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Abstract— In combinatorial group testing, the primary objec-
tive is to fully identify the set of at most d defective items from
a pool of n items using as few tests as possible. The celebrated
result for the combinatorial group testing problem is that the
number of tests, denoted by t, can be made logarithmic in n when
d = O(poly(log n)). However, state-of-the-art group testing
codes require the items to be tested w = Ω

�
d log n

log d+log log n

�

times and tests to include ρ = Ω
�

n
d logd n

�
items. In many

emerging applications, items can only participate in a limited
number of tests and tests are constrained to include a limited
number of items. In this paper, we study the “sparse” regime
for the group testing problem where we restrict the number of
tests each item can participate in by wmax or the number of
items each test can include by ρmax in both noiseless and noisy
settings. These constraints lead to a largely unexplored regime
where t is a fractional power of n, rather than logarithmic in n
as in the classical setting. Our results characterize the number
of tests t needed in this regime as a function of wmax or ρmax

and show, for example, that t decreases drastically when wmax is
increased beyond a bare minimum. In particular, in the noiseless
case it can be shown that if wmax ≤ d, then we must have t = n,
i.e., testing every item individually is optimal. We show that if
wmax = d+1, the number of tests decreases suddenly from t = n
to t = Θ(d

√
n). The order-optimal construction is obtained

via a modification of the classical Kautz-Singleton construction,
which is known to be suboptimal for the classical group testing
problem. For the more general case, when wmax = ld + 1
for integer l > 1, the modified Kautz-Singleton construction
requires t = Θ

�
dn

1
l+1

�
tests, which we prove to be near order-

optimal. We also show that our constructions have a favorable
encoding and decoding complexity, i.e. they can be decoded in
(poly(d) + O(t))-time and each entry in any codeword can be
computed in poly(log n) memory space. We finally discuss an
application of our results to the construction of energy-limited
random access schemes for Internet of Things networks, which
provided the initial motivation for our work.

Index Terms— Group testing, Internet of Things (IoT),
machine-to-machine communications, error-correcting codes,
sparse codes.

I. INTRODUCTION

GROUP testing is a subfield of combinatorial mathematics
that studies how to identify a set of d (or less) defective
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items from a large population of size n. For an unknown
sequence x ∈ {0, 1}n with at most d ones representing
the defective items, we are allowed to test any subset S ⊆
{1, . . . , n} of the items. The result of a test S could either
be positive, which happens when at least one item in S is
defective (i.e., ∃ i ∈ S such that xi = 1), or negative when all
the items in S are not defective (i.e., ∀i ∈ S we have xi = 0).
The goal is to design as few tests as possible (say t tests) so
that we can recover the unknown sequence x. In this paper,
we focus on the zero-error criterion, i.e., we require the exact
identification of the unknown sequence x without any error.
This problem is referred to as combinatorial group testing in
the literature [1].

The original group testing framework was developed
in 1943 by Dorfman [2]. At the time, group testing was
devised to identify which WWII draftees were infected with
syphilis – without having to test them individually. In Dorf-
man’s application, items represented draftees and tests repre-
sented actual blood tests. Over the years, group testing has
found numerous applications in an array of exciting fields
spanning biology [3], medicine [4], machine learning [5],
data analysis [6], computer science [7], and signal process-
ing [8]. In addition, group testing has been extensively applied
to various disciplines of wireless communication, such as
multiple access control protocols [9]–[12] and neighborhood
discovery [13].

The celebrated result for the combinatorial group testing
problem is that t can be made logarithmic in n. One of the
earliest explicit group testing constructions is due to Kautz
and Singleton and requires t = O(d2 log2

d n) tests [9]. This
construction uses a Reed-Solomon code concatenated with a
non-linear identity code and it matches the best known lower
bound Ω(d2 logd n) [14], [15] in the regime where d = Θ(nα)
for some α ∈ (0, 1). More recently, a different explicit con-
struction achieving t = O(d2 log n) was introduced by Porat
and Rothschild in [16], which outperforms the Kautz-Singleton
construction in the regime where d = O(poly(log n)).

These results imply that group testing can provide drastic
gains when d � n, say d = O(poly(log n)), compared to
the naive approach of testing every item individually, which
results in t = n total number of tests. However, it can be
shown that these constructions require each item to participate
in w = Ω

�
d log n

log d+log log n

�
tests and each test to include

ρ = Ω
�

n
d logd n

�
items. In many applications, the total number

of tests that can be performed on each item or the number of
items each test can include can be limited due to different
reasons. For example, the amount of blood or genetic material
available from an individual can limit the number of tests
that this individual can participate in. Similarly, equipment
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limitations and testing procedures can impose a maximum on
the number of samples that can be simultaneously tested. For
example, combining too many blood samples in one test often
increases the misdetection probability of the targeted disease.
Our interest in the group testing problem was mainly motivated
by its applications in wireless communication, in particular
the use of group testing codes for constructing random access
schemes for the Internet of Things (IoT) networks, as we dis-
cuss in more detail in the last section of the paper. Here items
represent sensor nodes and tests represent binary transmissions
over a common channel, and the energy constraint at the
physical layer can be translated to a constraint on the number
of tests applied to each item in the group testing framework.

Motivated by these observations, in this paper we study the
combinatorial group testing problem when the number of tests
each item can participate in is restricted by wmax or when the
number of items each test can include is restricted by ρmax.
In the noiseless case, one can show that if wmax ≤ d or if
ρmax ≤ d + 1, then we need t = n tests (c.f. Proposition 2
and Theorem 8), i.e., testing every item individually is optimal.
A natural question then is: how does t decrease as we increase
wmax and ρmax beyond these bare minimums (up to their
values in state-of-the-art constructions)? In particular, can
we slightly increase wmax and ρmax beyond d and d + 1,
respectively, and significantly reduce t, the number of tests
needed? The answer turns out to be positive when we relax
the constraint on wmax, whereas the effect on t is less dramatic
when the constraint on ρmax is relaxed.

We show that when wmax = d + 1, the number of tests
decreases drastically from t = n to t = (d + 1)

√
n. More

generally, if wmax = ld+1 for any positive integer l such that
ld + 1 ≤ n

1
l+1 , we can achieve

t = (ld + 1)n
1

l+1 .

This implies that the fractional power of n can be reduced
drastically when wmax is increased as a multiple of d. Note
that this result is most significant when d = O(poly(log n)).
We achieve this performance by introducing a simple modifi-
cation of the Kautz-Singleton construction, which shows that
the field size in this construction can be used to trade between
t and wmax. We then prove a nearly matching lower bound,
which shows that

t = Ω
�
d

2
l+1 n

1
l+1

�
.

In particular when wmax = d + 1, this shows that the Kautz-
Singleton construction is order-optimal (to an almost matching
constant). This is somewhat surprising given that the Kautz-
Singleton construction is strictly suboptimal in the classical
group testing setting when d = O(poly(log n)).

As opposed to the case with a constraint on wmax, the reduc-
tion trend in t is much less dramatic with increasing ρmax.
We prove that for any ρmax,

t ≥ (d + 1)n
ρmax

,

in the noiseless case. In other words, ρmax needs to be a
fractional power of n, in order for t to scale sublinearly in n.
When ρmax = Θ(nα), we prove that there exists a construction

with t = Θ(dn1−α). We also show that when α = l
l+1 for any

fixed integer l ≥ 1, the Kautz-Singleton construction can be
used to achieve the order-optimal t = (ld + 1)n

1
l+1 tests. For

the special case l = 1, it is interesting to note that this con-
struction matches the lower bound with matching constants,
therefore, the Kautz-Singleton construction is exactly optimal.
We further extend these results to the noisy case when a certain
number of tests can have faulty outcomes. We also prove that
our constructions can be decoded in (poly(d)+O(t))-time and
each entry in any codeword can be computed in poly(log n)
memory space. This shows that these constructions not only
(nearly) achieve the fundamental lower bounds, but also have
a favorable encoding and decoding complexity.

A. Comparison With Prior Work

To the best of our knowledge, our problem formulation
has not been well explored in the combinatorial group testing
literature. We discuss two particular prior works that are most
relevant to this paper. The first one is a recent paper by
Gandikota et al. [17], which focuses on the sparse group
testing problem when the defective set can be recovered
with high probability. In this framework, the defective set is
chosen uniformly at random among all items and the exact
identification of the defective set may fail with some arbitrarily
small but positive � > 0 probability of error, where the
error probability is taken over the randomness of the set of
defectives. We refer readers interested in group testing designs
with sparsity constraints under the small error criterion to [17].
We point out that we focus on the zero-error criterion and our
approach is purely combinatorial, therefore, complementing
the small error setting considered by Gandikota et al. [17].

An earlier work by Macula [18] presents an explicit con-
struction with constant column and row weights under a
zero-error reconstruction criterion. However, the construction
in [18] is highly suboptimal as we discuss next.

When the weights of the columns are constrained with
wmax = ld + 1 for some integer l ≥ 1, we provide
an explicit construction achieving O

�
dn

1
l+1

�
scaling in the

number of tests, whereas the explicit construction in [18]

provides O

�
dn

1
(ld+1)1/d

�
scaling in the number of tests,

which is significantly larger. When the weights of the rows
are constrained with ρmax = n

l
l+1 for some integer l ≥ 1,

we provide an explicit construction that achieves O
�
dn

1
l+1

�
scaling in the number of tests. On the other hand, the explicit
construction in [18] provides O

�
n

1
l+1 (l + 1)d

�
scaling in the

number of tests, which has an exponential term in d.

B. Paper Organization

The remainder of this paper is organized as follows.
In Section II, we present the needed prerequisite material and
describe two common combinatorial group testing construc-
tions. The main results of our paper are formally presented and
proved in Section III. In Section IV, we discuss the encoding
and decoding complexities of the explicit constructions intro-
duced in Section III. In Section V, we discuss an application
of our results to wireless random access, which provided the

Authorized licensed use limited to: Stanford University. Downloaded on March 17,2021 at 04:06:06 UTC from IEEE Xplore.  Restrictions apply. 



INAN et al.: SPARSE COMBINATORIAL GROUP TESTING 2731

original motivation for our work. Finally, we conclude our
paper in Section VI by noting a few interesting and nontrivial
extensions.

II. PRELIMINARIES

For a t×n binary matrix M , we use Mj to refer to its j’th
column and Mij to refer to its (i, j)’th entry. For an integer
m ≥ 1, we denote the set {1, . . . , m} by [m]. The support
of a column Mj is denoted as supp(Mj) := {i : Mij = 1}.
We say that a binary column Mi covers a binary column Mj

if Mi ∨ Mj = Mi, or equivalently supp(Mj) ⊆ supp(Mi).
The Hamming weight of a row or a column of M will be
simply referred to as the weight of the row or column and wj

represents the weight of j’th column.

A. Non-Adaptive Combinatorial Group Testing

Our paper focuses on non-adaptive combinatorial group
testing (CGT). Non-adaptive refers to the fact that the tests
are designed and fixed a priori, in constrast to the adaptive
case, where the tests are designed sequentially, meaning that
the jth test is a function of the outcomes of the j−1 previous
tests. Combinatorial refers to the fact that we want our group
testing schemes to recover the set of defective items with zero-
error, in contrast to the probabilistic approach, which allows
for a small probability of error. A non-adaptive CGT strategy
can be represented by a t×n binary matrix M , where Mij = 1
indicates that item j participates in test i. We will occasionally
refer to M as a group testing code (or codebook) and its ith

column Mi as the ith codeword. A necessary and sufficient
condition for the design of a non-adaptive CGT strategy M is
that of separability. A matrix M is d-separable if for any d-
sparse vectors x1 and x2, x1 �= x2, we have that Mx1 �= Mx2.
Unfortunately, the d-separability condition does not lead to
tractable, explicit, and efficiently decodable constructions of
M for an arbitrary value of n. To circumvent this issue,
a stronger condition on M is needed. This condition is known
as d-disjunctiveness [1]. We first revisit the definition of d-
disjunctiveness [1].

Definition 1. A t × n binary matrix M is called d-disjunct
if any Boolean sum of up to d columns of M does not cover
any other column not included in the sum.

The d-disjunctiveness property ensures that we can recover
up to d columns from their Boolean sum. This can be naively
done using the cover decoder. The cover decoder simply scans
through the columns of M , and checks whether or not the
test results vector Y covers a particular column. If column
i is covered by Y , then item i is declared defective. When
M is d-disjunct, the cover decoder succeeds at identifying
all the defective items, while achieving a zero false positive
rate. Interestingly, one can also show that (d + 1)-separability
implies d-disjunctiveness [1]. Therefore, even though disjunc-
tiveness is stronger than separability, the two conditions are
essentially equivalent.

We define t(d, n) to be the smallest t needed for a binary
t×n matrix M to be d-disjunct. Notice that naturally, t(d, n) ≤
n because we can always use the identity matrix M = In to

identify any 1 ≤ d ≤ n defectives among n items. A classical
result in the non-adaptive combinatorial group testing literature
shows that t(d, n) = min

�
n, Ω(d2 logd n)

�
[14], [15]. Several

explicit and randomized constructions of d-disjunct matrices
have been developed over the past fifty years and the most
efficient construction achieved t = O(d2 log n) (when d =
O (poly(log n))) [1], [16], [19].

B. Relevant Lower Bounds

We now summarize two lower bounds introduced in the
literature on the minimum number of tests. These bounds
imply that individual testing is necessary whenever d =
ω(n) or wmax ≤ d, where wmax is the maximum number
of tests an item participates in (or equivalently, the maximum
column weight).

Proposition 1. For all n and d, the following bound on t(d, n)
holds

t(d, n) ≥ min
��

d + 2
2

�
, n

	
. (1)

Proposition 1 suggests that designing a d-disjunct matrix
with t < n is only possible when d = O(

√
n). Slightly

overloading the notation, in the following proposition we
denote t(d, n, wmax) as the smallest t needed for a binary
t×n matrix M to be d-disjunct with maximum column weight
wmax.

Proposition 2. If wmax ≤ d, then t(d, n, wmax) = n.

The above proposition shows that one cannot do better than
individual testing when the maximum number of tests an item
can participate in is less than or equal to d.

The proofs of these propositions are due to D’yachkov
and Rykov, and can be found in [14, Lemma 1, Remark 2],
[1, Lemma 7.2.7, Theorem 7.2.9].

C. Disjunct Matrices via Error Correcting Codes

A q-ary error-correcting code is a code whose codewords
consist of q basic symbols [20]. Binary codes are a special case
of q-ary codes with q = 2. Consider a q-ary code with n = qk

codewords of length t = k+r. Denoting the minimum distance
between the codewords as dmin, one can show that dmin ≤
r + 1 from the following observation. Fix any k positions in
the codewords. If any two codewords have the same symbols
in these positions, then it must be the case that dmin ≤ r.
Otherwise, we must observe all possible qk sequences in the k
fixed positions. In this case, some of the codewords will differ
by only one position on the fixed k positions. Hence, dmin ≤
r + 1. We state this formally in the following theorem [21].

Theorem 1. A q-ary code with n = qk codewords of length
t = k + r must satisfy dmin ≤ r + 1.

Codes with dmin = r + 1 and n = qk are called max-
imum distance separable (MDS) codes [21]. Reed-Solomon
codes [22] are a known class of MDS codes with the constraint
that q ≥ t. When concatenated with a nonlinear code, Reed-
Solomon codes lead to d-disjunct group testing codes. In what
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follows, we will use the subscript q in the parameters of the
Reed-Solomon codes to distinguish them from the parameters
of the group testing codes that will be constructed shortly.
To recap, Reed-Solomon codes achieve

dmin,q = rq + 1, (2)

tq = kq + rq, (3)

nq = qkq , (4)

provided that kq ≤ tq ≤ q and q is a prime power.
We can convert a Reed-Solomon code into a group testing

code using the following method introduced by Kautz and
Singleton in [9]. We replace each codeword symbol i ∈
{1, 2, . . . , q} by ei, a length-q binary sequence with a single
nonzero entry in the ith position. Thus, a Reed-Solomon
code is transformed into a binary code of length t = qtq
by concatenating it with the “identity code”. The minimum
distance of the resultant binary code is double that of the
Reed-Solomon code; i.e., dmin = 2 dmin,q = 2(rq + 1). This
is because any two distinct q-ary symbols will differ in two
positions in their corresponding length-q binary sequences.
Note that the number of codewords remains the same n =
nq = qkq . Since each symbol has a single nonzero entry
in its binary expansion, the weight of the codewords are the
same with w = tq . Furthermore, since Reed-Solomon codes
satisfy MDS property, any chosen kq × qkq submatrix must
include all qkq possible assignments of q-ary symbols in the
columns. It follows that any row of a Reed-Solomon code must
include every q-ary symbol an equal number of times. More
precisely, each q-ary symbol must present qkq−1 times in all
rows. Therefore, the corresponding binary code has a constant
row weight of ρ = n/q. This construction will be referred to
as the Kautz-Singleton construction.

Consider a binary code M with minimum codeword weight
of wmin. We define λmax to be the maximum number of
overlapping ones between any two codewords in M . In the
coding theory literature, λmax is commonly referred to as the
maximum overlap of M [9]. A central result in group testing
demonstrates that M is d-disjunct as long as λmaxd + 1 ≤
wmin. This can be seen from the following simple argument.
Take any d+1 codewords and fix one codeword among them.
The number of overlapping ones between the fixed codeword
and the rest of the codewords is at most dλmax. Since the
minimum weight satisfies wmin ≥ dλmax + 1, this codeword
cannot be covered by the rest of the codewords. Thus, M must
be at least d-disjunct. We state this formally in the following
lemma.

Lemma 1. A binary code M with codewords of minimum
weight wmin and maximum overlap λmax is



wmin−1

λmax

�
-

disjunct.

Observe that in the Kautz-Singleton construction, we have

λmax = w − dmin/2 = tq − rq − 1 = kq − 1.

Therefore, the Kautz-Singleton construction provides us with
a group testing code that is



tq−1
kq−1

�
-disjunct. In the following

lemma, we summarize the properties of the Kautz-Singleton
construction that has been discussed in this section.

Lemma 2. Let q be a prime power and tq and kq be
positive integers such that kq ≤ tq ≤ q. The Kautz-Singleton
construction provides a binary t× n matrix that is d-disjunct
with t = qtq , n = qkq , and d =



tq−1
kq−1

�
. Furthermore, all

columns have the same weight w = tq and all rows have the
same weight ρ = n/q.

In classical combinatorial group testing where there is
no weight constraint, two famous constructions that provide
the best achievability results are introduced by Kautz and
Singleton in [9] and by Porat and Rothscheld in [16]. We next
summarize the results of these constructions.

Theorem 2. The Kautz-Singleton construction provides a t×n
d-disjunct matrix where t = O(d2 log2

d n) with constant

column weight w = Ω
�

d log n
log d+log log n

�
and constant row

weight ρ = Ω
�

n
d logd n

�
.

Proof. To obtain a d-disjunct code using the Kautz-Singleton
construction, let us set tq = q, and choose q and kq such that

d =



q−1
kq−1

�
. Note that n = qkq and q = Θ(dkq). Hence,

q = Θ(d logq n) or q log q = Θ(d log n). Since q ≥ d, we get
that q = O(d logd n). Note that t = qtq = q2, therefore t =
O(d2 log2

d n). By Lemma 2, the corresponding binary code
has constant column weights w = tq = q and constant row
weights ρ = n/q. Note that q log q = Θ(d log n) is related
to the famous Lambert W function [23] and using W (x) ≥
log x − log log x, we get q = Ω

�
d log n

log(d log n)

�
or equivalently

w = Ω
�

d log n
log d+log log n

�
. Since q = O(d logd n), it follows that

ρ = Ω
�

n
d logd n

�
.

A different line of work introduced by Porat and Roth-
scheld in [16] constructs t × n d-disjunct matrices with t =
O(d2 log n). Their approach is based on q-ary codes that
meet the Gilbert-Varshamov bound where the alphabet size
is q = Θ(d). As in the Kautz-Singleton construction, their
inner code is the identity code. The resulting binary code
has the property that all the columns have the same weight
of w = Θ(d log n). Furthermore, the maximum row weight
satisfies ρmax = Ω(n/d).

Theorem 3. The explicit construction by Porat and Roth-
scheld in [16] achieves a t × n d-disjunct matrix where
t = O(d2 log n) with constant column weight w = Θ(d log n)
and maximum row weight ρmax = Ω(n/d).

Compared to the Kautz-Singleton construction, one can
observe that the Porat and Rothscheld’s construction performs
better in terms of scaling in the number of tests in the regime
where d = O(poly(log n)). However, the Kautz-Singleton
construction performs better in terms of scaling in the number
of tests when d = Θ(nα) for some constant α ∈ (0, 1/2).
In this regime, the Kautz-Singleton construction meets the
fundamental lower bound and is therefore order-optimal.

D. Noisy Test Outcomes

We have so far discussed the setting in which the test
outcomes are always correct, i.e., there is no noise in the
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measurement process. However, in many practical applications
such as drug discovery and DNA library screening, testing
errors are present [1], [24]. Naturally, the aforementioned
definitions and techniques can be extended so that one can
identify the defective items even with certain number of faulty
test outcomes. The following definition extends the notion of
disjunctiveness in the presence of error in the measurement
process [1].

Definition 2. A t×n binary matrix M is called (d, ν)-disjunct
(ν-error detecting d-disjunct) if |supp(Mi)\∪j∈S supp(Mj)| >
ν for every set S of columns with |S| ≤ d and every i ∈ [n]\S.

We note that (d, 0)-disjunct is simply d-disjunct and a
(d, ν)-disjunct matrix can detect up to ν errors and can correct
up to 
ν/2� errors in the test measurements. The latter can be
done by simply modifying the cover decoder to incorporate
the noise as follows.

Proposition 3. Let the cover decoder scan through the
columns of M and eliminate all items belonging to at least
�ν/2�+ 1 negative tests and return the remaining items. The
cover decoder correctly identifies all defective items without
any error if M is (d, ν)-disjunct in the case when the test
outcomes have up to 
ν/2� errors.

We similarly define t(d, ν, n) to be the smallest t needed
for a binary t × n matrix M to be (d, ν)-disjunct.

III. MAIN RESULTS

In this section, we formally present our results for both the
sparse codeword and the sparse test settings. We begin with
the sparse codeword setting.

A. Sparse Codeword

In the sparse codeword setting, we focus on a model where
each item can participate in a limited number of tests. This is
equivalent to restricting the codewords (columns of M ) to have
a limited number of “1”s. For ease of presentation, we begin
with the noiseless case and then extend our results to the more
general noisy case in what follows.

We recall from Proposition 2 that if the codewords have a
Hamming weight that is bounded by d, one cannot do better
than the identity matrix; i.e., t = n. Hence, we are interested
in the regime where wmax > d.

Given that it is impossible to achieve t < n when wmax ≤ d,
it is natural to ask: what happens when wmax = d + 1? We
dedicate the following section answering this question.

1) The Case wmax = d + 1: We recall from Lemma 2 that
the Kautz-Singleton construction provides a constant column
weight (w = tq) group testing code that is



tq−1
kq−1

�
-disjunct.

By choosing kq = 2 and tq = d+1 we get a d-disjunct matrix
with t = (d+1)

√
n tests and w = d+1 column weights when

q ≥ tq is satisfied. Therefore the natural question is how good
this construction is in terms of the required number of tests
for a d-disjunct matrix with wmax ≤ d + 1. The following
theorem presents our first result answering this question.

Theorem 4. For all integers d, n ≥ 2 such that d + 1 ≤ √
n

and
√

n is a prime power, the Kautz-Singleton construction

provides a t×n matrix that is d-disjunct with constant column
weight w = d + 1 and

t = (d + 1)
√

n.

On the other hand, for all integers d, n ≥ 2, a t×n matrix
that is d-disjunct with maximum column weight wmax ≤ d+1
must satisfy

t ≥ min
�


nd(d + 1), n
�

.

Proof. We begin with the lower bound. Let M be a t × n
d-disjunct matrix with wmax ≤ d + 1. We will separate the
columns of M into two groups N1,N2 ⊆ [n] such that N1 ∪
N2 = [n] and N1 ∩ N2 = ∅. We define a row i ∈ [t] to be
private for a column j, if j is the only column having row
i in its support. If a column Mj has weight at most d, then
it must have at least one private row, otherwise we can find
at most d columns such that their union will span Mj , which
contradicts with d-disjunctiveness. Now consider all columns
that have weight equal to d + 1. It is possible that some of
them also have private rows. Hence, we construct the first set
N1 consisting of two types of columns. The first one is the
columns whose weight is less than or equal to d. The second
one is the columns that have weight equal to d + 1 and they
have at least one private row. The second set N2 consists of
the rest of the columns; i.e., the ones that have weight equal
to d + 1 and do not have any private row. Defining wj to be
weight of the column j for 1 ≤ j ≤ n, more formally we
define

N1 := {j ∈ [n] | wj ≤ d or

wj = d + 1 and Mj has at least one private row},
N2 := {j ∈ [n] | wj = d + 1 and Mj has no private row} .

Note that by construction, N1 ∪ N2 = [n] and N1 ∩ N2 = ∅,
hence n = |N1| + |N2|. In the following, we will bound the
size of both sets N1 and N2.

We note that each column in the set N1 has at least one
private row and by definition of the private row it cannot be
shared by two distinct columns. Since there could be at most
t private rows, we have |N1| ≤ t.

We next consider the set N2. We generalize the definition of
the private row to the private set as follows. A private set for a
column is defined as a subset of its support such that no other
column has this subset in its support. In other words, no other
column has all ones in these positions. We claim that for any
column in the set N2, all the subsets of its support with size 2
(i.e., all pairs of positions in its support) are private. We prove
this by contradiction. Assume there exists a column in the set
N2 such that it has a subset of size 2 in its support that is not
private. This means that there exists another column that can
cover the two positions in this subset. Note that any column in
the set N2 has weight d+1 and has no private row, therefore,
there are d − 1 positions in the support except this pair and
we can find at most d − 1 columns that can cover all these
positions. It follows that we can find at most d columns that
can cover all d + 1 positions in the support of this column,
which contradicts with the d-disjunctiveness. Note that there
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are
�
d+1
2

�
number of pairs in the support of any column in

N2 and by definition of private set it cannot be shared by
two distinct columns. We further note that each column in the
set N1 will have a private row and it must be the case that
the columns in the set N2 must have a zero in these rows,
therefore, there could be at most

�
t−|N1|

2

�
number of private

pairs. Hence, we have

|N2|
�

d + 1
2

�
≤
�

t − |N1|
2

�
.

Therefore,

|N2|d(d + 1) ≤ (t − |N1|)(t − |N1| − 1) ≤ (t − |N1|)2.
Defining n1 � |N1|, this gives us

t ≥ n1 +



(n − n1)d(d + 1). (5)

Note that 0 ≤ n1 ≤ t ≤ n. One can take the second derivative
of the right-hand side of (5) and observe that it is negative for
0 ≤ n1 ≤ t ≤ n, which means it is a concave function of n1

and it will be minimum at either n1 = 0 or n1 = t. Therefore,

t ≥ min
�


nd(d + 1), t +



(n − t)d(d + 1)
�

.

Noting that t ≥ t +



(n − t)d(d + 1) only when t = n, one
can observe that

t ≥ min
�


nd(d + 1), n
�

.

For the achievability, we use the Kautz-Singleton construc-
tion in Lemma 2. We choose w = tq = d + 1 and kq =
2, therefore, we have a d-disjunct matrix. Since n = qkq ,
we obtain q =

√
n and therefore t = (d + 1)

√
n. In order to

satisfy the requirement q ≥ tq where q is any prime power,
we must ensure that d+1 ≤ √

n and q =
√

n must be a prime
power. This completes the proof for the achievability.

A few comments are in order. First, Theorem 4 shows that
by increasing wmax from d to d + 1, we suddenly get t =
Θ(d

√
n) instead of t = n. Second, the achievability result in

Theorem 4 is obtained by changing the field size from q =
O(d logd n) to q =

√
n in the Kautz-Singleton construction.

The Kautz-Singleton construction is strictly suboptimal in the
classical case when d = O(poly(log n)). It is interesting that a
simple modification of this well known construction makes it
optimal in this case (even up to an almost matching constant).

We next investigate the more general case where the code-
word weights are bounded by wmax ≤ ld+1 for some integer
l > 1.

2) The General Case w = ld+1: We note that by choosing
kq = l + 1 and tq = ld + 1 in Lemma 2, we get a d-disjunct
matrix with t = (ld + 1)n

1
l+1 tests and w = ld + 1 column

weights using the Kautz-Singleton construction when q ≥ tq
is satisfied. In this case we can show that this construction is
nearly optimal.

Theorem 5. For all integers d, n, l ≥ 2 such that ld +
1 ≤ n

1
l+1 and n

1
l+1 is a prime power, the Kautz-Singleton

construction provides a t × n matrix that is d-disjunct with
constant column weights w = ld + 1 and

t = (ld + 1)n
1

l+1 .

On the other hand, for all integers d, n, l ≥ 2, a t×n matrix
that is d-disjunct with maximum column weight wmax ≤ ld+1
must satisfy

t ≥
�

(l − 1)l+1(d − 1)l+1

2 el(l − 1)(d − 1)l−1 + 1

� 1
l+1

n
1

l+1 .

Proof. We begin with the lower bound. Let M be a t × n
d-disjunct matrix with wmax ≤ ld + 1. We similarly separate
the columns of M into l + 1 groups and construct the sets
Ni for i = 1, . . . , l + 1 such that N1 ∪ . . . ∪ Nl+1 = [n] and
Ni ∩ Nj = ∅ for any i, j ∈ [l + 1] with i �= j. We construct
the sets N1, . . . ,Nl+1 as follows. We keep the first set N1 as
the columns whose weight is less than or equal to d, as well
as the ones that have weight equal to d + 1 such that they
have at least one private row. For i = 2, . . . , l, the set Ni

consists of two types of columns. The first one is the columns
that have weight between (i − 2)d + 2 and (i − 1)d + 1 and
they have no private set of size i − 1. The second one is the
columns that have weight between (i−1)d+2 and id+1 and
they have at least one private set of size i. Finally, the last
set Nl+1 consists of the columns that have weight between
(l− 1)d + 2 and ld + 1 and they have no private set of size l.
More formally,

N1 := {j ∈ [n] | wj ≤ d or

wj = d + 1 and Mj has at least one private row},
for i = 2, . . . , l,

Ni := {j ∈ [n] | (i − 2)d + 2 ≤ wj ≤ (i − 1)d + 1 and Mj

has no private set of size i − 1 or

(i − 1)d + 2 ≤ wj ≤ id + 1 and Mj has at least one

private set of size i},
Nl+1 := {j ∈ [n] |(l − 1)d + 2 ≤ wj ≤ ld + 1 and Mj has

no private set of size l}.
Note that by construction, N1 ∪ . . . ∪ Nl+1 = [n] and Ni ∩
Nj = ∅ for any i, j ∈ [l + 1] such that i �= j, hence n =
|N1|+ . . . + |Nl+1|. In the following, we will bound the size
of these sets.

Since there could be at most t private rows, we have
|N1| ≤ t. Consider the sets Ni for i = 2, . . . , l. For any
column j ∈ Ni, if we have (i − 1)d + 2 ≤ wj ≤ id + 1,
then by construction Mj has at least one private set of size
i. For the case (i − 2)d + 2 ≤ wj ≤ (i − 1)d + 1, we claim
that all the subsets of its support with size i must be private
for the column Mj . We similarly show this by contradiction.
Assume that Mj has a subset of size i in its support that is
not private. Then we can find a column that can cover these
positions. By the construction of set Ni, the column Mj has
no private set of size i − 1, therefore, one can find at most
((i−1)d+1−i)/(i−1) = d−1 columns that will cover the rest
of the positions in the support of Mj . Hence, we have at most
d columns covering the column Mj , which contradicts the d-
disjunctiveness. Therefore, we obtain that all the columns in
the set Ni must have at least one private set of size i. Since
the private sets cannot be shared among the columns and we
have at most

�
t
i

�
private sets of size i, it yields |Ni| ≤

�
t
i

�
.
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For the last set Nl+1, similar arguments apply and for each
column, it should be the case that all the subsets of its support
with size l + 1 must be private. Since wj ≥ (l − 1)d + 2 for
j ∈ Nl+1, we have |Nl+1|

�
(l−1)d+2

l+1

� ≤ � t
l+1

�
. Therefore,

n = |N1| + . . . + |Nl+1|

≤
l�

i=1

�
t

i

�
+

�
t

l+1

�
�
(l−1)d+2

l+1

�
(i)

≤
�

et

l

�l

+
t . . . (t − l)

((l − 1)d + 2) . . . ((l − 1)(d − 1) + 1)
(ii)

≤ eltl

ll
+

tl+1

((l − 1)(d − 1))l+1

(iii)

≤ eltl

(l − 1)l

t

(d − 1)2/2
+

tl+1

((l − 1)(d − 1))l+1

= tl+1

�
2 el

(l − 1)l(d − 1)2
+

1
(l − 1)l+1(d − 1)l+1

�

= tl+1

�
2 el(l − 1)(d − 1)l−1 + 1

(l − 1)l+1(d − 1)l+1

�
,

where (i) is due to the inequality
l�

i=0

�
t
i

� ≤ �
et
l

�l
for t ≥

l ≥ 1, (ii) is bounding all the terms in the numerator by t
and denominator by (l − 1)(d − 1) and in (iii) we use (1)
and

�
d+2
2

� ≥ (d−1)2

2 . This completes the proof for the lower
bound.

For the achievability, we use the Kautz-Singleton construc-
tion. We choose w = tq = ld + 1 and kq = l + 1 in
Lemma 2 to get a d-disjunct matrix. Since n = qkq , we obtain
q = n

1
l+1 and therefore t = (ld + 1)n

1
l+1 . In order to satisfy

the requirement q ≥ tq where q is any prime power, we must
ensure that ld + 1 ≤ n

1
l+1 and q = n

1
l+1 must be a prime

power. This completes the proof for the achievability.

Note that as we increase the weights as a multiple of d
(i.e., wmax = ld + 1), the minimum number of required tests
decreases exponentially in l. As we see from Theorem 5, for a
fixed l the lower bound we get is Θ

�
d

2
l+1 n

1
l+1

�
whereas the

upper bound is Θ(dn
1

l+1 ). While we have a matching lower
and upper bound in terms of the scaling with respect to n, there
is an increasing gap of d

l−1
l+1 between them, which approaches

d for large l. In the extreme case where we can choose l

such that ld + 1 = n
1

l+1 , we get l = O
�

log n
log log n+log d

�
and t = O(d2 log2

d n), which captures the original Kautz-
Singleton construction.

Before presenting our results in the noisy setting, we discuss
the assumptions we have in our above results. Obviously the
assumption that n

1
l+1 is a prime power may not hold for all

positive integers n. However, one can always pad the items
with “dummy" non-defectives until we get a prime power,
which can only change the constants in our results and does
not affect the scaling. On the other hand, the assumption of
ld+1 ≤ n

1
l+1 may seem somewhat more restrictive. We point

out that the results for the classical group testing as well as
our results are most significant when d = O(poly(log n)).
In this regime, the assumption ld+1 ≤ n

1
l+1 is asymptotically

valid for all integers l and all of our bounds match within
logarithmic factors. For the regime where d = Θ(nα) for
some constant α ∈ (0, 1/2), there are cases where d > n

1
l+1 ,

violating our assumption. However, note from Theorem 2 that,
the original Kautz-Singleton construction already achieves the
order-optimal number of tests with w = O(d) column weight
in this case. We know from Proposition 2 that wmax ≤ d
requires t = n, therefore, in this case we can trivially achieve
the order-optimal number of test with minimal column weight.

We continue our discussion with the noisy case.
3) The Noisy Setting: As we have seen that it is impossible

to achieve t < n when wmax ≤ d in the noiseless case,
a similar result can be observed in the noisy case as well. Our
next result extends this to the noisy setting with an arbitrary
noise parameter ν.

Proposition 4. If wmax ≤ d + ν, then t(d, ν, n) = (ν + 1)n.

The proof of the above proposition can be found in Appen-
dix A. Proposition 4 similarly shows that one cannot do better
than individual testing corresponding to the more general noisy
setting if the codeword weights are bounded by d + ν.

We note that it is sufficient to have wmin ≥ dλmax + ν + 1
to obtain a (d, ν)-disjunct matrix. We can employ the Kautz-
Singleton construction and fix kq = 2 and tq = d + ν + 1
to get a (d, ν)-disjunct matrix with t = (d + ν + 1)

√
n tests

and w = d + ν + 1 column weights when q ≥ tq is satisfied.
The following theorem shows that this is order-optimal when
wmax ≤ d + ν + 1.

Theorem 6. For all integers d, n ≥ 2 and ν ≥ 0, a t × n
matrix that is (d, ν)-disjunct with maximum column weight
wmax ≤ d + ν + 1 must satisfy

t ≥ min
�
(ν + 1)n,



(d + ν)(d + ν + 1)n

�
.

The proof of the above theorem can be found in Appen-
dix B. It is interesting to observe that by increasing wmax from
d+ν to d+ν +1, we are able to reduce to t = Θ((d+ν)

√
n)

from t = (ν + 1)n. Going further, we can generalize this
to the case where the codeword weights are bounded by
wmax ≤ ld+ν+1 for some integer l > 1. Fixing kq = l+1 and
tq = ld + ν + 1 in the Kautz-Singleton construction provides
us with a (d, ν)-disjunct matrix that has t = (ld + ν +1)n

1
l+1

tests and w = ld + ν + 1 column weights. The next theorem
shows that this construction is nearly optimal.

Theorem 7. For all integers d, n, l ≥ 2 and ν ≥ 0, a t × n
matrix that is (d, ν)-disjunct with maximum column weight
wmax ≤ ld + ν + 1 must satisfy

t ≥ n
1

l+1

�
2 el

(d + ν)2(l − 1)l
+

1
((l − 1)(d − 1) + ν)l+1

�− 1
l+1

The proof of the above theorem can be found in Appen-
dix C. Similar to the noiseless case, we have a matching
lower and upper bounds in terms of the scaling with respect
to n and order-wise the lower bound in Theorem 7 is
Θ
�
(d + ν)

2
l+1 n

1
l+1

�
whereas the Kautz-Singleton construc-

tion provides Θ
�
(d + ν)n

1
l+1

�
tests.
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B. Sparse Test

In the sparse test setting, we focus on a model where each
test can include a limited number of items. In other words,
we restrict the row weights of M , and derive lower and upper
bounds on the minimum number of tests so that M is a (d, ν)-
disjunct matrix in the more general noisy case (including the
noiseless setting as a special case under ν = 0).

Our first theorem provides a fundamental lower bound on
the minimum required number of tests under a row weight
constraint and an upper bound, which is again based on the
Kautz-Singleton construction.

Theorem 8. For all integers d, n ≥ 2 and ν, l ≥ 0 such that
ld + ν + 1 ≤ n

1
l+1 and n

1
l+1 is a prime power, the Kautz-

Singleton construction provides a t × n matrix that is (d, ν)-
disjunct with constant row weights ρ = n

l
l+1 and

t = (ld + ν + 1)n
1

l+1 .

On the other hand, for all integers d, n ≥ 2 and ν ≥ 0,
a t×n matrix that is (d, ν)-disjunct with maximum row weight
ρmax must satisfy

t ≥

⎧⎪⎨
⎪⎩

(d + ν + 1)n
ρmax

if ρmax >
d + ν + 1

ν + 1
,

(ν + 1)n if ρmax ≤ d + ν + 1
ν + 1

.

Proof. We begin with the lower bound. Suppose we have a
t × n matrix that is (d, ν)-disjunct and all the row weights
are bounded with ρmax. We consider the columns that have
weight less than or equal to d + ν. All these columns must
have at least ν + 1 private rows as we have the condition
|supp(Mi)\ ∪j∈S supp(Mj)| > ν for every set S of columns
with |S| ≤ d and every i ∈ [n]\S in Definition 2. Let us
remove these columns along with the corresponding ν + 1
private rows for each column. Note that if a column has more
than ν +1 private rows, we can arbitrarily choose and remove
any ν+1 of them. We will be removing ν+1 private rows per
such column and this is possible since they all have at least
ν + 1 private rows and a private row cannot be shared by two
distinct columns.

Let us denote t1 by the number of columns whose weight is
less than or equal to d+ν. From the definition of private row,
it follows that 0 ≤ t1 ≤ t/(ν+1). After the removal operation,
the dimension of the resulting matrix is (t−t1(ν+1))×(n−t1)
and it is still (d, ν)-disjunct since we are only removing the
zero-entries of the rest of the columns, therefore, the resulting
matrix must still satisfy the (d, ν)-disjunctiveness. We also
note that the weight of the rows are still bounded with ρmax.

We observe that in the resulting matrix, the weight of all
columns will be at least d+ν +1. Therefore, the total number
of ones in the resulting matrix can be lower bounded by (d +
ν + 1)(n − t1) and upper bounded by ρmax(t − t1(ν + 1)).
Hence,

ρmax(t − t1(ν + 1)) ≥ (d + ν + 1)(n − t1),
ρmaxt ≥ (d + ν + 1)n + t1 (ρmax(ν + 1) − (d + ν + 1)) .

(6)

If ρmax ≤ d+ν+1
ν+1 , then from t1 ≤ t/(ν + 1) and (6) we have

ρmaxt ≥ (d + ν + 1)n +
t

ν + 1
(ρmax(ν + 1) − (d + ν + 1))

It follows that t ≥ (ν + 1)n. On the other hand, if ρmax >
d+ν+1

ν+1 , then from t1 ≥ 0 and (6) we have

ρmaxt ≥ (d + ν + 1)n.

This yields that t ≥ (d+ν+1)n
ρmax

.
For the achievability, we use the Kautz-Singleton construc-

tion. We choose tq = ld + ν + 1 and kq = l + 1 to get a
(d, ν)-disjunct matrix. Since n = qkq , we obtain q = n

1
l+1

hence t = (ld + ν + 1)n
1

l+1 and ρ = n
l

l+1 from Lemma 2.
In order to satisfy the requirement q ≥ tq where q is any
prime power, we must ensure that ld + ν + 1 ≤ n

1
l+1 and

q = n
1

l+1 must be a prime power. This completes the proof
for the achievability.

Observe that for any fixed integer l ≥ 1 that satisfies the
conditions stated in Theorem 8, the number of tests we get
using the Kautz-Singleton construction is Θ

�
(d + ν)n

1
l+1

�
with constant row weight ρ = n

l
l+1 . Substituting this in the

lower bound of Theorem 8, the required number of tests is
also Θ

�
(d + ν)n

1
l+1

�
. It is interesting to note that the Kautz-

Singleton construction is order-optimal in this setting.
From Proposition 2, we know that if the weights of the

columns are bounded by d, one cannot do better than the
individual testing; i.e., t = n. Theorem 8 states an analogous
result for the case with row weight constraint: if the weights
of the rows are bounded by d+ν+1

ν+1 , we have t = (ν + 1)n,
which means that we cannot do better than the individual
testing. Another very interesting result that can be obtained
from Theorem 8 is that for the special case where l = 1,
the Kautz-Singleton construction is optimal with matching
constants.

Corollary 1. For all integers d, n ≥ 2 and ν ≥ 0, the Kautz-
Singleton construction provides an optimal (with matching
constants) (d, ν)-disjunct matrix under the maximum row
weight constraint ρmax ≤ √

n.

We emphasize that the Kautz-Singleton construction in
Theorem 8 provides us with codes that have constant row
weight of n

l
l+1 ; i.e., when ρ is a fractional power of n in the

form l
l+1 in the interval [1/2, 1). It is natural to ask whether

there exist group testing codes with ρ = nα for an arbitrary
α ∈ (0, 1) that achieves the lower bound in Theorem 8. The
following theorem shows the existence of such codes when
d = O(poly(log n)) by using a random construction.

Theorem 9. For any α ∈ (0, 1), there exists a randomized
design that is (d, ν)-disjunct with t = O

�
(d + ν)n1−α

�
number of tests and ρmax = Θ(nα) maximum row weight
in the regime where d = O(poly(log n)).

Proof. We consider the following randomized design. For a
fixed α ∈ (0, 1), we take t = c(d+ ν)n1−α for some constant
c > 0 that we will fix later. We create a matrix M with size
t × n by choosing the columns of this matrix uniformly at
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random among the codewords of size t with weight w where
we set w = c(d + ν).

We next calculate the probability of not having a (d, ν)-
disjunct matrix. Let us fix d + 1 columns of the matrix M
and denote them as M1, . . . , Md+1. Let us further fix a single
column among them, say Md+1. The probability of violating
the condition |supp(Md+1)\ ∪j∈S supp(Mj)| > ν where S =
{1, 2 . . . , d} can be bounded as

P (|supp(Md+1)\ ∪j∈S supp(Mj)| ≤ ν)
(i)

≤
�|∪j∈S supp(Mj)|

w−ν

��
t−w+ν

ν

�
�

t
w

�
(ii)

≤
�

dw
w−ν

��
t−w+ν

ν

�
�

t
w

� ,

where in (i), we select w − ν positions from ∪j∈Ssupp(Mj)
and then we select ν positions from the remaining t− (w−ν)
positions in the numerator. The denominator is for all possible
choices of weight w. This ensures that supp(Md+1) intersects
in at least w − ν positions with ∪j∈Ssupp(Mj). Note that
certain combinations are counted more than once but that’s
not a problem since we are computing an upper bound. On the
other hand, (ii) is because M1, . . . , Md can have at most dw
non-intersecting number of ones.

Using the union bound over the choice of d + 1 columns
and fixing one among them, the probability that the matrix
M does not satisfy the (d, ν)-disjunctiveness property can be
bounded as

P (M is not (d, ν)-disjunct)

≤ (d + 1)
�

n

d + 1

�� dw
w−ν

��
t−w+ν

ν

�
�

t
w

� .

We can further bound this as

P (M is not d-disjunct) (7)

(i)

≤ (d + 1)
�

ne

d + 1

�d+1

�
dwe

w − ν

�w−ν � (t − w + ν)e
ν

�ν

�
t

w

�w

= (d + 1)
�

ne

d + 1

�d+1

�
dw

w − ν

�w−ν �
t − w + ν

ν

�ν

ew

nw(1−α)

(ii)

≤ nd+1ed+w+1

dd
· (2d)w−ν(t/ν)ν

nw(1−α)
, (8)

where (i) is due to the inequality
�

n
k

�k ≤ �
n
k

� ≤ �
ne
k

�k
and

(ii) is due to w − ν ≥ ν/2 for c ≥ 2 and t − w + ν ≤ t and
d + 1 ≥ d. Taking the logarithm of the last term in (8) gives
us

(d + 1) log n + d + w + 1 + (w − ν) log 2 + ν log(t/ν)
+ (w − ν − d) log d − w(1 − α) log n ≤ −c̃(d + ν) log n,

which holds with a constant c̃ > 0 for sufficiently large n
and appropriately chosen constant c > 4/(1 − α) when d =
O(poly(log n)). Hence,

P (M is not (d, ν)-disjunct) ≤ n−c̃(d+ν). (9)

We next investigate the weights of the rows of the matrix M .
We consider the first row. Note that by our random construc-
tion, it follows that each entry in the first row is independent
and identically distributed with Bernoulli distribution where

the probability of having one is
( t−1

w−1)
( t

w) = w
t . Denoting ρ1 as

the weight of the first row, we have E[ρ1] = w
t n = nα. Using

Hoeffding’s inequality along with the union bound, we achieve
the following upper bound on the probability that there exists
a row with its weight deviating from nα

P(∃ i ∈ [t] s.t. |ρi − nα| ≥ δnα) ≤ t2e−2nαδ2

= 2c(d + ν)n1−αe−2nαδ2
,

(10)

for some fixed constant 0 < δ < 1. For sufficiently large n,
the right-hand side of (10) can be bounded as e−c̄nα

for some
constant c̄ > 0.

Using the union bound over (9) and (10) to bound the
probability of either not having a (d, ν)-disjunct matrix or not
satisfying the ρmax = Θ(nα) condition, we conclude that with
probability approaching to 1 the matrix is (d, ν)-disjunct with
row weight ρ = Θ(nα) and t = Θ((d + ν)n1−α).

In the regime where d = O(poly(log n)), the lower bound
in Theorem 8 suggests that the minimum number of tests is
Ω((d + ν)n1−α) when ρ = Θ(nα) for some α ∈ (0, 1). The
randomized construction in Theorem 9 proves that there exist
codes that achieve t = Θ((d + ν)n1−α). This matches the
lower bound in Theorem 8.

IV. ENCODING & DECODING

We have so far focused on investigating the fundamental
trade-offs between t and (d, ν, n) under constraints on either
the number of items that can participate in a test (sparse
test) or the number of tests an item can participate in (sparse
codeword) without considering the encoding or decoding com-
plexities. However, due to the emerging applications involving
massive datasets there is a recent research effort towards low-
complexity decoding schemes [25]–[29]. The computational
complexity of encoding and decoding might be just as critical,
therefore, it is desirable not to sacrifice on encoding or decod-
ing complexity to achieve the optimal trade-off between t and
(d, ν, n). In this section, we discuss the encoding and decoding
complexity of the explicit constructions we presented earlier
in this paper.

In the classical combinatorial group testing framework,
the focus has been on designing testing strategies that can
be decoded in poly(t)-time while achieving the best known
upper bound t = O(d2 log n). Guruswami et al. present an
efficiently decodable (O(t) time decoding) d-disjunct matrix
in [30] and their constructions require O(d4 log n) tests. The
first result that achieves efficient decoding time while matching
the O(d2 log n) bound on the number of tests was recently
presented in [26]. Furthermore, the construction in [26] can
be derandomized in the regime d = O(log N/ log log N).
Later in [27] the constraint on d is removed and an explicit
construction is provided that can be decoded in time poly(t).
The main idea considered in [26] was using list-disjunct
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matrices and a similar idea was considered in [25] to obtain
explicit constructions of non-adaptive group testing schemes
that handle noisy tests and return a small superset of the
defective items.

We now show that our explicit constructions can be decoded
in (poly(d) + O(t))-time and each entry in any codeword can
be computed in poly(log n) memory space by following a
similar approach to [26]. This shows that these constructions
not only (nearly) achieve the fundamental lower bound in the
energy constrained setting, but also do that with a favorable
encoding and decoding complexity. We begin with the follow-
ing result, which is based on the noiseless setting.

Theorem 10. The construction and guarantees of Theorem 5
and Theorem 8 (ν = 0) can be achieved with decoding
time poly(d) + O(t) and poly(log n) memory space for the
computation of each entry.

Proof. We describe the decoding procedure as follows. For
an output vector Y ∈ {0, 1}t, we can consider it as Y =
(Y1, . . . , Ytq ), a vector in ({0, 1}q)tq where tq = ld + 1 is the
block length of the outer Reed-Solomon code. Note that since
we use the identity code as the inner code, for each i ∈ [tq], Yi

will have at most d ones and the support of Yi will correspond
to the symbols of defective items in the outer code. We now
apply the following procedure. For each i ∈ [tq], we create
the sets Si ⊆ [q] such that Si is the support of Yi. It follows
that |Si| ≤ d for every i ∈ [tq]. We further have the following
property. For any defective item, the corresponding codeword
(c1, . . . , ctq) in the outer code must satisfy ci ∈ Si for all
i ∈ [tq] and for any non-defective item, the corresponding
codeword (c1, . . . , ctq) in the outer code will include a symbol
ci such that ci /∈ Si. Note that this step can be done in O(t)
time.

The second step is to output all codewords (c1, . . . , ctq)
in the outer code such that ci ∈ Si for all i ∈ [tq] given
Si ⊆ [q] with |Si| ≤ d for every 1 ≤ i ≤ tq . This problem is
an instance of the error-free list recovery problem [31]–[33].
When each set Si has at most s elements, it is referred to as list
recovering with input lists of size s. It has been shown that the
corresponding error-free list recovery problem can be solved
in polynomial time for a [tq, kq, tq − kq + 1]q Reed-Solomon
code as long as the parameter s satisfies s < � tq

kq−1� [31], [34].
We note that in our case, we have s = d, tq = ld + 1, and
kq = l + 1, therefore s < � tq

kq−1�. It follows that the second
step can be done in time poly(tq). In particular, we can use the
algorithm in [35] that runs in time poly(d)·tq log2 tq log log tq,
which is poly(d) with our choice of tq (see Appendix D for a
more detailed discussion about list recovery problem and its
connection to [35]). Combining the two steps, we conclude
that the decoding can be done in time poly(d) + O(t).

The space complexity of an algorithm is the memory space
required to solve an instance of the computational problem as
a function of the size of the input. Any position of a Reed-
Solomon codeword is an evaluation of a kq-degree polynomial
at a q-ary evaluation point. Therefore, any position in a
Reed-Solomon codeword can be computed in poly(kq, log q)
memory space. Additionally, due to the identity mapping,
any bit value of the identity inner code can be computed

Fig. 1. Massive random access with on-off keying at the transmitters and
energy detection at the receiver.

in O(log q) memory space. This provides the claimed space
complexity for the reconstruction of the matrix.

A similar approach can be taken in the case of noisy
measurements by slightly modifying the parameters of the
construction (only changing the constant in front of ν) to be
appropriate for the noisy case. Our next result whose proof we
give in Appendix E shows the validity of efficient decoding
in the case of arbitrary errors.

Theorem 11. The construction and guarantees of Theorem 7
and Theorem 8 under the modification tq = ld + (l + 2)ν + 1
can be achieved with decoding time poly(d, ν) + O(t) and
poly(log n) memory space for the computation of each entry.

V. LOW-ENERGY MASSIVE RANDOM ACCESS

In this section, we discuss an application of our framework
to wireless random access. Consider n devices (or sensors)
that are associated with a single access point and assume
that at most d of them can be active at any given time,
where n � d � 1. We adopt the following modulation
and detection technique at the transmitters and the receiver
respectively: each device uses on-off signaling; i.e., it transmits
a binary sequence of 0’s and 1’s, which corresponds to either
transmitting a pulse or no pulse in every time slot. The access
point simply detects whether or not there is energy in the
channel in every time slot. This leads to a (potentially noisy)
Boolean OR-channel from the devices to the access point. This
simple modulation and detection technique is often used in
low-rate applications in practice due to its simplicity. Energy
detection does not require any channel state information at the
receiver and thus it eliminates the need for channel training and
estimation. This setting is depicted in Figure 1. To simplify
the discussion, we focus on the device discovery problem,
though as we argue in [36] the same group testing framework
can be used to develop solutions for jointly discovering
active devices and transmitting data, and for transmitting data
without communicating device identities. The device discovery
problem can be formulated as follows. Given n devices, design
a length-t binary signature for each device (i.e., Mi ∈ {0, 1}t

for i = 1, . . . , n) such that for any set S ⊂ {1, . . . , n} of
active devices with size |S| ≤ d, we can exactly identify the
set S (the active devices) from

Y =

��
i∈S

Mi

�
+ ξ,
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where
�

denotes entry-wise Boolen-OR operation and ‘+’
denotes entry-wise modulo-2 addition, and ξ is a length-t
binary vector representing occasional errors in the energy
detection at the receiver (flips of the output) due to noise.
We assume that ξ has at most ν ones.

It can be readily observed that the problem statement above
corresponds to a (non-adaptive) combinatorial group testing
problem and the binary signature vectors Mi can be taken to
be the columns of a t×n (d, ν)-disjunct group testing matrix.
In particular, (d, ν)-disjunct matrices with small t will lead to
short binary signatures for the devices. In practice, transmitters
are subject to energy constraints, which are especially limiting
in IoT applications where devices are required to operate on
small batteries for many years or harvest their energy from
their environment [37], [38]. In such applications, while it
may still be desirable to minimize the length of the signature
codewords to increase spectral efficiency, it may be also
desirable to limit the energy needed to transmit each codeword.
The energy spent for transmitting a codeword is proportional to
the number of pulses, i.e. the number of “1”s, in the codeword
(ignoring the standby energy for keeping the device active).
Using our previous notation, this corresponds to imposing a
constraint on the total number of “1”s in each column of M .
Note that if energy efficiency were the only metric of interest,
we could have resorted to the trivial solution that tests every
item individually. This leads to a single “1” in each column of
M , but the length of each column, and therefore that of our
signature codewords, becomes equal to n. Our sparse group
testing framework provides a way to optimally trade energy
and spectral efficiency in this framework.

VI. CONCLUSION AND DISCUSSION

In this paper, we studied the combinatorial group testing
problem under constraints on the number of items that can
participate in each test (sparse test) or the number of tests
each item can participate in (sparse codeword). We developed
explicit group testing codes that minimize the number of
tests under such constraints and proved that they are order
optimal or nearly order optimal. Our results show that the
minimal number of tests exhibits a particularly favorable
behavior in the sparse codeword case, since the number of
tests decreases drastically when the number of tests each item
participates in increases beyond a bare minimum.

There are a few remaining gaps in our results that would be
interesting to consider in future work. Firstly, as the number
of tests per item increases linearly with d (i.e., w = ld + 1),
the gap between our lower and upper bounds on t increases as
a function of d. It would be interesting to see if this gap can be
closed with sharper lower bounds or improved constructions
that yield better performance. Secondly, the Kautz-Singleton
construction provides d-disjunct matrices with row weight
ρ = n

l
l+1 . Therefore, the Kautz-Singleton construction cannot

achieve a row weight of nα for α < 1/2. Nevertheless,
as proven in Theorem 9, d-disjunct matrices with ρ = nα

for any real number α ∈ (0, 1) do exist. It would be
interesting to know if there are optimal explicit constructions
that can achieve ρ = nα for α < 1/2. Finally, while we

have exclusively focused on the combinatorial group testing
framework in the current paper, where the defective set is to be
exactly recovered, we show in [39] that the Kautz-Singleton
construction we consider in this work is also relevant in the
probabilistic setting, where the defective set is to be recovered
with a small probability of error. In [39], we build on the
Kautz-Singleton construction to develop the first-order optimal
strongly explicit construction for probabilistic group testing.

APPENDIX

A. Proof of Proposition 4

The achievability can trivially be obtained by individual
testing, i.e., testing each item alone ν +1 times. Note that this
satisfies (d, ν)-disjunctiveness, therefore, t(d, ν, n) ≤ (ν+1)n.

We can show that for a t×n binary matrix M that is (d, ν)-
disjunct with the condition wmax ≤ d+ν, all columns need at
least ν + 1 private rows, hence t(d, ν, n) ≥ (ν + 1)n. Assume
there exists a column i ∈ [n] with at most ν private rows.
It follows that this column has at least wi − ν non-private
rows. Fix any wi − ν non-private rows. Since wmax ≤ d + ν,
it follows that wi − ν ≤ d and we can find at most d other
columns covering these rows. Therefore, there exists a set S
of columns with |S| ≤ d and i /∈ S such that |supp(Mi)\∪j∈S

supp(Mj)| ≤ ν, which contradicts with (d, ν)-disjunctiveness
of M .

B. Proof of Theorem 6

Let M be a t × n (d, ν)-disjunct matrix with wmax ≤ d +
ν +1. We will separate the columns of M into disjoint groups
whose union is [n]. We define

N1 := {j ∈ [n] | wj ≤ d + ν

or wj = d + ν + 1 and Mj has at least ν + 1 private rows},
N2,k := {j ∈ [n] | wj = d + ν + 1 and Mj has k private

rows} for 0 ≤ k ≤ ν.

Note that by construction, N1 ∪ (∪0≤k≤νN2,k) = [n] and
Ni ∩Nj = ∅, hence n = n1 +

�
0≤k≤ν n2,k where we denote

n1 := |N1| and n2,k := |N2,k| for 0 ≤ k ≤ ν respectively.
In the following, we will bound the size of these sets.

We note that each column in the set N1 has at least ν + 1
private rows and each column in the set N2,k has k private
rows for 0 ≤ k ≤ ν respectively. Therefore, we have at least

α := (ν + 1)n1 +
ν�

k=0

kn2,k private rows. Since a private row

cannot be shared by two distinct columns and there could be
at most t private rows, we have 0 ≤ α ≤ t.

For any 0 ≤ k ≤ ν, consider the set N2,k. Take any column
Mi ∈ N2,k if N2,k �= ∅. Note that Mi has k private rows
and wi = d + ν + 1. Considering the rest of d + ν + 1 − k
non-private rows, we claim that all the pair of positions here
must be private. We prove this by contradiction. Assume there
exists another column covering any pair of positions among
d + ν + 1− k non-private rows. It follows that excluding this
pair, among the rest of d + ν − 1 − k non-private rows, one
can find at most d − 1 other columns covering d − 1 rows.
Therefore, there exists a set S of columns with |S| ≤ d and
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i /∈ S such that their union covers d+1 positions in the support
of Mi. Since wi ≤ d+ ν +1, it follows that |supp(Mi)\∪j∈S

supp(Mj)| ≤ ν, which contradicts with (d, ν)-disjunctiveness.
Therefore, there are

�
d+ν+1−k

2

�
private pairs for any Mi ∈

N2,k. By definition of a private set it cannot be shared by
two distinct columns and we excluded the private rows in our
calculation for the number of private pairs, hence we have�

0≤k≤ν n2,k

�
d+ν+1−k

2

�
private pairs whereas there could be

at most
�
t−α
2

�
private pairs. Therefore, we have

�
0≤k≤ν

n2,k

�
d + ν + 1 − k

2

�
≤
�

t − α

2

�
≤ (t − α)2

2
.

Hence, this gives

t ≥
� �

0≤k≤ν

n2,k(d + ν + 1 − k)(d + ν − k) + α

=
� �

0≤k≤ν

n2,k(d + ν + 1 − k)(d + ν − k) + (ν + 1)n1

+
ν�

k=0

kn2,k,

with the condition n = n1 +
�

0≤k≤e n2,k. We can also write
this as

t ≥
� �

0≤k≤ν

n2,k(d + ν + 1 − k)(d + ν − k)

+ (ν + 1)

⎛
⎝n −

�
0≤k≤ν

n2,k

⎞
⎠+

ν�
k=0

kn2,k,

with the condition 0 ≤�0≤k≤ν n2,k ≤ n.
Since this is a concave function over {n2,k}ν

k=0 and 0 ≤�
0≤k≤ν n2,k ≤ n is a convex set, minimum is attained over

one of the extreme points. Therefore, we obtain

t ≥ min
�

(ν + 1)n, (11)

min
0≤k≤ν



(d + ν + 1 − k)(d + ν − k)n + nk

	
(12)

= min
�

(ν + 1)n,



(d + ν)(d + ν + 1)n
	

,

where in the last step, we observe that the term that depends on
k in (12) is concave over 0 ≤ k ≤ ν and attains its minimum
at either k = 0 or k = ν and



(d + ν)(d + ν + 1)n <


d(d + 1)n + nν.

C. Proof of Theorem 7

Let M be a t×n (d, ν)-disjunct matrix wmax ≤ ld+ ν +1.
We define

N1 := {j ∈ [n] | wj ≤ d + ν

or wj = d + ν + 1 and Mj has at least one private row},
for i = 2, . . . , l,

Ni := {j ∈ [n] | (i − 2)d + ν + 2 ≤ wj ≤ (i − 1)d + ν + 1

and Mj has no private set of size i − 1 or

(i − 1)d + ν + 2 ≤ wj ≤ id + ν + 1 and Mj has at least

one private set of size i},
Nl+1 := {j ∈ [n] |(l − 1)d + ν + 2 ≤ wj ≤ ld + ν + 1

and Mj has no private set of size l}.
Note that by construction, N1 ∪ . . . ∪ Nl+1 = [n] and Ni ∩
Nj = ∅ for any i, j ∈ [l + 1] such that i �= j, hence n =
|N1|+ . . . + |Nl+1|. In the following, we will bound the size
of these sets.

Note that |N1| ≤ t. Consider the sets Ni for i = 2, . . . , l.
For any column j ∈ Ni, if we have (i − 1)d + ν + 2 ≤
wj ≤ id + ν + 1, then by construction Mj has at least one
private set of size i. For the case (i − 2)d + ν + 2 ≤ wj ≤
(i − 1)d + ν + 1, using similar arguments as in the proof of
Theorem 5, one can show that all the subsets of the support
of Mj with size i must be private. Hence, all the columns in
the set Ni must have at least one private set of size i. Since
the private sets cannot be shared among columns and we have
at most

�
t
i

�
private sets of size i, it yields that |Ni| ≤

�
t
i

�
.

For the last set Nl+1, similar arguments apply and for each
column all the subsets of its support with size l + 1 must be
private. Since wj ≥ (l − 1)d + ν + 2 for j ∈ Nl+1, we have
|Nl+1|

�
(l−1)d+ν+2

l+1

� ≤ � t
l+1

�
. Therefore,

n = |N1| + . . . + |Nl+1|

≤
l�

i=1

�
t

i

�
+

�
t

l+1

�
�
(l−1)d+ν+2

l+1

�
(i)

≤
�

et

l

�l

+
t . . . (t − l)

((l − 1)d + ν + 2) . . . ((l − 1)(d − 1) + ν + 1)
(ii)

≤ eltl

ll
+

tl+1

((l − 1)(d − 1) + ν)l+1

(iii)

≤ eltl

(l − 1)l

2t

(d + ν)2
+

tl+1

((l − 1)(d − 1) + ν)l+1

= tl+1

�
2 el

(d + ν)2(l − 1)l
+

1
((l − 1)(d − 1) + ν)l+1

�

where (i) is due to the inequality
l�

i=0

�
t
i

� ≤ �
et
l

�l
for t ≥

l ≥ 1, (ii) is bounding all the terms in the numerator by t
and denominator by (l − 1)(d − 1) + ν and in (iii) we use
t ≥ �d+ν+2

2

� ≥ (d+ν)2

2 . This completes the proof of the lower
bound.

D. List Recovery

In this section, we discuss the (error-free) list recovery
problem that comes into play in the decoding procedure of
our construction in Theorem 10. The error-free list recovery
problem is a special case of a more general problem known
as soft decoding, which is defined as follows. The decoder
is given a set of non-negative weights corresponding to each
row and each symbol (wi,α, i ∈ [tq], α ∈ [q]) and a threshold
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W ≥ 0. The decoder needs to output all codewords
(c1, . . . , ctq) in q-ary code of block length tq that satisfy

tq�
i=1

wi,ci ≥ W.

Note that the error-free list recovery is a special case of
soft decoding under the parameters W = tq and wi,α = 1
for α ∈ Si and wi,α = 0 otherwise. The soft decoding is
related to weighted polynomial reconstruction problem, which
is defined as follows. Given N points (x1, y1), . . . , (xN , yN),
N non-negative integer weights w(x1, y1), . . . , w(xN , yN),
and a parameter k, find all polynomials p of degree at most k
such that

�
i:p(xi)=yi

w(xi, yi) ≥ W . The algorithm presented
in [35] solves this problem and runs in time poly(d) translated
to our case.

E. Proof of Theorem 11

The decoding procedure follows what is described in the
proof of Theorem 10. For each i ∈ [tq], we create the
sets Si ⊆ [q] such that Si is the support of Yi. Due to
the noise, we can only guarantee that |Si| ≤ d + ν for
every i ∈ [tq] in this case. Similarly, for any defective item,
the corresponding codeword (c1, . . . , ctq) in the outer code
must satisfy |{i : ci ∈ Si}| ≥ tq −ν and for any non-defective
item, the corresponding codeword (c1, . . . , ctq) in the outer
code will include at least (l + 1)ν ≥ 2ν symbols ci such that
ci /∈ Si. Note that this step can be done in O(t) time.

The second step is to output all codewords (c1, . . . , ctq)
in the outer code such that |{i : ci ∈ Si}| ≥ tq − ν given
Si ⊆ [q] with |Si| ≤ d+ν for every 1 ≤ i ≤ tq . This problem
is an instance of the list recovery problem [31]–[33] and it
can be solved in polynomial time for a [tq, kq, tq − kq + 1]q
Reed-Solomon code, as long as tq−ν >



(kq − 1)(d + ν)tq .

We note that in our case, we have tq = ld+ (l +2)ν +1, and
kq = l + 1, which satisfies the requirement.
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