for use of alkyl bromide lacking C2-oxygen:

$$(RO)_{n} \xrightarrow{Q} O - R$$

$$(RO)_{n} \xrightarrow{\beta-1, 2-trans} (path a)$$

$$(RO)_{n} \xrightarrow{\beta-1, 2-trans} (path a)$$

$$(RO)_{n} \xrightarrow{\beta-1, 2-trans} (path a)$$

$$(RO)_{n} \xrightarrow{\beta-1, 2-trans} (path b)$$

- (26) (a) Kochi, J. K. Mechanism of Organic Oxidation and Reduction by Metal Complexes. *Science* **1967**, *155*, 415. (b) Kochi, J. K.; Bemis, A.; Jenkins, C. L. Mechanism of Electron Transfer Oxidation of Alkyl Radicals by Copper(II) complexes. *J. Am. Chem. Soc.* **1968**, *90*, 4616. (c) Kochi, J. K.; Subramanian, R. Kinetics of Electron-Transfer Oxidation of Alkyl Radicals by Copper(II) Complexes. *J. Am. Chem. Soc.* **1965**, *87*, 4855.
- (27) De La Mare, H. E.; Kochi, J. K.; Rust, F. F. On a Transannular Photodesmotic Transition. *J. Am. Chem. Soc.* **1961**, *83*, 2013.
- (28) Wayner, D. D. W.; McPhee, D. J.; Griller, D. Oxidation and Reduction Potentials of Transient Free Radicals. *J. Am. Chem. Soc.* **1988**, *110*, 132.

Table of Contents: