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Abstract4

Understanding the spatial extent of extreme precipitation is necessary for determining flood5

risk and adequately designing infrastructure (e.g., stormwater pipes) to withstand such hazards.6

While environmental phenomena typically exhibit weakening spatial dependence at increasingly7

extreme levels, limiting max-stable process models for block maxima have a rigid dependence8

structure that does not capture this type of behavior. We propose a flexible Bayesian model from9

a broader family of (conditionally) max-infinitely divisible processes that allows for weakening10

spatial dependence at increasingly extreme levels, and due to a hierarchical representation of11

the likelihood in terms of random effects, our inference approach scales to large datasets. The12

proposed model is constructed using flexible random basis functions that are estimated from the13

data, allowing for straightforward inspection of the predominant spatial patterns of extremes.14

In addition, the described process possesses (conditional) max-stability as a special case, making15

inference on the tail dependence class possible. We apply our model to extreme precipitation16

in eastern North America, and show that the proposed model adequately captures the extremal17

behavior of the data.18
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1 INTRODUCTION21

The risk of precipitation-induced flooding (pluvial flooding) is strongly determined by the spatial22

extent of severe storms, and therefore, there is a need to adequately describe the spatial dependence23

properties of extreme precipitation. With this goal in mind, we propose a scalable model for24

spatial extremes that relaxes the rigid dependence structure of asymptotic max-stable models,25

characterizes the main modes of spatial variability using interpretable spatial factors, and allows26

for easy prediction at unobserved locations. The areal aspect of extreme precipitation plays a role in27

flood risk assessment. Precipitation falling over a single drainage basin flows into a common outlet,28

the aggregate effects of which can be devastating in large volumes. In 2006, heavy precipitation29

over the Susquehanna River basin in New York and Pennsylvania caused record high discharges30

along the Susquehanna River and flooding in the region, ultimately leading to federal-level disaster31

declarations and disaster-recovery assistance from the US Federal Emergency Management Agency32

(FEMA) in excess of $227 million (Suro et al., 2009).33

The last decade has seen a considerable amount of research on the spatial dependence modeling34

of extremes, in part because of the hazard that extreme weather events pose to human life and35

property. For recent reviews, see Davison et al. (2012, 2013, 2019) and Davison and Huser (2015).36

The classical geostatistical Gaussian process models that are ideal for modeling the bulk of a dis-37

tribution have weak tail-dependence and do not enforce the specific type of positive dependence38

structure inherent to extremes. Two classes of models, max-stable processes (de Haan and Ferreira,39

2006) and generalized Pareto processes (Ferreira and de Haan, 2014; Thibaud and Opitz, 2015),40

have proven to be useful tools for the modeling of spatial extremes. Max-stable process models41
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are infinite-dimensional generalizations of the limiting models for componentwise maxima. They42

are asymptotically justified models for pointwise maxima over an infinite collection of independent43

processes after suitable renormalization, a property which has made them prime candidates for44

the modeling of spatial extremes. In practice, maxima are taken over large, but finite blocks (e.g.,45

months, years). An approximation error is incurred when applying limiting models to pointwise46

maxima over finite blocks, and the degree of this error will depend on the rate of convergence of the47

modeled process as the block size grows. Furthermore, the approximation error is more pronounced48

when the observed process exhibits weakening spatial dependence at increasingly high quantiles,49

as the spatial dependence of limiting max-stable processes is the same across all levels of the dis-50

tribution, and hence would overestimate the level of dependence in the data. For more discussion,51

see, e.g., Wadsworth and Tawn (2012). Empirical evidence has shown that environmental processes52

often exhibit weakening spatial dependence at more extreme levels, which has led some to consider53

non-limiting models for flexible tail dependence modeling (Morris, 2016; Huser et al., 2017, 2018;54

Huser and Wadsworth, 2019). In particular, Morris (2016) use a random partition of their spa-55

tial domain and locally defined, asymptotically dependent skew-t processes to induce long-range56

asymptotic independence but short-range asymptotic dependence.57

In this paper, we aim to extend a class of max-stable models in order to flexibly capture spatial58

dependence characteristics for sub-asymptotic block maxima data, while still retaining the positive59

dependence structure inherent to distributions for maxima. The general class of models that we60

consider, which nests the class of max-stable models, are known as max-infinitely divisible (max-61

id) processes (Resnick, 1987, Chapter 5). Suppose a random vector X has joint distribution FX ,62

then the distribution of maxima of n independent and identically distributed (i.i.d.) replicates63

X1, . . . ,Xn, taken componentwise, has distribution function FnX . The max-id property applies to64

the converse statement. Suppose that Z is a random vector of componentwise maxima, composed65
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from a collection of n i.i.d. vectors. Then if Z has distribution function G, there exists some root66

distribution F such that G(z) = Fn(z), or equivalently such that G1/n(z) = F (z). By continuous67

extension of the relation Gq/r = F for q, r ∈ N, we say that a distribution G is max-id if and only68

if Gs is a valid distribution for all real s > 0. This is always the case for univariate distributions,69

but may not necessarily be so for multivariate distributions. Informally, max-id distributions are70

those which arise from taking componentwise maxima of i.i.d. random vectors and are therefore an71

appropriate class to constrain ourselves to if the goal is to model componentwise maxima. By slight72

abuse of language, we say that a spatial process is max-id if all its finite-dimensional distributions73

are max-id. Necessary and sufficient conditions for max-infinitely divisibility of a distribution74

function in R2 were first given by Balkema and Resnick (1977). More recently, mixing conditions75

for stationary max-id processes were explored by Kabluchko and Schlather (2010), and minimality76

of their spectral representations were described in Kabluchko and Stoev (2016).77

Unlike limiting max-stable process models, which have a rigid spatial dependence structure,78

sub-families of the broader class of max-id processes do not impose such constraints and can ac-79

commodate different spatial dependence characteristics across various levels of a distribution (see,80

e.g. Padoan, 2013, Huser et al., 2018). It is the lack of this feature that can cause max-stable81

processes to fit poorly, as many processes of interest may exhibit spatial dependence at extreme82

but finite levels. Extrapolation of max-stable fits to higher quantiles in this scenario can cause83

overestimation of the risk of concurrent extremes (Davison et al., 2013). Furthermore, the chal-84

lenge of performing conditional simulation from max-stable models given observed values at many85

locations is a limiting factor for their use in practice (Dombry et al., 2013). The Bayesian model86

that we develop in the remainder of the paper permits a conditional, hierarchical representation in87

terms of random effects that facilitates fast conditional simulation, which is useful for prediction88

at unobserved locations, and for handling missing values.89
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2 HIERARCHICAL CONSTRUCTION OF SPATIAL MAX-ID90

MODELS91

2.1 Max-Stable Reich and Shaby (2012) Model92

Our proposed approach is an extension of the Bayesian hierarchical model developed by Reich and93

Shaby (2012), which we review here. The Reich and Shaby (2012) model possesses the max-stability94

property while being tractable in high-dimensions due to its conditional representation in terms of95

positive-stable variables (see also Fougères et al., 2009 and Stephenson, 2009). Let α ∈ (0, 1) and96

consider a set of independent α-stable random variables A1, . . . , AL
iid∼ PS(α), where generically97

the Laplace transform of A ∼ PS(α) has the form: E{exp(−sA)} = exp(−sα), s ≥ 0. Then we98

construct the spatial process Z(s) as the product of two independent processes,99

Z(s) = ε(s)Y (s), (1)

where ε(s) is a white noise process (i.e., an everywhere-independent multiplicative nugget effect)100

with (1/α)-Fréchet marginals, Pr{ε(s) ≤ z} = exp(−z−1/α), and Y (s) is a spatially dependent101

process defined as an Lp-norm (for p = 1/α) of scaled, spatially-varying basis functions Kl(s) ≥ 0,102

l = 1, . . . , L:103

Y (s) =

{︄
L∑︂
l=1

AlKl(s)
1/α

}︄α
. (2)

The white noise process ε(s) functions as a nugget effect, and accounts for measurement error104

occurring independently of the underlying process of interest. For small α, the contribution of Y (s)105

dominates that of the nugget effect, and vice-versa for large α.106

Reich and Shaby (2012) used fixed, deterministic spatial basis functions. In other words, they107

assumed a Dirac prior on the space of valid basis functions, based on the following construction: let108
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v1, . . . ,vL ∈ S ∈ Rp be a collection of spatial knots over our spatial domain of interest S, andKl(s),109

l = 1, . . . , L, be Gaussian densities centered at each knot vl, normalized such that
∑︁L

l=1Kl(s) = 1110

for all s ∈ S. The Gaussian density basis functions may be replaced with normalized functions111

from a much broader class while still giving a valid construction for Y (s) in (2). A more flexible112

prior for the kernels Kl(s), l = 1, . . . , L, is discussed in Section 2.3.113

The process {Z(s), s ∈ S} has finite-dimensional distributions114

Pr{Z(s1) ≤ z1, . . . , Z(sD) ≤ zD} = exp

⎛⎝−
L∑︂
l=1

⎡⎣ D∑︂
j=1

{zj/Kl(sj)}−1/α

⎤⎦α⎞⎠ , z1, . . . , zD > 0 (3)

(see Tawn, 1990), which follows from the Laplace transform of an α-stable variable. From (3) and

the sum-to-one constraint, the marginal distributions are unit Fréchet, i.e., for all s ∈ S,

Pr{Z(s) ≤ z} = exp

(︄
−

L∑︂
l=1

[︂
{z/Kl(s)}−1/α

]︂α)︄
= exp

{︄
−z−1

L∑︂
l=1

Kl(s)

}︄
= exp

(︁
−z−1

)︁
, z > 0.

Max-stability follows from (3) by checking that

Pr{Z(s1) ≤ nz1, . . . , Z(sD) ≤ nzD}n = Pr{Z(s1) ≤ z1, . . . , Z(sD) ≤ zD}. (4)

The max-stability property of Z(s) makes it suitable for modeling spatial extremes in scenarios of115

strong, non-vanishing upper tail dependence. In Section 2.2, we propose a more general max-id116

model, which can better cope with weakening tail dependence.117

Inference may be efficiently performed by taking advantage of the inherent hierarchical struc-118

ture of the Reich and Shaby (2012) model, noticing that the data are independent conditional on119

the latent variables {Al}Ll=1, and may be written in terms of the Fréchet distribution with scale120
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parameter Y (s) > 0 and shape parameter 1/α > 0:121

Z(s)|A1, . . . , AL
indep∼ Fréchet(Y (s), 1/α), (5)

for all s ∈ S; that is, Pr{Z(s) ≤ z | A1, . . . , AL} = exp[−{z/Y (s)}−1/α], z > 0.122

2.2 Sub-Asymptotic Modeling Based on a Max-Infinitely Divisible Process123

Despite the appealing properties of the Reich and Shaby (2012) model, its deterministic basis124

functions and its max-stability make it fairly rigid in practice. Max-id processes are natural,125

flexible, sub-asymptotic models, that extend the class of max-stable processes while still possessing126

desirable properties reflecting the specific positive dependence structure of maxima. From (4), we127

can see that max-stable processes are always max-id. Therefore, the former form a smaller subclass128

within the latter.129

The tail dependence class strongly determines how the probability of joint exceedances of a high130

threshold extrapolates to extreme quantiles. A random vector (X1, X2)
⊤ with marginal distribu-131

tions F1 and F2 is said to be asymptotically independent if Pr{F1(X1) > u | F2(X2) > u} → 0 as132

u→ 1, and asymptotically dependent otherwise (Coles et al., 1999). We say that a spatial process133

{X(s), s ∈ S} is asymptotically independent if X(s1) and X(s2) are asymptotically independent134

for all s1, s2 ∈ S, s1 ̸= s2. Max-stable processes are always asymptotically dependent (except in135

the case of complete independence) and, therefore, they lack flexibility to adequately capture the136

tail behavior of asymptotically independent data. In this section, we propose an asymptotically137

independent max-id model that possesses the max-stable Reich and Shaby (2012) model on the138

boundary of its parameter space. Dependence properties are further detailed in Section 2.5.139

To extend the Reich and Shaby (2012) model to a more flexible max-id formulation, we can

change the distribution of the underlying random basis coefficients {Al}Ll=1. The heavy-tailedness
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of the PS(α) distribution yields asymptotic dependence and, by construction, max-stability. To

achieve asymptotic independence while staying within the class of max-id processes, we can consider

a lighter-tailed, exponentially tilted, positive-stable distribution,

A1, . . . , AL
iid∼ H(α, δ, θ), α ∈ (0, 1), δ > 0, θ ≥ 0, (6)

which was first introduced by Hougaard (1986) and further studied by Crowder (1989), and has

Laplace transform

E {exp (−sX)} = exp

[︃
− δ

α
{(θ + s)α − θα}

]︃
, X ∼ H(α, δ, θ). (7)

Denote the PS(α) density by fPS(x). The H(α, δ, θ) density fH may be expressed in terms of the140

positive-stable density fPS as141

fH(x) =
fPS{x(α/δ)1/α}(α/δ)1/α exp(−θx)

exp(δθα/α)
, x > 0, (8)

for α ∈ (0, 1), θ ≥ 0, and δ > 0 (Hougaard, 1986). An efficient algorithm for simulating from142

H(α, δ, θ) is given by Devroye (2009). A simple rejection sampler for the case when θ is not large143

is given in the Supplementary Material. When δ = α and θ = 0, we recover the positive-stable144

distribution PS(α) ≡ H(α, α, 0). The parameter α controls the tail decay, with smaller values145

of α corresponding to heavier-tailed distributions. Moreover, the density becomes increasingly146

concentrated around one as α → 1. When θ > 0, the gamma distribution with shape δ and rate θ147

is obtained as α→ 0.148

Upon reparameterization in terms of α⋆ = α, δ⋆ = (δ/α)1/α and θ⋆ = (δ/α)1/αθ, we see from149

(8) that δ⋆ = (δ/α)1/α is a scale parameter, which does not affect the dependence structure of our150
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new model. Therefore, in the remainder of this paper, we set δ = α (i.e., δ⋆ = 1) and use H(α, α, θ)151

throughout without any loss in flexibility.152

When δ = α and θ > 0, fH is an exponentially tilted form of fPS, where the parameter θ has153

the effect of exponentially tapering the tail of fPS at rate θ. Other extensions of the positive-stable154

distribution may also be interesting avenues for future research (e.g., polynomial tilting (Devroye,155

2009)). However, our choice of (6) preserves the simplicity of the model while introducing a single156

parameter, the exponential tilting parameter θ, that is directly connected to the dependence prop-157

erties of the resulting Z(s) process, while allowing for inference that is computationally tractable.158

Proposition 2.1. Let {Z(s), s ∈ S} be defined as in (1) with A1, . . . , AL
iid∼ H(α, α, θ), α ∈ (0, 1),159

θ ≥ 0. Then, Z(s) is max-id.160

Proof. From (7), the finite-dimensional distributions for {Z(s), s ∈ S} based on (6) are

Pr{Z(s1) ≤ z1, . . . , Z(sD) ≤ zD} = Pr{ε(s1)Y (s1) ≤ z1, . . . , ε(sD)Y (sD) ≤ zD}

= E

⎛⎝Pr

⎡⎣ε(s1) ≤ z1

{︄
L∑︂
l=1

AlKl(s1)
1/α

}︄−α

, . . . , ε(sD) ≤ zD

{︄
L∑︂
l=1

AlKl(sD)
1/α

}︄−α

| A1, . . . , AL

⎤⎦⎞⎠
= E

⎛⎝exp

⎡⎣− D∑︂
j=1

z
−1/α
j

L∑︂
l=1

AlKl(sj)
1/α

⎤⎦⎞⎠
=

L∏︂
l=1

E

⎛⎝exp

⎡⎣−Al D∑︂
j=1

{zj/Kl(sj)}−1/α

⎤⎦⎞⎠
= exp

⎛⎝Lθα −
L∑︂
l=1

⎡⎣θ + D∑︂
j=1

{zj/Kl(sj)}−1/α

⎤⎦α⎞⎠ . (9)

As

Pr{Z(s1) ≤ z1, . . . , Z(sD) ≤ zD}1/n = exp

⎧⎨⎩L
(︃

θ

n1/α

)︃α
−

L∑︂
l=1

⎡⎣(︃ θ

n1/α

)︃
+

D∑︂
j=1

{nzj/Kl(sj)}−1/α

⎤⎦α⎫⎬⎭ ,
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the finite-dimensional distributions, denoted G(z1, . . . , zD;α, θ), from this new process satisfy161

G(z1, . . . , zD;α, θ)
1/n = G(nz1, . . . , nzD;α, θ/n

1/α) for all n ∈ N, and thus the process is max-id.162

This also confirms that the process is max-stable if and only if θ = 0.163

In Section 2.3, we specify spatial priors for the basis functions, so Proposition 2.1 should be164

interpreted conditional on the basis functions.165

Marginal distributions are no longer unit Fréchet when θ > 0; they may be expressed as166

Gs(z) = Pr{Z(s) ≤ z} = exp

(︄
Lθα −

L∑︂
l=1

[︂
θ + {z/Kl(s)}−1/α

]︂α)︄
, z > 0. (10)

Bayesian and likelihood-based inference may be performed similarly as before, so this process167

enjoys the same computational benefits as the Reich and Shaby (2012) model, while having the168

traditional max-stable Reich and Shaby (2012) process as a special case on the boundary of the169

parameter space (i.e., when θ = 0). Note that unlike the Reich and Shaby (2012) model, here170

the marginal distributions depend on the dependence parameters α and θ, however, this is not a171

problem for inference as we adopt a copula-based approach, in which we separate the treatment of172

the marginal distributions and the dependence structure. Marginal modeling is described in greater173

detail in Section 2.4. Finally, a spectral representation for the proposed max-id model is described174

in the Supplementary Material, which makes a link with the max-id models of Huser et al. (2018).175

2.3 Prior Specification for the Spatial Kernels Based on Flexible Log-Gaussian176

Process Factors177

The basis functions used in Reich and Shaby (2012), constructed from Gaussian densities, are radial178

functions, decaying symmetrically from their knot centers. While it is possible to approximate a179

wide range of extremal functions by considering a large collection of Gaussian density basis functions180
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K1(s), . . . ,KL(s) as in (2), the resulting process is overly smooth and artificially non-stationary181

for fixed L. In this section, we propose an alternative prior for the basis functions, which allows for182

a parsimonious, yet flexible, stationary representation that can give insights into the predominant183

modes of spatial variability among of the underlying process.184

More precisely, we extend the Reich and Shaby (2012) model by replacing the Dirac prior on185

the Gaussian density basis functions with flexible log-Gaussian process priors, which more closely186

approximate the features of natural phenomena than radial basis functions. This choice of basis187

functions is analogous to the construction of the Brown-Resnick process (Brown and Resnick, 1977;188

Kabluchko et al., 2009), which itself can be represented as the pointwise maximum over an infinite189

collection of scaled log-Gaussian processes. Let K̃ l(s), l = 1, . . . , L−1, be i.i.d. mean-zero stationary190

Gaussian processes, each with exponential covariance function, C(h) = δ2 exp(−h/ρ), h ≥ 0, whose191

variance and range are δ2K > 0 and ρK > 0, respectively. We take the Lth basis to be the constant192

function equal to the mean of the Gaussian process, i.e., K̃L(s) = 0 for all s ∈ S. Fixing the Lth193

term ensures that it is possible to recover the K̃ l from theKl(s) terms, which is necessary for making194

posterior draws of K̃ l(s) (see Supplementary Material). Other prior choices for the basis functions195

that may also be worth exploring include using a more general Matérn class of covariance functions196

or Gaussian processes with stationary increments and an unbounded variogram (i.e., fractional197

Brownian motions), akin to the Brown-Resnick process. Application of a fractional Brownian198

motion prior in this context would require a choice of origin for each basis function, which would199

increase the computational cost if one wanted to marginalize over that unknown origin, and so we200

do not pursue it here. To satisfy the sum-to-one constraint for each spatial location s ∈ S, we set201

Kl(s) = exp
{︂
K̃ l(s)

}︂
/

L∑︂
l=1

exp
{︂
K̃ l(s)

}︂
, l = 1, . . . , L. (11)
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The variance parameter δ2K controls the long-range spatial dependence of the max-id process202

Z(s), with smaller values corresponding to stronger long-range dependence (see Davison et al.203

(2012) for a similar discussion of geometric Gaussian processes). When δ2K is large, the difference204

in relative magnitudes of the unnormalized log-Gaussian processes at any given location s is likely to205

be larger than when δ2K is small. Normalizing the basis functions when the difference in magnitudes206

is great gives way to more volatile fluctuations between dominating basis functions, and hence207

less long-range dependence. The Gaussian process range parameter ρK governs the short-range208

dependence, now with larger values corresponding to stronger short-range dependence. Because the209

proposed basis functions provide greater flexibility in adapting to the data than the fixed Gaussian210

density basis, fewer basis functions are needed. In the data application presented in Section 3,211

we choose the number of basis functions using an out-of-sample log-score criterion. Increasing the212

number of basis functions allows for greater flexibility in capturing spatially dependent subregions213

that tend to have extreme events together at the cost of greater computational burden.214

When the deterministic basis functions used by Reich and Shaby (2012) are replaced with215

random ones, the max-stability (when θ = 0) and max-infinite divisibility properties should be216

interpreted conditionally on the basis functions. Both the conditional and unconditional dependence217

properties are described in Section 2.5.218

2.4 Marginal Modeling and Realizations219

For marginal distribution modeling, we use the Generalized Extreme-Value (GEV) distribution,

which is the asymptotic distribution for univariate block maxima. The GEV(µ, σ, ξ) distribution
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function has the following form:

G(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp [− exp {−(z − µ)/σ}] , ξ = 0,

exp[−{1 + ξ(z − µ)/σ}−1/ξ
+ ], ξ ̸= 0,

where a+ = max(0, a), for some location µ ∈ R, scale σ > 0, and shape ξ ∈ R parameters, with220

support {z ∈ R : 1 + ξ(z − µ)/σ) > 0} when ξ ̸= 0, and R when ξ = 0. Since monotone increasing221

transformations of the marginal distributions do not change the max-id or max-stable dependence222

structure, we allow for general GEV marginal distributions that are possibly different for each223

spatial location. In other words, we set Z̃(s) = GEV−1[Gs{Z(s)};µ(s), σ(s), ξ(s)], where Gs(z)224

is the marginal distribution of Z(s), which in the case of the Reich and Shaby (2012) model is225

Gs(z) = exp
(︁
−z−1

)︁
, z > 0, and in the θ > 0 case is given in (10), and GEV−1{·;µ(s), σ(s), ξ(s)}226

is the quantile function for a GEV distribution with location µ(s), scale σ(s) > 0, and shape ξ(s).227

We treat Z̃(s) as our response. In subsequent sections, Gaussian process priors are assumed for228

the GEV parameters µ(s), γ(s) = log {σ(s)}, and ξ(s), and Markov chain Monte Carlo (MCMC)229

methods are used to draw posterior samples for this model. The details of the MCMC sampler are230

given in the Supplementary Material.231

To visualize some of the features of our model, we present some sample paths in Figure 1.232

Realizations of Z̃(s) on the unit square constructed using the Gaussian density (L = 25 evenly233

spaced basis functions, with standard deviation τ = 1/6) and log-Gaussian process (L = 15 basis234

functions, with variance δ2K = 25 and range ρK = 3/4) basis functions are shown in Figure 1.235

For illustration, the realizations have standard Gumbel margins everywhere in space, i.e., µ(s) =236

ξ(s) = 0 and σ(s) = 1 for all s ∈ S. The figure illustrates the role of α in controlling the relative237

contribution of the nugget process, and the impact of θ on the asymptotic dependence structure.238

Weaker tail dependence is present in the max-id models (θ > 0) than their max-stable counterparts239
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Figure 1: Realizations of the max-stable (θ = 0) and max-id (θ > 0) processes with Gaussian
density (top) and log-Gaussian process (bottom) basis functions, plotted on Gumbel margins.

(θ = 0). Moreover, the general shapes of the Gaussian density basis model realizations appear less240

resemblant of natural processes than do those from the log-Gaussian process basis model.241

While we have only developed the model for a single realization of the process Z̃(s) so far,242

the model can easily be generalized to accommodate multiple replicates in time, which we will use243

in Section 3. In particular, treating time replicates of the process to be independent, we denote244

the maxima process observed at spatial location s and time t by Z̃t(s), t = 1, . . . , T . We assume245

the marginal GEV parameters and basis functions do not vary in time, but allow the relative246

contribution of each basis function to be different for different time replicates of the process by247

taking the random basis coefficients to be Al,t
iid∼ H(α, α, θ), l = 1, . . . , L, and t = 1, . . . , T .248

2.5 Dependence Properties249

In this section, we explore the dependence properties of the proposed max-id model. The parameter250

θ plays a crucial role in determining the asymptotic dependence class. Reich and Shaby (2012) show251
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that {Z(s), s ∈ S} is asymptotically dependent and max-stable for α ∈ (0, 1), θ = 0. However,252

when θ > 0, this is no longer the case.253

Proposition 2.2. The process {Z(s), s ∈ S} defined in Sections 2.2–2.3 using the log-Gaussian254

process basis prior in (11) is an asymptotically independent process when θ > 0 and asymptotically255

dependent when θ = 0 and α < 1.256

For a proof, see Appendix A. Figure 2 displays two common dependence measures, χu =257

Pr [Gs1{Z(s1)} > u | Gs2{Z(s2)} > u] and χ̄u =
2 log Pr[Gs2{Z(s2)}>u]

log Pr[Gs1{Z(s1)}>u,Gs2{Z(s2)}>u]
, 0 < u < 1 (Coles258

et al., 1999) to illustrate the role of α and θ in controlling the dependence properties of the tail259

process. Although notationally we have omitted the dependence of χu on s1 and s2, χu will also260

depend on the locations in the (non-stationary) Gaussian density basis case. Nevertheless, while261

the Reich and Shaby (2012) max-stable process is non-stationary, it is approximately stationary262

for a dense set of spatial knots. An attractive feature of the proposed model is that as θ ↓ 0, χu263

and χ̄u transition smoothly from weak dependence to strong dependence for all u < 1.264

The extremal coefficient θD, studied by Schlather and Tawn (2003), is a measure of spatial265

dependence along the diagonal of the finite-dimensional distributions of max-stable processes. It266

takes on values from θD = 1 when the components are perfectly dependent to θD = D when they267

are independent, and therefore can be interpreted as the effective number of independent variables.268

The finite-dimensional distributions of a max-stable process with unit-Fréchet margins at level z269

can be written in the form270

Pr {Z(s1) ≤ z, . . . , Z(sD) ≤ z} = exp

{︃
−θD(s1, . . . , sD)

z

}︃
, θD(s1, . . . , sD) ∈ [1, D], (12)

where θD determines the spatial dependence and does not depend on the level z. The rigidity of the271

dependence structure across all quantiles limits the applicability of max-stable models to processes272
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Figure 2: Dependence measures χ̄u and χu for the max-stable (θ = 0) and max-id (θ > 0) models
for Z(s), s ∈ R, using L = 25 Gaussian density (τ = 1/6) and L = 15 log-Gaussian process
(δ2K = 25, ρK = 3/4) basis functions for s1 = 0 and s2 = 1/4. The knots of the Gaussian density
basis functions are evenly spaced between 0 and 1. The figures in the bottom row correspond to
χu after marginalizing over the log-Gaussian process basis functions based on M = 1, 000 Monte
Carlo draws.

that exhibit varying spatial dependence types at different quantiles. From (9), we can see that the273

max-id extension of the Reich and Shaby (2012) model does not possess this property for θ > 0.274

Figure 3 contrasts the spatial dependence features of the proposed models. We examine how the275

conditional probability of jointly exceeding a fixed quantile decays with increasing distance. Each276

panel shows the spatial decay of χu as a function of increasing spatial lag h for several quantiles.277

We see qualitatively different behavior in the spatial decay of dependence at different quantiles278

between the max-stable and max-id models. In the max-stable cases, the conditional exceedance279

probability χu at short spatial lags h is very similar at all levels u of the distribution. The max-id280

models allow for more flexibility, as can be seen by the attenuated curves for higher quantiles and281

wider array of spatial decay types. From Figure 3, it can be seen that for θ > 0, the parameter α282

plays a role in how precipitous the decay in spatial dependence is with increasing distance, with283
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Figure 3: Dependence measure χu(h) between Z(s0) and Z(s0+h) for s0 = 0 as a function of h for
max-stable (left column) and max-id (right column) models on S = [0, 1], with L = 25 Gaussian
density basis functions with τ = 1/6 (top row) and L = 15 log-Gaussian process basis functions
with δ2K = 25 and ρK = 3/4 (bottom row) basis functions for varying α and u. Gaussian density
basis functions are evenly spaced between 0 and 1. Estimates of χu(h) in the log-Gaussian process
basis model are based on 50,000 Monte Carlo replicates. Horizontal dash-dot gray lines representing
the values of χu for independent Z(s0) and Z(s0 + h) are plotted for reference.

smaller α corresponding to steeper decay. Also, just as in Reich and Shaby (2012), α determines284

the contribution of the nugget effect, which is greater when α is large and lesser when α is small.285

To confirm that our MCMC algorithm produces reliable results, and to evaluate the algorithm’s286

ability to infer the parameters under different regimes, we conduct a simulation study for both the287

Gaussian density basis and the log-Gaussian process basis models. The simulation study design and288

results are described in detail in the Supplementary Material. In all scenarios considered, credible289

intervals achieve nearly nominal levels, confirming the reliability of our MCMC algorithm.290
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3 APPLICATION TO EXTREME PRECIPITATION291

3.1 Data and Motivation292

In this section, we apply our model to extreme precipitation over the northeastern United States and293

Canada. Our aim is to understand the spatial dependence of extreme precipitation while accounting294

for measurement uncertainty. The data for this application were obtained from https://hdsc.295

nws.noaa.gov/hdsc/pfds/pfds_series.html, which is maintained by the National Oceanic and296

Atmospheric Administration (NOAA). Observations consist of annual maximum daily precipitation297

accumulations (in inches) observed between 1960 and 2015 at N = 646 gauge stations (see Figure298

4). The observation at gauge location si, i = 1, . . . , 646, and year t = 1, . . . , 56, is denoted by299

Z̃t(si).300

3.2 Model Fitting and Validation301

The precipitation data are analyzed by applying the four max-id models described in Section302

2, namely (M1) Gaussian density basis, θ = 0; (M2) Gaussian density basis, θ > 0; (M3) log-303

Gaussian process basis, θ = 0; and (M4) log-Gaussian process basis, θ > 0, where realizations of304

the process for each year are treated as i.i.d. replicates. Although further temporal dependence305

and trends could be modeled in both the GEV marginal parameters and basis scaling factors Al,t,306

Kwiatkowski-Phillips-Schmidt-Shin tests (Kwiatkowski et al., 1992) for temporal non-stationarity307

among the annual maxima were performed separately for each station, and 85% of stations yielded308

no evidence for temporal non-stationarity at confidence level 95%. The proposed model would309

be more complex and computationally demanding to fit if one were to account for temporal non-310

stationarity. Therefore, for the sake of simplicity, and since overall the data do not appear to be311

highly non-stationary over time, we will ignore this aspect in our analysis. Accounting for temporal312

non-stationarity would be an interesting avenue of future research to further develop this model.313
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Figure 4: Precipitation gauge locations (N = 646) across the northeastern United States and
Canada are plotted as black dots and Gaussian density basis knot locations (L = 60) are plotted
as red crosses.

In particular, both the dependence model and GEV marginal distributions are assumed to be314

constant over time. We assume independent Gaussian process priors, each with constant mean315

βψ ∼ N(0, 100) and stationary exponential covariance function C(h) = δ2ψ exp(−h/ρψ), h ≥ 0,316

ψ ∈ {µ, γ}, on the location µ(s) and log-scale γ(s) ≡ log{σ(s)} marginal parameters of the GEV317

distribution, with half-normal priors for δ2ψ ∼ N+(0, 100) and ρψ ∼ N+(0,maxi,j(||si− sj ||)2). Due318

to the difficulty in estimating the shape parameter (Cooley et al., 2007; Opitz et al., 2018), we use319

a spatially constant prior, ξ ∼ N(0, 100). The dependence parameter priors are as follows: For320

α and θ, we take α ∼ Unif(0, 1) and θ ∼ N+(0, 100). For the Gaussian density basis models, we321

use L = 60 knot locations on an evenly spaced grid (see Figure 4). A half normal prior is put on322
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the Gaussian density bandwidth parameter τ ∼ N+(0,maxi,j(||si − sj ||)2). In the case of the log-323

Gaussian process basis models, we consider L = 10, 15, and 20 basis functions. More basis functions324

enable better representation of the data, but at the risk of overfitting. Priors δ2K ∼ N+(0, 100) and325

ρK ∼ N+(0,maxi,j(||si − sj ||)2) are assumed for the exponential covariance parameters. Handling326

missing values is straightforward using the proposed approach. For each iteration of the MCMC327

algorithm, missing values are sampled from the posterior predictive distribution; this is detailed328

in the Supplementary Material. We run each MCMC chain under two different parameter initial-329

izations for 40,000 iterations using a burn-in of 10,000 with data from 546 stations, reserving 100330

stations for model evaluation. Some of the parameters, particularly βµ and βγ , were quite slow to331

converge. In all four cases, the posterior densities were similar across the two initializations.332

It is currently not possible to fit existing max-stable, inverted-max-stable (Wadsworth and333

Tawn, 2012), and other max-id models (see, e.g. Huser et al., 2018, Padoan, 2013) using a full334

likelihood or Bayesian approach when the number of spatial locations is large; see Castruccio et al.335

(2016), Dombry et al. (2017) and Huser et al. (2019). Under these constraints, a natural alternative336

for comparison is the model for block maxima proposed by Sang and Gelfand (2010), which also337

belongs to the asymptotic independence class. Specifically, let {W (s), s ∈ D} be a mean-zero338

Gaussian process with exponential correlation function and unit variance. The annual maxima are339

then modeled as Z(s) = GEV−1[Φ{W (s)};µ(s), σ(s), ξ], where the location µ(s) and log{σ(s)}340

each follow mean zero Gaussian processes with exponential covariance functions, with the same341

priors as above, and Φ denotes the standard normal distribution function. We refer to this as the342

the GEV-Gaussian process copula model.343

To compare models, we calculate out-of-sample log-scores (Gneiting and Raftery, 2007), for344

annual maxima at the 100 holdout stations, which is simply the log-likelihood of the holdout data345

for each model based on conditional predictive simulations of the latent model parameters at the346
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unobserved sites. Since the log-scores are calculated on holdout data, they implicitly account347

for model complexity. We also emphasize that because the predictions are based on the joint348

likelihood, the log-scores reflect not only the marginal fits, but also how well the model captures349

the dependence characteristics of the observed data. The best log-score (higher scores are better) of350

the two initializations for each model is reported in Table 1. The max-id models (θ > 0) outperform351

their max-stable counterparts (θ = 0). The log-score for the GEV-Gaussian process copula model352

is worse than the other models considered. The estimated marginal surfaces are similar across all of353

the models considered, indicating that the misspecification is due to differences in the dependence354

model for the annual maxima.355

The max-id, log-Gaussian process basis model with θ > 0 and L = 15 basis functions has the356

highest log-score (shown in bold), suggesting it should be preferred among the considered models357

for this data application, and as such we focus on this model for the remainder of our analysis.358

For this model, the posterior mean (95% credible interval) estimates of the dependence param-359

eters are 0.725 (0.702, 0.747) for α, 0.024 (0.006, 0.060) for θ, and for the spatial basis functions360

33.9 (23.8, 47.2) for δ2K and 462 (332, 642) miles for ρK , suggesting the presence of some residual361

dependence beyond that explained by spatially-varying marginal parameters. Also, while we have362

specified vague priors on the model parameters, the posterior distributions are highly concentrated363

around their corresponding posterior means. Although the proposed inference scheme does not364

allow for jumps between θ = 0 and θ > 0, the posterior samples of θ are still somewhat informative365

about the asymptotic dependence class. In particular, since the dependence properties of our model366

are smooth in θ at zero, the fact that the 95% credible interval for θ is relatively symmetric and367

distant from 0 gives support for asymptotic independence among precipitation extremes.368

To validate the decision of having the same dependence parameters α and θ over the entire369

region, log-Gaussian process basis models with θ > 0 were also separately fitted to four subregions,370
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Table 1: Log-scores estimated from annual maxima observed at the holdout stations are used to
compare the four models presented in Section 2, and the GEV-Gaussian process copula model.
Higher log-scores correspond to better fit. The max-id, log-Gaussian process basis model has the
highest log-score (shown in bold).

Gaussian Density Basis log-Gaussian Process Basis GEV-Gaussian Process Copula
L 60 10 15 20

θ = 0 -5292.5 -5410.7 -5406.4 -5415.2
-6097.048

θ > 0 -5218.3 -5194.6 -5172.6 -5207.9
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Figure 5: The left panel shows χu as a function of u for fixed spatial lags h = 20, 100, 180, 260
miles calculated for the 100-holdout stations. Empirical estimates are shown as a solid black line,
and max-id, log-Gaussian process basis model 95% credible intervals are shown as gray ribbons.
The decay of χu towards zero as u → 1 suggests that daily precipitation are asymptotically inde-
pendent. To understand the spatial dependence of extreme precipitation at increasingly extreme
levels, empirical (solid lines) and model 95% credible intervals (ribbons) of χu(h) for the holdout
stations are plotted for several quantiles u = 0.25, 0.5, 0.75, 0.9, 0.98 (right panel). Horizontal dash-
dot gray lines representing the values of χu under an everywhere-independent model are plotted for
reference. The plot shows good overall agreement between the model fits and empirical estimates.

two inland and two coastal. The 95% credible intervals for α and θ overlap with those fitted to the371

entire region, suggesting homogeneous spatial dependence of the process over the study region.372

Further, to examine the model fit, we compare empirical and model-based estimates of χu as373

a function of spatial lag h and threshold u for the holdout stations (Figure 5). The left panel374

shows χu as a function of u for at fixed lags h = 20, 100, 180, 260 miles, and the right panel375
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shows the spatial decay of χu as a function of spatial lag h for several fixed marginal quantiles376

u = 0.25, 0.5, 0.75, 0.9, 0.98. Empirical estimates are represented by solid lines and 95% credible377

intervals for each model by shaded ribbons. From the left panel, we can see that the max-id378

model captures the asymptotic independence behavior of the precipitation data quite well. The379

max-stable model slightly underestimates the relatively strong dependence at shorter distances, but380

with comparable coverage to the max-id model at other distances (see Supplementary Material).381

The slight discrepancy at shorter distances may be due to the phenomenon described by Robins382

et al. (2000) wherein intervals from posterior summaries like χu that are calculated from MCMC383

draws are too narrow. From the right panel, we deduce that the annual maximum precipitation384

data exhibit quite strong spatial dependence up to about 200 miles, with weaker spatial dependence385

at higher quantiles. Moreover, χu decays towards its independence level as a function of distance386

h faster at the 0.9 and 0.98 quantiles than at the 0.25 and 0.5 quantiles.387

In order to assess the joint spatial prediction skill of our model, we display in Figure 6 quantile-388

quantile (QQ)-plots for group-wise summaries of the annual maxima taken over the 100 holdout389

stations (see Davison et al. (2012) for a similar analysis). The results show adequate correspondence390

between the model-based and empirical quantiles of the group-wise means, whereas the observed391

group-wise minima (maxima, respectively) appear to be slightly underestimated (overestimated,392

respectively) by the model. Corresponding QQ-plots when θ = 0 (not shown) give similar patterns393

with minima (maxima, respectively) lying slightly further above (below, respectively) the 95%394

credible intervals.395

Maps of the marginal posterior predictive means and standard deviations of the 0.99 quantile396

of annual maxima (i.e., 100-year return level) for the max-id, log-Gaussian process basis model are397

shown in Figure 7. The posterior mean surfaces are consistent with marginal quantile surfaces for398

the region as reported in NOAA Atlas 14 (Perica et al., 2013). The posterior standard deviation399
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Figure 6: QQ-plots of the observed and predicted group-wise minima (left), mean (center), and
maxima (right) taken over the annual maxima from all 100 holdout stations. The dashed lines repre-
sent 95% credible intervals. The plots reflect reasonable correspondence between the empirical and
modeled multivariate distributions. To account for the fact that the marginal GEV distributions
vary across stations, observations are first transformed to unit Gumbel scale using the probability
integral transform for the GEV marginal distributions at each station from the fitted model.

surface shows the greatest variability in Maine, Long Island, and along the boundary of the ob-400

servation region where there are relatively few gauge locations. For illustration, observed maxima401

in 2012 and the posterior predictive mean for that year are plotted in Figure 8. Recall that only402

the scaling factors Al,t vary in time. The posterior predictive mean appears to capture the general403

spatial trend of the maxima observed in 2012 well.404

3.3 Principal Modes of Spatial Variability Among Precipitation Extremes405

Spatial principal component analysis (PCA) (Demsar et al., 2013; Jolliffe, 2002) and Empirical406

Orthogonal Functions (Hannachi et al., 2007) have proven to be useful methods for exploring the407

main large scale features of spatial processes. However, aside from recent work by Morris (2016)408

and Cooley and Thibaud (2018), little has been done to this end for spatial extremes. The model409

we have proposed allows for an exploratory visualization that is very similar to a spatial PCA410

method that Demsar et al. (2013) refers to as Atmospheric Science PCA in their review of Spatial411

PCA methods, where the data consist of time replicates of a univariate spatial process observed at412
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Figure 7: Pointwise posterior predictive mean (left) and standard deviation (right) of the 100-year
return level of daily precipitation.

Figure 8: Observed precipitation accumulations (left), a single posterior predictive draw (middle),
and posterior predictive means (right) for the year 2012. Missing values are shown in gray.

several locations.413

An attractive feature of the log-Gaussian process basis model is that it provides a low-dimensional414

representation of the predominant modes of spatial variability among extremes. Analogously to415
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factor analysis, the primary spatial trends among extreme precipitation can be described by a sub-416

set of the spatial basis functions Kl(s) that contribute the most to the overall process. To achieve417

this, motivated by PCA factorization, which finds the directions of maximum variance in the data,418

we rank the spatial basis functions Kl(s) l = 1, . . . , L, by the posterior year-to-year variation of419

their corresponding basis coefficients Al,t (i.e., higher posterior variance corresponds to lower rank).420

Arguably, both the means and variances of the coefficients Al,t play a role in the relative contribu-421

tion of the corresponding basis function to the overall process. However, from inspection, the basis422

coefficients with the highest posterior variance also have the highest posterior means. Examining423

the variance of the basis coefficients for each l = 1, . . . , L, against their ranks give a rough indica-424

tion of the number of basis functions with sizable contributions to the overall process. Also, while425

label switching is possible, from inspection of the MCMC samples of the basis functions, this does426

not appear to be a major concern for this application. If label switching is present, application of427

the pivotal reordering algorithm proposed by Marin et al. (2005); Marin and Robert (2007) can428

be used to permute the labels of the basis functions and scaling factors before ranking the basis429

functions. Posterior means of the first six spatial basis functions are shown in Figure 9. Most of430

the top ranked factor means in the L = 15 basis function case were also identified as top ranked431

functions in the L = 10 and L = 20 case (see Supplementary Material).432

Unlike the pointwise marginal surfaces, which do not provide any information about the joint433

dependence of extremes, these basis functions capture spatial regions of simultaneous (in this434

case, merely the same year) extreme precipitation. The proportion of the total variation among435

the Al,t accounted for by variation in the coefficients of each of the first six basis functions is436

0.48, 0.33, 0.07, 0.04, 0.03, and 0.02 respectively. This does not imply that the top ranked factor is437

the dominating kernel 48% of the time. Rather, if the variance of the scaling coefficients for the438

lth factor is high, then the year-to-year differences in the spatial modes of extremes should be well439
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Figure 9: First six spatial basis functions ordered by the variance of their corresponding random
basis coefficients from largest to smallest (left to right, top to bottom) for the L = 15 basis function
model. The year-to-year variation among the coefficients of these first six basis functions accounts
for 97% of the total year-to-year variation among all of the basis coefficients. The shapes of the
latent factors have reasonable interpretations in terms of geographic coastal and mountain features.

described by the peaks and troughs of the lth factor. For example, if Kl(s) has a peak around some440

location s∗ then the conditional GEV distribution (given the factors and scaling coefficients) will441

be stochastically larger at s∗ in years when Al,t is large and smaller when Al,t is small. Therefore,442

the low ranked factors describe regions where precipitation tends to be extreme together or more443

moderate together. The latent factors in Figure 9 have reasonable physical interpretations that are444

reflective of natural geographic features. In particular, they resemble observed patterns in extreme445

precipitation events occurring along the coast and mountain range borders. Just as with spatial446

PCA, we hesitate to make strong interpretations of the identified factors. However, the first four447

factors appear to correspond to coastal regions in New Jersey and New England that tend to be448
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affected by the same localized tropical cyclones and convective storms. The last two modes appear449

to reflect the orographic effect of mountains in cloud formation, which cause moist air to rise.450

4 DISCUSSION451

In this paper, we extend the max-stable model for spatial extremes developed by Reich and Shaby452

(2012) in several ways. First, by using flexible log-Gaussian process basis functions, our model453

provides a more realistic low-dimensional factor representation that can be used to visualize the454

main modes of spatial variability among extremes. Second, our approach relaxes the rigid spatial455

dependence structure imposed by max-stable models, while possessing the positive dependence456

inherent to distributions for maxima. Inference on the tail dependence class is also possible, as457

our model can capture asymptotic independence when θ > 0, while having an asymptotically458

dependent, max-stable model on the boundary of the parameter space (when θ = 0).459

We apply our model to extreme precipitation over the northeastern United States and Canada.460

Because it accounts for the spatial dependence among maxima and we are able to efficiently make461

conditional draws from our fitted model. The precipitation predictions from our model could be462

incorporated into a hydrological model for the flow path dynamics that incorporates factors like463

drainage basin topography, land use, and land cover to describe how precipitation falling over a464

common catchment translates into drainage and potential flooding. The precipitation analysis does465

not account for the cumulative effect of heavy precipitation over several days, which can overload466

an urban stormwater drainage system that is already operating at capacity. Further temporal467

modeling of the marginal distributions and space-time dependence characteristics would facilitate468

such an analysis; see, e.g., Huser and Davison (2014) for space-time modeling of precipitation469

extremes using max-stable processes.470

For future work, adding a point mass at θ = 0 in the prior and proposal distributions would make471
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it possible to account for model uncertainty and simultaneously perform model selection directly472

within the MCMC. Finally, while our focus in this paper has been on flexible sub-asymptotic473

modeling of maxima, another avenue for research is to investigate relaxing the rigid dependence474

structure of limiting generalized Pareto process models for peaks-over-threshold data (see, e.g.,475

Castro Camilo and Huser, 2018; Huser and Wadsworth, 2019).476

A Model Tail Dependence Properties477

Since the marginal distributions of Z(s) are the same when constructed using the log-Gaussian478

process basis, Z(s1) and Z(s2) are asymptotically independent if Pr(Z(s1) > z|Z(s2) > z) → 0 as479

z → ∞. The marginal distribution of the process at location s conditional on the basis functions is480

Gs{z|Kl(s), l = 1, . . . L} = exp(Lθα −
∑︁L

l=1[θ + {Kl(s)/z}1/α]α), and the joint distribution at two481

locations s1 and s2 is482

Pr{Z(s1) ≤ z1, Z(s2) ≤ z2|Kl(s), l = 1, . . . L} = exp

(︄
Lθα −

L∑︂
l=1

[︄
θ +

{︃
Kl(s1)

z1

}︃1/α

+

{︃
Kl(s2)

z2

}︃1/α
]︄α)︄

.

For brevity, we will drop the indices l = 1, . . . L, and write, e.g., Gs{z|Kl(s)} ≡ Gs{z|Kl(s), l =

1, . . . L}. By L′Hospital’s rule, we obtain

χ(s1, s2)|Kl(s) = 1 + lim
z→∞

d
dz

Gs1{z|Kl(s)}
d
dz

Gs2{z|Kl(s)}
− lim

z→∞

d
dz

Pr{Z(s1) ≤ z, Z(s2) ≤ z|Kl(s)}
d
dz

Gs2{z|Kl(s)}

= 2− lim
z→∞

Pr{Z(s1) ≤ z, Z(s2) ≤ z|Kl(s)}
Gs2{z|Kl(s)}

lim
z→∞

∑︁L
l=1

[︃
θ +

{︂
Kl(s1)

z

}︂1/α

+
{︂

Kl(s2)
z

}︂1/α
]︃α−1 {︂

Kl(s1)
1/α +Kl(s2)

1/α
}︂

∑︁L
l=1

[︃
θ +

{︂
Kl(s2)

z

}︂1/α
]︃α−1

Kl(s2)1/α

= 0

when θ > 0. Finally, by application of the Dominated Convergence Theorem, since |χz(s1, s2)|Kl(s)| <483

1, we obtain χ(s1, s2) = E{ lim
z→∞

χz(s1, s2)|Kl(s)} = 0 for all s1, s2 ∈ S For more detail, see the484
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Supplementary Material.485

In the case of θ = 0 and α < 1, Reich and Shaby (2012) showed that Z(s) | Kl(s), is max-stable486

with extremal coefficient θ2(s1, s2) | Kl(s) =
∑︁L

l=1

[︁
Kl(s1)

1/α +Kl(s2)
1/α
]︁α
. Using the relation for487

max-stable processes with unit Fréchet margins that χ(s1, s2) = 2−θ(s1, s2), and by the Dominated488

Convergence Theorem, we have χ(s1, s2) = E{ lim
z→∞

χz(s1, s2)|Kl(s)} = 2− E{θ2(s1, s2) | Kl(s)} =489

2−E{
∑︁L

l=1

[︁
Kl(s1)

1/α +Kl(s2)
1/α
]︁α} > 0 when α < 1 for all s1, s2 ∈ S. So, when θ = 0 and α < 1,490

Z(s) is asymptotically dependent, both conditionally on Kl, l = 1, . . . , L and unconditionally.491
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