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A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme

Precipitation

Gregory P. Bopp? Benjamin A. Shaby! and Raphaél Huser!

Abstract

Understanding the spatial extent of extreme precipitation is necessary for determining flood
risk and adequately designing infrastructure (e.g., stormwater pipes) to withstand such hazards.
While environmental phenomena typically exhibit weakening spatial dependence at increasingly
extreme levels, limiting max-stable process models for block maxima have a rigid dependence
structure that does not capture this type of behavior. We propose a flexible Bayesian model from
a broader family of (conditionally) max-infinitely divisible processes that allows for weakening
spatial dependence at increasingly extreme levels, and due to a hierarchical representation of
the likelihood in terms of random effects, our inference approach scales to large datasets. The
proposed model is constructed using flexible random basis functions that are estimated from the
data, allowing for straightforward inspection of the predominant spatial patterns of extremes.
In addition, the described process possesses (conditional) max-stability as a special case, making
inference on the tail dependence class possible. We apply our model to extreme precipitation
in eastern North America, and show that the proposed model adequately captures the extremal

behavior of the data.
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KEY WORDS: max-infinitely divisible process; max-stable process; sub-asymptotic extremes;

block maxima.

1 INTRODUCTION

The risk of precipitation-induced flooding (pluvial flooding) is strongly determined by the spatial
extent of severe storms, and therefore, there is a need to adequately describe the spatial dependence
properties of extreme precipitation. With this goal in mind, we propose a scalable model for
spatial extremes that relaxes the rigid dependence structure of asymptotic max-stable models,
characterizes the main modes of spatial variability using interpretable spatial factors, and allows
for easy prediction at unobserved locations. The areal aspect of extreme precipitation plays a role in
flood risk assessment. Precipitation falling over a single drainage basin flows into a common outlet,
the aggregate effects of which can be devastating in large volumes. In 2006, heavy precipitation
over the Susquehanna River basin in New York and Pennsylvania caused record high discharges
along the Susquehanna River and flooding in the region, ultimately leading to federal-level disaster
declarations and disaster-recovery assistance from the US Federal Emergency Management Agency
(FEMA) in excess of $227 million (Suro et al., 2009).

The last decade has seen a considerable amount of research on the spatial dependence modeling
of extremes, in part because of the hazard that extreme weather events pose to human life and
property. For recent reviews, see Davison et al.| (2012} 2013, |2019) and [Davison and Huser| (2015)).
The classical geostatistical Gaussian process models that are ideal for modeling the bulk of a dis-
tribution have weak tail-dependence and do not enforce the specific type of positive dependence
structure inherent to extremes. Two classes of models, max-stable processes (de Haan and Ferreira),
2006)) and generalized Pareto processes (Ferreira and de Haan, [2014; Thibaud and Opitz, 2015,

have proven to be useful tools for the modeling of spatial extremes. Max-stable process models
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are infinite-dimensional generalizations of the limiting models for componentwise maxima. They
are asymptotically justified models for pointwise maxima over an infinite collection of independent
processes after suitable renormalization, a property which has made them prime candidates for
the modeling of spatial extremes. In practice, maxima are taken over large, but finite blocks (e.g.,
months, years). An approximation error is incurred when applying limiting models to pointwise
maxima over finite blocks, and the degree of this error will depend on the rate of convergence of the
modeled process as the block size grows. Furthermore, the approximation error is more pronounced
when the observed process exhibits weakening spatial dependence at increasingly high quantiles,
as the spatial dependence of limiting max-stable processes is the same across all levels of the dis-
tribution, and hence would overestimate the level of dependence in the data. For more discussion,
see, e.g., Wadsworth and Tawn| (2012)). Empirical evidence has shown that environmental processes
often exhibit weakening spatial dependence at more extreme levels, which has led some to consider
non-limiting models for flexible tail dependence modeling (Morris|, [2016; [Huser et al.l 2017 [2018;
Huser and Wadsworth, 2019)). In particular, [Morris (2016) use a random partition of their spa-
tial domain and locally defined, asymptotically dependent skew-t processes to induce long-range
asymptotic independence but short-range asymptotic dependence.

In this paper, we aim to extend a class of max-stable models in order to flexibly capture spatial
dependence characteristics for sub-asymptotic block maxima data, while still retaining the positive
dependence structure inherent to distributions for maxima. The general class of models that we
consider, which nests the class of max-stable models, are known as max-infinitely divisible (max-
id) processes (Resnick, |1987, Chapter 5). Suppose a random vector X has joint distribution Fly,
then the distribution of maxima of n independent and identically distributed (i.i.d.) replicates
Xi,..., Xy, taken componentwise, has distribution function F'y. The max-id property applies to

the converse statement. Suppose that Z is a random vector of componentwise maxima, composed
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from a collection of n i.i.d. vectors. Then if Z has distribution function G, there exists some root
distribution F' such that G(z) = F™(z), or equivalently such that G'/"(z) = F(z). By continuous
extension of the relation G¢" = F for ¢,r € N, we say that a distribution G is max-id if and only
if G* is a valid distribution for all real s > 0. This is always the case for univariate distributions,
but may not necessarily be so for multivariate distributions. Informally, max-id distributions are
those which arise from taking componentwise maxima of i.i.d. random vectors and are therefore an
appropriate class to constrain ourselves to if the goal is to model componentwise maxima. By slight
abuse of language, we say that a spatial process is max-id if all its finite-dimensional distributions
are max-id. Necessary and sufficient conditions for max-infinitely divisibility of a distribution
function in R? were first given by Balkema and Resnick (1977). More recently, mixing conditions
for stationary max-id processes were explored by [Kabluchko and Schlather| (2010), and minimality
of their spectral representations were described in Kabluchko and Stoev| (2016)).

Unlike limiting max-stable process models, which have a rigid spatial dependence structure,
sub-families of the broader class of max-id processes do not impose such constraints and can ac-
commodate different spatial dependence characteristics across various levels of a distribution (see,
e.g. [Padoan, [2013| [Huser et al., [2018). It is the lack of this feature that can cause max-stable
processes to fit poorly, as many processes of interest may exhibit spatial dependence at extreme
but finite levels. Extrapolation of max-stable fits to higher quantiles in this scenario can cause
overestimation of the risk of concurrent extremes (Davison et al., 2013)). Furthermore, the chal-
lenge of performing conditional simulation from max-stable models given observed values at many
locations is a limiting factor for their use in practice (Dombry et al. [2013). The Bayesian model
that we develop in the remainder of the paper permits a conditional, hierarchical representation in
terms of random effects that facilitates fast conditional simulation, which is useful for prediction

at unobserved locations, and for handling missing values.
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2 HIERARCHICAL CONSTRUCTION OF SPATIAL MAX-ID

MODELS

2.1 Max-Stable Reich and Shaby (2012) Model

Our proposed approach is an extension of the Bayesian hierarchical model developed by [Reich and
Shaby| (2012]), which we review here. The Reich and Shaby| (2012)) model possesses the max-stability
property while being tractable in high-dimensions due to its conditional representation in terms of
positive-stable variables (see also Fougeres et al., [2009 and [Stephenson, [2009). Let « € (0,1) and
consider a set of independent a-stable random variables Aq,..., Ap, i PS(«a), where generically

the Laplace transform of A ~ PS(«) has the form: E{exp(—sA)} = exp(—s®), s > 0. Then we

construct the spatial process Z(s) as the product of two independent processes,
Z(s) = e(s)Y (s), (1)

where €(s) is a white noise process (i.e., an everywhere-independent multiplicative nugget effect)
with (1/a)-Fréchet marginals, Pr{e(s) < z} = exp(—z~1/®), and Y (s) is a spatially dependent
process defined as an LP-norm (for p = 1/«) of scaled, spatially-varying basis functions K;(s) > 0,

l=1,...,L:

L «
Y(s) = {ZAles)l/a} . (2)
=1

The white noise process £(s) functions as a nugget effect, and accounts for measurement error
occurring independently of the underlying process of interest. For small «, the contribution of Y (s)
dominates that of the nugget effect, and vice-versa for large «.

Reich and Shaby| (2012)) used fixed, deterministic spatial basis functions. In other words, they

assumed a Dirac prior on the space of valid basis functions, based on the following construction: let
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v1,...,v; €S € RP be a collection of spatial knots over our spatial domain of interest S, and K;(s),
l=1,...,L, be Gaussian densities centered at each knot v;, normalized such that Elel Ki(s) =1
for all s € §. The Gaussian density basis functions may be replaced with normalized functions
from a much broader class while still giving a valid construction for Y'(s) in (2). A more flexible
prior for the kernels Kj(s), l=1,..., L, is discussed in Section

The process {Z(s),s € S} has finite-dimensional distributions

e’
L

D
Pr{Z(s1) < z1,...,Z(sp) < zp} =exp | = > | {z/Ki(s)y | |, a0 >0 (3)
=1 | j=1

(see [Tawn, 1990), which follows from the Laplace transform of an a-stable variable. From and

the sum-to-one constraint, the marginal distributions are unit Fréchet, i.e., for all s € S,

L

L
Pr{Z(s) <z} =exp (— Z [{Z/Kl(s)}_l/a] ) = exp {—zl ZKl(s)} =exp(—z7"), z>0.
=1

=1

Max-stability follows from by checking that
Pr{Z(s1) < nz,...,Z(sp) < nzp}" =Pr{Z(s1) < z1,...,Z(sp) < 2p}. (4)

The max-stability property of Z(s) makes it suitable for modeling spatial extremes in scenarios of
strong, non-vanishing upper tail dependence. In Section we propose a more general max-id
model, which can better cope with weakening tail dependence.

Inference may be efficiently performed by taking advantage of the inherent hierarchical struc-
ture of the Reich and Shaby (2012)) model, noticing that the data are independent conditional on

the latent variables {4;}% |, and may be written in terms of the Fréchet distribution with scale
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parameter Y'(s) > 0 and shape parameter 1/a > 0:

indep

Z(s)|A1,..., A "~ Fréchet(Y(s),1/a), (5)

for all s € S; that is, Pr{Z(s) < z | Ay,..., A;} = exp[—{z/Y (s)}"1/], z > 0.

2.2  Sub-Asymptotic Modeling Based on a Max-Infinitely Divisible Process

Despite the appealing properties of the Reich and Shaby| (2012) model, its deterministic basis
functions and its max-stability make it fairly rigid in practice. Max-id processes are natural,
flexible, sub-asymptotic models, that extend the class of max-stable processes while still possessing
desirable properties reflecting the specific positive dependence structure of maxima. From , we
can see that max-stable processes are always max-id. Therefore, the former form a smaller subclass
within the latter.

The tail dependence class strongly determines how the probability of joint exceedances of a high
threshold extrapolates to extreme quantiles. A random vector (X7, X»)" with marginal distribu-
tions F1 and F is said to be asymptotically independent if Pr{F}(X;) > u | Fo(X2) > u} — 0 as
u — 1, and asymptotically dependent otherwise (Coles et al., 1999). We say that a spatial process
{X(s),s € S} is asymptotically independent if X(s1) and X (s2) are asymptotically independent
for all s1,82 € S, 81 # s2. Max-stable processes are always asymptotically dependent (except in
the case of complete independence) and, therefore, they lack flexibility to adequately capture the
tail behavior of asymptotically independent data. In this section, we propose an asymptotically
independent max-id model that possesses the max-stable Reich and Shaby| (2012) model on the
boundary of its parameter space. Dependence properties are further detailed in Section [2.5

To extend the Reich and Shaby| (2012) model to a more flexible max-id formulation, we can

change the distribution of the underlying random basis coefficients {AI}ZL: ;- The heavy-tailedness
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of the PS(«) distribution yields asymptotic dependence and, by construction, max-stability. To
achieve asymptotic independence while staying within the class of max-id processes, we can consider

a lighter-tailed, exponentially tilted, positive-stable distribution,

Ay, AL N H(e,8,0),  a€(0,1),6>0,0>0, (6)

which was first introduced by Hougaard| (1986) and further studied by Crowder (1989), and has

Laplace transform
E{exp(—sX)} =exp —g{(@—l-s)a—Go‘} , X ~ H(e,0,0). (7)

Denote the PS(«) density by fps(z). The H(a,d,0) density fg may be expressed in terms of the

positive-stable density fpsg as

_ fes{a(a/0)"/*}(a/8)!/* exp(~—0z)

ful@) exp(60%/a) ’

x>0, (8)

for « € (0,1), § > 0, and § > 0 (Hougaard), 1986). An efficient algorithm for simulating from
H(a, d,0) is given by [Devroye (2009). A simple rejection sampler for the case when 6 is not large
is given in the Supplementary Material. When 6 = « and 8 = 0, we recover the positive-stable
distribution PS(a) = H(e, ,0). The parameter « controls the tail decay, with smaller values
of a corresponding to heavier-tailed distributions. Moreover, the density becomes increasingly
concentrated around one as « — 1. When 0 > 0, the gamma distribution with shape § and rate 6
is obtained as o — 0.

Upon reparameterization in terms of o = a, 6* = (§/a)/* and 6* = (6/a)'/*0, we see from

that 0* = (6/a)"/® is a scale parameter, which does not affect the dependence structure of our
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new model. Therefore, in the remainder of this paper, we set 6 = « (i.e., 6* = 1) and use H(«, «, 0)
throughout without any loss in flexibility.

When § = a and 0 > 0, fg is an exponentially tilted form of fpg, where the parameter 8 has
the effect of exponentially tapering the tail of fpg at rate . Other extensions of the positive-stable
distribution may also be interesting avenues for future research (e.g., polynomial tilting (Devroye,
2009))). However, our choice of @ preserves the simplicity of the model while introducing a single
parameter, the exponential tilting parameter 0, that is directly connected to the dependence prop-

erties of the resulting Z(s) process, while allowing for inference that is computationally tractable.

Proposition 2.1. Let {Z(s),s € S} be defined as in with Aq,..., AL Y H(a, a,0), a € (0,1),

0 > 0. Then, Z(s) is maz-id.

Proof. From ([7)), the finite-dimensional distributions for {Z(s), s € S} based on (6] are

Pr{Z(s1) < z,...,Z(sp) < zp} =Pr{e(s1)Y(s1) < z1,...,e(sp)Y(sp) < zp}
=E|Pr 6(81)<z1 {ZAZKI S1 l/a} SD <ZD {ZAlKl SD)I/a} ‘Al,...,AL
1=1 =1
exXp Zz /azAlKl ]
L D
:HE exp AIZ{Z']/K[ sj)} —1/a

l

1
L

=exp [ LO° =) 0+Z{zj/Kl sy el . (9)
=1

=1

«

Pr{Z(s1) < 21,..., Z(sp) < 2p}/" = exp L( W)& i ( 1/a>+z{m]/Kl 5)) /e

=1
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the finite-dimensional distributions, denoted G(z1,. .., zp;«, @), from this new process satisfy
G(z1,...,2p;0,0)V/" = G(nz1,...,nzp;a,0/n'/) for all n € N, and thus the process is max-id.
This also confirms that the process is max-stable if and only if 8 = 0. O

In Section 2.3, we specify spatial priors for the basis functions, so Proposition 2.1 should be
interpreted conditional on the basis functions.

Marginal distributions are no longer unit Fréchet when 6 > 0; they may be expressed as

L
Gs(z) = Pr{Z(s) < z} = exp (LHO‘ = [0 + {Z/K,(s)}—l/a] ) . 2>0. (10)

=1

Bayesian and likelihood-based inference may be performed similarly as before, so this process
enjoys the same computational benefits as the Reich and Shaby| (2012) model, while having the
traditional max-stable Reich and Shaby| (2012) process as a special case on the boundary of the
parameter space (i.e., when § = 0). Note that unlike the [Reich and Shabyl (2012)) model, here
the marginal distributions depend on the dependence parameters « and 6, however, this is not a
problem for inference as we adopt a copula-based approach, in which we separate the treatment of
the marginal distributions and the dependence structure. Marginal modeling is described in greater
detail in Section Finally, a spectral representation for the proposed max-id model is described

in the Supplementary Material, which makes a link with the max-id models of Huser et al.| (2018).

2.3 Prior Specification for the Spatial Kernels Based on Flexible Log-Gaussian

Process Factors

The basis functions used in [Reich and Shaby| (2012)), constructed from Gaussian densities, are radial
functions, decaying symmetrically from their knot centers. While it is possible to approximate a

wide range of extremal functions by considering a large collection of Gaussian density basis functions

10
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Ki(s),...,Kr(s) as in , the resulting process is overly smooth and artificially non-stationary
for fixed L. In this section, we propose an alternative prior for the basis functions, which allows for
a parsimonious, yet flexible, stationary representation that can give insights into the predominant
modes of spatial variability among of the underlying process.

More precisely, we extend the Reich and Shaby| (2012)) model by replacing the Dirac prior on
the Gaussian density basis functions with flexible log-Gaussian process priors, which more closely
approximate the features of natural phenomena than radial basis functions. This choice of basis
functions is analogous to the construction of the Brown-Resnick process (Brown and Resnickl, (1977}
Kabluchko et al., 2009)), which itself can be represented as the pointwise maximum over an infinite
collection of scaled log-Gaussian processes. Let K 1(s),l=1,...,L—1, bei.i.d. mean-zero stationary
Gaussian processes, each with exponential covariance function, C(h) = 62 exp(—h/p), h > 0, whose
variance and range are 5%( > 0 and px > 0, respectively. We take the Lth basis to be the constant
function equal to the mean of the Gaussian process, i.e., K r(s) =0 for all s € S. Fixing the Lth
term ensures that it is possible to recover the K from the K, 1(s) terms, which is necessary for making
posterior draws of K 1(8) (see Supplementary Material). Other prior choices for the basis functions
that may also be worth exploring include using a more general Matérn class of covariance functions
or Gaussian processes with stationary increments and an unbounded variogram (i.e., fractional
Brownian motions), akin to the Brown-Resnick process. Application of a fractional Brownian
motion prior in this context would require a choice of origin for each basis function, which would
increase the computational cost if one wanted to marginalize over that unknown origin, and so we

do not pursue it here. To satisfy the sum-to-one constraint for each spatial location s € S, we set

Ki(s) = exp {f(l(s)} /ZL:exp {f(l(s)} L l=1,...,L (11)
=1

11
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The variance parameter (5%( controls the long-range spatial dependence of the max-id process
Z(s), with smaller values corresponding to stronger long-range dependence (see Davison et al.
(2012) for a similar discussion of geometric Gaussian processes). When 6% is large, the difference
in relative magnitudes of the unnormalized log-Gaussian processes at any given location s is likely to
be larger than when 5%( is small. Normalizing the basis functions when the difference in magnitudes
is great gives way to more volatile fluctuations between dominating basis functions, and hence
less long-range dependence. The Gaussian process range parameter px governs the short-range
dependence, now with larger values corresponding to stronger short-range dependence. Because the
proposed basis functions provide greater flexibility in adapting to the data than the fixed Gaussian
density basis, fewer basis functions are needed. In the data application presented in Section
we choose the number of basis functions using an out-of-sample log-score criterion. Increasing the
number of basis functions allows for greater flexibility in capturing spatially dependent subregions
that tend to have extreme events together at the cost of greater computational burden.

When the deterministic basis functions used by Reich and Shaby| (2012) are replaced with
random ones, the max-stability (when § = 0) and max-infinite divisibility properties should be
interpreted conditionally on the basis functions. Both the conditional and unconditional dependence

properties are described in Section [2.5

2.4 Marginal Modeling and Realizations

For marginal distribution modeling, we use the Generalized Extreme-Value (GEV) distribution,

which is the asymptotic distribution for univariate block maxima. The GEV(u, 0, &) distribution

12
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function has the following form:

exp[—exp{—(z—p)/o}], £=0,
G(z) =

exp[—{1 +&(z — ) /o) 6], €#0,

where a1 = max(0,a), for some location pu € R, scale ¢ > 0, and shape £ € R parameters, with
support {z € R: 1+ &(z — p)/o) > 0} when £ # 0, and R when £ = 0. Since monotone increasing
transformations of the marginal distributions do not change the max-id or max-stable dependence
structure, we allow for general GEV marginal distributions that are possibly different for each
spatial location. In other words, we set Z(s) = GEV Y Gs{Z(s)}; u(s),o(s),£(s)], where Gq(z)
is the marginal distribution of Z(s), which in the case of the Reich and Shaby| (2012) model is
Gs(z) = exp (—271),2 > 0, and in the 6 > 0 case is given in (I0), and GEV ' {-; u(s),0(s),&(s)}
is the quantile function for a GEV distribution with location pu(s), scale o(s) > 0, and shape £(s).
We treat Z(s) as our response. In subsequent sections, Gaussian process priors are assumed for
the GEV parameters u(s), v(s) = log{o(s)}, and &(s), and Markov chain Monte Carlo (MCMC)
methods are used to draw posterior samples for this model. The details of the MCMC sampler are
given in the Supplementary Material.

To visualize some of the features of our model, we present some sample paths in Figure
Realizations of Z(s) on the unit square constructed using the Gaussian density (L = 25 evenly
spaced basis functions, with standard deviation 7 = 1/6) and log-Gaussian process (L = 15 basis
functions, with variance 5% = 25 and range px = 3/4) basis functions are shown in Figure
For illustration, the realizations have standard Gumbel margins everywhere in space, i.e., u(s) =
£(s) =0and o(s) =1 for all s € S. The figure illustrates the role of « in controlling the relative
contribution of the nugget process, and the impact of # on the asymptotic dependence structure.

Weaker tail dependence is present in the max-id models (6 > 0) than their max-stable counterparts

13
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Gaussian Den. Basis
o N A O

log-Gaussian Proc.
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Figure 1: Realizations of the max-stable (# = 0) and max-id (# > 0) processes with Gaussian
density (top) and log-Gaussian process (bottom) basis functions, plotted on Gumbel margins.

(6 = 0). Moreover, the general shapes of the Gaussian density basis model realizations appear less
resemblant of natural processes than do those from the log-Gaussian process basis model.

While we have only developed the model for a single realization of the process Z (s) so far,
the model can easily be generalized to accommodate multiple replicates in time, which we will use
in Section [3] In particular, treating time replicates of the process to be independent, we denote
the maxima process observed at spatial location s and time ¢ by Zt(s), t=1,...,T. We assume
the marginal GEV parameters and basis functions do not vary in time, but allow the relative
contribution of each basis function to be different for different time replicates of the process by

taking the random basis coefficients to be A;; id H(a,,0),1=1,...,L,and t =1,...,T.

2.5 Dependence Properties

In this section, we explore the dependence properties of the proposed max-id model. The parameter

0 plays a crucial role in determining the asymptotic dependence class. |Reich and Shaby| (2012) show

14
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that {Z(s),s € S} is asymptotically dependent and max-stable for o € (0,1), 6 = 0. However,

when 6 > 0, this is no longer the case.

Proposition 2.2. The process {Z(s),s € S} defined in Sections using the log-Gaussian
process basis prior in is an asymptotically independent process when 6 > 0 and asymptotically

dependent when 0 =0 and o < 1.

For a proof, see Appendix [A] Figure [2] displays two common dependence measures, x, =

2log Pr [GSZ {Z(SQ)}>U]

Pr [G31{Z(31)} >u ‘ G82{Z(82)} > U] and Xu = logPr[Gsl {Z(s1)}>u,Gsy {Z(82)} >u

T 0 <u<1(Coles
et al., [1999) to illustrate the role of o and 6 in controlling the dependence properties of the tail
process. Although notationally we have omitted the dependence of x, on s; and ss, x, will also
depend on the locations in the (non-stationary) Gaussian density basis case. Nevertheless, while
the [Reich and Shaby| (2012) max-stable process is non-stationary, it is approximately stationary
for a dense set of spatial knots. An attractive feature of the proposed model is that as 8 | 0, x4
and ¥, transition smoothly from weak dependence to strong dependence for all u < 1.

The extremal coefficient 0p, studied by [Schlather and Tawn| (2003)), is a measure of spatial
dependence along the diagonal of the finite-dimensional distributions of max-stable processes. It
takes on values from 6p = 1 when the components are perfectly dependent to 6p = D when they
are independent, and therefore can be interpreted as the effective number of independent variables.
The finite-dimensional distributions of a max-stable process with unit-Fréchet margins at level z

can be written in the form

D(Sl,...,SD) S [1,D], (12)

Pf{Z<81>SZ,---,Z<sD>Sz}:eXp{_W}7 ;

where 6p determines the spatial dependence and does not depend on the level z. The rigidity of the

dependence structure across all quantiles limits the applicability of max-stable models to processes
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Figure 2: Dependence measures Y, and y, for the max-stable (6§ = 0) and max-id (f > 0) models
for Z(s),s € R, using L = 25 Gaussian density (7 = 1/6) and L = 15 log-Gaussian process
(62- = 25, px = 3/4) basis functions for s; = 0 and sy = 1/4. The knots of the Gaussian density
basis functions are evenly spaced between 0 and 1. The figures in the bottom row correspond to
X« after marginalizing over the log-Gaussian process basis functions based on M = 1,000 Monte
Carlo draws.

that exhibit varying spatial dependence types at different quantiles. From @, we can see that the

max-id extension of the Reich and Shaby| (2012) model does not possess this property for § > 0.

Figure[3] contrasts the spatial dependence features of the proposed models. We examine how the
conditional probability of jointly exceeding a fixed quantile decays with increasing distance. Each
panel shows the spatial decay of y, as a function of increasing spatial lag h for several quantiles.
We see qualitatively different behavior in the spatial decay of dependence at different quantiles
between the max-stable and max-id models. In the max-stable cases, the conditional exceedance
probability x., at short spatial lags h is very similar at all levels u of the distribution. The max-id
models allow for more flexibility, as can be seen by the attenuated curves for higher quantiles and
wider array of spatial decay types. From Figure (3] it can be seen that for § > 0, the parameter «

plays a role in how precipitous the decay in spatial dependence is with increasing distance, with
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Figure 3: Dependence measure y,(h) between Z(sg) and Z(sg+ h) for so = 0 as a function of h for
max-stable (left column) and max-id (right column) models on & = [0, 1], with L = 25 Gaussian
density basis functions with 7 = 1/6 (top row) and L = 15 log-Gaussian process basis functions
with §2. = 25 and px = 3/4 (bottom row) basis functions for varying o and u. Gaussian density
basis functions are evenly spaced between 0 and 1. Estimates of yx,(h) in the log-Gaussian process
basis model are based on 50,000 Monte Carlo replicates. Horizontal dash-dot gray lines representing
the values of x,, for independent Z(sy) and Z(sp + h) are plotted for reference.

smaller « corresponding to steeper decay. Also, just as in Reich and Shaby (2012), o determines

the contribution of the nugget effect, which is greater when « is large and lesser when « is small.
To confirm that our MCMC algorithm produces reliable results, and to evaluate the algorithm’s
ability to infer the parameters under different regimes, we conduct a simulation study for both the
Gaussian density basis and the log-Gaussian process basis models. The simulation study design and
results are described in detail in the Supplementary Material. In all scenarios considered, credible

intervals achieve nearly nominal levels, confirming the reliability of our MCMC algorithm.
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3 APPLICATION TO EXTREME PRECIPITATION

3.1 Data and Motivation

In this section, we apply our model to extreme precipitation over the northeastern United States and
Canada. Our aim is to understand the spatial dependence of extreme precipitation while accounting
for measurement uncertainty. The data for this application were obtained from https://hdsc.
nws.noaa.gov/hdsc/pfds/pfds_series.html, which is maintained by the National Oceanic and
Atmospheric Administration (NOAA). Observations consist of annual maximum daily precipitation
accumulations (in inches) observed between 1960 and 2015 at N = 646 gauge stations (see Figure
. The observation at gauge location s;, ¢ = 1,...,646, and year t = 1,...,56, is denoted by

Zt(Sz')-

3.2 Model Fitting and Validation

The precipitation data are analyzed by applying the four max-id models described in Section
namely (M1) Gaussian density basis, # = 0; (M2) Gaussian density basis, § > 0; (M3) log-
Gaussian process basis, # = 0; and (M4) log-Gaussian process basis, § > 0, where realizations of
the process for each year are treated as i.i.d. replicates. Although further temporal dependence
and trends could be modeled in both the GEV marginal parameters and basis scaling factors A; 4,
Kwiatkowski-Phillips-Schmidt-Shin tests (Kwiatkowski et all, [1992) for temporal non-stationarity
among the annual maxima were performed separately for each station, and 85% of stations yielded
no evidence for temporal non-stationarity at confidence level 95%. The proposed model would
be more complex and computationally demanding to fit if one were to account for temporal non-
stationarity. Therefore, for the sake of simplicity, and since overall the data do not appear to be
highly non-stationary over time, we will ignore this aspect in our analysis. Accounting for temporal

non-stationarity would be an interesting avenue of future research to further develop this model.
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Figure 4: Precipitation gauge locations (N = 646) across the northeastern United States and
Canada are plotted as black dots and Gaussian density basis knot locations (L = 60) are plotted
as red crosses.

In particular, both the dependence model and GEV marginal distributions are assumed to be
constant over time. We assume independent Gaussian process priors, each with constant mean
By ~ N(0,100) and stationary exponential covariance function C(h) = 51% exp(—h/py),h > 0,
¥ € {p,~v}, on the location u(s) and log-scale v(s) = log{o(s)} marginal parameters of the GEV
distribution, with half-normal priors for 51% ~ N4(0,100) and py ~ N4(0,max; j(||s; — s;|/)?). Due
to the difficulty in estimating the shape parameter (Cooley et al., 2007; |Opitz et al. 2018), we use
a spatially constant prior, { ~ N(0,100). The dependence parameter priors are as follows: For
a and 0, we take o ~ Unif(0,1) and § ~ N (0,100). For the Gaussian density basis models, we

use L = 60 knot locations on an evenly spaced grid (see Figure . A half normal prior is put on
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the Gaussian density bandwidth parameter 7 ~ N4 (0, max; j(||s; — s;|[)?). In the case of the log-
Gaussian process basis models, we consider L = 10, 15, and 20 basis functions. More basis functions
enable better representation of the data, but at the risk of overfitting. Priors 6% ~ N4(0,100) and
pr ~ N4 (0,max; ;(||s; — s;]|)?) are assumed for the exponential covariance parameters. Handling
missing values is straightforward using the proposed approach. For each iteration of the MCMC
algorithm, missing values are sampled from the posterior predictive distribution; this is detailed
in the Supplementary Material. We run each MCMC chain under two different parameter initial-
izations for 40,000 iterations using a burn-in of 10,000 with data from 546 stations, reserving 100
stations for model evaluation. Some of the parameters, particularly 3, and 3., were quite slow to
converge. In all four cases, the posterior densities were similar across the two initializations.

It is currently not possible to fit existing max-stable, inverted-max-stable (Wadsworth and
Tawn, 2012), and other max-id models (see, e.g. Huser et al.| [2018| [Padoan) 2013) using a full
likelihood or Bayesian approach when the number of spatial locations is large; see |Castruccio et al.
(2016)), Dombry et al.|(2017) and Huser et al. (2019). Under these constraints, a natural alternative
for comparison is the model for block maxima proposed by [Sang and Gelfand| (2010), which also
belongs to the asymptotic independence class. Specifically, let {WW(s),s € D} be a mean-zero
Gaussian process with exponential correlation function and unit variance. The annual maxima are
then modeled as Z(s) = GEV[®{W (s)}; u(s),c(s),£], where the location u(s) and log{c(s)}
each follow mean zero Gaussian processes with exponential covariance functions, with the same
priors as above, and ® denotes the standard normal distribution function. We refer to this as the
the GEV-Gaussian process copula model.

To compare models, we calculate out-of-sample log-scores (Gneiting and Raftery, [2007), for
annual maxima at the 100 holdout stations, which is simply the log-likelihood of the holdout data

for each model based on conditional predictive simulations of the latent model parameters at the
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unobserved sites. Since the log-scores are calculated on holdout data, they implicitly account
for model complexity. We also emphasize that because the predictions are based on the joint
likelihood, the log-scores reflect not only the marginal fits, but also how well the model captures
the dependence characteristics of the observed data. The best log-score (higher scores are better) of
the two initializations for each model is reported in Table The max-id models (# > 0) outperform
their max-stable counterparts (f = 0). The log-score for the GEV-Gaussian process copula model
is worse than the other models considered. The estimated marginal surfaces are similar across all of
the models considered, indicating that the misspecification is due to differences in the dependence
model for the annual maxima.

The max-id, log-Gaussian process basis model with § > 0 and L = 15 basis functions has the
highest log-score (shown in bold), suggesting it should be preferred among the considered models
for this data application, and as such we focus on this model for the remainder of our analysis.
For this model, the posterior mean (95% credible interval) estimates of the dependence param-
eters are 0.725 (0.702,0.747) for a, 0.024 (0.006,0.060) for #, and for the spatial basis functions
33.9 (23.8,47.2) for 5% and 462 (332,642) miles for pg, suggesting the presence of some residual
dependence beyond that explained by spatially-varying marginal parameters. Also, while we have
specified vague priors on the model parameters, the posterior distributions are highly concentrated
around their corresponding posterior means. Although the proposed inference scheme does not
allow for jumps between 8 = 0 and € > 0, the posterior samples of  are still somewhat informative
about the asymptotic dependence class. In particular, since the dependence properties of our model
are smooth in 6 at zero, the fact that the 95% credible interval for 6 is relatively symmetric and
distant from 0 gives support for asymptotic independence among precipitation extremes.

To validate the decision of having the same dependence parameters « and 6 over the entire

region, log-Gaussian process basis models with 6 > 0 were also separately fitted to four subregions,
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Table 1: Log-scores estimated from annual maxima observed at the holdout stations are used to
compare the four models presented in Section [2, and the GEV-Gaussian process copula model.
Higher log-scores correspond to better fit. The max-id, log-Gaussian process basis model has the
highest log-score (shown in bold).

Gaussian Density Basis log-Gaussian Process Basis GEV-Gaussian Process Copula

L | 60 |10 15 20
0=0 -5292.5 -5410.7 -5406.4 -5415.2
6>0 -5218.3 5194.6 -5172.6 -5207.9 -6097.048
1.00 1.00

0.75 0.75 \/\\/\
\ u
»2 0.50 52 0.50 0.25
0.5
0.75
0.9
0.98
h - \/\’\\
\/\/,-\/\ —
0.00 0.00 T
0.00 0.25 0.50 0.75 1.00 0 100 200 300

u h (mi)

Figure 5: The left panel shows x, as a function of w for fixed spatial lags h = 20, 100, 180, 260
miles calculated for the 100-holdout stations. Empirical estimates are shown as a solid black line,
and max-id, log-Gaussian process basis model 95% credible intervals are shown as gray ribbons.
The decay of x, towards zero as u — 1 suggests that daily precipitation are asymptotically inde-
pendent. To understand the spatial dependence of extreme precipitation at increasingly extreme
levels, empirical (solid lines) and model 95% credible intervals (ribbons) of x,(h) for the holdout
stations are plotted for several quantiles u = 0.25,0.5,0.75,0.9,0.98 (right panel). Horizontal dash-
dot gray lines representing the values of x, under an everywhere-independent model are plotted for
reference. The plot shows good overall agreement between the model fits and empirical estimates.

two inland and two coastal. The 95% credible intervals for o and @ overlap with those fitted to the

entire region, suggesting homogeneous spatial dependence of the process over the study region.
Further, to examine the model fit, we compare empirical and model-based estimates of x, as

a function of spatial lag h and threshold u for the holdout stations (Figure |5)). The left panel

shows y, as a function of u for at fixed lags h = 20,100, 180,260 miles, and the right panel

22



376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Bopp et al.: Sub-Asymptotic Modeling of Spatial Extremes

shows the spatial decay of y, as a function of spatial lag h for several fixed marginal quantiles
u = 0.25,0.5,0.75,0.9,0.98. Empirical estimates are represented by solid lines and 95% credible
intervals for each model by shaded ribbons. From the left panel, we can see that the max-id
model captures the asymptotic independence behavior of the precipitation data quite well. The
max-stable model slightly underestimates the relatively strong dependence at shorter distances, but
with comparable coverage to the max-id model at other distances (see Supplementary Material).
The slight discrepancy at shorter distances may be due to the phenomenon described by |[Robins
et al.| (2000) wherein intervals from posterior summaries like x, that are calculated from MCMC
draws are too narrow. From the right panel, we deduce that the annual maximum precipitation
data exhibit quite strong spatial dependence up to about 200 miles, with weaker spatial dependence
at higher quantiles. Moreover, x, decays towards its independence level as a function of distance
h faster at the 0.9 and 0.98 quantiles than at the 0.25 and 0.5 quantiles.

In order to assess the joint spatial prediction skill of our model, we display in Figure [f] quantile-
quantile (QQ)-plots for group-wise summaries of the annual maxima taken over the 100 holdout
stations (see|Davison et al.| (2012) for a similar analysis). The results show adequate correspondence
between the model-based and empirical quantiles of the group-wise means, whereas the observed
group-wise minima (maxima, respectively) appear to be slightly underestimated (overestimated,
respectively) by the model. Corresponding QQ-plots when 6 = 0 (not shown) give similar patterns
with minima (maxima, respectively) lying slightly further above (below, respectively) the 95%
credible intervals.

Maps of the marginal posterior predictive means and standard deviations of the 0.99 quantile
of annual maxima (i.e., 100-year return level) for the max-id, log-Gaussian process basis model are
shown in Figure [/l The posterior mean surfaces are consistent with marginal quantile surfaces for

the region as reported in NOAA Atlas 14 (Perica et all |2013)). The posterior standard deviation
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Figure 6: QQ-plots of the observed and predicted group-wise minima (left), mean (center), and
maxima (right) taken over the annual maxima from all 100 holdout stations. The dashed lines repre-
sent 95% credible intervals. The plots reflect reasonable correspondence between the empirical and
modeled multivariate distributions. To account for the fact that the marginal GEV distributions
vary across stations, observations are first transformed to unit Gumbel scale using the probability
integral transform for the GEV marginal distributions at each station from the fitted model.

surface shows the greatest variability in Maine, Long Island, and along the boundary of the ob-
servation region where there are relatively few gauge locations. For illustration, observed maxima
in 2012 and the posterior predictive mean for that year are plotted in Figure 8] Recall that only
the scaling factors A;; vary in time. The posterior predictive mean appears to capture the general

spatial trend of the maxima observed in 2012 well.

3.3 Principal Modes of Spatial Variability Among Precipitation Extremes

Spatial principal component analysis (PCA) (Demsar et al., [2013; |Jolliffe, |2002) and Empirical
Orthogonal Functions (Hannachi et al., 2007) have proven to be useful methods for exploring the
main large scale features of spatial processes. However, aside from recent work by Morris| (2016)
and |Cooley and Thibaud| (2018)), little has been done to this end for spatial extremes. The model
we have proposed allows for an exploratory visualization that is very similar to a spatial PCA
method that Demsar et al. (2013) refers to as Atmospheric Science PCA in their review of Spatial

PCA methods, where the data consist of time replicates of a univariate spatial process observed at
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Qgg Posterior Mean Qgg Posterior SD

Figure 7: Pointwise posterior predictive mean (left) and standard deviation (right) of the 100-year
return level of daily precipitation.

Observed Maxima (2012) Posterior Predictive Mean (2012)

b
‘ 1 adi
i
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s ST HH&,

Figure 8: Observed precipitation accumulations (left), a single posterior predictive draw (middle),
and posterior predictive means (right) for the year 2012. Missing values are shown in gray.

several locations.
An attractive feature of the log-Gaussian process basis model is that it provides a low-dimensional

representation of the predominant modes of spatial variability among extremes. Analogously to
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factor analysis, the primary spatial trends among extreme precipitation can be described by a sub-
set of the spatial basis functions Kj(s) that contribute the most to the overall process. To achieve
this, motivated by PCA factorization, which finds the directions of maximum variance in the data,
we rank the spatial basis functions K;(s) [ = 1,..., L, by the posterior year-to-year variation of
their corresponding basis coefficients A;; (i.e., higher posterior variance corresponds to lower rank).
Arguably, both the means and variances of the coefficients A;; play a role in the relative contribu-
tion of the corresponding basis function to the overall process. However, from inspection, the basis
coefficients with the highest posterior variance also have the highest posterior means. Examining
the variance of the basis coefficients for each [ = 1,..., L, against their ranks give a rough indica-
tion of the number of basis functions with sizable contributions to the overall process. Also, while
label switching is possible, from inspection of the MCMC samples of the basis functions, this does
not appear to be a major concern for this application. If label switching is present, application of
the pivotal reordering algorithm proposed by Marin et al. (2005); Marin and Robert| (2007) can
be used to permute the labels of the basis functions and scaling factors before ranking the basis
functions. Posterior means of the first six spatial basis functions are shown in Figure 0] Most of
the top ranked factor means in the L = 15 basis function case were also identified as top ranked
functions in the L = 10 and L = 20 case (see Supplementary Material).

Unlike the pointwise marginal surfaces, which do not provide any information about the joint
dependence of extremes, these basis functions capture spatial regions of simultaneous (in this
case, merely the same year) extreme precipitation. The proportion of the total variation among
the A;; accounted for by variation in the coefficients of each of the first six basis functions is
0.48,0.33,0.07,0.04,0.03, and 0.02 respectively. This does not imply that the top ranked factor is
the dominating kernel 48% of the time. Rather, if the variance of the scaling coefficients for the

Ith factor is high, then the year-to-year differences in the spatial modes of extremes should be well
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Figure 9: First six spatial basis functions ordered by the variance of their corresponding random
basis coefficients from largest to smallest (left to right, top to bottom) for the L = 15 basis function
model. The year-to-year variation among the coefficients of these first six basis functions accounts
for 97% of the total year-to-year variation among all of the basis coefficients. The shapes of the
latent factors have reasonable interpretations in terms of geographic coastal and mountain features.

described by the peaks and troughs of the [th factor. For example, if K;(s) has a peak around some
location s* then the conditional GEV distribution (given the factors and scaling coefficients) will
be stochastically larger at s* in years when A;; is large and smaller when A;; is small. Therefore,
the low ranked factors describe regions where precipitation tends to be extreme together or more
moderate together. The latent factors in Figure [9 have reasonable physical interpretations that are
reflective of natural geographic features. In particular, they resemble observed patterns in extreme
precipitation events occurring along the coast and mountain range borders. Just as with spatial
PCA, we hesitate to make strong interpretations of the identified factors. However, the first four

factors appear to correspond to coastal regions in New Jersey and New England that tend to be
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affected by the same localized tropical cyclones and convective storms. The last two modes appear

to reflect the orographic effect of mountains in cloud formation, which cause moist air to rise.

4 DISCUSSION

In this paper, we extend the max-stable model for spatial extremes developed by |Reich and Shaby
(2012) in several ways. First, by using flexible log-Gaussian process basis functions, our model
provides a more realistic low-dimensional factor representation that can be used to visualize the
main modes of spatial variability among extremes. Second, our approach relaxes the rigid spatial
dependence structure imposed by max-stable models, while possessing the positive dependence
inherent to distributions for maxima. Inference on the tail dependence class is also possible, as
our model can capture asymptotic independence when 6 > 0, while having an asymptotically
dependent, max-stable model on the boundary of the parameter space (when 6 = 0).

We apply our model to extreme precipitation over the northeastern United States and Canada.
Because it accounts for the spatial dependence among maxima and we are able to efficiently make
conditional draws from our fitted model. The precipitation predictions from our model could be
incorporated into a hydrological model for the flow path dynamics that incorporates factors like
drainage basin topography, land use, and land cover to describe how precipitation falling over a
common catchment translates into drainage and potential flooding. The precipitation analysis does
not account for the cumulative effect of heavy precipitation over several days, which can overload
an urban stormwater drainage system that is already operating at capacity. Further temporal
modeling of the marginal distributions and space-time dependence characteristics would facilitate
such an analysis; see, e.g., [Huser and Davison (2014) for space-time modeling of precipitation
extremes using max-stable processes.

For future work, adding a point mass at § = 0 in the prior and proposal distributions would make
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it possible to account for model uncertainty and simultaneously perform model selection directly
within the MCMC. Finally, while our focus in this paper has been on flexible sub-asymptotic
modeling of maxima, another avenue for research is to investigate relaxing the rigid dependence
structure of limiting generalized Pareto process models for peaks-over-threshold data (see, e.g.,

Castro Camilo and Huser} 2018; [Huser and Wadsworth) 2019)).

A Model Tail Dependence Properties

Since the marginal distributions of Z(s) are the same when constructed using the log-Gaussian
process basis, Z(s1) and Z(s2) are asymptotically independent if Pr(Z(s1) > z|Z(s2) > z) — 0 as
z — oo. The marginal distribution of the process at location s conditional on the basis functions is
Go{z|K)(s),1 =1,... L} = exp(LO* — S}, [0 + {Ki(s)/2}/*]*), and the joint distribution at two

locations s1 and s9 is

L

Pr{Z(s1) < 21, Z(82) < 22|Ki(s),l=1,... L} = exp (Lea -3
=1

{2 ) )

For brevity, we will drop the indices [ = 1,... L, and write, e.g., Gs{z|K;(s)} = Gs{z|K(s),l =

1,...L}. By L' Hospital’s rule, we obtain

iCTVS K iP VA < ,Z < 2K
(o1, 82)|Fi(s) = 1+ i 20 EIKIOL 3 Pr{Z(s1) < 2 Z(s0) < 2| Kis)}
2o Gy {2|Ki(s)}  =oee L Gao{z|Ki(s)}

o L T e R L e

o PrlZ(s) < 2. Z(s) < AKi(s)) | .
ZlL:l [9+{Kz(zsz)} ] Ki(s2)/

oo Go2IKi(5)} RS

when 6 > 0. Finally, by application of the Dominated Convergence Theorem, since |x(s1, s2)|K;(s)| <

1, we obtain x(si1,s2) = E{ lim x.(s1,s2)|K;(s)} = 0 for all s1,s2 € S For more detail, see the
Z—> 00
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Supplementary Material.

In the case of § = 0 and « < 1, |Reich and Shaby| (2012) showed that Z(s) | K;(s), is max-stable
with extremal coefficient 0(s1, 82) | Kj(s) = ElL:l [Kl(sl)l/“ + Kl(SQ)l/a]a. Using the relation for
max-stable processes with unit Fréchet margins that x(s1, s2) = 2—6(s1, s2), and by the Dominated
Convergence Theorem, we have x(s1, s2) = E{ZILIEOXZ(SL $2)|Ki(s)} =2 — E{02(s1,82) | Ki(s)} =
2—E{ZZL:1 [Kl(sl)l/o‘ + Kl(SQ)l/a]a} > 0 when a < 1forall 1,82 € S. So, when§ =0and a < 1,

Z(s) is asymptotically dependent, both conditionally on K;,l =1,..., L and unconditionally.
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