

1 A Hierarchical Max-Ininitely Divisible Spatial Model for Extreme
2
3 Precipitation

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
3 Gregory P. Bopp*, Benjamin A. Shaby† and Raphaël Huser‡

Abstract

5 Understanding the spatial extent of extreme precipitation is necessary for determining flood
6 risk and adequately designing infrastructure (e.g., stormwater pipes) to withstand such hazards.
7 While environmental phenomena typically exhibit weakening spatial dependence at increasingly
8 extreme levels, limiting max-stable process models for block maxima have a rigid dependence
9 structure that does not capture this type of behavior. We propose a flexible Bayesian model from
10 a broader family of (conditionally) max-infinitely divisible processes that allows for weakening
11 spatial dependence at increasingly extreme levels, and due to a hierarchical representation of
12 the likelihood in terms of random effects, our inference approach scales to large datasets. The
13 proposed model is constructed using flexible random basis functions that are estimated from the
14 data, allowing for straightforward inspection of the predominant spatial patterns of extremes.
15 In addition, the described process possesses (conditional) max-stability as a special case, making
16 inference on the tail dependence class possible. We apply our model to extreme precipitation
17 in eastern North America, and show that the proposed model adequately captures the extremal
18 behavior of the data.

*Department of Statistics, Pennsylvania State University, 326 Thomas Building, University Park, PA 16802, U.S.A.
Emails: gxb951@psu.edu

†Department of Statistics, Colorado State University, 211 Statistics Building, Fort Collins, CO 80523. Email:
bshaby@colostate.edu

‡Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia. Email: raphael.huser@kaust.edu.sa

19 KEY WORDS: max-infinitely divisible process; max-stable process; sub-asymptotic extremes;
20 block maxima.

21 **1 INTRODUCTION**

22 The risk of precipitation-induced flooding (pluvial flooding) is strongly determined by the spatial
23 extent of severe storms, and therefore, there is a need to adequately describe the spatial dependence
24 properties of extreme precipitation. With this goal in mind, we propose a scalable model for
25 spatial extremes that relaxes the rigid dependence structure of asymptotic max-stable models,
26 characterizes the main modes of spatial variability using interpretable spatial factors, and allows
27 for easy prediction at unobserved locations. The areal aspect of extreme precipitation plays a role in
28 flood risk assessment. Precipitation falling over a single drainage basin flows into a common outlet,
29 the aggregate effects of which can be devastating in large volumes. In 2006, heavy precipitation
30 over the Susquehanna River basin in New York and Pennsylvania caused record high discharges
31 along the Susquehanna River and flooding in the region, ultimately leading to federal-level disaster
32 declarations and disaster-recovery assistance from the US Federal Emergency Management Agency
33 (FEMA) in excess of \$227 million (Suro et al., 2009).

34 The last decade has seen a considerable amount of research on the spatial dependence modeling
35 of extremes, in part because of the hazard that extreme weather events pose to human life and
36 property. For recent reviews, see Davison et al. (2012, 2013, 2019) and Davison and Huser (2015).
37 The classical geostatistical Gaussian process models that are ideal for modeling the bulk of a dis-
38 tribution have weak tail-dependence and do not enforce the specific type of positive dependence
39 structure inherent to extremes. Two classes of models, max-stable processes (de Haan and Ferreira,
40 2006) and generalized Pareto processes (Ferreira and de Haan, 2014; Thibaud and Opitz, 2015),
41 have proven to be useful tools for the modeling of spatial extremes. Max-stable process models

42 are infinite-dimensional generalizations of the limiting models for componentwise maxima. They
43 are asymptotically justified models for pointwise maxima over an infinite collection of independent
44 processes after suitable renormalization, a property which has made them prime candidates for
45 the modeling of spatial extremes. In practice, maxima are taken over large, but finite blocks (e.g.,
46 months, years). An approximation error is incurred when applying limiting models to pointwise
47 maxima over finite blocks, and the degree of this error will depend on the rate of convergence of the
48 modeled process as the block size grows. Furthermore, the approximation error is more pronounced
49 when the observed process exhibits weakening spatial dependence at increasingly high quantiles,
50 as the spatial dependence of limiting max-stable processes is the same across all levels of the dis-
51 tribution, and hence would overestimate the level of dependence in the data. For more discussion,
52 see, e.g., Wadsworth and Tawn (2012). Empirical evidence has shown that environmental processes
53 often exhibit weakening spatial dependence at more extreme levels, which has led some to consider
54 non-limiting models for flexible tail dependence modeling (Morris, 2016; Huser et al., 2017, 2018;
55 Huser and Wadsworth, 2019). In particular, Morris (2016) use a random partition of their spa-
56 tial domain and locally defined, asymptotically dependent skew-t processes to induce long-range
57 asymptotic independence but short-range asymptotic dependence.

58 In this paper, we aim to extend a class of max-stable models in order to flexibly capture spatial
59 dependence characteristics for sub-asymptotic block maxima data, while still retaining the positive
60 dependence structure inherent to distributions for maxima. The general class of models that we
61 consider, which nests the class of max-stable models, are known as max-infinitely divisible (max-
62 id) processes (Resnick, 1987, Chapter 5). Suppose a random vector \mathbf{X} has joint distribution F_X ,
63 then the distribution of maxima of n independent and identically distributed (i.i.d.) replicates
64 $\mathbf{X}_1, \dots, \mathbf{X}_n$, taken componentwise, has distribution function F_X^n . The max-id property applies to
65 the converse statement. Suppose that \mathbf{Z} is a random vector of componentwise maxima, composed

66 from a collection of n i.i.d. vectors. Then if \mathbf{Z} has distribution function G , there exists some root
67 distribution F such that $G(\mathbf{z}) = F^n(\mathbf{z})$, or equivalently such that $G^{1/n}(\mathbf{z}) = F(\mathbf{z})$. By continuous
68 extension of the relation $G^{q/r} = F$ for $q, r \in \mathbb{N}$, we say that a distribution G is max-id if and only
69 if G^s is a valid distribution for all real $s > 0$. This is always the case for univariate distributions,
70 but may not necessarily be so for multivariate distributions. Informally, max-id distributions are
71 those which arise from taking componentwise maxima of i.i.d. random vectors and are therefore an
72 appropriate class to constrain ourselves to if the goal is to model componentwise maxima. By slight
73 abuse of language, we say that a spatial process is max-id if all its finite-dimensional distributions
74 are max-id. Necessary and sufficient conditions for max-infinitely divisibility of a distribution
75 function in \mathbb{R}^2 were first given by Balkema and Resnick (1977). More recently, mixing conditions
76 for stationary max-id processes were explored by Kabluchko and Schlather (2010), and minimality
77 of their spectral representations were described in Kabluchko and Stoev (2016).

78 Unlike limiting max-stable process models, which have a rigid spatial dependence structure,
79 sub-families of the broader class of max-id processes do not impose such constraints and can ac-
80 commodate different spatial dependence characteristics across various levels of a distribution (see,
81 e.g. Padoan, 2013, Huser et al., 2018). It is the lack of this feature that can cause max-stable
82 processes to fit poorly, as many processes of interest may exhibit spatial dependence at extreme
83 but finite levels. Extrapolation of max-stable fits to higher quantiles in this scenario can cause
84 overestimation of the risk of concurrent extremes (Davison et al., 2013). Furthermore, the chal-
85 lenge of performing conditional simulation from max-stable models given observed values at many
86 locations is a limiting factor for their use in practice (Dombry et al., 2013). The Bayesian model
87 that we develop in the remainder of the paper permits a conditional, hierarchical representation in
88 terms of random effects that facilitates fast conditional simulation, which is useful for prediction
89 at unobserved locations, and for handling missing values.

90 **2 HIERARCHICAL CONSTRUCTION OF SPATIAL MAX-ID
91 MODELS**

92 **2.1 Max-Stable Reich and Shaby (2012) Model**

93 Our proposed approach is an extension of the Bayesian hierarchical model developed by Reich and
94 Shaby (2012), which we review here. The Reich and Shaby (2012) model possesses the max-stability
95 property while being tractable in high-dimensions due to its conditional representation in terms of
96 positive-stable variables (see also Fougères et al., 2009 and Stephenson, 2009). Let $\alpha \in (0, 1)$ and
97 consider a set of independent α -stable random variables $A_1, \dots, A_L \stackrel{\text{iid}}{\sim} \text{PS}(\alpha)$, where generically
98 the Laplace transform of $A \sim \text{PS}(\alpha)$ has the form: $E\{\exp(-sA)\} = \exp(-s^\alpha)$, $s \geq 0$. Then we
99 construct the spatial process $Z(\mathbf{s})$ as the product of two independent processes,

$$Z(\mathbf{s}) = \varepsilon(\mathbf{s})Y(\mathbf{s}), \quad (1)$$

100 where $\varepsilon(\mathbf{s})$ is a white noise process (i.e., an everywhere-independent multiplicative nugget effect)
101 with $(1/\alpha)$ -Fréchet marginals, $\Pr\{\varepsilon(\mathbf{s}) \leq z\} = \exp(-z^{-1/\alpha})$, and $Y(\mathbf{s})$ is a spatially dependent
102 process defined as an L^p -norm (for $p = 1/\alpha$) of scaled, spatially-varying basis functions $K_l(\mathbf{s}) \geq 0$,
103 $l = 1, \dots, L$:

$$Y(\mathbf{s}) = \left\{ \sum_{l=1}^L A_l K_l(\mathbf{s})^{1/\alpha} \right\}^\alpha. \quad (2)$$

104 The white noise process $\varepsilon(\mathbf{s})$ functions as a nugget effect, and accounts for measurement error
105 occurring independently of the underlying process of interest. For small α , the contribution of $Y(\mathbf{s})$
106 dominates that of the nugget effect, and vice-versa for large α .

107 Reich and Shaby (2012) used fixed, deterministic spatial basis functions. In other words, they
108 assumed a Dirac prior on the space of valid basis functions, based on the following construction: let

¹⁰⁹ $\mathbf{v}_1, \dots, \mathbf{v}_L \in \mathcal{S} \in \mathbb{R}^p$ be a collection of spatial knots over our spatial domain of interest \mathcal{S} , and $K_l(\mathbf{s})$,
¹¹⁰ $l = 1, \dots, L$, be Gaussian densities centered at each knot \mathbf{v}_l , normalized such that $\sum_{l=1}^L K_l(\mathbf{s}) = 1$
¹¹¹ for all $\mathbf{s} \in \mathcal{S}$. The Gaussian density basis functions may be replaced with normalized functions
¹¹² from a much broader class while still giving a valid construction for $Y(\mathbf{s})$ in (2). A more flexible
¹¹³ prior for the kernels $K_l(\mathbf{s})$, $l = 1, \dots, L$, is discussed in Section 2.3.

¹¹⁴ The process $\{Z(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ has finite-dimensional distributions

$$\Pr\{Z(\mathbf{s}_1) \leq z_1, \dots, Z(\mathbf{s}_D) \leq z_D\} = \exp\left(-\sum_{l=1}^L \left[\sum_{j=1}^D \{z_j/K_l(\mathbf{s}_j)\}^{-1/\alpha}\right]^\alpha\right), \quad z_1, \dots, z_D > 0 \quad (3)$$

(see Tawn, 1990), which follows from the Laplace transform of an α -stable variable. From (3) and the sum-to-one constraint, the marginal distributions are unit Fréchet, i.e., for all $\mathbf{s} \in \mathcal{S}$,

$$\Pr\{Z(\mathbf{s}) \leq z\} = \exp\left(-\sum_{l=1}^L \left[\{z/K_l(\mathbf{s})\}^{-1/\alpha}\right]^\alpha\right) = \exp\left\{-z^{-1} \sum_{l=1}^L K_l(\mathbf{s})\right\} = \exp(-z^{-1}), \quad z > 0.$$

Max-stability follows from (3) by checking that

$$\Pr\{Z(\mathbf{s}_1) \leq nz_1, \dots, Z(\mathbf{s}_D) \leq nz_D\}^n = \Pr\{Z(\mathbf{s}_1) \leq z_1, \dots, Z(\mathbf{s}_D) \leq z_D\}. \quad (4)$$

¹¹⁵ The max-stability property of $Z(\mathbf{s})$ makes it suitable for modeling spatial extremes in scenarios of
¹¹⁶ strong, non-vanishing upper tail dependence. In Section 2.2, we propose a more general max-id
¹¹⁷ model, which can better cope with weakening tail dependence.

¹¹⁸ Inference may be efficiently performed by taking advantage of the inherent hierarchical structure
¹¹⁹ of the Reich and Shaby (2012) model, noticing that the data are independent conditional on
¹²⁰ the latent variables $\{A_l\}_{l=1}^L$, and may be written in terms of the Fréchet distribution with scale

121 parameter $Y(\mathbf{s}) > 0$ and shape parameter $1/\alpha > 0$:

$$Z(\mathbf{s})|A_1, \dots, A_L \stackrel{\text{indep}}{\sim} \text{Fr\'echet}(Y(\mathbf{s}), 1/\alpha), \quad (5)$$

122 for all $\mathbf{s} \in \mathcal{S}$; that is, $\Pr\{Z(\mathbf{s}) \leq z \mid A_1, \dots, A_L\} = \exp[-\{z/Y(\mathbf{s})\}^{-1/\alpha}]$, $z > 0$.

123 2.2 Sub-Asymptotic Modeling Based on a Max-Ininitely Divisible Process

124 Despite the appealing properties of the Reich and Shaby (2012) model, its deterministic basis
125 functions and its max-stability make it fairly rigid in practice. Max-id processes are natural,
126 flexible, sub-asymptotic models, that extend the class of max-stable processes while still possessing
127 desirable properties reflecting the specific positive dependence structure of maxima. From (4), we
128 can see that max-stable processes are always max-id. Therefore, the former form a smaller subclass
129 within the latter.

130 The tail dependence class strongly determines how the probability of joint exceedances of a high
131 threshold extrapolates to extreme quantiles. A random vector $(X_1, X_2)^\top$ with marginal distribu-
132 tions F_1 and F_2 is said to be asymptotically independent if $\Pr\{F_1(X_1) > u \mid F_2(X_2) > u\} \rightarrow 0$ as
133 $u \rightarrow 1$, and asymptotically dependent otherwise (Coles et al., 1999). We say that a spatial process
134 $\{X(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ is asymptotically independent if $X(\mathbf{s}_1)$ and $X(\mathbf{s}_2)$ are asymptotically independent
135 for all $\mathbf{s}_1, \mathbf{s}_2 \in \mathcal{S}$, $\mathbf{s}_1 \neq \mathbf{s}_2$. Max-stable processes are always asymptotically dependent (except in
136 the case of complete independence) and, therefore, they lack flexibility to adequately capture the
137 tail behavior of asymptotically independent data. In this section, we propose an asymptotically
138 independent max-id model that possesses the max-stable Reich and Shaby (2012) model on the
139 boundary of its parameter space. Dependence properties are further detailed in Section 2.5.

To extend the Reich and Shaby (2012) model to a more flexible max-id formulation, we can
change the distribution of the underlying random basis coefficients $\{A_l\}_{l=1}^L$. The heavy-tailedness

of the $\text{PS}(\alpha)$ distribution yields asymptotic dependence and, by construction, max-stability. To achieve asymptotic independence while staying within the class of max-id processes, we can consider a lighter-tailed, exponentially tilted, positive-stable distribution,

$$A_1, \dots, A_L \stackrel{\text{iid}}{\sim} \text{H}(\alpha, \delta, \theta), \quad \alpha \in (0, 1), \delta > 0, \theta \geq 0, \quad (6)$$

which was first introduced by Hougaard (1986) and further studied by Crowder (1989), and has Laplace transform

$$\text{E} \{ \exp(-sX) \} = \exp \left[-\frac{\delta}{\alpha} \{ (\theta + s)^\alpha - \theta^\alpha \} \right], \quad X \sim \text{H}(\alpha, \delta, \theta). \quad (7)$$

¹⁴⁰ Denote the $\text{PS}(\alpha)$ density by $f_{\text{PS}}(x)$. The $\text{H}(\alpha, \delta, \theta)$ density f_{H} may be expressed in terms of the
¹⁴¹ positive-stable density f_{PS} as

$$f_{\text{H}}(x) = \frac{f_{\text{PS}}\{x(\alpha/\delta)^{1/\alpha}\}(\alpha/\delta)^{1/\alpha} \exp(-\theta x)}{\exp(\delta\theta^\alpha/\alpha)}, \quad x > 0, \quad (8)$$

¹⁴² for $\alpha \in (0, 1)$, $\theta \geq 0$, and $\delta > 0$ (Hougaard, 1986). An efficient algorithm for simulating from
¹⁴³ $\text{H}(\alpha, \delta, \theta)$ is given by Devroye (2009). A simple rejection sampler for the case when θ is not large
¹⁴⁴ is given in the Supplementary Material. When $\delta = \alpha$ and $\theta = 0$, we recover the positive-stable
¹⁴⁵ distribution $\text{PS}(\alpha) \equiv \text{H}(\alpha, \alpha, 0)$. The parameter α controls the tail decay, with smaller values
¹⁴⁶ of α corresponding to heavier-tailed distributions. Moreover, the density becomes increasingly
¹⁴⁷ concentrated around one as $\alpha \rightarrow 1$. When $\theta > 0$, the gamma distribution with shape δ and rate θ
¹⁴⁸ is obtained as $\alpha \rightarrow 0$.

¹⁴⁹ Upon reparameterization in terms of $\alpha^* = \alpha$, $\delta^* = (\delta/\alpha)^{1/\alpha}$ and $\theta^* = (\delta/\alpha)^{1/\alpha}\theta$, we see from
¹⁵⁰ (8) that $\delta^* = (\delta/\alpha)^{1/\alpha}$ is a scale parameter, which does not affect the dependence structure of our

151 new model. Therefore, in the remainder of this paper, we set $\delta = \alpha$ (i.e., $\delta^* = 1$) and use $H(\alpha, \alpha, \theta)$
 152 throughout without any loss in flexibility.

153 When $\delta = \alpha$ and $\theta > 0$, f_H is an exponentially tilted form of f_{PS} , where the parameter θ has
 154 the effect of exponentially tapering the tail of f_{PS} at rate θ . Other extensions of the positive-stable
 155 distribution may also be interesting avenues for future research (e.g., polynomial tilting (Devroye,
 156 2009)). However, our choice of (6) preserves the simplicity of the model while introducing a single
 157 parameter, the exponential tilting parameter θ , that is directly connected to the dependence prop-
 158 erties of the resulting $Z(\mathbf{s})$ process, while allowing for inference that is computationally tractable.

159 **Proposition 2.1.** *Let $\{Z(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ be defined as in (1) with $A_1, \dots, A_L \stackrel{iid}{\sim} H(\alpha, \alpha, \theta)$, $\alpha \in (0, 1)$,*
 160 $\theta \geq 0$. *Then, $Z(\mathbf{s})$ is max-id.*

Proof. From (7), the finite-dimensional distributions for $\{Z(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ based on (6) are

$$\begin{aligned}
 \Pr\{Z(\mathbf{s}_1) \leq z_1, \dots, Z(\mathbf{s}_D) \leq z_D\} &= \Pr\{\varepsilon(\mathbf{s}_1)Y(\mathbf{s}_1) \leq z_1, \dots, \varepsilon(\mathbf{s}_D)Y(\mathbf{s}_D) \leq z_D\} \\
 &= E\left(\Pr\left[\varepsilon(\mathbf{s}_1) \leq z_1 \left\{\sum_{l=1}^L A_l K_l(\mathbf{s}_1)^{1/\alpha}\right\}^{-\alpha}, \dots, \varepsilon(\mathbf{s}_D) \leq z_D \left\{\sum_{l=1}^L A_l K_l(\mathbf{s}_D)^{1/\alpha}\right\}^{-\alpha} \mid A_1, \dots, A_L\right]\right) \\
 &= E\left(\exp\left[-\sum_{j=1}^D z_j^{-1/\alpha} \sum_{l=1}^L A_l K_l(\mathbf{s}_j)^{1/\alpha}\right]\right) \\
 &= \prod_{l=1}^L E\left(\exp\left[-A_l \sum_{j=1}^D \{z_j/K_l(\mathbf{s}_j)\}^{-1/\alpha}\right]\right) \\
 &= \exp\left(L\theta^\alpha - \sum_{l=1}^L \left[\theta + \sum_{j=1}^D \{z_j/K_l(\mathbf{s}_j)\}^{-1/\alpha}\right]^\alpha\right). \tag{9}
 \end{aligned}$$

As

$$\Pr\{Z(\mathbf{s}_1) \leq z_1, \dots, Z(\mathbf{s}_D) \leq z_D\}^{1/n} = \exp\left\{L\left(\frac{\theta}{n^{1/\alpha}}\right)^\alpha - \sum_{l=1}^L \left[\left(\frac{\theta}{n^{1/\alpha}}\right) + \sum_{j=1}^D \{nz_j/K_l(\mathbf{s}_j)\}^{-1/\alpha}\right]^\alpha\right\},$$

161 the finite-dimensional distributions, denoted $G(z_1, \dots, z_D; \alpha, \theta)$, from this new process satisfy
162 $G(z_1, \dots, z_D; \alpha, \theta)^{1/n} = G(nz_1, \dots, nz_D; \alpha, \theta/n^{1/\alpha})$ for all $n \in \mathbb{N}$, and thus the process is max-id.
163 This also confirms that the process is max-stable if and only if $\theta = 0$. \square

164 In Section 2.3, we specify spatial priors for the basis functions, so Proposition 2.1 should be
165 interpreted conditional on the basis functions.

166 Marginal distributions are no longer unit Fréchet when $\theta > 0$; they may be expressed as

$$G_{\mathbf{s}}(z) = \Pr\{Z(\mathbf{s}) \leq z\} = \exp\left(L\theta^\alpha - \sum_{l=1}^L \left[\theta + \{z/K_l(\mathbf{s})\}^{-1/\alpha}\right]^\alpha\right), \quad z > 0. \quad (10)$$

167 Bayesian and likelihood-based inference may be performed similarly as before, so this process
168 enjoys the same computational benefits as the Reich and Shaby (2012) model, while having the
169 traditional max-stable Reich and Shaby (2012) process as a special case on the boundary of the
170 parameter space (i.e., when $\theta = 0$). Note that unlike the Reich and Shaby (2012) model, here
171 the marginal distributions depend on the dependence parameters α and θ , however, this is not a
172 problem for inference as we adopt a copula-based approach, in which we separate the treatment of
173 the marginal distributions and the dependence structure. Marginal modeling is described in greater
174 detail in Section 2.4. Finally, a spectral representation for the proposed max-id model is described
175 in the Supplementary Material, which makes a link with the max-id models of Huser et al. (2018).

176 **2.3 Prior Specification for the Spatial Kernels Based on Flexible Log-Gaussian
177 Process Factors**

178 The basis functions used in Reich and Shaby (2012), constructed from Gaussian densities, are radial
179 functions, decaying symmetrically from their knot centers. While it is possible to approximate a
180 wide range of extremal functions by considering a large collection of Gaussian density basis functions

¹⁸¹ $K_1(\mathbf{s}), \dots, K_L(\mathbf{s})$ as in (2), the resulting process is overly smooth and artificially non-stationary
¹⁸² for fixed L . In this section, we propose an alternative prior for the basis functions, which allows for
¹⁸³ a parsimonious, yet flexible, stationary representation that can give insights into the predominant
¹⁸⁴ modes of spatial variability among of the underlying process.

¹⁸⁵ More precisely, we extend the Reich and Shaby (2012) model by replacing the Dirac prior on
¹⁸⁶ the Gaussian density basis functions with flexible log-Gaussian process priors, which more closely
¹⁸⁷ approximate the features of natural phenomena than radial basis functions. This choice of basis
¹⁸⁸ functions is analogous to the construction of the Brown-Resnick process (Brown and Resnick, 1977;
¹⁸⁹ Kabluchko et al., 2009), which itself can be represented as the pointwise maximum over an infinite
¹⁹⁰ collection of scaled log-Gaussian processes. Let $\tilde{K}_l(\mathbf{s})$, $l = 1, \dots, L-1$, be i.i.d. mean-zero stationary
¹⁹¹ Gaussian processes, each with exponential covariance function, $C(h) = \delta^2 \exp(-h/\rho)$, $h \geq 0$, whose
¹⁹² variance and range are $\delta_K^2 > 0$ and $\rho_K > 0$, respectively. We take the L th basis to be the constant
¹⁹³ function equal to the mean of the Gaussian process, i.e., $\tilde{K}_L(\mathbf{s}) = 0$ for all $\mathbf{s} \in \mathcal{S}$. Fixing the L th
¹⁹⁴ term ensures that it is possible to recover the \tilde{K}_l from the $K_l(\mathbf{s})$ terms, which is necessary for making
¹⁹⁵ posterior draws of $\tilde{K}_l(\mathbf{s})$ (see Supplementary Material). Other prior choices for the basis functions
¹⁹⁶ that may also be worth exploring include using a more general Matérn class of covariance functions
¹⁹⁷ or Gaussian processes with stationary increments and an unbounded variogram (i.e., fractional
¹⁹⁸ Brownian motions), akin to the Brown-Resnick process. Application of a fractional Brownian
¹⁹⁹ motion prior in this context would require a choice of origin for each basis function, which would
²⁰⁰ increase the computational cost if one wanted to marginalize over that unknown origin, and so we
²⁰¹ do not pursue it here. To satisfy the sum-to-one constraint for each spatial location $\mathbf{s} \in \mathcal{S}$, we set

$$K_l(\mathbf{s}) = \exp \left\{ \tilde{K}_l(\mathbf{s}) \right\} / \sum_{l=1}^L \exp \left\{ \tilde{K}_l(\mathbf{s}) \right\}, \quad l = 1, \dots, L. \quad (11)$$

202 The variance parameter δ_K^2 controls the long-range spatial dependence of the max-id process
203 $Z(\mathbf{s})$, with smaller values corresponding to stronger long-range dependence (see Davison et al.
204 (2012) for a similar discussion of geometric Gaussian processes). When δ_K^2 is large, the difference
205 in relative magnitudes of the unnormalized log-Gaussian processes at any given location \mathbf{s} is likely to
206 be larger than when δ_K^2 is small. Normalizing the basis functions when the difference in magnitudes
207 is great gives way to more volatile fluctuations between dominating basis functions, and hence
208 less long-range dependence. The Gaussian process range parameter ρ_K governs the short-range
209 dependence, now with larger values corresponding to stronger short-range dependence. Because the
210 proposed basis functions provide greater flexibility in adapting to the data than the fixed Gaussian
211 density basis, fewer basis functions are needed. In the data application presented in Section 3,
212 we choose the number of basis functions using an out-of-sample log-score criterion. Increasing the
213 number of basis functions allows for greater flexibility in capturing spatially dependent subregions
214 that tend to have extreme events together at the cost of greater computational burden.

215 When the deterministic basis functions used by Reich and Shaby (2012) are replaced with
216 random ones, the max-stability (when $\theta = 0$) and max-infinite divisibility properties should be
217 interpreted conditionally on the basis functions. Both the conditional and unconditional dependence
218 properties are described in Section 2.5.

219 **2.4 Marginal Modeling and Realizations**

For marginal distribution modeling, we use the Generalized Extreme-Value (GEV) distribution,
which is the asymptotic distribution for univariate block maxima. The $\text{GEV}(\mu, \sigma, \xi)$ distribution

function has the following form:

$$G(z) = \begin{cases} \exp[-\exp\{-(z-\mu)/\sigma\}], & \xi = 0, \\ \exp[-\{1+\xi(z-\mu)/\sigma\}_+^{-1/\xi}], & \xi \neq 0, \end{cases}$$

where $a_+ = \max(0, a)$, for some location $\mu \in \mathbb{R}$, scale $\sigma > 0$, and shape $\xi \in \mathbb{R}$ parameters, with support $\{z \in \mathbb{R} : 1 + \xi(z - \mu)/\sigma > 0\}$ when $\xi \neq 0$, and \mathbb{R} when $\xi = 0$. Since monotone increasing transformations of the marginal distributions do not change the max-id or max-stable dependence structure, we allow for general GEV marginal distributions that are possibly different for each spatial location. In other words, we set $\tilde{Z}(\mathbf{s}) = \text{GEV}^{-1}[G_{\mathbf{s}}\{Z(\mathbf{s})\}; \mu(\mathbf{s}), \sigma(\mathbf{s}), \xi(\mathbf{s})]$, where $G_{\mathbf{s}}(z)$ is the marginal distribution of $Z(\mathbf{s})$, which in the case of the Reich and Shaby (2012) model is $G_{\mathbf{s}}(z) = \exp(-z^{-1})$, $z > 0$, and in the $\theta > 0$ case is given in (10), and $\text{GEV}^{-1}\{\cdot; \mu(\mathbf{s}), \sigma(\mathbf{s}), \xi(\mathbf{s})\}$ is the quantile function for a GEV distribution with location $\mu(\mathbf{s})$, scale $\sigma(\mathbf{s}) > 0$, and shape $\xi(\mathbf{s})$. We treat $\tilde{Z}(\mathbf{s})$ as our response. In subsequent sections, Gaussian process priors are assumed for the GEV parameters $\mu(\mathbf{s})$, $\gamma(\mathbf{s}) = \log\{\sigma(\mathbf{s})\}$, and $\xi(\mathbf{s})$, and Markov chain Monte Carlo (MCMC) methods are used to draw posterior samples for this model. The details of the MCMC sampler are given in the Supplementary Material.

To visualize some of the features of our model, we present some sample paths in Figure 1. Realizations of $\tilde{Z}(\mathbf{s})$ on the unit square constructed using the Gaussian density ($L = 25$ evenly spaced basis functions, with standard deviation $\tau = 1/6$) and log-Gaussian process ($L = 15$ basis functions, with variance $\delta_K^2 = 25$ and range $\rho_K = 3/4$) basis functions are shown in Figure 1. For illustration, the realizations have standard Gumbel margins everywhere in space, i.e., $\mu(\mathbf{s}) = \xi(\mathbf{s}) = 0$ and $\sigma(\mathbf{s}) = 1$ for all $\mathbf{s} \in \mathcal{S}$. The figure illustrates the role of α in controlling the relative contribution of the nugget process, and the impact of θ on the asymptotic dependence structure. Weaker tail dependence is present in the max-id models ($\theta > 0$) than their max-stable counterparts

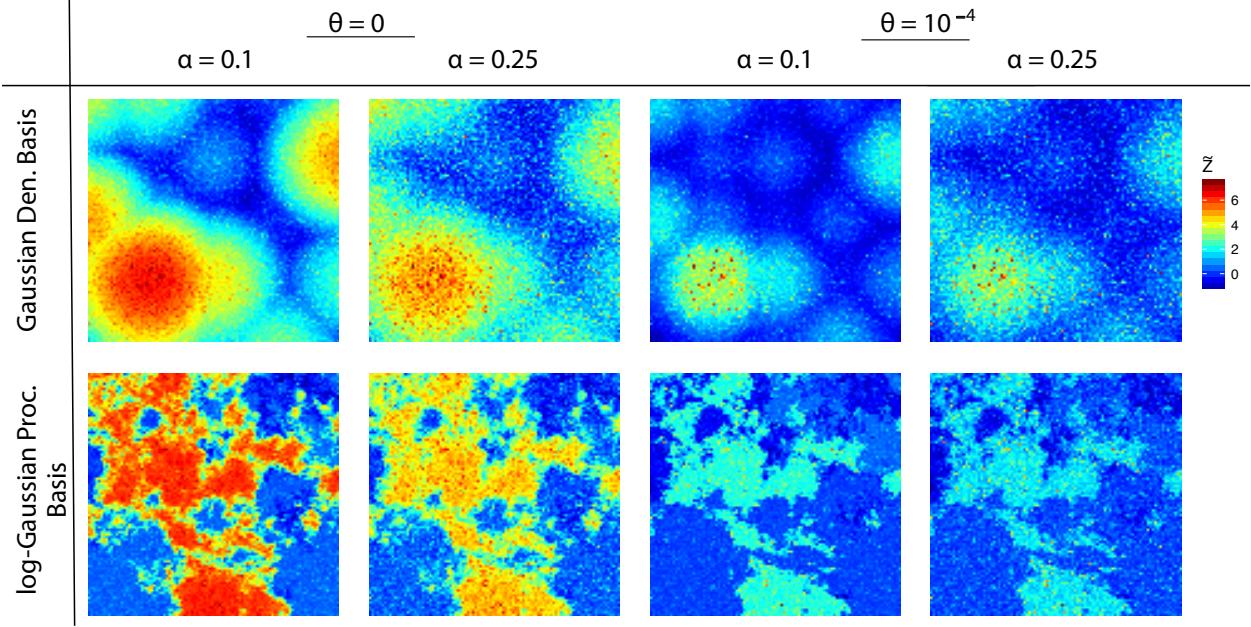


Figure 1: Realizations of the max-stable ($\theta = 0$) and max-id ($\theta > 0$) processes with Gaussian density (top) and log-Gaussian process (bottom) basis functions, plotted on Gumbel margins.

240 $(\theta = 0)$. Moreover, the general shapes of the Gaussian density basis model realizations appear less
 241 resemblant of natural processes than do those from the log-Gaussian process basis model.

242 While we have only developed the model for a single realization of the process $\tilde{Z}(\mathbf{s})$ so far,
 243 the model can easily be generalized to accommodate multiple replicates in time, which we will use
 244 in Section 3. In particular, treating time replicates of the process to be independent, we denote
 245 the maxima process observed at spatial location \mathbf{s} and time t by $\tilde{Z}_t(\mathbf{s})$, $t = 1, \dots, T$. We assume
 246 the marginal GEV parameters and basis functions do not vary in time, but allow the relative
 247 contribution of each basis function to be different for different time replicates of the process by
 248 taking the random basis coefficients to be $A_{l,t} \stackrel{\text{iid}}{\sim} H(\alpha, \alpha, \theta)$, $l = 1, \dots, L$, and $t = 1, \dots, T$.

249 **2.5 Dependence Properties**

250 In this section, we explore the dependence properties of the proposed max-id model. The parameter
 251 θ plays a crucial role in determining the asymptotic dependence class. Reich and Shaby (2012) show

252 that $\{Z(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ is asymptotically dependent and max-stable for $\alpha \in (0, 1)$, $\theta = 0$. However,
 253 when $\theta > 0$, this is no longer the case.

254 **Proposition 2.2.** *The process $\{Z(\mathbf{s}), \mathbf{s} \in \mathcal{S}\}$ defined in Sections 2.2–2.3 using the log-Gaussian
 255 process basis prior in (11) is an asymptotically independent process when $\theta > 0$ and asymptotically
 256 dependent when $\theta = 0$ and $\alpha < 1$.*

257 For a proof, see Appendix A. Figure 2 displays two common dependence measures, $\chi_u =$
 258 $\Pr[G_{\mathbf{s}_1}\{Z(\mathbf{s}_1)\} > u \mid G_{\mathbf{s}_2}\{Z(\mathbf{s}_2)\} > u]$ and $\bar{\chi}_u = \frac{2 \log \Pr[G_{\mathbf{s}_2}\{Z(\mathbf{s}_2)\} > u]}{\log \Pr[G_{\mathbf{s}_1}\{Z(\mathbf{s}_1)\} > u, G_{\mathbf{s}_2}\{Z(\mathbf{s}_2)\} > u]}, 0 < u < 1$ (Coles
 259 et al., 1999) to illustrate the role of α and θ in controlling the dependence properties of the tail
 260 process. Although notationally we have omitted the dependence of χ_u on \mathbf{s}_1 and \mathbf{s}_2 , χ_u will also
 261 depend on the locations in the (non-stationary) Gaussian density basis case. Nevertheless, while
 262 the Reich and Shaby (2012) max-stable process is non-stationary, it is approximately stationary
 263 for a dense set of spatial knots. An attractive feature of the proposed model is that as $\theta \downarrow 0$, χ_u
 264 and $\bar{\chi}_u$ transition smoothly from weak dependence to strong dependence for all $u < 1$.

265 The extremal coefficient $\theta_{\mathcal{D}}$, studied by Schlather and Tawn (2003), is a measure of spatial
 266 dependence along the diagonal of the finite-dimensional distributions of max-stable processes. It
 267 takes on values from $\theta_{\mathcal{D}} = 1$ when the components are perfectly dependent to $\theta_{\mathcal{D}} = D$ when they
 268 are independent, and therefore can be interpreted as the effective number of independent variables.
 269 The finite-dimensional distributions of a max-stable process with unit-Fréchet margins at level z
 270 can be written in the form

$$\Pr\{Z(\mathbf{s}_1) \leq z, \dots, Z(\mathbf{s}_D) \leq z\} = \exp\left\{-\frac{\theta_{\mathcal{D}}(\mathbf{s}_1, \dots, \mathbf{s}_D)}{z}\right\}, \quad \theta_{\mathcal{D}}(\mathbf{s}_1, \dots, \mathbf{s}_D) \in [1, D], \quad (12)$$

271 where $\theta_{\mathcal{D}}$ determines the spatial dependence and does *not* depend on the level z . The rigidity of the
 272 dependence structure across all quantiles limits the applicability of max-stable models to processes

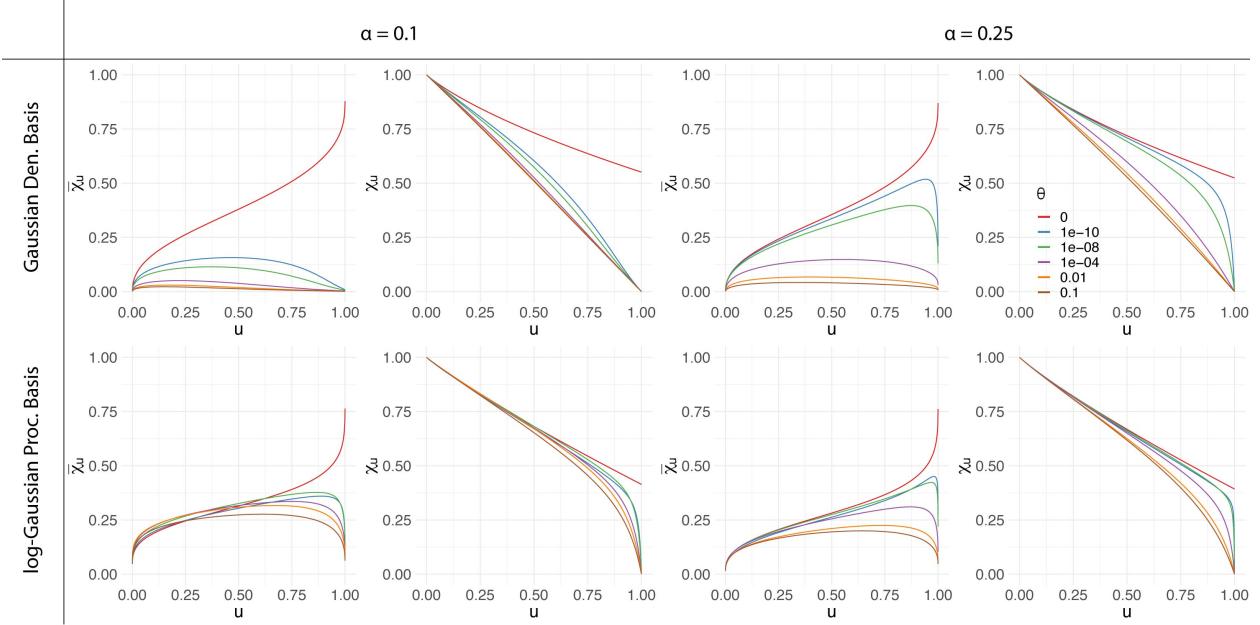


Figure 2: Dependence measures $\bar{\chi}_u$ and χ_u for the max-stable ($\theta = 0$) and max-id ($\theta > 0$) models for $Z(s), s \in \mathbb{R}$, using $L = 25$ Gaussian density ($\tau = 1/6$) and $L = 15$ log-Gaussian process ($\delta_K^2 = 25$, $\rho_K = 3/4$) basis functions for $s_1 = 0$ and $s_2 = 1/4$. The knots of the Gaussian density basis functions are evenly spaced between 0 and 1. The figures in the bottom row correspond to χ_u after marginalizing over the log-Gaussian process basis functions based on $M = 1,000$ Monte Carlo draws.

273 that exhibit varying spatial dependence types at different quantiles. From (9), we can see that the

274 max-id extension of the Reich and Shaby (2012) model does not possess this property for $\theta > 0$.

275 Figure 3 contrasts the spatial dependence features of the proposed models. We examine how the

276 conditional probability of jointly exceeding a fixed quantile decays with increasing distance. Each

277 panel shows the spatial decay of χ_u as a function of increasing spatial lag h for several quantiles.

278 We see qualitatively different behavior in the spatial decay of dependence at different quantiles

279 between the max-stable and max-id models. In the max-stable cases, the conditional exceedance

280 probability χ_u at short spatial lags h is very similar at all levels u of the distribution. The max-id

281 models allow for more flexibility, as can be seen by the attenuated curves for higher quantiles and

282 wider array of spatial decay types. From Figure 3, it can be seen that for $\theta > 0$, the parameter α

283 plays a role in how precipitous the decay in spatial dependence is with increasing distance, with

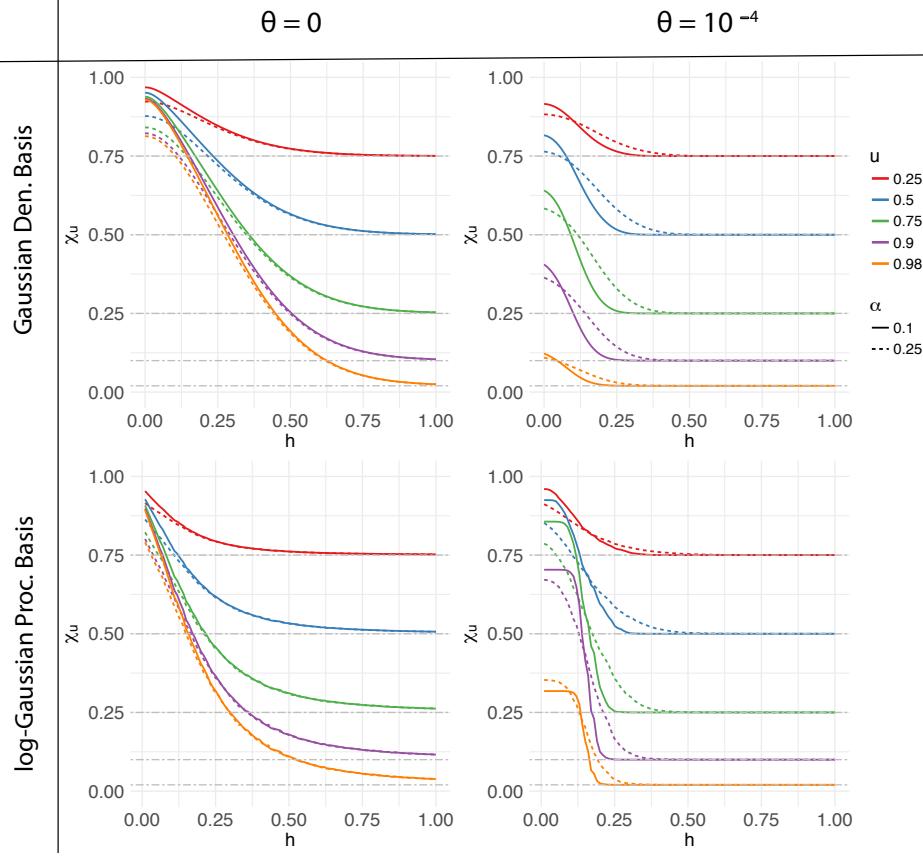


Figure 3: Dependence measure $\chi_u(h)$ between $Z(s_0)$ and $Z(s_0 + h)$ for $s_0 = 0$ as a function of h for max-stable (left column) and max-id (right column) models on $\mathcal{S} = [0, 1]$, with $L = 25$ Gaussian density basis functions with $\tau = 1/6$ (top row) and $L = 15$ log-Gaussian process basis functions with $\delta_K^2 = 25$ and $\rho_K = 3/4$ (bottom row) basis functions for varying α and u . Gaussian density basis functions are evenly spaced between 0 and 1. Estimates of $\chi_u(h)$ in the log-Gaussian process basis model are based on 50,000 Monte Carlo replicates. Horizontal dash-dot gray lines representing the values of χ_u for independent $Z(s_0)$ and $Z(s_0 + h)$ are plotted for reference.

284 smaller α corresponding to steeper decay. Also, just as in Reich and Shaby (2012), α determines
 285 the contribution of the nugget effect, which is greater when α is large and lesser when α is small.
 286 To confirm that our MCMC algorithm produces reliable results, and to evaluate the algorithm's
 287 ability to infer the parameters under different regimes, we conduct a simulation study for both the
 288 Gaussian density basis and the log-Gaussian process basis models. The simulation study design and
 289 results are described in detail in the Supplementary Material. In all scenarios considered, credible
 290 intervals achieve nearly nominal levels, confirming the reliability of our MCMC algorithm.

291 **3 APPLICATION TO EXTREME PRECIPITATION**292 **3.1 Data and Motivation**

293 In this section, we apply our model to extreme precipitation over the northeastern United States and
294 Canada. Our aim is to understand the spatial dependence of extreme precipitation while accounting
295 for measurement uncertainty. The data for this application were obtained from https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_series.html, which is maintained by the National Oceanic and
296 Atmospheric Administration (NOAA). Observations consist of annual maximum daily precipitation
297 accumulations (in inches) observed between 1960 and 2015 at $N = 646$ gauge stations (see Figure
298 4). The observation at gauge location \mathbf{s}_i , $i = 1, \dots, 646$, and year $t = 1, \dots, 56$, is denoted by
299 $\tilde{Z}_t(\mathbf{s}_i)$.

301 **3.2 Model Fitting and Validation**

302 The precipitation data are analyzed by applying the four max-id models described in Section
303 2, namely (M1) Gaussian density basis, $\theta = 0$; (M2) Gaussian density basis, $\theta > 0$; (M3) log-
304 Gaussian process basis, $\theta = 0$; and (M4) log-Gaussian process basis, $\theta > 0$, where realizations of
305 the process for each year are treated as i.i.d. replicates. Although further temporal dependence
306 and trends could be modeled in both the GEV marginal parameters and basis scaling factors $A_{l,t}$,
307 Kwiatkowski-Phillips-Schmidt-Shin tests (Kwiatkowski et al., 1992) for temporal non-stationarity
308 among the annual maxima were performed separately for each station, and 85% of stations yielded
309 no evidence for temporal non-stationarity at confidence level 95%. The proposed model would
310 be more complex and computationally demanding to fit if one were to account for temporal non-
311 stationarity. Therefore, for the sake of simplicity, and since overall the data do not appear to be
312 highly non-stationary over time, we will ignore this aspect in our analysis. Accounting for temporal
313 non-stationarity would be an interesting avenue of future research to further develop this model.

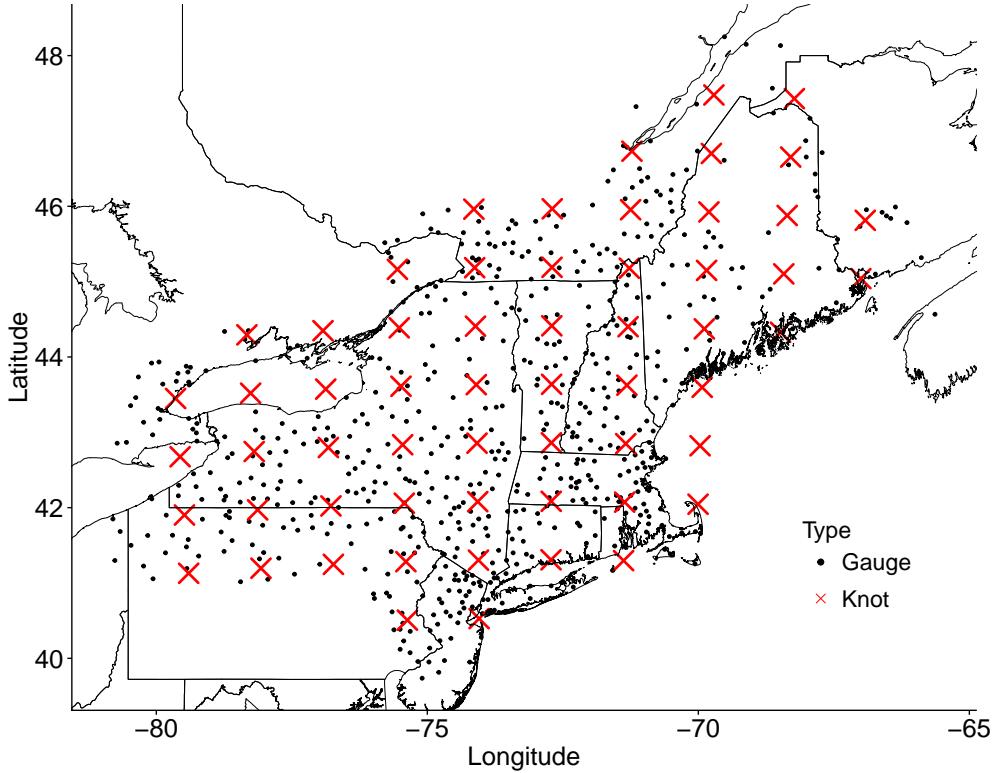


Figure 4: Precipitation gauge locations ($N = 646$) across the northeastern United States and Canada are plotted as black dots and Gaussian density basis knot locations ($L = 60$) are plotted as red crosses.

314 In particular, both the dependence model and GEV marginal distributions are assumed to be
 315 constant over time. We assume independent Gaussian process priors, each with constant mean
 316 $\beta_\psi \sim N(0, 100)$ and stationary exponential covariance function $C(h) = \delta_\psi^2 \exp(-h/\rho_\psi)$, $h \geq 0$,
 317 $\psi \in \{\mu, \gamma\}$, on the location $\mu(\mathbf{s})$ and log-scale $\gamma(\mathbf{s}) \equiv \log\{\sigma(\mathbf{s})\}$ marginal parameters of the GEV
 318 distribution, with half-normal priors for $\delta_\psi^2 \sim N_+(0, 100)$ and $\rho_\psi \sim N_+(0, \max_{i,j}(\|\mathbf{s}_i - \mathbf{s}_j\|)^2)$. Due
 319 to the difficulty in estimating the shape parameter (Cooley et al., 2007; Opitz et al., 2018), we use
 320 a spatially constant prior, $\xi \sim N(0, 100)$. The dependence parameter priors are as follows: For
 321 α and θ , we take $\alpha \sim \text{Unif}(0, 1)$ and $\theta \sim N_+(0, 100)$. For the Gaussian density basis models, we
 322 use $L = 60$ knot locations on an evenly spaced grid (see Figure 4). A half normal prior is put on

323 the Gaussian density bandwidth parameter $\tau \sim N_+(0, \max_{i,j}(\|\mathbf{s}_i - \mathbf{s}_j\|)^2)$. In the case of the log-
324 Gaussian process basis models, we consider $L = 10, 15$, and 20 basis functions. More basis functions
325 enable better representation of the data, but at the risk of overfitting. Priors $\delta_K^2 \sim N_+(0, 100)$ and
326 $\rho_K \sim N_+(0, \max_{i,j}(\|\mathbf{s}_i - \mathbf{s}_j\|)^2)$ are assumed for the exponential covariance parameters. Handling
327 missing values is straightforward using the proposed approach. For each iteration of the MCMC
328 algorithm, missing values are sampled from the posterior predictive distribution; this is detailed
329 in the Supplementary Material. We run each MCMC chain under two different parameter initial-
330 izations for 40,000 iterations using a burn-in of 10,000 with data from 546 stations, reserving 100
331 stations for model evaluation. Some of the parameters, particularly β_μ and β_γ , were quite slow to
332 converge. In all four cases, the posterior densities were similar across the two initializations.

333 It is currently not possible to fit existing max-stable, inverted-max-stable (Wadsworth and
334 Tawn, 2012), and other max-id models (see, e.g. Huser et al., 2018, Padoan, 2013) using a full
335 likelihood or Bayesian approach when the number of spatial locations is large; see Castruccio et al.
336 (2016), Dombry et al. (2017) and Huser et al. (2019). Under these constraints, a natural alternative
337 for comparison is the model for block maxima proposed by Sang and Gelfand (2010), which also
338 belongs to the asymptotic independence class. Specifically, let $\{W(\mathbf{s}), \mathbf{s} \in \mathcal{D}\}$ be a mean-zero
339 Gaussian process with exponential correlation function and unit variance. The annual maxima are
340 then modeled as $Z(\mathbf{s}) = \text{GEV}^{-1}[\Phi\{W(\mathbf{s})\}; \mu(\mathbf{s}), \sigma(\mathbf{s}), \xi]$, where the location $\mu(\mathbf{s})$ and $\log\{\sigma(\mathbf{s})\}$
341 each follow mean zero Gaussian processes with exponential covariance functions, with the same
342 priors as above, and Φ denotes the standard normal distribution function. We refer to this as the
343 the GEV-Gaussian process copula model.

344 To compare models, we calculate out-of-sample log-scores (Gneiting and Raftery, 2007), for
345 annual maxima at the 100 holdout stations, which is simply the log-likelihood of the holdout data
346 for each model based on conditional predictive simulations of the latent model parameters at the

347 unobserved sites. Since the log-scores are calculated on holdout data, they implicitly account
348 for model complexity. We also emphasize that because the predictions are based on the joint
349 likelihood, the log-scores reflect not only the marginal fits, but also how well the model captures
350 the dependence characteristics of the observed data. The best log-score (higher scores are better) of
351 the two initializations for each model is reported in Table 1. The max-id models ($\theta > 0$) outperform
352 their max-stable counterparts ($\theta = 0$). The log-score for the GEV-Gaussian process copula model
353 is worse than the other models considered. The estimated marginal surfaces are similar across all of
354 the models considered, indicating that the misspecification is due to differences in the dependence
355 model for the annual maxima.

356 The max-id, log-Gaussian process basis model with $\theta > 0$ and $L = 15$ basis functions has the
357 highest log-score (shown in bold), suggesting it should be preferred among the considered models
358 for this data application, and as such we focus on this model for the remainder of our analysis.
359 For this model, the posterior mean (95% credible interval) estimates of the dependence param-
360 eters are 0.725 (0.702, 0.747) for α , 0.024 (0.006, 0.060) for θ , and for the spatial basis functions
361 33.9 (23.8, 47.2) for δ_K^2 and 462 (332, 642) miles for ρ_K , suggesting the presence of some residual
362 dependence beyond that explained by spatially-varying marginal parameters. Also, while we have
363 specified vague priors on the model parameters, the posterior distributions are highly concentrated
364 around their corresponding posterior means. Although the proposed inference scheme does not
365 allow for jumps between $\theta = 0$ and $\theta > 0$, the posterior samples of θ are still somewhat informative
366 about the asymptotic dependence class. In particular, since the dependence properties of our model
367 are smooth in θ at zero, the fact that the 95% credible interval for θ is relatively symmetric and
368 distant from 0 gives support for asymptotic independence among precipitation extremes.

369 To validate the decision of having the same dependence parameters α and θ over the entire
370 region, log-Gaussian process basis models with $\theta > 0$ were also separately fitted to four subregions,

Table 1: Log-scores estimated from annual maxima observed at the holdout stations are used to compare the four models presented in Section 2, and the GEV-Gaussian process copula model. Higher log-scores correspond to better fit. The max-id, log-Gaussian process basis model has the highest log-score (shown in bold).

Gaussian Density Basis		log-Gaussian Process Basis			GEV-Gaussian Process Copula
L	60	10	15	20	
$\theta = 0$	-5292.5	-5410.7	-5406.4	-5415.2	
$\theta > 0$	-5218.3	-5194.6	-5172.6	-5207.9	-6097.048

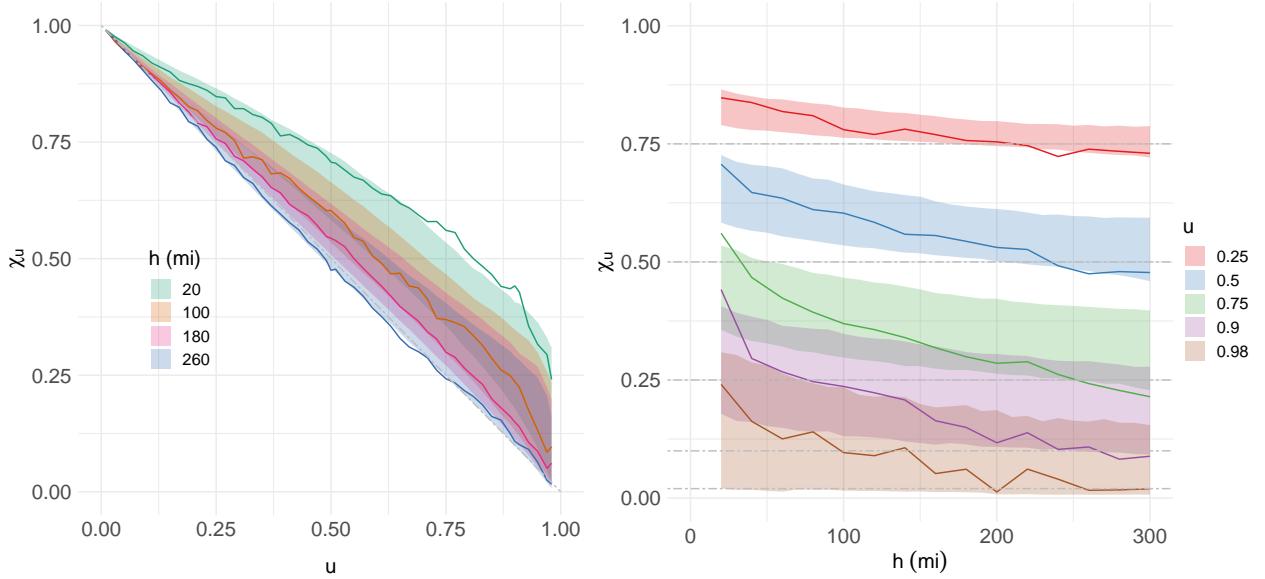


Figure 5: The left panel shows χ_u as a function of u for fixed spatial lags $h = 20, 100, 180, 260$ miles calculated for the 100-holdout stations. Empirical estimates are shown as a solid black line, and max-id, log-Gaussian process basis model 95% credible intervals are shown as gray ribbons. The decay of χ_u towards zero as $u \rightarrow 1$ suggests that daily precipitation are asymptotically independent. To understand the spatial dependence of extreme precipitation at increasingly extreme levels, empirical (solid lines) and model 95% credible intervals (ribbons) of $\chi_u(h)$ for the holdout stations are plotted for several quantiles $u = 0.25, 0.5, 0.75, 0.9, 0.98$ (right panel). Horizontal dash-dot gray lines representing the values of χ_u under an everywhere-independent model are plotted for reference. The plot shows good overall agreement between the model fits and empirical estimates.

371 two inland and two coastal. The 95% credible intervals for α and θ overlap with those fitted to the

372 entire region, suggesting homogeneous spatial dependence of the process over the study region.

373 Further, to examine the model fit, we compare empirical and model-based estimates of χ_u as

374 a function of spatial lag h and threshold u for the holdout stations (Figure 5). The left panel

375 shows χ_u as a function of u for at fixed lags $h = 20, 100, 180, 260$ miles, and the right panel

376 shows the spatial decay of χ_u as a function of spatial lag h for several fixed marginal quantiles
377 $u = 0.25, 0.5, 0.75, 0.9, 0.98$. Empirical estimates are represented by solid lines and 95% credible
378 intervals for each model by shaded ribbons. From the left panel, we can see that the max-id
379 model captures the asymptotic independence behavior of the precipitation data quite well. The
380 max-stable model slightly underestimates the relatively strong dependence at shorter distances, but
381 with comparable coverage to the max-id model at other distances (see Supplementary Material).
382 The slight discrepancy at shorter distances may be due to the phenomenon described by Robins
383 et al. (2000) wherein intervals from posterior summaries like χ_u that are calculated from MCMC
384 draws are too narrow. From the right panel, we deduce that the annual maximum precipitation
385 data exhibit quite strong spatial dependence up to about 200 miles, with weaker spatial dependence
386 at higher quantiles. Moreover, χ_u decays towards its independence level as a function of distance
387 h faster at the 0.9 and 0.98 quantiles than at the 0.25 and 0.5 quantiles.

388 In order to assess the joint spatial prediction skill of our model, we display in Figure 6 quantile-
389 quantile (QQ)-plots for group-wise summaries of the annual maxima taken over the 100 holdout
390 stations (see Davison et al. (2012) for a similar analysis). The results show adequate correspondence
391 between the model-based and empirical quantiles of the group-wise means, whereas the observed
392 group-wise minima (maxima, respectively) appear to be slightly underestimated (overestimated,
393 respectively) by the model. Corresponding QQ-plots when $\theta = 0$ (not shown) give similar patterns
394 with minima (maxima, respectively) lying slightly further above (below, respectively) the 95%
395 credible intervals.

396 Maps of the marginal posterior predictive means and standard deviations of the 0.99 quantile
397 of annual maxima (i.e., 100-year return level) for the max-id, log-Gaussian process basis model are
398 shown in Figure 7. The posterior mean surfaces are consistent with marginal quantile surfaces for
399 the region as reported in NOAA Atlas 14 (Perica et al., 2013). The posterior standard deviation

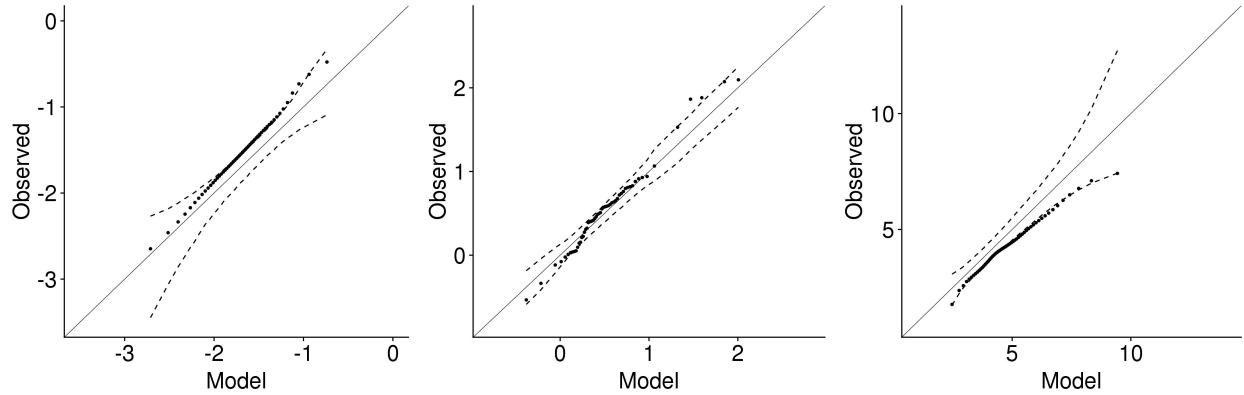


Figure 6: QQ-plots of the observed and predicted group-wise minima (left), mean (center), and maxima (right) taken over the annual maxima from all 100 holdout stations. The dashed lines represent 95% credible intervals. The plots reflect reasonable correspondence between the empirical and modeled multivariate distributions. To account for the fact that the marginal GEV distributions vary across stations, observations are first transformed to unit Gumbel scale using the probability integral transform for the GEV marginal distributions at each station from the fitted model.

400 surface shows the greatest variability in Maine, Long Island, and along the boundary of the ob-
 401 servation region where there are relatively few gauge locations. For illustration, observed maxima
 402 in 2012 and the posterior predictive mean for that year are plotted in Figure 8. Recall that only
 403 the scaling factors $A_{l,t}$ vary in time. The posterior predictive mean appears to capture the general
 404 spatial trend of the maxima observed in 2012 well.

405 3.3 Principal Modes of Spatial Variability Among Precipitation Extremes

406 Spatial principal component analysis (PCA) (Demsar et al., 2013; Jolliffe, 2002) and Empirical
 407 Orthogonal Functions (Hannachi et al., 2007) have proven to be useful methods for exploring the
 408 main large scale features of spatial processes. However, aside from recent work by Morris (2016)
 409 and Cooley and Thibaud (2018), little has been done to this end for spatial extremes. The model
 410 we have proposed allows for an exploratory visualization that is very similar to a spatial PCA
 411 method that Demsar et al. (2013) refers to as Atmospheric Science PCA in their review of Spatial
 412 PCA methods, where the data consist of time replicates of a univariate spatial process observed at

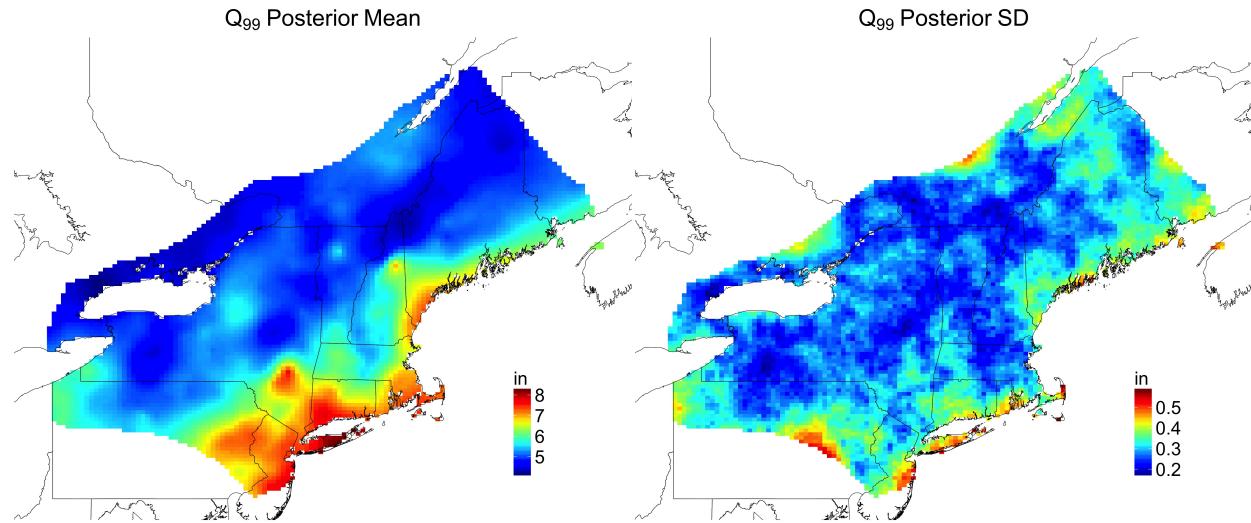


Figure 7: Pointwise posterior predictive mean (left) and standard deviation (right) of the 100-year return level of daily precipitation.

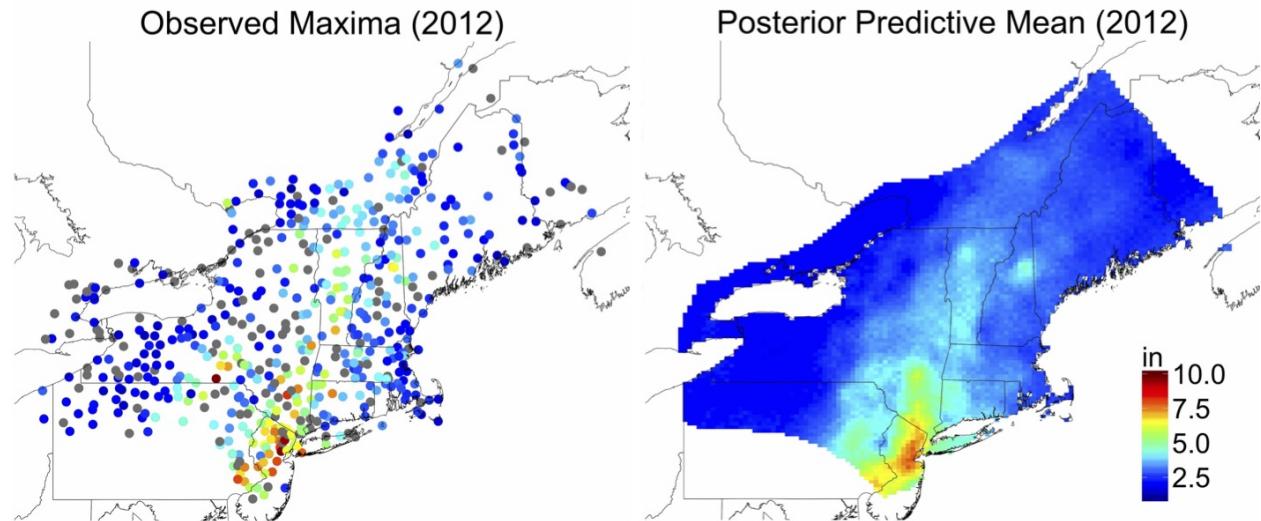


Figure 8: Observed precipitation accumulations (left), a single posterior predictive draw (middle), and posterior predictive means (right) for the year 2012. Missing values are shown in gray.

413 several locations.

414 An attractive feature of the log-Gaussian process basis model is that it provides a low-dimensional

415 representation of the predominant modes of spatial variability among extremes. Analogously to

416 factor analysis, the primary spatial trends among extreme precipitation can be described by a sub-
417 set of the spatial basis functions $K_l(\mathbf{s})$ that contribute the most to the overall process. To achieve
418 this, motivated by PCA factorization, which finds the directions of maximum variance in the data,
419 we rank the spatial basis functions $K_l(\mathbf{s})$ $l = 1, \dots, L$, by the posterior year-to-year variation of
420 their corresponding basis coefficients $A_{l,t}$ (i.e., higher posterior variance corresponds to lower rank).
421 Arguably, both the means and variances of the coefficients $A_{l,t}$ play a role in the relative contribu-
422 tion of the corresponding basis function to the overall process. However, from inspection, the basis
423 coefficients with the highest posterior variance also have the highest posterior means. Examining
424 the variance of the basis coefficients for each $l = 1, \dots, L$, against their ranks give a rough indica-
425 tion of the number of basis functions with sizable contributions to the overall process. Also, while
426 label switching is possible, from inspection of the MCMC samples of the basis functions, this does
427 not appear to be a major concern for this application. If label switching is present, application of
428 the pivotal reordering algorithm proposed by Marin et al. (2005); Marin and Robert (2007) can
429 be used to permute the labels of the basis functions and scaling factors before ranking the basis
430 functions. Posterior means of the first six spatial basis functions are shown in Figure 9. Most of
431 the top ranked factor means in the $L = 15$ basis function case were also identified as top ranked
432 functions in the $L = 10$ and $L = 20$ case (see Supplementary Material).

433 Unlike the pointwise marginal surfaces, which do not provide any information about the joint
434 dependence of extremes, these basis functions capture spatial regions of simultaneous (in this
435 case, merely the same year) extreme precipitation. The proportion of the total variation among
436 the $A_{l,t}$ accounted for by variation in the coefficients of each of the first six basis functions is
437 0.48, 0.33, 0.07, 0.04, 0.03, and 0.02 respectively. This does not imply that the top ranked factor is
438 the dominating kernel 48% of the time. Rather, if the variance of the scaling coefficients for the
439 l th factor is high, then the year-to-year differences in the spatial modes of extremes should be well

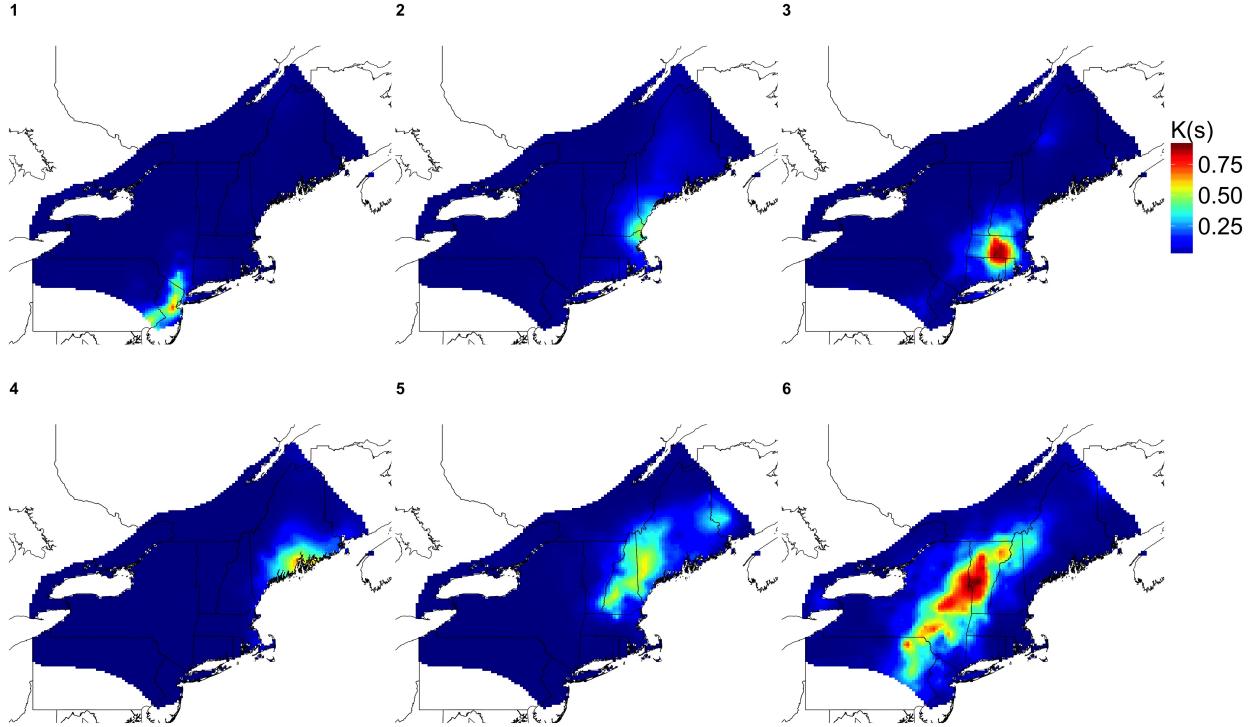


Figure 9: First six spatial basis functions ordered by the variance of their corresponding random basis coefficients from largest to smallest (left to right, top to bottom) for the $L = 15$ basis function model. The year-to-year variation among the coefficients of these first six basis functions accounts for 97% of the total year-to-year variation among all of the basis coefficients. The shapes of the latent factors have reasonable interpretations in terms of geographic coastal and mountain features.

described by the peaks and troughs of the l th factor. For example, if $K_l(\mathbf{s})$ has a peak around some location \mathbf{s}^* then the conditional GEV distribution (given the factors and scaling coefficients) will be stochastically larger at \mathbf{s}^* in years when $A_{l,t}$ is large and smaller when $A_{l,t}$ is small. Therefore, the low ranked factors describe regions where precipitation tends to be extreme together or more moderate together. The latent factors in Figure 9 have reasonable physical interpretations that are reflective of natural geographic features. In particular, they resemble observed patterns in extreme precipitation events occurring along the coast and mountain range borders. Just as with spatial PCA, we hesitate to make strong interpretations of the identified factors. However, the first four factors appear to correspond to coastal regions in New Jersey and New England that tend to be

449 affected by the same localized tropical cyclones and convective storms. The last two modes appear
450 to reflect the orographic effect of mountains in cloud formation, which cause moist air to rise.

451 **4 DISCUSSION**

452 In this paper, we extend the max-stable model for spatial extremes developed by Reich and Shaby
453 (2012) in several ways. First, by using flexible log-Gaussian process basis functions, our model
454 provides a more realistic low-dimensional factor representation that can be used to visualize the
455 main modes of spatial variability among extremes. Second, our approach relaxes the rigid spatial
456 dependence structure imposed by max-stable models, while possessing the positive dependence
457 inherent to distributions for maxima. Inference on the tail dependence class is also possible, as
458 our model can capture asymptotic independence when $\theta > 0$, while having an asymptotically
459 dependent, max-stable model on the boundary of the parameter space (when $\theta = 0$).

460 We apply our model to extreme precipitation over the northeastern United States and Canada.
461 Because it accounts for the spatial dependence among maxima and we are able to efficiently make
462 conditional draws from our fitted model. The precipitation predictions from our model could be
463 incorporated into a hydrological model for the flow path dynamics that incorporates factors like
464 drainage basin topography, land use, and land cover to describe how precipitation falling over a
465 common catchment translates into drainage and potential flooding. The precipitation analysis does
466 not account for the cumulative effect of heavy precipitation over several days, which can overload
467 an urban stormwater drainage system that is already operating at capacity. Further temporal
468 modeling of the marginal distributions and space-time dependence characteristics would facilitate
469 such an analysis; see, e.g., Huser and Davison (2014) for space-time modeling of precipitation
470 extremes using max-stable processes.

471 For future work, adding a point mass at $\theta = 0$ in the prior and proposal distributions would make

472 it possible to account for model uncertainty and simultaneously perform model selection directly
 473 within the MCMC. Finally, while our focus in this paper has been on flexible sub-asymptotic
 474 modeling of maxima, another avenue for research is to investigate relaxing the rigid dependence
 475 structure of limiting generalized Pareto process models for peaks-over-threshold data (see, e.g.,
 476 Castro Camilo and Huser, 2018; Huser and Wadsworth, 2019).

477 A Model Tail Dependence Properties

478 Since the marginal distributions of $Z(\mathbf{s})$ are the same when constructed using the log-Gaussian
 479 process basis, $Z(\mathbf{s}_1)$ and $Z(\mathbf{s}_2)$ are asymptotically independent if $\Pr(Z(\mathbf{s}_1) > z | Z(\mathbf{s}_2) > z) \rightarrow 0$ as
 480 $z \rightarrow \infty$. The marginal distribution of the process at location \mathbf{s} conditional on the basis functions is
 481 $G_{\mathbf{s}}\{z | K_l(\mathbf{s}), l = 1, \dots, L\} = \exp(L\theta^\alpha - \sum_{l=1}^L [\theta + \{K_l(\mathbf{s})/z\}^{1/\alpha}]^\alpha)$, and the joint distribution at two
 482 locations \mathbf{s}_1 and \mathbf{s}_2 is

$$\Pr\{Z(\mathbf{s}_1) \leq z_1, Z(\mathbf{s}_2) \leq z_2 | K_l(\mathbf{s}), l = 1, \dots, L\} = \exp\left(L\theta^\alpha - \sum_{l=1}^L \left[\theta + \left\{\frac{K_l(\mathbf{s}_1)}{z_1}\right\}^{1/\alpha} + \left\{\frac{K_l(\mathbf{s}_2)}{z_2}\right\}^{1/\alpha}\right]^\alpha\right).$$

For brevity, we will drop the indices $l = 1, \dots, L$, and write, e.g., $G_{\mathbf{s}}\{z | K_l(\mathbf{s})\} \equiv G_{\mathbf{s}}\{z | K_l(\mathbf{s}), l = 1, \dots, L\}$. By *L'Hospital's* rule, we obtain

$$\begin{aligned} \chi(\mathbf{s}_1, \mathbf{s}_2) | K_l(\mathbf{s}) &= 1 + \lim_{z \rightarrow \infty} \frac{\frac{d}{dz} G_{\mathbf{s}_1}\{z | K_l(\mathbf{s})\}}{\frac{d}{dz} G_{\mathbf{s}_2}\{z | K_l(\mathbf{s})\}} - \lim_{z \rightarrow \infty} \frac{\frac{d}{dz} \Pr\{Z(\mathbf{s}_1) \leq z, Z(\mathbf{s}_2) \leq z | K_l(\mathbf{s})\}}{\frac{d}{dz} G_{\mathbf{s}_2}\{z | K_l(\mathbf{s})\}} \\ &= 2 - \lim_{z \rightarrow \infty} \frac{\Pr\{Z(\mathbf{s}_1) \leq z, Z(\mathbf{s}_2) \leq z | K_l(\mathbf{s})\}}{G_{\mathbf{s}_2}\{z | K_l(\mathbf{s})\}} \lim_{z \rightarrow \infty} \frac{\sum_{l=1}^L \left[\theta + \left\{\frac{K_l(\mathbf{s}_1)}{z}\right\}^{1/\alpha} + \left\{\frac{K_l(\mathbf{s}_2)}{z}\right\}^{1/\alpha}\right]^{\alpha-1} \left\{K_l(\mathbf{s}_1)^{1/\alpha} + K_l(\mathbf{s}_2)^{1/\alpha}\right\}}{\sum_{l=1}^L \left[\theta + \left\{\frac{K_l(\mathbf{s}_2)}{z}\right\}^{1/\alpha}\right]^{\alpha-1} K_l(\mathbf{s}_2)^{1/\alpha}} \\ &= 0 \end{aligned}$$

483 when $\theta > 0$. Finally, by application of the Dominated Convergence Theorem, since $|\chi_z(\mathbf{s}_1, \mathbf{s}_2) | K_l(\mathbf{s})| <$
 484 1, we obtain $\chi(\mathbf{s}_1, \mathbf{s}_2) = E\{\lim_{z \rightarrow \infty} \chi_z(\mathbf{s}_1, \mathbf{s}_2) | K_l(\mathbf{s})\} = 0$ for all $\mathbf{s}_1, \mathbf{s}_2 \in \mathcal{S}$. For more detail, see the

485 Supplementary Material.

486 In the case of $\theta = 0$ and $\alpha < 1$, Reich and Shaby (2012) showed that $Z(\mathbf{s}) \mid K_l(\mathbf{s})$, is max-stable
487 with extremal coefficient $\theta_2(\mathbf{s}_1, \mathbf{s}_2) \mid K_l(\mathbf{s}) = \sum_{l=1}^L [K_l(\mathbf{s}_1)^{1/\alpha} + K_l(\mathbf{s}_2)^{1/\alpha}]^\alpha$. Using the relation for
488 max-stable processes with unit Fréchet margins that $\chi(\mathbf{s}_1, \mathbf{s}_2) = 2 - \theta(\mathbf{s}_1, \mathbf{s}_2)$, and by the Dominated
489 Convergence Theorem, we have $\chi(\mathbf{s}_1, \mathbf{s}_2) = E\{\lim_{z \rightarrow \infty} \chi_z(\mathbf{s}_1, \mathbf{s}_2) \mid K_l(\mathbf{s})\} = 2 - E\{\theta_2(\mathbf{s}_1, \mathbf{s}_2) \mid K_l(\mathbf{s})\} =$
490 $2 - E\{\sum_{l=1}^L [K_l(\mathbf{s}_1)^{1/\alpha} + K_l(\mathbf{s}_2)^{1/\alpha}]^\alpha\} > 0$ when $\alpha < 1$ for all $\mathbf{s}_1, \mathbf{s}_2 \in \mathcal{S}$. So, when $\theta = 0$ and $\alpha < 1$,
491 $Z(\mathbf{s})$ is asymptotically dependent, both conditionally on $K_l, l = 1, \dots, L$ and unconditionally.

492 **References**

493 Balkema, A. A. and S. I. Resnick (1977). Max-infinite divisibility. *Journal of Applied Probability*
494 *14*(2), 309–319.

495 Brown, B. M. and S. I. Resnick (1977). Extreme values of independent stochastic processes. *Journal*
496 *of Applied Probability* *14*(4), 732–739.

497 Castro Camilo, D. and R. Huser (2018). Local likelihood estimation of complex tail dependence
498 structures, applied to U.S. precipitation extremes. arXiv preprint 1710.00875.

499 Castruccio, S., R. Huser, and M. G. Genton (2016). High-order composite likelihood inference for
500 max-stable distributions and processes. *Journal of Computational and Graphical Statistics* *25*(4),
501 1212–1229.

502 Coles, S., J. Heffernan, and J. Tawn (1999). Dependence measures for extreme value analyses.
503 *Extremes* *2*(4), 339.

504 Cooley, D., D. Nychka, and P. Naveau (2007). Bayesian spatial modeling of extreme precipitation
505 return levels. *Journal of the American Statistical Association* *102*(479), 824–840.

506 Cooley, D. and E. Thibaud (2018). Decompositions of dependence for high-dimensional extremes.
507 *arXiv preprint 1612.07190*.

508 Crowder, M. (1989). A multivariate distribution with weibull connections. *Journal of the Royal
509 Statistical Society: Series B (Methodological)* 51(1), 93–107.

510 Davison, A. C. and R. Huser (2015). Statistics of extremes. *Annual Review of Statistics and Its
511 Application* 2, 203–235.

512 Davison, A. C., R. Huser, and E. Thibaud (2013). Geostatistics of dependent and asymptotically
513 independent extremes. *Mathematical Geosciences* 45(5), 511–529.

514 Davison, A. C., R. Huser, and E. Thibaud (2019). Spatial extremes. In A. E. Gelfand, M. Fuentes,
515 and R. L. Smith (Eds.), *Handbook of Environmental and Ecological Statistics*, pp. 711–744. CRC
516 Press.

517 Davison, A. C., S. A. Padoan, and M. Ribatet (2012). Statistical modeling of spatial extremes.
518 *Statistical Science. A Review Journal of the Institute of Mathematical Statistics* 27(2), 161–186.

519 de Haan, L. and A. Ferreira (2006). *Extreme value theory*. Springer Series in Operations Research
520 and Financial Engineering. Springer, New York. An introduction.

521 Demesar, U., P. Harris, C. Brunsdon, A. S. Fotheringham, and S. McLoone (2013). Principal
522 component analysis on spatial data: an overview. *Annals of the Association of American Geog-
523 raphers* 103(1), 106–128.

524 Devroye, L. (2009). Random variate generation for exponentially and polynomially tilted stable
525 distributions. *ACM Transactions on Modeling and Computer Simulation (TOMACS)* 19(4), 18.

526 Dombry, C., S. Engelke, and M. Oesting (2017). Bayesian inference for multivariate extreme value
527 distributions. *Electronic Journal of Statistics* 11(2), 4813–4844.

528 Dombry, C., F. Éyi-Minko, and M. Ribatet (2013). Conditional simulation of max-stable processes.

529 *Biometrika* 100(1), 111–124.

530 Ferreira, A. and L. de Haan (2014). The generalized Pareto process; with a view towards application

531 and simulation. *Bernoulli. Official Journal of the Bernoulli Society for Mathematical Statistics*

532 and *Probability* 20(4), 1717–1737.

533 Fougères, A.-L., J. P. Nolan, and H. Rootzén (2009). Models for dependent extremes using stable

534 mixtures. *Scandinavian Journal of Statistics. Theory and Applications* 36(1), 42–59.

535 Gneiting, T. and A. E. Raftery (2007). Strictly proper scoring rules, prediction, and estimation.

536 *Journal of the American Statistical Association* 102(477), 359–378.

537 Hannachi, A., I. Jolliffe, and D. Stephenson (2007). Empirical orthogonal functions and related

538 techniques in atmospheric science: A review. *International journal of climatology* 27(9), 1119–

539 1152.

540 Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distribu-

541 tions. *Biometrika* 73(2), 387–396.

542 Huser, R. and A. C. Davison (2014). Space-time modelling of extreme events. *Journal of the Royal*

543 *Statistical Society. Series B. Statistical Methodology* 76(2), 439–461.

544 Huser, R., C. Dombry, M. Ribatet, and M. G. Genton (2019). Full likelihood inference for max-

545 stable data. *Stat* 8, e218.

546 Huser, R., T. Opitz, and E. Thibaud (2017). Bridging asymptotic independence and dependence

547 in spatial extremes using Gaussian scale mixtures. *Spatial Statistics* 21(part A), 166–186.

548 Huser, R., T. Opitz, and E. Thibaud (2018). Max-infinitely divisible models and inference for

549 spatial extremes. arXiv preprint 1801.02946.

550 Huser, R. and J. L. Wadsworth (2019). Modeling spatial processes with unknown extremal depen-
551 dence class. *Journal of the American Statistical Association* 114, 434–444.

552 Jolliffe, I. T. (2002). *Principal component analysis* (Second ed.). Springer Series in Statistics.
553 Springer-Verlag, New York.

554 Kabluchko, Z. and M. Schlather (2010). Ergodic properties of max-infinitely divisible processes.
555 *Stochastic Processes and their Applications* 120(3), 281–295.

556 Kabluchko, Z., M. Schlather, and L. de Haan (2009). Stationary max-stable fields associated to
557 negative definite functions. *The Annals of Probability* 37(5), 2042–2065.

558 Kabluchko, Z. and S. Stoev (2016). Stochastic integral representations and classification of sum-
559 and max-infinitely divisible processes. *Bernoulli. Official Journal of the Bernoulli Society for*
560 *Mathematical Statistics and Probability* 22(1), 107–142.

561 Kwiatkowski, D., P. C. Phillips, P. Schmidt, and Y. Shin (1992). Testing the null hypothesis of
562 stationarity against the alternative of a unit root: How sure are we that economic time series
563 have a unit root? *Journal of econometrics* 54(1-3), 159–178.

564 Marin, J.-M., K. Mengersen, and C. P. Robert (2005). Bayesian modelling and inference on mixtures
565 of distributions. In *Bayesian thinking: modeling and computation*, Volume 25 of *Handbook of*
566 *Statistics*, pp. 459–507. Elsevier/North-Holland, Amsterdam.

567 Marin, J.-M. and C. P. Robert (2007). *Bayesian core: a practical approach to computational*
568 *Bayesian statistics*. Springer Texts in Statistics. Springer, New York.

569 Morris, S. A. (2016). *Spatial Methods for Modeling Extreme and Rare Events*. Thesis (Ph.D.) North
570 Carolina State University.

571 Opitz, T., R. Huser, H. Bakka, and H. Rue (2018). INLA goes extreme: Bayesian tail regression
572 for the estimation of high spatio-temporal quantiles. *Extremes* 21(3), 441–462.

573 Padoan, S. A. (2013). Extreme dependence models based on event magnitude. *Journal of Multi-*
574 *variate Analysis* 122, 1–19.

575 Perica, S., D. Martin, S. Pavlovic, I. Roy, M. S. Laurent, C. Trypaluk, D. Unruh, M. Yekta, and
576 G. Bonnin (2013). Noaa atlas 14 volume 9 version 2, precipitation-frequency atlas of the united
577 states, southeastern states. *NOAA, National Weather Service* 9, 18.

578 Reich, B. J. and B. A. Shaby (2012). A hierarchical max-stable spatial model for extreme precipi-
579 tation. *The Annals of Applied Statistics* 6(4), 1430–1451.

580 Resnick, S. I. (1987). *Extreme values, regular variation, and point processes*, Volume 4 of *Applied*
581 *Probability. A Series of the Applied Probability Trust*. Springer-Verlag, New York.

582 Robins, J. M., A. van der Vaart, and V. Ventura (2000). Asymptotic distribution of p values in
583 composite null models. *J. Amer. Statist. Assoc.* 95(452), 1143–1167, 1171–1172. With comments
584 and a rejoinder by the authors.

585 Sang, H. and A. E. Gelfand (2010). Continuous spatial process models for spatial extreme values.
586 *Journal of Agricultural, Biological, and Environmental Statistics* 15(1), 49–65.

587 Schlather, M. and J. A. Tawn (2003). A dependence measure for multivariate and spatial extreme
588 values: properties and inference. *Biometrika* 90(1), 139–156.

589 Stephenson, A. G. (2009). High-dimensional parametric modelling of multivariate extreme events.
590 *Australian & New Zealand Journal of Statistics* 51(1), 77–88.

591 Suro, T. P., G. D. Firda, and C. O. Szabo (2009). Flood of june 26-29, 2006, mohawk, delaware,
592 and susquehanna river basins, new york. *US Geological Survey Open-File Report* 1063, 354.

593 Tawn, J. A. (1990). Modelling multivariate extreme value distributions. *Biometrika* 77(2), 245–253.

594 Thibaud, E. and T. Opitz (2015). Efficient inference and simulation for elliptical Pareto processes.
595 *Biometrika* 102(4), 855–870.

596 Wadsworth, J. L. and J. A. Tawn (2012). Dependence modelling for spatial extremes.
597 *Biometrika* 99(2), 253–272.