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We consider the problem of type-directed component-based synthesis where, given a set of (typed) components
and a query type, the goal is to synthesize a term that inhabits the query. Classical approaches based on
proof search in intuitionistic logics do not scale up to the standard libraries of modern languages, which span
hundreds or thousands of components. Recent graph reachability based methods proposed for Java do scale, but
only apply to monomorphic data and components: polymorphic data and components infinitely explode the
size of the graph that must be searched, rendering synthesis intractable. We introduce type-guided abstraction
refinement (TYGAR), a new approach for scalable type-directed synthesis over polymorphic datatypes and
components. Our key insight is that we can overcome the explosion by building a graph over abstract types
which represent a potentially unbounded set of concrete types. We show how to use graph reachability to
search for candidate terms over abstract types, and introduce a new algorithm that uses proofs of untypeability
of ill-typed candidates to iteratively refine the abstraction until a well-typed result is found.

We have implemented TYGAR in H+, a tool that takes as input a set of Haskell libraries and a query type,
and returns a Haskell term that uses functions from the provided libraries to implement the query type. Our
support for polymorphism allows H+ to work with higher-order functions and type classes, and enables more
precise queries due to parametricity. We have evaluated H+ on 44 queries using a set of popular Haskell
libraries with a total of 291 components. H+ returns an interesting solution within the first five results for
32 out of 44 queries. Our results show that TYGAR allows H+ to rapidly return well-typed terms, with the
median time to first solution of just 1.4 seconds. Moreover, we observe that gains from iterative refinement
over exhaustive enumeration are more pronounced on harder queries.
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1 INTRODUCTION

Consider the task of implementing a function firstJust def mbs, which extracts the first non-
empty value from a list of options mbs, and if none exists, returns a default value def. Rather than
writing a recursive function, you suspect you can implement it more concisely and idiomatically
using components from a standard library. If you are a Haskell programmer, at this point you
will likely fire up Hoogle [Mitchell 2004], the Haskell’s API search engine, and query it with the
intended type of firstJust, i.e. a → [Maybe a] → a. The search results will be disappointing,
however, since no single API function matches this type1. In fact, to implement firstJust you
need a snippet that composes three library functions from the standard Data.Maybe library, like so:
\def mbs → fromMaybe def (listToMaybe (catMaybes mbs)). Wouldn’t you like a tool that could
automatically synthesize such snippets from type queries?

Scalable Synthesis via Graph Reachability. In general, our problem of type-directed component-

based synthesis, reduces to that of finding inhabitants for a given query type [Urzyczyn 1997].
Consequently, one approach is to develop synthesizers based on proof search in intuitionistic logics
[Augusstson 2005]. However, search becomes intractable in the presence of libraries with hundreds
or thousands of components. Several papers address the issue of scalability by rephrasing the
problem as one of reachability in a type transition network (TTN), i.e. a graph that encodes the
library of components. Each type is represented as a state, and each component is represented as
a directed transition from the component’s input type to its output type. The synthesis problem
then reduces to finding a path in the network that begins at the query’s input type and ends at
the output type [Mandelin et al. 2005]. To model components (functions) that take multiple inputs,
we need only generalize the network to a Petri net which has hyper-transitions that link multiple
input states with a single output. With this generalization, the synthesis problem can, once again,
be solved by finding a path from the query’s input types to the desired output yielding a scalable
synthesis method for Java [Feng et al. 2017].

Challenge: Polymorphic Data and Components. Graph-based approaches crucially rely on the
assumption that the size of the TTN is finite (and manageable). This assumption breaks down in
the presence of polymorphic components that are ubiquitous in libraries for modern functional
languages. (a) With polymorphic datatypes the set of types that might appear in a program is
unbounded: for example, two type constructors [] and Int give rise to an infinite set of types
(Int, [Int], [[Int]], etc). (b) Even if we bound the set of types, polymorphic components lead to a
combinatorial explosion in the number of transitions: for example, the pair constructor with the
type a → b → (a,b) creates a transition from every pair of types in the system. In other words,
polymorphic data and components explode the size of the graph that must be searched, rendering
synthesis intractable.

Type-Guided Abstraction Refinement. In this work we introduce type-guided abstraction refine-

ment (TYGAR), a new approach to scalable type-directed synthesis over polymorphic datatypes
and components. A high-level view of TYGAR is depicted in Fig. 1. The algorithm maintains an
abstract transition network (ATN) that finitely overapproximates the infinite network comprising
all monomorphic instances of the polymorphic data and components. We use existing SMT-based
techniques to find a suitable path in the compact ATN, which corresponds to a candidate term. If the
term is well-typed, it is returned as the solution. Due to the overapproximation, however, the ATN
can contain spurious paths, which correspond to ill-typed terms. In this case, the ATN is refined in
order to exclude this spurious path, along with similar ones. We then repeat the search with the re-
fined ATN until a well-typed solution is found. As such, TYGAR extends synthesis using abstraction

1We tested this query at the time of writing with the default Hoogle configuration (Hoogle 4).
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Fig. 1. Overview of the TYGAR synthesis algorithm.

refinement (SYNGAR) [Wang et al. 2018], from the domain of values to the domain of types. TYGAR’s
support for polymorphism also allows us to handle higher-order components, which take functions
as input, by representing functions (arrows) as a binary type constructor. Similarly, TYGAR can
handle Haskell’s ubiquitous type classes, by following the dictionary-passing translation [Wadler
and Blott 1989], which again, relies crucially on support for parametric polymorphism.

Contributions. In summary, this paper makes the following contributions:

1. Abstract Typing. Our first contribution is a novel notion of abstract typing grounded in the
framework of abstract interpretation [Cousot and Cousot 1977]. Our abstract domain is parameter-
ized by a finite collection of polymorphic types, each of which abstracts a potentially infinite set of
ground instances. Given an abstract domain, we automatically derive an over-approximate type
system, which we use to build the ATN. This is inspired by predicate abstraction [Graf and Saidi
1997], where the abstract domain is parameterized by a set of predicates, and abstract program
semantics at different levels of detail can be derived automatically from the domain.

2. Type Refinement. Our second contribution is a new algorithm that, given a spurious program,
refines the abstract domain so that the program no longer type-checks abstractly. To this end, the
algorithm constructs a compact proof of untypeability of the program: it annotates each subterm
with a type that is just precise enough to refute the program.

3. H+. Our third contribution is an implementation of TYGAR in H+, a tool that takes as input a
set of Haskell libraries and a type, and returns a ranked list of straight-line programs that have the
desired type and can use any function from the provided libraries. To keep in line with Hoogle’s
user interaction model familiar to Haskell programmers, H+ does not require any user input beyond
the query type; this is in contrast to prior work on component-based synthesis [Feng et al. 2017; Shi
et al. 2019], where the programmer provides input-output examples to disambiguate their intent.
This setting poses an interesting challenge: given that there might be hundreds of programs of a
given type (including nonsensical ones like head []), how do we select just the relevant programs,
likely to be useful to the programmer? We propose a novel mechanism for filtering out irrelevant
programs using GHC’s demand analysis [Sergey et al. 2017] to eliminate terms where some of the
inputs are unused.

We have evaluated H+ on a set of 44 queries collected from different sources (including Hoogle

and StackOverflow), using a set of popular Haskell libraries with a total of 291 components. Our
evaluation shows that H+ is able to find a well-typed program for 43 out of 44 queries within the
timeout of 60 seconds. It finds the first well-typed program within 1.4 seconds on average. In 32 out
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-- | Value stored in the option

-- or default if the option is empty

fromMaybe :: α → Maybe α → α

-- | All values from a list of options

catMaybes :: List (Maybe α) → List α

-- | Head of the list

-- or empty option if the list is empty

listToMaybe :: List α → Maybe α

M a

L a aL (M a)

M (M a)

f<a>

f<M a>

l<a>l<M a>

c

Fig. 2. (left) A tiny component library. (right) A Type Transition Net for this library and query
a → List (Maybe a) → a. The transitions l<a>, f<a> (resp. l<M a>, f<M a>) correspond to the polymorphic
instances of the components listToMaybe, fromMaybe at type a (resp. M a).

of 44 queries, the top five results contains a useful solution2. Further, our evaluation demonstrates
that both abstraction and refinement are important for efficient synthesis. A naive approach that
does not use abstraction and instead instantiates all polymorphic datatypes up to even a small depth
of 1 yields a massive transition network, and is unable to solve any benchmarks within the timeout.
On the other hand, an approach that uses a fixed small ATN but no refinement works well on simple
queries, but fails to scale as the solutions get larger. Instead, the best performing search algorithm
uses TYGAR to start with a small initial ATN and gradually extend it, up to a given size bound,
with instances that are relevant for a given synthesis query.

2 BACKGROUND AND OVERVIEW

We start with some examples that illustrate the prior work on component-based synthesis that H+
builds on (Sec. 2.1), the challenges posed by polymorphic components, and our novel techniques
for addressing those challenges.

2.1 Synthesis via Type Transition Nets

The starting point of our work is SyPet [Feng et al. 2017], a component-based synthesizer for Java.
Let us see how SyPetworks by using the example query from the introduction: a → [Maybe a] → a.
For the sake of exposition, we assume that our library only contains three components listed in
Fig. 2 (left). Hereafter, we will use Greek letters α , β, . . . to denote existential type variablesÐi.e. the
type variables of components, which have to be instantiated by the synthesizerÐas opposed to
a,b, . . . for universal type variables found in the query, which, as far as the synthesizer is concerned,
are just nullary type constructors. Since SyPet does not support polymorphic components, let us
assume for now that an oracle provided us with a small set of monomorphic types that suffice
to answer this query, namely, a, Maybe a, Maybe (Maybe a), [a], and [Maybe a]. For the rest of this
section, we abbreviate the names of components and type constructors to their first letter (for
example, we will write L (M a) for [Maybe a]) and refer to the query arguments as x1, x2.

Components as Petri Nets. SyPet uses a Petri-net representation of the search space, which we
refer to as the type transition net (TTN). The TTN for our running example is shown in Fig. 2 (right).
Here places (circles) correspond to types, transitions (rectangles) correspond to components, and
edges connect components with their input and output types. Since a component might require

2Unfortunately, ground truth solutions are not available for Hoogle benchmarks; we judge usefulness by manual inspection.
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multiple inputs of the same type, edges can be annotated withmultiplicities (the default multiplicity
is 1). A marking of a TTN assigns a non-negative number of tokens to every place. The TTN can
step from one marking to the next by firing a transition: if the input places of a transition have
sufficiently many tokens, the transition can fire, consuming those input tokens and producing a
token in the output place. For example, given the marking in Fig. 2, transition c can fire, consuming
the token in L (M a) and producing one in L a; however transition f<a> cannot fire as there is no
token in M a.

Synthesis via Petri-Net Reachability. Given a synthesis query T1 → . . .→ Tn → T , we set the
initial marking of the TTN to contain one token for each input type Ti , and the final marking to
contain a single token in the typeT . The synthesis problem then reduces to finding a valid path, i.e.
a sequence of fired transitions that gets the net from the initial marking to the final marking. Fig. 2
shows the initial marking for our query, and also indicates the final marking with a double border
around the return type a (recall that the final marking of a TTN always contains a single token
in a given place). The final marking is reachable via the path [c, l, f], marked with thick arrows,
which corresponds to a well-typed program f x1 (l (c x2)). In general, a path might correspond
to multiple programsÐif several tokens end up in the same place at any point along the pathÐof
which at least one is guaranteed to be well-typed; the synthesizer can then find the well-typed
program using explicit or symbolic enumeration.

2.2 Polymorphic Synthesis via Abstract Type Transition Nets

Libraries for modern languages like Haskell provide highly polymorphic components that can be
used at various different instances. For example, our universe contains three type constructorsÐa,
L, and MÐwhich can give rise to infinitely many types, so creating a place for each type is out of
question. Even if we limit ourselves to those constructors that are reachable from the query types by
following the components, we might still end up with an infinite set of types: for example, following
head :: List α → α backwards from a yields L a, L (L a), and so on. This poses a challenge for
Petri-net based synthesis: which finite set of (monomorphic) instances do we include in the TTN?

On the one hand, we have to be careful not to include too many instances. In the presence of
polymorphic components, these instances can explode the number of transitions. Fig. 2 illustrates
this for the f and l components, each giving rise to two transitions, by instantiating their type
variable α with two different TTN places, a and Maybe a. This proliferation of transitions is especially
severe for components with multiple type variables. On the other hand, we have to be careful not
to include too few instances. We cannot, for example, just limit ourselves to the monomorphic types
that are explicitly present in the query (a and L (M a)), as this will preclude the synthesis of terms
that generate intermediate values of some other type, e.g. L a as returned by the component c,
thereby preventing the synthesizer from finding solutions.

Abstract Types. To solve this problem, we introduce the notion of an abstract type3, which stands
for (infinitely) many monomorphic instances. We represent abstract types simply as polymorphic
types, i.e. types with free type variables. For example, the abstract type τ stands for the set of all
types, while L τ stands for the set {L t | t ∈ Type}. This representation supports different levels of
detail: for example, the type L (M a) can be abstracted into itself, L (M τ), L τ , or τ .

Abstract Transition Nets. A Petri net constructed out of abstract types, which we dub an abstract

transition net (ATN), can finitely represent all types in our universe, and hence all possible solutions
to the synthesis problem. The ATN construction is grounded in the theory of abstract interpretation

3Not to be confused with existing notions of abstract data type and abstract class. We use łabstractž here is the sense of
abstract interpretation [Cousot and Cousot 1977], i.e. an abstraction of a set of concrete types.
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Fig. 3. Three iterations of abstraction refinement: ATNs (above) and corresponding solutions (below). Some
irrelevant transitions are omitted from the ATNs for clarity. Solutions 1 and 2 are spurious, solution 3 is valid.
Each solution is annotated with its concrete typing (in red); each spurious solution is additionally annotated
with its proof of untypeability (in blue). These blue types are added to the ATN in the next iteration.

and ensures that the net soundly over-approximates the concrete type system, i.e. that every well-
typed program corresponds to some valid path through the ATN. Fig. 3 (2) shows the ATN for
our running example with places τ , L τ and a. In this ATN, the rightmost f transition takes a

and τ as inputs and returns a as output. This transition represents the set of monomophic types
{a→ t → a | t ∈ Type} and over-approximates the set of instances of f where the first argument
unifies with a and the second argument unifies with τ (which in this case is a singleton set
{a → M a → a}). Due to the over-approximation, some of the ATN’s paths yield spurious ill-typed
solutions. For example, via the highlighted path, this ATN produces the term f x1 (l x2), which is
ill-typed since the arguments to f have the types a and M (M a).
How do we pick the right level of detail for the ATN? If the places are too abstract, there are

too many spurious solutions, leading, in the limit, to a brute-force enumeration of programs. If
the places are too concrete, the net becomes too large, and the search for valid paths is too slow.
Ideally, we would like to pick a minimal set of abstract types that only make distinctions pertinent
to the query at hand.

Type-Guided Abstraction Refinement. H+ solves this problem using an iterative process we call
type-guided abstraction refinement (TYGAR) where an initial coarse abstraction is incrementally
refined using the information from the type errors found in spurious solutions. Next, we illustrate
TYGAR using the running example from Fig. 3.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 12. Publication date: January 2020.
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Iteration 1. We start with the coarsest possible abstraction, where all types are abstracted to
τ , yielding the ATN in Fig. 3 (1). The shortest valid path is just [f], which corresponds to two
programs: f x1 x2 and f x2 x1. Next, we type-check these programs to determine whether they
are valid or spurious. During type checking, we compute the principal type of each sub-term and
propagate this information bottom-up through the AST; the resulting concrete typing is shown in
red at the bottom of Fig. 3 (1). Since both candidate programs are ill-typed (as indicated by the
annotation ⊥ at the root of either AST), the current path is spurious. Although we could simply
enumerate more valid paths until we find a well-typed program, such brute-force enumeration
does not scale with the number of components. Instead, we refine the abstraction so that this path
(and hopefully many similar ones) becomes invalid.

Our refinement uses the type error information obtained while type-checking the spurious
programs. Consider f x1 x2: the program is ill-typed because the concrete type of x2, L (M a),
does not unify with the second argument of f, M α. To avoid making this type error in the future,
we need to make sure that the abstraction of L (M a) also fails to unify with M α. To this end,
we need to extend our ATN with new abstract types, that suffice to reject the program f x1 x2.
These new types will update the ATN with new places that will reroute the transitions so that the
path that led to the term f x1 x2 is no longer feasible. We call this set of abstract types a proof of
untypeability of the program. We could use x2’s concrete type L (M a) as the proof, but we want
the proof to be as general as possible, so that it can reject more programs. To compute a better
proof, the TYGAR algorithm generalizes the concrete typing of the spurious program, repeatedly
weakening concrete types with fresh variables while still preserving untypeability. In our example,
the generalization step yields τ and L τ (see blue annotations in Fig. 3). This general proof also
rejects other programs that use a list as the second argument to f, such as f x1 (c x2). Adding the
types from the untypeability proofs of both spurious programs to the ATN results in a refined net
shown in Fig. 3 (2).

Iteration 2. The new ATN in Fig. 3 (2) has no valid paths of length one, but has the (highlighted)
path [l, f] of length two, which corresponds to a single program f x1 (l x2) (since the two tokens
never cross paths). This program is ill-typed, so we refine the abstraction based on its untypeability,
as depicted at the bottom of Fig. 3 (2). To compute the proof of untypeability, we start as before, by
generalizing the concrete types of f’s arguments as much as possible as long as the application
remains ill-typed, arriving at the types a and M (M τ). Generalization then propagates top-down
through the AST: in the next step, we compute the most general abstraction for the type of x2
such that l x2 has type M (M τ). The generalization process stops at the leaves of the AST (or
alternatively when the type of some node cannot be generalized). Adding the types M (M τ) and
L (M τ) from the untypeability proof to the ATN leads to the net in Fig. 3 (3).

Iteration 3. The shortest valid path in the third ATN is [c, l, f], which corresponds to a well-typed
program f x1 (l (c x2)) (see the bottom of Fig. 3 (3)), which we return as the solution.

2.3 Pruning Irrelevant Solutions via Demand Analysis

Using a query type as the sole input to synthesis has its pros and cons. On the one hand, types
are programmer-friendly: unlike input-output examples, which often become verbose and cumber-
some for data other than lists, types are concise and versatile, and their popularity with Haskell
programmers is time-tested by the Hoogle API search engine. On the other hand, a query type
only partially captures the programmer’s intent; in other words, not all well-typed programs are
equally desirable. In our running example, the program \x1 x2 → x1 has the right type, but it is
clearly uninteresting. Hence, the important challenge for H+ is: how do we filter out uninteresting
solutions without requiring additional input from the user?

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 12. Publication date: January 2020.
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-- | Function application

($) :: (α → β) → α → β

-- | List with n copies of a value

replicate :: Int → α → [α]

-- | Fold a list

foldr :: (α → β → β) → β → [α] → β

-- | Value stored in the option

fromJust :: Maybe α → α

-- | Lookup element by key

lookup :: Eq α => α → [(α, β)] → Maybe β

Int a

F τ τ L τ

foldrrep

'$

$

a L (P a b)

EqD a M b b

l fJ

Fig. 4. (left) A library with higher-order functions and type-class constraints. (center) Fragment of an ATN for
the query (a → a) → a → Int → a. (right) Fragment of an ATN for the query Eq a => [(a,b)] → a → b.

Relevant Typing. SyPet offers an interesting approach to this problem: they observe that a
programmer is unlikely to include an argument in a query if this argument is not required for
the solution. To leverage this observation, they propose to use a relevant type system [Pierce
2004], which requires each variable to be used at least once, making programs like \x1 x2 → x1

ill-typed. TTNs naturally enforce relevancy during search: in fact, TTN reachability as described
so far encodes a stricter linear type system, where all arguments must be used exactly once. This
requirement can be relaxed by adding special łcopyž transitions that consume one token from a
place and produce two token in the same place.

Demand Analysis. Unfortunately, with expressive polymorphic components the synthesizer
discovers ingenious ways to circumvent the relevancy requirement. For example, the terms
fst (x1, x2), const x1 x2, and fromLeft x1 (Right x2) are all functionally equivalent to x1, even
though they satisfy the letter of relevant typing. To filter out solutions like these, we use GHC’s
demand analysis [Sergey et al. 2017] to post-process solutions returned by the ATN and filter out
those with unused variables. Demand analysis is a whole-program analysis that peeks inside the
component implementation, and hence is able to infer in all three cases above that the variable x2

is unused. As we show in Sec. 6, demand analysis significantly improves the quality of solutions.

2.4 Higher-Order Functions

Next we illustrate how ATNs scale up to account for higher-order functions and type classes, using
the component library in Fig. 4 (left), which uses both of these features.

Example: Iteration. Suppose the user poses a query (a → a) → a → Int → a, with the in-
tention to apply a function д to an initial value x some number of times n. Perhaps surpris-
ingly, this query can be solved using components in Fig. 4 by creating a list with n copies of
д, and then folding function application over that list with the seed x ś that is, via the term
\g x n → foldr ($) x (replicate n g).
Can we generate this solution using an ATN? As described so far, ATNs only assign places to

base (non-arrow) types, and hence cannot synthesize terms that use higher-order components,
such as the application of foldr to the function ($) above. Initially, we feared that supporting
higher-order components would require generating lambda terms within the Petri net (to serve as
their arguments) which would be beyond the scope of this work. However, in common cases like
our example, the higher-order argument can be written as a single variable (or component). Hence,
the full power of lambda terms is not required.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 12. Publication date: January 2020.
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HOF Arguments via Nullary Components.We support the common use case Ð where higher-
order arguments are just components or applications of components Ð simply by desugaring a
higher-order library into a first-order library supported by ATN-based synthesis. To this end, we
(1) introduce a binary type constructor F α β to represent arrow types as if they were base types;
and (2) for each component c :: B1 → ... → Bn → B in the original library, we add a nullary
component 'c :: F B1 (... F Bn B). Intuitively, an ATN distinguishes between functions it calls
(represented as transitions) and functions it uses as arguments to other functions (represented as
tokens in corresponding F places).

Fig. 4 (center) depicts a fragment of an ATN for our example. Note that the ($) component gives
rise both to a binary transition $, which we would take if we were to apply this component, and
a nullary transition '$, which is actually taken by our solution, since ($) is used as an argument
to foldr. Since F is just an ordinary type constructor as far as the ATN is concerned, all existing
abstraction and refinement mechanisms apply to it unchanged: for example, in Fig. 4 both a → a

and (a → a) → a → a are abstracted into the same place F τ τ .

Completeness via Point-Free Style. While our method was inspired by the common use case
where the higher-order arguments were themselves components, note that with a sufficiently rich
component library, e.g. one that has representations of the S, K and I combinators, our method
is complete as every term that would have required an explicit lambda-subterm for a function
argument, can now be written in a point-free style, only using variables, components and their
applications.

2.5 Type Classes

Type classes are widely used in Haskell to support ad-hoc polymorphism [Wadler and Blott 1989].
For example, consider the type of component lookup in Fig. 4: this function takes as input a key k
of typeα and a list of key-value pairs of type [(α, β)], and returns the value that corresponds to k ,
if one exists. In order to look up k , the function has to compare keys for equality; to this end, its
signature imposes a bound Eq α on the type of keys, enforcing that any concrete key type be an
instance of the type class Eq and therefore be equipped with a definition of equality.
Type classes are implemented by a translation to parametric polymorphism called dictionary

passing, where each class is translated into a record whose fields implement the different functions
supported by the type class. Happily, H+ can use dictionary passing to desugar synthesis with type
classes into a synthesis problem supported by ATNs. For example, the type of lookup is desugared
into an unbounded type with an extra argument: EqD α → α → [(α,β)] → β. Here EqD α, is a
dictionary: a record datatype that stores the implementation of equality onα; the exact definition
of this datatype is unimportant, we only care whether EqD α for a givenα is inhabited.

Example: Key-Value Lookup. As a concrete example, suppose the user wants to perform a lookup
in a key-value list assuming the key is present, and poses a query Eq a => [(a,b)] → a → b. The
intended solution to this query is \xs k → fromJust (lookup k xs), i.e. look up the key and then
extract the value from the option, assuming it is nonempty. A fragment of an ATN for this query is
shown in Fig. 4 (right). Note that the transition lÐthe instance of lookup with α 7→ a, β 7→ bÐhas
EqD a as one of its incoming edges. This corresponds to our intuition about type classes: in order
to fire l, the ATN first has to prove that a satisfies Eq, or in other words, that EqD a is inhabited.
In this case, the proof is trivial: because the query type is also desugared in the same way, the
initial marking contains a token in EqD a4. A welcome side-effect of relevant typing is that any
solution must use the token in EqD a, which matches our intuition that the user would not specify
the bound Eq a if they did not mean to compare keys for equality. This example illustrates that the

4As we explain in Sec. 5.1, dictionaries can also be inhabited via instances and functional dependencies.
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Syntax

e ::= x | c | e e Application Terms

E ::= e | λx .E Normal-Form Terms

b ::= C b Ground Base Types

t ::= b | b → t Ground Types

B ::= τ | C B Base Types

T ::= B | B → T Types

P ::= ∀τ .T Polytypes

Γ ::= · | x : b, Γ Environments

σ ::= [τ 7→ B] Substitutions

Typing Λ; Γ ⊢ E :: t

T-Var
Γ(x) = b

Λ; Γ ⊢ x :: b

T-Comp
Λ(c) = ∀τ .T

Λ; Γ ⊢ c :: σT

T-App
Λ; Γ ⊢ e1 :: b → t Λ; Γ ⊢ e2 :: b

Λ; Γ ⊢ e1 e2 :: t

T-Fun
Λ; Γ,x : b ⊢ E :: t

Λ; Γ ⊢ λx .E :: b → t

Fig. 5. λH : syntax and declarative type system.

combination of (bounded) polymorphism and relevant typing gives users a surprisingly powerful
mechanism to disambiguate their intent. Given the query above (and a library of 291 components),
H+ returns the intended solution as the first result. In contrast, given a monomorphic variant of
this query [(Int, b)] → Int → b (where the key type is just an Int) H+ produces a flurry of
irrelevant results, such as \xs k → snd (xs !! k), which uses k as an index into the list, and not
as a key as we intended.

3 ABSTRACT TYPE CHECKING

Next, we formally define the syntax of our target language λH and its type system, and use the
framework of abstract interpretation to develop an algorithmic abstract type system for λH . This
framework allows us to parameterize the checker by the desired level of detail, crucially enabling
our novel TYGAR synthesis algorithm formalized in Sec. 4.

3.1 The λH Language

λH is a simple first-order language with a prenex-polymorphic type system, whose syntax and
typing rules are shown in Fig. 5. We stratify the terms into application terms which comprise
variables x , library components c and applications; and normal-form terms which are lambda-
abstractions over application terms.
The base types B include type variables τ , as well as applications of a type constructor to zero

or more base types C B. We write X to denote zero or more occurrences of a syntactic element X .
Types T include base types and first-order function types (with base-typed arguments). Syntactic
categories b and t are the ground counterparts to B and T (i.e. they contain no type variables). A
component library Λ is a finite map from a set of components c to the components’ poly-types.
A typing environment Γ is a map from variables x to their ground base types. A substitution

σ = [τ1 7→ B1, . . . ,τn 7→ Bn] is a mapping from type variables to base types that maps each τi to
Bi and is identity elsewhere. We write σT to denote the application of σ to typeT , which is defined
in a standard way.

A typing judgment Λ; Γ ⊢ E :: t is only defined for ground types t . Polymorphic components are
instantiated into ground monotypes by the Comp rule, which angelically picks ground base types
to substitute for all the universally-quantified type variables in the component signature (the rule
implicitly requires that σT be ground).

3.2 Type Checking as Abstract Interpretation

Type subsumption lattice.We say that typeT ′ is more specific than typeT (or alternatively, thatT
is more general than or subsumesT ′) writtenT ′ ⊑ T , iff there exists σ such thatT ′ = σT . The relation
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⊑ is a partial order on types. For example, in a library with two nullary type constructors A and B,
and a binary type constructor P, we have P A B ⊑ P α B ⊑ P α β ⊑ τ . This partial order induces an
equivalence relation T1 ≡ T2 ≜ T1 ⊑ T2 ∧T2 ⊑ T1 (equivalence up to variable renaming). The order
(and equivalence) relation extends to substitutions in a standard way: σ ′ ⊑ σ ≜ ∃ρ .∀τ .σ ′τ = ρστ .

We augment the set of types with a special bottom type ⊥ that is strictly more specific than every
other base type; we also consider a bottom substitution σ⊥ and define σ⊥B = ⊥ for any B. A unifier

of B1 and B2 is a substitution σ such that σB1 = σB2; note that σ⊥ is a unifier for any two types.
The most general unifier (MGU) is unique up to ≡, and so, by slight abuse of notation, we write it as
a function mgu(B1,B2). We write mgu(B1,B2) for the MGU of a sequence of type pairs, where the
MGU of an empty sequence is the identity substitution (mgu(·) = []). The meet of two base types
is defined as B1 ⊓ B2 = σB1(= σB2), where σ = mgu(B1,B2). For example, P α B ⊓ P A β = P A B

while P α B ⊓ P β A = ⊥. The join of two base types can be defined as their anti-unifier, but we
elide a detailed discussion as joins are not required for our purposes.

We write B⊥ = B ∪ {⊥} for the set of base types augmented with ⊥. Note that ⟨B⊥,⊑,⊔,⊓⟩ is a
lattice with bottom element ⊥ and top element τ and is isomorphic to Plotkin [1970]’s subsumption

lattice on first-order logic terms.

Type Transformers. A component signature can be interpreted as a partial function that maps (tu-
ples of) ground types to ground types. For example, intuitively, a component l :: ∀ β.L β → M β

maps L A to M A, L (M A) to M (M A), and A to ⊥. This gives rise to type transformer semantics
for components, which is similar to predicate transformer semantics in predicate abstraction and
SYNGAR [Wang et al. 2018], but instead of being designed by a domain expert can be derived
automatically from the component signatures.
More formally, we define a fresh instance of a polytype fresh(∀τ .T ) ≜ [τ 7→ τ ′]T , where τ ′ are

fresh type variables. Let c be a component and fresh(Λ(c)) = B′i → B′; then a type transformer for

c is a function JcKΛ : B⊥ → B⊥ defined as follows:

JcKΛ(Bi ) = σB′ where σ = mgu(Bi ,B
′
i )

We omit the subscript Λwhere the library is clear from the context. For example, for the component
l above: JlK(L (M τ)) = M (M τ), JlK(τ ) = M τ1 (where τ1 is a fresh type variable), and JlK(A) = ⊥
(because mgu(L τ2, A) = σ⊥). We can show that this type transformer is monotone: applying it to
more specific types yield a more specific type. The transformer is also sound in the sense that in
any concrete type derivation where the argument to l is more specific than some B, its result is
guaranteed to be more specific than JlK(B).

Lemma 3.1 (Trans. Monotonicity). If B1
i ⊑ B2

i then JcK(B1
i ) ⊑ JcK(B2

i ).

Lemma 3.2 (Trans. Soundness). If fresh(Λ(c)) = Bi → B and σBi ⊑ B′i then σB ⊑ JcK(B′i ).

The proofs of these and following results can be found in the technical report [Guo et al. 2019].

Bidirectional Typing.We can use type transformers to define algorithmic type checking for λH , as
shown in Fig. 6. For now, ignore the parts of the rules highlighted in red, or, in other words, assume
that αA is the identity function; the true meaning of this function is explained in the next section.
As is standard in bidirectional type checking [Pierce and Turner 2000], the type system is defined
using two judgments: the inference judgment Λ; Γ ⊢ e =⇒ B generates the (base) type B from the
term e , while the checking judgment Λ; Γ ⊢ E ⇐= t checks E against a known (ground) type t .
Algorithmic typing assumes that the term is in η-long form, i.e. there are no partial applications.
During type checking, the outer λ-abstractions are handled by the checking rule C-Fun, and then
the type of inner application term is inferred and compared with the given type b in C-Base.
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(Abstract) Type Inference Λ; Γ ⊢A e =⇒ B

I-Var
Γ(x) = b

Λ; Γ ⊢A x =⇒ αA(b)
I-App

Λ; Γ ⊢A ei =⇒ Bi

Λ; Γ ⊢A c ei =⇒ αA

(

JcK(Bi )
)

(Abstract) Type Checking Λ; Γ ⊢A E ⇐= t

C-Fun
Λ; Γ,x : b ⊢A E ⇐= t

Λ; Γ ⊢A λx .E ⇐= b → t
C-Base

Λ; Γ ⊢A e =⇒ B b ⊑ B

Λ; Γ ⊢A e ⇐= b

Fig. 6. Abstract type checking for λH . Treating αA as the identity function yields concrete type checking.

The only interesting case is the inference rule I-App, which handles (uncurried) component
applications using their corresponding type transformers. Nullary components are handled by the
same rule (note that in this case JcK = fresh(Λ(c))). This type system is algorithmic, because we
have eliminated the angelic choice of polymorphic component instantiations (recall the T-Comp
rule in the declarative type system). Moreover, type inference for application terms can be thought
of as abstract interpretation, where the abstract domain is the type subsumption lattice: for any
application term e , the inference computes its łabstract valuež B (known in type inference literature
as its principal type). We can show that the algorithmic system is sound and complete with respect
to the declarative one.

Theorem 3.3 (Type Checking is Sound and Complete). Λ; · ⊢ E :: t iff Λ; · ⊢ E ⇐= t .

3.3 Abstract Typing

The algorithmic typing presented so far is just a simplified version of Hindley-Milner type inference.
However, casting type inference as abstract interpretation gives us the flexibility to tune the precision
of the type system by restricting the abstract domain to a sub-lattice of the full type subsumption
lattice. This is similar to predicate abstraction, where precision is tuned by restricting the abstract
domain to boolean combinations of a finite set of predicates.

Abstract Cover. An abstract cover A = {A1, . . . ,An} is a set of base types Ai ∈ B⊥ that contains τ
and ⊥, and is a sub-lattice of the type subsumption lattice (importantly, it is closed under ⊓). For
example, in a library with a nullary constructor A and two unary constructors L and M,A0 = {τ ,⊥},
A1 = {τ , A, L τ ,⊥}, and A2 = {τ , A, L τ , L (M τ), M (M τ),⊥} are abstract covers. Note that in a
cover, the scope of a type variable is each individual base type, so the different instances of τ above
are unrelated. We say that an abstract cover A ′ refines a cover A (A ′ ⪯ A) if A is a sub-lattice of
A ′. In the example above, A2 ⪯ A1 ⪯ A0.

Abstraction function. Given an abstract coverA, the abstraction αA : B⊥ → B⊥ of a base type B
is defined as the most specific type in A that subsumes B:

αA(B) = A ∈ A such that B ⊑ A and ∀A′ ∈ A.B ⊑ A′⇒ A ⊑ A′

We can show that αA(B) is unique, because A is closed under meet. In abstract interpretation, it is
customary to define a dual concretization function. In our case, the abstract domainA is a sub-lattice
of the concrete domain B⊥, and hence our concretization function is the identity function id. It is
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easy to show that αA and id form a Galois insertion, because B ⊑ id(αA(B)) and A = αA(id(A))

both hold by definition of αA .

Abstract Type Checking. Armed with the definition of abstraction function, let us now revisit
Fig. 6 and consider the highlighted parts we omitted previously. The two abstract typing judgmentsÐ
for checking and inferenceÐare parameterized by the abstract cover. The only interesting changes
are in the abstract type inference judgment Λ; Γ ⊢A e =⇒ B, which applies the abstraction function
to the inferred type at every step. For example, recall the covers A1 and A2 defined above, and
consider a term l xs where Λ(l) = ∀β .L β → M β and Γ(xs) = L (M A). Then in A1 we infer
Λ; Γ ⊢A1 l xs =⇒ τ , since αA1 (L (M A)) = L τ and JlK(L τ ) = M τ , but M τ is abstracted to
τ . However, in A2 we infer Λ; Γ ⊢A2 l xs =⇒ M (M τ), since αA2 (L (M A)) = L (M τ), and
JlK(L (M τ)) = M (M τ), which is abstracted to itself.

We can show that abstraction preserves typing: i.e. E has type t in an abstraction A whenever it
has type t in a more refined abstraction A ′ ⪯ A:

Theorem 3.4 (Typing Preservation). If A ′ ⪯ A and Λ; Γ ⊢A′ E ⇐= t then Λ; Γ ⊢A E ⇐= t .

As B⊥ ⪯ A for any A, the above Theorem 3.4 implies that abstract typing conservatively
over-approximates concrete typing:

Corollary 3.5. If Λ; · ⊢ E ⇐= t then Λ; · ⊢A E ⇐= t .

4 SYNTHESIS

Next, we formalize the concrete and abstract synthesis problems, and use the notion of abstract
type checking from Sec. 3 to develop the TYGAR synthesis algorithm, which solves the (concrete)
synthesis problem by solving a sequence of abstract synthesis problems with increasing detail.

Synthesis Problem. A synthesis problem (Λ, t) is a pair of a component library and query type. A
solution to the synthesis problem is a normal-form term E such thatΛ; · ⊢ E :: t . Note that the normal-
form requirement does not restrict the solution space: λH has no higher-order functions or recursion,
hence any well-typed program has an equivalent η-long β-normal form. We treat the query type as
a monotype without loss of generality: any query polytype ∀τ .T is equivalent to [τ 7→ C]T where
C are fresh nullary type constructors. The synthesis problem in λH is semi-decidable: if a solution E

exists, it can be found by enumerating programs of increasing size. Undecidability follows from a
reduction from Post’s Correspondence Problem (see [Guo et al. 2019]).

Abstract Synthesis Problem. An abstract synthesis problem (Λ, t ,A) is a triple of a component
library, query type, and abstract cover. A solution to the abstract synthesis problem is a program
term E such that Λ; · ⊢A E ⇐= t . We can use Theorem 3.5 and Theorem 3.3, to show that any
solution to a concrete synthesis problem is also a solution to any of its abstractions:

Theorem 4.1. If E is a solution to (Λ, t), then E is also a solution to (Λ, t ,A).

4.1 Abstract Transition Nets

Next we discuss how to construct an abstract transition net (ATN) for a given abstract synthesis
problem (Λ, t ,A), and use ATN reachability to find a solution to this synthesis problem.

Petri Nets. A Petri net N is a triple (P ,T ,E), where P is a set of places, T is a set of transitions,
E : (P × T ) ∪ (T × P) → N is a matrix of edge multiplicities (absence of an edge is represented
by a zero entry). A marking of a Petri net is a mapping M : P → N that assigns a non-negative

number of tokens to every place. A transition firing is a triple M1
t
−→ M2, such that for all places

p:M1(p) ≥ E(p, t) ∧M2(p) = M1(p) − E(p, t) + E(t ,p). A sequence of transitions t1, . . . , tn is a path

betweenM andM ′ ifM
t1
−→ M1 . . .Mn−1

tn
−→ M ′ is a sequence of transition firings.
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ATN Construction. Consider an abstract synthesis problem (Λ, t ,A), where t = b1 → . . . →

bn → b. An abstract transition net N(Λ, t ,A) is a 5-tuple (P ,T ,E, I , F ), where (P ,T ,E) is a Petri
net, I : P → N is a multiset of initial places and F ⊆ P is a set of final places defined as follows:

(1) the set of places P = A \ {⊥};
(2) initial places are abstractions of query arguments: for every i ∈ [1,n], add 1 to I (αA(bi ));
(3) final places are all places that subsume the query result: F = {A ∈ P | b ⊑ A}.
(4) for each component c ∈ Λ and for each tuple A,A1, . . . ,Am ∈ P , wherem is the arity of c ,

add a transition t to T iff αA
(

JcK(A1, . . . ,Am)
)

≡ A; set E(t ,A) = 1 and add 1 to E(Aj , t) for
every j ∈ [1,m];

(5) for each initial place {p ∈ P | I (p) > 0}, add a self-loop copy transition κ to T , setting
E(p,κ) = 1 and E(κ,p) = 2, and a self-loop delete transition δ to T , setting E(p,δ ) = 1 and
E(δ ,p) = 0.

Given an ATNN = (P ,T ,E, I , F ),MF is a valid final marking if it assigns exactly one token to some
final place: ∃f ∈ F .MF (f ) = 1 ∧ ∀p ∈ P .p , f ⇒ MF (p) = 0. A path π = [t1, . . . , tn] is a valid path
of the ATN (π |= N ), if it is a path in the Petri net (P ,T ,E) from the marking I to some valid final
markingMF .

From Paths to Programs. Any valid path π corresponds to a set of normal-form terms terms(π ).
The mapping from paths to programs has been defined in prior work on SyPet, so we do not
formalize it here. Intuitively, multiple programs arise because a path does not distinguish between
different tokens in one place and has no notion of order of incoming edges of a transition.

Guarantees. ATN reachability is both sound and complete with respect to (abstract) typing:

Theorem 4.2 (ATN Completeness). If Λ; · ⊢A E ⇐= t and E ∈ terms(π ) then π |= N(Λ, t ,A).

Theorem 4.3 (ATN Soundness). If π |= N(Λ, t ,A), then ∃E ∈ terms(π ) s.t. Λ; · ⊢A E ⇐= t .

Abstract Synthesis Algorithm. Fig. 7 (left) presents an algorithm for solving an abstract synthesis
problem (Λ, t ,A). The algorithm first constructs the ATN N(Λ, t ,A). Next, the function Short-

estValidPath uses a constraint solver to find a shortest valid path π |= N 5. From Theorem 4.2, we
know that if no valid path exists (no final marking is reachable from any initial marking), then the
abstract synthesis problem has no solution, so the algorithm returns ⊥. Otherwise, it enumerates all
programs E ∈ terms(π ) and type-checks them abstractly, until it encounters an E that is abstractly
well-typed (such an E must exists per Theorem 4.3).

ATN versus TTN. Our ATN construction is inspired by but different from the TTN construction in
SyPet [Feng et al. 2017]. In the monomorphic setting of SyPet, it suffices to add a single transition
per component. To account for our polymorphic components, we need a transition for every abstract
instance of the component’s polytype. To compute the set of abstract instances, we consider all
possiblem-tuples of places, and for each, we compute the result of the abstract type transformer
αA

(

JcK(A1, . . . ,Am)
)

. This result is either ⊥, in which case no transition is added, or some A ∈ P ,
in which case we add a transition from A1, . . . ,Am to A.
Due to abstraction, unlike SyPet, where the final marking contains a single token in the result

type b, we must allow for several possible final markings. Specifically, we allow the token to end
up in any place A that subsumes b, not just in its most precise abstraction αA(b). This is because,
like any abstract interpretation, abstract type inference might lose precision, and so requiring that
it infer the most precise type αA(b) for the solution would lead to incompleteness.

Enforcing Relevance. Finally, consider copy transitions κ and delete transitions δ : in this section,
we describe an ATN that implements a simple, structural type system, where each function argument

5Sec. 5.3 details our encoding of ATN reachability into constraints.
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Input: Abstract synthesis problem (Λ, t ,A)
Output: Solution e or ⊥ if no solution

1: function SynAbstract(Λ, t ,A)
2: N ←N(Λ, t ,A)

3: π ← ShortestValidPath(N )
4: if π = ⊥ then

5: return ⊥

6: else

7: for E ∈ terms(π ) do
8: if Λ; · ⊢A E ⇐= t then

9: return E

Input: Synthesis problem (Λ, t ), initial cover A0
Output: Solution E or ⊥ if no solution

1: function Synthesize(Λ, t ,A0)
2: A ←A0
3: while true do
4: E← SynAbstract(Λ, t ,A)
5: if E = ⊥ then

6: return ⊥

7: else if Λ; · ⊢ E ⇐= t then

8: return E

9: else

10: A ← Refine(A,E, t )

Fig. 7. (left) Algorithm for the abstract synthesis problem. (right) The TYGAR algorithm.

can be used zero or more times. Hence we allow the ATN to duplicate tokens in the initial marking I
using κ transitions and discard them using δ transitions. We can easily adapt the ATN definition to
implement a relevant type system by eliminating the δ transitions (this is what our implementation
does, see Sec. 5.3); a linear type system can be supported by eliminating both.

4.2 The TYGAR Algorithm

The abstract synthesis algorithm from Fig. 7 either returns ⊥, indicating that there is no solution
to the synthesis problem, or a term E that is abstractly well-typed. However, this term may not
be (concretely) well-typed, and hence, may not be a solution to the synthesis problem. We now
turn to the core of our technique: the type-guided abstraction refinement (TYGAR) algorithm which
iteratively refines an abstract cover A (starting with some A0) until it is specific enough that a
solution to an abstract synthesis problem is also well-typed in the concrete type system.

Fig. 7 (right) describes the pseudocode for the TYGAR procedure which takes as input a (concrete)
synthesis problem (Λ, t) and an initial abstract cover A0, and either returns a solution E to the
synthesis problem or ⊥ if t cannot be inhabited using the components in Λ. In every iteration,
TYGAR first solves the abstract synthesis problem at the current level of abstraction A, using the
previously defined algorithm SynAbstract. If the abstract problem has no solution, then neither
does the concrete one (by Theorem 4.1), so the algorithm returns ⊥. Otherwise, the algorithm
type-checks the term E against the concrete query type. If it is well-typed, then E is a solution to
the synthesis problem (Λ, t); otherwise E is spurious.

Refinement. The key step in the TYGAR algorithm is the procedure Refine, which takes as input
the current cover A and a spurious program E and returns a refinement A ′ of the current cover
(A ′ ⪯ A) such that E is abstractly ill-typed in A ′ (Λ; · ⊬A′ E ⇐= t ). Procedure Refine is detailed
in Sec. 4.3, but the declarative description above suffices to see how it helps the synthesis algorithm
make progress: in the next iteration, SynAbstract cannot return the same spurious program E,
as it no longer type-checks abstractly. Moreover, the intuition is that along with E the refinement
rules out many other spurious programs that are ill-typed łfor a similar reasonž.

Initial Cover. The choice of initial cover A0 has no influence on the correctness of the algorithm.
A natural choice is the most general cover A⊤ = {τ ,⊥}. In our experiments (Sec. 6) we found that
synthesis is more efficient if we pick the initial cover AQ (bi → b) = close({τ ,bi ,b,⊥})

6, which

represents the query type t = bi → b concretely. Intuitively, the reason is that the distinctions

6Here close(A) closes the cover under meet, as required by the definition of sublattice.
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Input: A,E, t s.t. Λ; · ⊬ E ⇐= t

Output: A ′ ⪯ A s.t. Λ; · ⊬A′ E ⇐= t

1: function Refine(A, λxi .ebody ,bi → b)
2: Λ← Λ ∪ (r :: b → b)

3: e∗← r ebody
4: for ej ∈ subterms(e∗) do

5: Λ;xi : bi ⊢ ej =⇒ U [ej ]

6: U ← Generalize(U , e∗)
7: return close(A ∪ range(U ))

Input: U , e s.t. I1 ∧ I2 ∧ I3
Output: U ′ s.t. I1 ∧ I2 ∧ I3
1: function Generalize(U , e)
2: if e = x then

3: returnU

4: else if e = c ej then

5: Bj ← weakenU [ej ] while JcK(Bj ) ⊑ U [e]

6: U ′←U [ej 7→ Bj ]

7: for ej do Generalize(U ′, ej )

Fig. 8. Refinement algorithm.

between the types in t are very likely to be important for solving the synthesis problem, so there is
no need to make the algorithm re-discover them from scratch.

Soundness and Completeness. Synthesize is a semi-algorithm for the synthesis problem in λH .

Theorem 4.4 (Soundness). If Synthesize(Λ, t ,A0) returns E then Λ; · ⊢ E :: t .

Proof Sketch. This follows trivially from the type check in line 7 of the algorithm. □

Theorem 4.5 (Completeness). If ∃E. Λ; · ⊢ E :: t then Synthesize(Λ, t ,A0) returns some E ′ , ⊥.

Proof Sketch. Let E0 be some shortest solution to (Λ, t) and let k be the number of all syn-
tactically valid programs of the same or smaller size than E0 (here, the size of the program is the
number of component applications). Line 4 cannot return ⊥ or a program E that is larger than E0,
since E0 is abstractly well-typed at any A by Theorem 3.5, and SynAbstract always returns a
shortest abstractly well-typed program, when one exists by Theorem 4.2. Line 4 also cannot return
the same solution twice by the property of Refine. Hence the algorithm must find a solution in at
most k iterations. □

When there is no solution, our algorithm might not terminate. This is unavoidable, since the
synthesis problem is only semi-decidable, as we discussed at the beginning of this section. In practice,
we impose an upper bound on the length of the solution, which then guarantees termination.

4.3 Refining the Abstract Cover

This section details the refinement step of the TYGAR algorithm. The pseudocode is given in Fig. 8.
The top-level function Refine(A,E, t ) takes as inputs an abstract coverA, a term E, and a goal type
t , such that E is ill-typed concretely (Λ; · ⊬ E ⇐= t ), but well-typed abstractly (Λ; · ⊢A E ⇐= t ). It
produces a refinement of the cover A ′ ⪯ A, such that E is ill-typed abstractly in that new cover
(Λ; · ⊬A′ E ⇐= t ).

Proof of untypeability. At a high-level, Refine works by constructing a proof of untypeability
of E, i.e. a mapping U : e → B⊥ from subterms of E to types, such that if range(U ) ⊆ A ′ then
Λ; · ⊬A′ E ⇐= t (in other words, the types inU contain enough information to reject E). OnceU is
constructed, line 7 adds its range to A, and then closes the resulting set under meet.
Let us now explain how U is constructed. Let E � λxi .ebody , t � bi → b, and Γ � xi : bi . There

are two reasons why E might not type-check against t : either ebody on its own is ill-typed or it has a
non-bottom type that nevertheless does not subsume b. To unify these two cases, Refine constructs
a new application term e∗ = r ebody , where r is a dedicated component of type b → b; such e∗ is
guaranteed to be ill-typed on its own: Λ; Γ ⊢ e∗ =⇒ ⊥. Lines 4ś5 initialize U for each subterm of
e∗ with the result of concrete type inference. At this pointU already constitutes a valid proof of

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 12. Publication date: January 2020.



Program Synthesis by Type-Guided Abstraction Refinement 12:17

r
⊥

⊥

f
⊥

⊥

x1
A

A
l

M (M τ)

M (M A)

x2
L (M τ)

L (M A)

Fig. 9. Refine in the second iter-
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Fig. 10. Synthesize on an unsatisfiable problem.

untypeability, but it contains too much information; in line 6 the call to Generalize removes as
much information fromU as possible while maintaining enough to prove that e∗ is ill-typed. More
precisely, Generalize maintains three crucial invariants that together guarantee that U is a proof
of untypeability:

I1: (U subsumes concrete typing) For any e ∈ subterms(e∗), if Λ; Γ ⊢ e =⇒ B, then B ⊑ U [e];

I2: (U abstracts type transformers) For any application subterm e = c ej , JcK(U [ej ]) ⊑ U [e];
I3: (U proves untypeability) U [e∗] = ⊥.

Lemma 4.6. IfI1∧I2∧I3 thenU is a proof of untypeability: if range(U ) ⊆ A ′ thenΛ; · ⊬A′ E ⇐= t .

Proof Sketch. We can show by induction on the derivation that for any A ′ ⊇ range(U )
and node e , Λ; Γ ⊢A′ e =⇒ B ⊑ U [e] (base case follows from I1, and inductive case follows
from I2). Hence, Λ; Γ ⊢A′ e∗ =⇒ B ⊑ U [e∗] = ⊥ (by I3), so Λ; Γ ⊢A′ ebody =⇒ B ̸⊑ b, and
Λ; · ⊬A′ E ⇐= t . □

Correctness of Generalize.Now that we know that invariantsI1śI3 are sufficient for correctness,
let us turn to the inner workings of Generalize. This function starts with the initial proof U
(concrete typing), and recursively traverses the term e∗ top-down. At each application node e = c ej
it weakens the argument labels U [ej ] (lines 4ś7). The weakening step performs lattice search to

find more general values for U [ej ] allowed by I2. More concretely, each new value Bj starts out as

the initial value of U [ej ]; at each step, weakening picks one Bj , ⊥ and moves it upward in the
lattice by replacing a ground subterm of Bj with a type variable; the step is accepted as long as

JcK(Bj ) ⊑ U [e]. The search terminates when there is no more Bj that can be weakened. Note that

in general there is no unique most general value for Bj , we simply pick the first value we find that
cannot be weakened any further. The correctness of the algorithm does not depend on the choice

of Bj , and only rests on two properties: (1)U [ej ] ⊑ Bj and (2) JcK(Bj ) ⊑ U [e].
We can show that Generalize maintains the invariants I1śI3. I1 is maintained by property

(1) of weakening (we start from concrete types and only move up in the lattice). I2 is maintained
between e and its children ej by property (2) of weakening, and between each ej and its children
because the label of ej only goes up. Finally, I3 is trivially maintained since we never update U [e∗].

Example 1. Let us walk through the refinement step in iteration 2 of our running example from
Sec. 2.2. As a reminder, Λ(f) = ∀α .α → M α → α and Λ(l) = ∀β .L β → M β . Consider a call to
Refine(A,E, t), where A = {τ , A, L τ ,⊥}, E = λx1 x2.f x1 (l x2) and t = A → L (M A) → A. Let
us denote Γ = x1 : A,x2 : L (M A). It is easy to see that E is ill-typed concretely but well-typed
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abstractly, since, as explained above, Λ; Γ ⊢A l x2 =⇒ τ , and hence Λ; Γ ⊢A f x1 (l x2) =⇒ A.
Refine first constructs e∗ = r ebody ; the AST for this term is shown on Fig. 9 (left). It then initializes
the mapping U with concrete inferred types, depicted as red labels; as expected U [e∗] = ⊥. The
blue labels showU ′ obtained by calling Generalize through the following series of recursive calls:

• In the initial call to Generalize, the term e is r ebody ; although it is an application, we do not
weaken the label for ebody since its concrete type is ⊥, which cannot be weakened.
• We move on to ebody = f x1 l with U [x1] = A and U [l] = M (M A). The former type cannot be
weakened: an attempt to replace A with τ causes JfK to produce M A ̸⊑ ⊥. The latter type can
be weakened by replacing A with τ (since JfK(A, M (M τ)) = ⊥), but no further.
• The first child of f, x1, is a variable soU remains unchanged.
• For the second child of f, l = l x2, l’s signature allows us to weakenU [x2] to L (M τ) but no
further, since JlK(L (M τ)) = M (M τ) but JlK(L τ ) = M τ ̸⊑ M (M τ).
• Since x2 is a variable, Generalize terminates.

Example 2. We conclude this section with an end-to-end application of TYGAR to a very small
but illustrative example. Consider a library Λ with three type constructors, Z, U, and B (with
arities 0, 1, and 2, respectively), and two components, f and g, such that: Λ(f) = ∀α .B α α and
Λ(g) = ∀β .B (U β) β → Z. Consider the synthesis problem (Λ, Z), which has no solutions: the only
way to obtain a Z is from g, which requires a B with distinct parameters, but we can only construct a
Bwith equal parameters (using f). Assume that the initial abstract cover isA0 = {τ ,⊥}, as shown in
the upper left of Fig. 10. SynAbstract(Λ, Z,A0) returns a program f, which is spurious, hence we
invoke Refine(A0, f, Z). The results of concrete type inference are shown as red labels in Fig. 10; in
particular, note that because f is a nullary component, JfK is simply a fresh instance of its type, here
B τ τ , which can be generalized to B α β: the root cause of the type error is that r does not accept
a B. In the second iteration, A0 = {τ , B α β,⊥} and SynAbstract(Λ, Z,A1) returns g f, which is
also spurious. In this call to Refine, however, the concrete type of f can no longer be generalized:
the root cause of the type error is that д accepts a B with distinct parameters. Adding B τ τ to the
cover, results in the ATN on the right, which does not have a valid path (SynAbstract returns ⊥).

There are three interesting points to note about this example. (1) In general, even concrete type
inference may produce non-ground types, for example: Λ; · ⊢ f =⇒ B τ τ . (2) Synthesize can
sometimes detect that there is no solution, even when the space of all possible ground base types is
infinite. (3) To prove untypeability of g f, our abstract domain must be able to express non-linear
type-level terms (i.e. types with repeated variables, like B τ τ ); we could not, for example, replace
type variables with a single construct ?, as in gradual typing [Siek and Taha 2006].

5 IMPLEMENTATION

We have implemented the TYGAR synthesis algorithm in Haskell, in a tool called H+. The tool
relies on the Z3 SMT solver [de Moura and Bjùrner 2008] to find paths in the ATN. This section
focuses on interesting implementation details, such as desugaring Haskell libraries into first-order
components accepted by TYGAR, an efficient and incremental algorithm for ATN construction,
and the SMT encoding of ATN reachability.

5.1 Desugaring Haskell Types

The Haskell type system is significantly more expressive than that of our core language λH , and
many of its advanced features are not supported by H+. However, two type system features are
ubiquitous in Haskell: higher-order functions and type classes. As we illustrated in Sec. 2.4 and
Sec. 2.5, H+ handles both features by desugaring them into λH . Next, we give more detail on how
H+ translates a Haskell synthesis problem (Λ̃, t̃) into a λH synthesis problem (Λ, t):
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(1) Λ includes a fresh binary type constructor F α β (used to represent function types).
(2) Every declaration of type class C τ with methodsmi :: ∀τ .Ti in Λ̃ gives rise to a type construc-

tor CD τ (the dictionary type) and componentsmi :: ∀τ .CD τ → Ti in Λ. For example, a type
class declaration class Eq α where (==) :: a → a → Bool creates a fresh type constructor
EqD α and a component (==) :: EqD α → α → α → Bool.

(3) Every instance declaration C B in Λ̃ produces a component that returns a dictionary CD B.
So instance Eq Int creates a component eqInt :: EqD Int, while a subclass instance like
instance Eq a => Eq [a] creates a component eqList :: EqD a → EqD [a]. Note that the
exact implementation of the type class methods inside the instance is irrelevant; all we care
about is that the instance inhabits the type class dictionary.

(4) For every component c in Λ̃, we add a component c to Λ and define Λ(c) = desugar
(

Λ̃(c)
)

,

where the translation function desugar, which eliminates type class constraints and higher-
order types, is defined as follows:

desugar (∀τ .(C1 τ1, . . . , Cn τn) ⇒ T ) = ∀τ .CD1 τ1 → . . .→ CDn τn → desugar(T )

desugar(T1 → T2) = base(T1) → desugar(T2) desugar(B) = B

base(T1 → T2) = F base(T1) base(T2) base(B) = B

For example, Haskell components on the left are translated into λH components on the right:
member :: Eq α => α → [α] → Bool member :: EqD α → α → [α] → Bool

any :: (α → Bool) → [α] → Bool any :: F α Bool → [α] → Bool

(5) For every non-nullary component and type class method c in Λ̃, we add a nullary component
c ′ to Λ and define Λ(c ′) = base(Λ(c)). For example: any' :: F (F α Bool) (F [α] Bool).

(6) Finally, the λH query type t is defined as desugar(t̃).

Limitations. Firstly, in modern Haskell, type classes often constrain higher-kinded type variables;
for example, the Monad type class in the signature return :: Monad m => a → m a is a constraint
on type constructors rather than types. Support for higher-kinded type variables is beyond the scope
of this paper. Secondly, in theory our encoding of higher-order functions (Sec. 2.4) is complete, as
any program can be re-written in point-free style, i.e. without lambda terms, using an appropriate
set of components [Barendregt 1985] including an apply component ($) :: F α β → α → β that
enables synthesizing terms containing partially applied functions. However, in practice we found
that adding a nullary version for every component significantly increases the size of the search
space and is infeasible for component libraries of nontrivial size. Hence, in our evaluation we only
generate nullary variants of a selected subset of popular components.

5.2 ATN Construction

Incremental updates. Sec. 4.1 shows how to construct an ATN given an abstract synthesis problem
(Λ, t ,A). However, computing the set of ATN transitions and edges from scratch in each refinement
iteration is expensive. We observe that each iteration only makes small changes to the abstract
cover, which translate to small changes in the ATN.

LetA be the old abstract cover andA ′ = A ∪ {Anew} be the new abstract cover (if a refinement
step addsmultiple types toA, we can consider them one by one). Let parents be the direct successors
ofAnew in the ⊑ partial order; for example, in the cover {τ , P α β, P A β, P α B, P A B,⊥}, the parents
of P A B are {P A β, P α B}. Intuitively, adding Anew to the cover can add new transitions and re-

route some existing transitions. A transition is re-routed if a component c returns a more precise
type underA ′ than it did underA, given the same types as arguments. Our insight is that the only
candidates for re-routing are those transitions that return one of the types in parents. Similarly, all
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new transitions can be derived from those that take one of the types in parents as an argument.
More precisely, starting from the old ATN, we update its transitions T and edges E as follows:

(1) Consider a transition t ∈ T that represents the abstract instance αA
(

JcK(Ai )
)

= A such that

A ∈ parents; if αA′
(

JcK(Ai )
)

= Anew , set E(t ,A) = 0 and E(t ,Anew) = 1.

(2) Consider a transition t ∈ T that represents the abstract instance αA
(

JcK(Ai )
)

= A such that at

least oneAi ∈ parents; considerA′i obtained fromAi by substituting at least oneAi ∈ parents

with Anew ; if αA′
(

JcK(A′i )
)

= A′ , ⊥, add a new transition t ′ to T , set E(t ′,A′) = 1 and add 1

to E(A′i , t
′) for each A′i .

Transition coalescing. The ATN construction algorithm in Sec. 4.1 adds a separate transition
for each abstract instance of each component in the library. Observe, however, that different
components may share the same abstract instance: for example in Fig. 3 (1), both c and l have the
type τ → τ . Our implementation coalesces equivalent transitions: an optimization known in the
literature as observational equivalence reduction [Alur et al. 2017; Wang et al. 2018]. More precisely,
we do not add a new transition if one already exists in the net with the same incoming and outgoing
edges. Instead, we keep track of a mapping from each transition to a set of components. Once a
valid path [t1, . . . , tn] is found, where each transition ti represents a set of components, we select
an arbitrary component from each set to construct the candidate program. In each refinement
iteration, the transition mapping changes as follows:

(1) new component instances are coalesced into new groups and added to the map, each new
group is added as a new ATN transition;

(2) if a component instance is re-routed, it is removed from the corresponding group;
(3) transitions with empty groups are removed from the ATN.

5.3 SMT Encoding of ATN Reachability

Our encoding differs slightly from that in previous work on SyPet. Most notably, we use an SMT
(as opposed to SAT) encoding, in particular, representing transition firings as integer variables.
This makes our encoding more compact, which is important in our setting, since, unlike SyPet, we
cannot pre-compute the constraints for a component library and use them for all queries.

ATN Encoding. Given a ATN N = (P ,T ,E, I , F ), we show how to build an SMT formula ϕ that
encodes all valid paths of a given length ℓ; the overall search will then proceed by iteratively
increasing the length ℓ. We encode the number of tokens in each place p ∈ P at each time step
k ∈ [0, ℓ] as an integer variable tok

p

k
. We encode the transition firing at each time step k ∈ [0, ℓ) as

an integer variable firek so that firek = t indicates that the transition t is fired at time step k . For
any x ∈ {P ∪T }, let the pre-image of x be pre(x) = {y ∈ P ∪T | E(y,x) > 0} and the post-image of
x be post(x) = {y ∈ P ∪T | E(x ,y) > 0}.

The formula ϕ is a conjunction of the following constraints:

(1) At each time step, a valid transition is fired:
∧

ℓ−1
k=0 1 ≤ firek ≤ |T |

(2) If a transition t is fired at time step k then all places p ∈ pre(t) have sufficiently many tokens:
∧

ℓ−1
k=0

∧ |T |
t=1 firek = t =⇒

∧

p∈pre(t ) tok
p

k
≥ E(p, t)

(3) If a transition t is fired at time step k then all places p ∈ pre(t) ∪ post(t) will have their

markings updated at time step k + 1:
∧

ℓ−1
k=0

∧ |T |
t=1 firek = t =⇒

∧

p∈pre(t )∪post(t ) tok
p

k+1 =

tok
p

k
− E(p, t) + E(t ,p)

(4) If none of the outgoing or incoming transitions of a place p are fired at time step k , then the
marking in p does not change:

∧

ℓ−1
k=0

∧

p∈P (
∧

t ∈pre(p)∪post(p) firek , t) =⇒ tok
p

k+1 = tok
p

k
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(5) The initial marking is I :
∧

p∈P tok
p
0 = I (p).

(6) The final marking is valid:
∨

f ∈F

(

tok
f

ℓ
= 1 ∧

∧

p∈P\{f } tok
p

ℓ
= 0

)

.

Optimizations. Although the validity of the final marking can be encoded as in (6) above, we
found that quality of solutions improves if instead we iterate through f ∈ F in the order from most

to least precise; in each iteration we enforce tokf
ℓ
= 1 (and tok

p

ℓ
= 0 for p , f ), and move to the next

place if no solution exists. Intuitively, this works because paths that end in a more precise place
lose less information, and hence are more likely to correspond to concretely well-typed programs.

As we mentioned in Sec. 4, our implementation adds copy transitions but not delete transitions
to the ATN, thereby enforcing relevant typing. We have also tried an alternative encoding of
relevant typing, which forgoes copy transitions, and instead allows the initial marking to contain
extra tokens in initial places:

∧

p∈{P |I (p)>0} tok
p
0 ≥ I (p) and

∧

p∈{P |I (p)=0} tok
p
0 = 0. Although this

alternative encoding often produces solutions faster (due to shorter paths), we found that the
quality of solutions suffers. We conjecture that the original encoding works well, because it biases
the search towards linear consumption of resources, which is common for desirable programs.

6 EVALUATION

Next, we describe an empirical evaluation of two research questions of H+:

• Efficiency: Is TYGAR able to find well-typed programs quickly?
• Quality of Solutions: Are the synthesized code snippets interesting?

Component library. We use the same set of 291 components in all experiments. To create this
set, we started with all components from 12 popular Haskell library modules,7 and excluded seven
components8 that are highly-polymorphic yet redundant (and hence slowed down the search with
no added benefit).

Query Selection. We collected 44 benchmark queries from three sources:

(1) Hoogle.We started with all queries made to Hoogle between 1/2015 and 2/2019. Among the
3.8M raw queries, 71K were syntactically unique, and only 60K could not be exactly solved by
Hoogle. Among these, many were syntactically ill-formed (e.g. FromJSON a → Parser a →)
or unrealizable (e.g. a → b). We wanted to discard such invalid queries, but had no way
to identify unrealizable queries automatically. Instead we decided to reduce the number of
queries by selecting only popular ones (those asked at least five times), leaving us with 1750
queries, and then we pruned invalid queries manually, leaving us with 180 queries. Finally,
out of the 180 remaining queries, only 24 were realizable with our selected component set.

(2) StackOverflow. We first collected all Haskell-related questions from StackOverflow,
ranked them by their view counts, and examined the first 500. Out of 15 queries with
implementations, we selected 6 that were realizable with our component set.

(3) Curated. Since we were unable to find many API-related Haskell questions on StackOver-

flow, and Hoogle queries do not come with expected solutions and also tend to be easy,
we supplemented the benchmark set with 17 queries from our own experience as Haskell
programmers.

The resulting benchmark set can be found in Fig. 11.

Experiment Platform.We ran all experiments on a machine with an Intel Core i7-3770 running
at 3.4Ghz with 32Gb of RAM. The platform ran Debian 10, GHC 8.4.3, and Z3 4.7.1.

7 Data.Maybe, Data.Either, Data.Int, Data.Bool, Data.Tuple, GHC.List, Text.Show, GHC.Char, Data.Int, Data.Function,
Data.ByteString.Lazy, Data.ByteString.Lazy.Builder.
8 id, const, fix, on, flip, &, (.).
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N Name Query
Time: Total Time: SMT Solver Time: Type Checking # Interesting / All

QB10 Q 0 NO QB10 Q 0 NO QB10 0 NO H+ H-D H-R
1 firstRight [Either a b] -> Either a b 0.3 0.3 0.6 0.3 0.0 0.0 0.1 0.0 0.2 0.2 0.2 2/5 2/5 2/5
2 firstKey [(a,b)] -> a 3.9 21.2 58.4 2.4 17.2 52.2 0.8 0.2 0/2 0/4 0/3
3 flatten [[[a]]] -> [a] 1.7 5.5 1.1 0.5 0.9 2.5 0.3 0.1 0.3 0.2 0.4 5/5 5/5 0/5
4 repl-funcs (a->b)->Int->[a->b] 0.4 0.4 0.7 0.5 0.0 0.0 0.1 0.0 0.3 0.3 0.4 2/5 2/5 1/5
5 containsEdge [Int] -> (Int,Int) -> Bool 15.4 14.4 19.0 5.1 13.2 12.1 15.9 0.8 1.8 0.4 4.1 0/5 0/5 0/5
6 multiApp (a -> b -> c) -> (a -> b) -> a -> c 1.2 2.4 1.2 0.5 0.4 0.9 0.5 0.2 0.3 0.2 0.2 1/5 1/5 1/5
7 appendN Int -> [a] -> [a] 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.2 0.3 0.2 2/5 2/5 0/5
8 pipe [(a -> a)] -> (a -> a) 0.7 0.6 2.1 0.7 0.1 0.1 0.6 0.1 0.2 0.7 0.6 1/5 1/5 0/5
9 intToBS Int64 -> ByteString 0.6 0.6 1.6 0.3 0.1 0.1 0.5 0.0 0.3 0.3 0.2 3/5 3/5 0/5
10 cartProduct [a] -> [b] -> [[(a,b)]] 1.5 8.8 1.3 1.3 0.6 5.5 0.4 0.5 0.3 0.2 0.6 0/5 0/5 0/5
11 applyNtimes (a->a) -> a -> Int -> a 6.4 23.5 0.6 1.0 4.9 19.8 0.2 0.3 1.2 0.3 0.6 0/5 0/5 0/5
12 firstMatch [a] -> (a -> Bool) -> a 1.5 1.4 2.4 0.5 0.7 0.6 1.3 0.2 0.2 0.2 0.3 5/5 5/5 5/5
13 mbElem Eq a => a -> [a] -> Maybe a 46.8 5.6 45.5 4.0 0.8 0.3 0/3 0/3 0/5
14 mapEither (a -> Either b c) -> [a] -> ([b], [c]) 2.6 43.7 55.4 3.5 1.7 37.6 49.8 0.5 0.3 0.2 1.7 1/4 1/5 1/1
15 hoogle01 (a -> b) -> [a] -> b 0.5 0.5 1.1 0.3 0.1 0.1 0.3 0.0 0.3 0.3 0.2 2/5 2/5 2/5
16 zipWithResult (a->b)->[a]->[(a,b)] 11.1 9.2 0.7 1/2 1/2 0/5
17 splitStr String -> Char -> [String] 0.7 0.7 1.0 0.4 0.2 0.1 0.3 0.1 0.3 0.3 0.2 0/5 0/5 0/5
18 lookup Eq a => [(a,b)] -> a -> b 0.7 0.7 0.7 0.8 0.2 0.2 0.2 0.3 0.3 0.3 0.3 1/5 1/3 1/4
19 fromFirstMaybes a -> [Maybe a] -> a 1.4 3.0 3.4 0.7 0.3 0.9 1.2 0.1 0.7 0.8 0.5 2/5 2/5 0/5
20 map (a->b)->[a]->[b] 0.3 0.3 0.4 0.4 0.0 0.0 0.1 0.0 0.2 0.2 0.3 5/5 5/5 0/5
21 maybe Maybe a -> a -> Maybe a 0.3 0.4 0.4 0.6 0.1 0.0 0.1 0.1 0.2 0.2 0.5 2/5 1/5 0/5
22 rights [Either a b] -> Either a [b] 1.5 31.9 11.9 0.8 0.6 20.4 5.7 0.1 0.4 0.3 0.6 1/2 1/2 1/5
23 mbAppFirst b -> (a -> b) -> [a] -> b 2.0 1.3 2.0 0.4 1.2 0.4 0.9 0.1 0.3 0.3 0.3 1/3 1/5 0/5
24 mergeEither Either a (Either a b) -> Either a b 2.8 1.0 1.7 0.1 0.6 0.7 0/3 0/3 0/5
25 test Bool -> a -> Maybe a 1.4 8.8 26.4 0.7 0.7 7.1 24.3 0.3 0.2 0.3 0.3 2/5 2/5 0/5
26 multiAppPair (a -> b, a -> c) -> a -> (b, c) 2.0 1.5 1.2 0.3 0.5 1.0 1/2 1/4 0/5
27 splitAtFirst a -> [a] -> ([a], [a]) 0.6 0.6 2.3 0.4 0.1 0.1 1.1 0.1 0.3 0.3 0.2 2/5 2/5 0/5
28 2partApp (a->b)->(b->c)->[a]->[c] 2.3 2.2 22.9 1.5 1.2 1.2 18.7 0.5 0.2 0.3 0.3 1/5 1/5 0/5
29 areEq Eq a => a -> a -> Maybe a 44.9 40.3 3.8 0/2 0/5 0/5
30 eitherTriple Either a b -> Either a b -> Either a b 5.3 3.2 1.9 0.1 2.8 2.9 0/5 0/5 0/5
31 mapMaybes (a -> Maybe b) -> [a] -> Maybe b 0.5 0.5 1.1 0.3 0.1 0.1 0.3 0.0 0.3 0.2 0.2 2/5 2/5 2/5
32 head-rest [a] -> (a, [a]) 1.4 51.1 1.0 0.8 0.7 40.6 0.3 0.1 0.2 0.3 0.6 3/5 3/5 2/5
33 appBoth (a -> b) -> (a -> c) -> a -> (b, c) 2.1 2.8 51.1 1.3 1.5 44.3 0.3 0.3 1/5 1/5 1/1
34 applyPair (a -> b, a) -> b 1.2 1.1 3.6 0.6 0.4 0.4 1.6 0.1 0.2 0.3 0.4 2/3 2/5 1/5
35 resolveEither Either a b -> (a->b) -> b 1.0 1.3 1.5 0.5 0.4 0.5 0.6 0.2 0.2 0.2 0.2 1/5 1/2 1/5
36 head-tail [a] -> (a,a) 2.2 20.2 1.5 0.4 0.3 18.8 0/5 0/5 0/5
37 indexesOf ([(a,Int)] -> [(a,Int)]) -> [a] -> [Int] -> [Int]
38 app3 (a -> b -> c -> d) -> a -> c -> b -> d 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.2 0.3 0.2 1/5 1/5 1/5
39 both (a -> b) -> (a, a) -> (b, b) 1.1 1.3 0.5 0.2 0.3 1.0 1/1 1/1 0/5
40 takeNdropM Int -> Int -> [a] -> ([a], [a]) 0.4 0.4 1.3 0.4 0.0 0.0 0.4 0.0 0.3 0.3 0.3 5/5 5/5 0/5
41 firstMaybe [Maybe a] -> a 1.2 1.6 1.4 0.7 0.5 0.6 0.4 0.1 0.2 0.2 0.5 4/5 4/5 2/5
42 mbToEither Maybe a -> b -> Either a b 47.4 21.7 24.2 0/2 0/5 0/5
43 pred-match [a] -> (a -> Bool) -> Int 1.1 1.1 3.6 0.4 0.4 0.4 2.0 0.1 0.3 0.3 0.2 3/5 3/5 3/5
44 singleList Int -> [Int] 0.3 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.3 1/5 1/5 0/5

Fig. 11. H+ synthesis times and solution quality on 44 benchmarks. We report the total time to first solution,
time spend in the SMT solver, and time spent type checking (including demand analysis). ‘QB10’, ‘Q’, ‘0’,
‘NO’ correspond to four variants of the search algorithm: TYGAR-QB [10], TYGAR-Q, TYGAR-0, and NOGAR.
All times are in seconds. Absence indicates no solution found within the timeout of 60 seconds. Last three
columns report the number of interesting solutions among the first five (or fewer, if fewer solutions were
found within the timeout of 100 seconds). ‘H+’, ‘H-D‘, and ‘H-R‘ correspond, respectively, to the default
configuration of H+, disabling the demand analyzer, and using structural typing over relevant typing.

6.1 Efficiency

Setup. To evaluate the efficiency of H+, we run it on each of the 44 queries, and report the time
to synthesize the first well-typed solution that passes the demand analyzer (Sec. 2.3). We set the
timeout to 60 seconds and take the median time over three runs to reduce the uncertainty generated
by using an SMT solver. To assess the importance of TYGAR, we compare five variants of H+:

(1) Baseline: we monomorphise the component library by instantiating all type constructors with
all types up to an unfolding depth of one and do not use refinement.

(2) NOGAR: we build the ATN from the abstract coverAQ , which precisely represents types from
the query (defined in Sec. 4.2). We do not use refinement, and instead enumerate solutions to
the abstract synthesis problem until one type checks concretely. Hence, this variant uses our
abstract typing but does not use TYGAR.

(3) TYGAR-0, which uses TYGAR with the initial cover A⊤ = {τ ,⊥}.
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Fig. 12. Queries solved over time for our initial vari-
ants and the best refinement bound.

Fig. 13. Queries solved over time for varying refine-
ment bounds. The variant’s number indicates the re-
finement bound on the abstract cover.

(4) TYGAR-Q, which uses TYGAR with the initial cover AQ .
(5) TYGAR-QB [N ], which is like TYGAR-Q, but the size of the abstract cover is bounded: once the

cover reaches size N , it stops further refinement and reverts to NOGAR-style enumeration.

Results. Fig. 11 reports total synthesis time for four out of the five variants. Baseline did not
complete any benchmark within 60 seconds: it spent all this time creating the TTN, and is thus is
omitted from tables and graphs. Fig. 12 plots the number of successfully completed benchmarks
against time taken for the remaining four variants (higher and weighted to the left is better). As
you can see, NOGAR is quite fast on easy problems, but then it plateaus, and can only solve 37 out
of 44 queries. On the other hand, TYGAR-0 and TYGAR-Q are slower, and only manage to solve 35
and 34 queries, respectively. After several refinement iterations, the ATNs grow too large, and these
two variants spend a lot of time in the SMT solver, as shown in columns st-Q and st-0 in Fig. 11.
Other than Baseline, no other variant spent any meaningful amount of time building the ATN.

Bounded Refinement.We observe that NOGAR and TYGAR-Q have complimentary strengths and
weaknesses: although NOGAR is usually faster, TYGAR-Q was able to find some solutions that
NOGAR could not (for example, query 33: appBoth). We conclude that refinement is able to discover
interesting abstractions, but because it is forced to make a new distinction between types in every
iteration, after a while it is bound to start making irrelevant distinctions, and the ATN grows too
large for the solver to efficiently navigate. To combine the strengths of the two approaches, we
consider TYGAR-QB, which first uses refinement, and then switches to enumeration once the ATN
reaches a certain bound on its number of places. To determine the optimal bound, we run the
experiment with bounds 5, 10, 15, and 20.
Fig. 13 plots the results. As you can see, for easy queries, a bound of 5 performs the best: this

correspond to our intuition that when the solution is easily reachable, it is faster to simply enumerate
more candidates than spend time on refinement. However, as benchmarks get harder, having more
places at ones disposal renders searches faster: the bounds of 10 and 15 seem to offer a sweet spot.
Our best variantÐTYGAR-QB [10]Ðsolves 43 out of 44 queries with the median synthesis time of
1.4 seconds; in the rest of this section we use TYGAR-QB [10] as the default H+ configuration.

TYGAR-QB [10] solves all queries that were solved by NOGAR plus six additional queries on
which NOGAR times out. A closer look at these six queries indicates that they tend to be more
complex. For example, recall that NOGAR times out on the query appBoth, while TYGAR-QB [10]
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finds a solution of size four in two seconds. Generally, our benchmark set is favorable for NOGAR:
most Hoogle queries are easy, both because of programmers’ expectations of what Hoogle can
do and also because we do not know the desired solution, and hence consider any (relevantly)
well-typed solution correct. The benefits of refinement are more pronounced on queries with
solution size four and higher: TYGAR-QB [10] solves 6 out of 7, while NOGAR solves only 2.

6.2 Quality of Solutions

Setup. To evaluate the quality of the solutions, we ask H+ to return, for each query, at most five
well-typed results within a timeout of 100 seconds. Complete results are available in [Guo et al.
2019]. We then manually inspect the solutions and for each one determine whether it is interesting,
i.e. whether it is something a programmer might find useful, based on our own experience as
Haskell programmers9. Fig. 11 reports for each query, the number of interesting solutions, divided
by the number of total solutions found within the timeout. To evaluate the effects of relevant typing
and demand analysis (Sec. 2.3), we compare three variants of H+: (1) H+ with all features enabled,
based on TYGAR-QB, labeled H+. (2) Our tool without the demand analyzer filter, labeled H-D. (3) Our
tool with structural typing in place of the relevant typing, labeled H-R (in this variant, the SMT
solver is free to choose any non-negative number of tokens to assign to each query argument).

Analysis. First of all, we observe that whenever an interesting solution was found by H-D or H-R,
it was also found by H+, indicating that our filters are not overly conservative. We also observe
that on easy queriesÐtaking less than a secondÐdemand analysis and relevant typing did little to
help: if an interesting solution were found, then all three variants would find it and give it a high
rank. However, on medium and hard queriesÐtaking longer than a secondÐthe demand analyzer
and relevant typing helped promote interesting solutions higher in rank. Overall, 66/179 solutions
produces by H+ were interesting (37%), compared with 65/189 for H-D (34%) and 26/199 for H-R
(13%). As you can see, relevant typing is essential to ensure that interesting solutions even get to
the top five, whereas demand analysis is more useful to reduce the total number of solutions the
programmer has to sift through. This is not surprising, since relevant typing mainly filters out short
programs while demand analysis is left to deal with longer ones. In our experience, demand analysis
was most useful when queries involved types like Either a b, where one could produce a value of
type a from a value of type b by constructing and destructing the Either. One final observation is
that in benchmarks 14, 18, 33, and 35, H-R found fewer results in total that the other two versions;
we attribute this to the SMT solver struggling with determining the appropriate token multiplicities
for the initial marking.

Noteworthy solutions. We presented three illustrative solutions generated by H+ as examples
throughout Sec. 2:

• a → [Maybe a] → a corresponds to benchmark 19 (fromFirstMaybes); the solution from
Sec. 2 is generated at rank 18.
• (a → a) → a → Int → a corresponds to benchmark 11 (applyNTimes); the solution from
Sec. 2 is generated at rank 10.
• Eq a => [(a,b)] → a → b corresponds to benchmark 18 (lookup); the solution from Sec. 2
is generated at rank 1.

H+ has also produced code snippets that surprised us: for example, on the query (a → b, a) → b,
the authors’ intuition was to destruct the pair then apply the function. Instead H+ produces
\x → uncurry ($) x or alternatively \x → uncurry id x, both of which, contrary to our intuition,

9Unfortunately, we do not have ground truth solutions for most of our queries, so we have to resort to subjective analysis.
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are not only well-typed, but also are functionally equivalent to our intended solution. It was
welcome to see a synthesis tool write more succinct code that its authors.

7 RELATED WORK

Finally, we situate our work with other research into ways of synthesizing code that meets a given
specification. For brevity, we restrict ourselves to the (considerable) literature that focuses on using
types as specifications, and omit discussing methods that use e.g. input-output examples or tests
[Gulwani 2011; Katayama 2012; Lee et al. 2018; Osera and Zdancewic 2015], logical specifications
[Galenson et al. 2014; Srivastava et al. 2010] or program sketches [Solar-Lezama 2008].

API Search.Modern IDEs support various forms of code-completion, based on at the very least
common prefixes of names (e.g. completing In into Integer or fo into foldl') and so on. Many tools
use type information to only return completions that are well-typed at the point of completion.
This approach is generalized by search based tools like Hoogle [Mitchell 2004] that search for type
isomorphisms [Di Cosmo 1993] to find functions that łmatchž a given type signature (query). The
above can be viewed as returning single-component results, as opposed to our goal of searching
for terms that combine components in order to satisfy a given type query.

Search using Statistical Models. Several groups have looked into using statistical methods to
improve search-based code-completion. One approach is to analyze large code bases to precompute
statistical models that can be used to predict the most likely sequences of method calls at a given
point or that yield values of a given (first order) type [Raychev et al. 2014]. It is possible to generalize
the above to train probabilistic models (grammars) that generate the most likely programs that must
contain certain properties like method names, types, or keywords [Murali et al. 2017]. We conjecture
that while the above methods are very useful for effectively searching for commonly occurring
code snippets, they are less useful in functional languages, where higher-order components offer
high degree of compositionality and lead to less code repetition.

Type Inhabitation. The work most directly related to ours are methods based on finding terms that
inhabit a (query) type [Urzyczyn 1997]. One approach is to use the correspondence between types
and logics, to reduce the inhabitation question to that of validity of a logical formula (encoding the
type). A classic example is Djinn [Augusstson 2005] which implements a decision procedure for
intuitionistic propositional calculus [Dyckhoff and Pinto 1998] to synthesize terms that have a given
type. Recent work by Rehof et al. extends the notion of inhabitation to support object oriented
frameworks whose components behaviors can be specified via intersection types [Heineman
et al. 2016]. However, both these approaches lack a relevancy requirement of its snippets, and
hence return undesirable results. For example, when queried with a type a → [a], Djinn would
yield a function that always returns the empty list. One way to avoid undesirable results is to
use dependent or refinement types to capture the semantics of the desired terms more precisely.
Synqid [Polikarpova et al. 2016] andMyth2 [Frankle et al. 2016] use different flavors of refinement
types to synthesize recursive functions, while Agda [Norell 2008] makes heavy use of proof search
to enable type- or hole-driven development. However, unlike H+, methods based on classical proof
search do not scale up to large component libraries.

Scalable Proof Search. One way to scale search is explored by [Perelman et al. 2012] which
uses a very restricted form of inhabitation queries to synthesize local łauto-completionž terms
corresponding to method names, parameters, field lookups and so on, but over massive component
libraries (e.g. the .NET framework). In contrast, the InSynth system [Gvero et al. 2013] addresses
the problem of scalability by extending proof search with a notion of succinctness that collapses
types into equivalence classes, thereby abstracting the space over which proof search must be
performed. Further, InSynth uses weights derived from empirical analysis of library usage to bias

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 12. Publication date: January 2020.



12:26 Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia Polikarpova

the search to more likely results. However, InSynth is limited to simple types i.e. does not support
parametric polymorphism which is the focus of our work.

Graph Reachability. Our approach is directly inspired by methods that reduce the synthesis
problem to some form of reachability. Prospector [Mandelin et al. 2005] is an early exemplar
where the components are unary functions that take a single input. Consequently, the component
library can be represented as a directed graph of edges between input and output types, and
synthesis is reduced to finding a path from the query’s input type to its output type. SyPet [Feng
et al. 2017], which forms the basis of our work, is a generalization of Prospector to account for
general first-order functions which can take multiple inputs, thereby generalizing synthesis to
reachability on Petri nets. The key contribution of our work is the notion of TYGAR that generalizes
SyPet’s approach to polymorphic and higher-order components.

Counterexample-Guided Abstraction Refinement.While the notion of counterexample-guided
abstraction refinement (CEGAR) is classical at this point [Clarke et al. 2010], there are two lines of
work in particular closely related to ours. First, [Ganty et al. 2007; Kloos et al. 2013] describe an
iterative abstraction-refinement process for verifying Petri nets, using SMT [Esparza et al. 2014].
However, in their setting, the refinement loop is used to perform unbounded verification of the
(infinite-state) Petri net. In contrast, H+ performs a bounded search on each Petri net, but uses
TYGAR to refine the net itself with new type instantiations that eliminate the construction of
ill-typed terms. Second, Blaze [Wang et al. 2018] describes a CEGAR approach for synthesizing
programs from input-output examples, by iteratively refining finite tree-automata whose states
correspond to values in a predicate-abstraction domain. Programs that do not satisfy the input-
output tests are used to iteratively refine the domain until a suitable correct program is found.
Our approach differs in that we aim to synthesize terms of a given type. Consequently, although
our refinement mechanism is inspired by Blaze, we develop a novel abstract domainÐa finite
sub-lattice of the type subsumption latticeÐand show how to use proofs of untypeability to refine
this domain. Moreover, we show how CEGAR can be combined with Petri nets (as opposed to tree
automata) in order to enforce relevancy.

Types and Abstract Interpretation. The connection between types and abstract interpretation
(AI) was first introduced in [Cousot 1997]. The goal of their work, however, was to cast existing
type systems in the framework of AI, while we use this framework to systematically construct new
type systems that further abstract an existing one. More recently, [Garcia et al. 2016] used the AI
framework to formalize gradual typing. Like that work, we use AI to derive an abstract type system
for our language, but otherwise the goals of the two techniques are very different. Moreover, as we
hint in Sec. 4.3, our abstract domain is subtly but crucially different from traditional gradual typing,
because our refinement algorithm relies on non-linear terms (i.e. types with repeated variables).
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