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Abstract—We consider the non-adaptive probabilistic group
testing problem where d random defective items are identified
with high probability from a population of N items by applying
t binary group tests. There has been recent progress towards de-
veloping explicit and efficiently decodable group testing schemes
with t = Θ(d logN) tests, which is known to be order-optimal
for this setting when d = O(N1−α) for some constant α > 0.
In particular, a recent work develops an explicit scheme while
another one develops an efficiently decodable scheme for this
setting, both with the order-optimal t = Θ(d logN) tests.
However, to the best of our knowledge, there is no order-optimal
scheme that is both explicit and efficiently decodable. In this
paper, we close this gap by introducing the first (strongly) explicit
and efficiently decodable construction that is order-optimal for
the non-adaptive probabilistic group testing problem.

I. INTRODUCTION

The objective of group testing is to identify a set of d (or
less) “defective" items within a large population of N items.
A group test is performed on a subset of the items {1, . . . , N}
and the result of the test is either positive, indicating that
the group contains at least one defective item, or negative,
indicating that all the items in the group are non-defective.
The goal is to design a group testing scheme that contains as
few tests t as possible in order to identify the defective items.

The original group testing framework was developed in
1943 by Robert Dorfman [1] to efficiently identify which
WWII draftees were infected with syphilis without having
to test them individually. In Dorfman’s application, items
represented draftees and tests represented actual blood tests.
Over the years, group testing has found numerous applications
in various fields spanning biology [2], medicine [3], machine
learning [4], data analysis [5], computer science [6], wireless
communication [7]–[11] and signal processing [12].

Group testing strategies can be adaptive, where tests are
designed sequentially, i.e. the design of each new test depends
on the outcomes of the previous tests or non-adaptive, where
all tests are designed in one shot. A non-adaptive group testing
strategy can be represented by a t×N binary matrix M , where
Mij = 1 indicates that item j participates in test i. We are
interested in non-adaptive schemes in this work and suppress
the word non-adaptive in the rest of the paper for brevity.
Group testing schemes can also be combinatorial [13], [14]
or probabilistic [15]–[23].

The goal of combinatorial group testing schemes is to
recover any set of up to d defective items with zero-
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error. Combinatorial group testing schemes are known to
require at least t = min{N,Ω(d2 logdN)} tests [24], [25].
Through random designs, one can prove the existence of
schemes with min{N,O(d2 logN)} tests [14]. In [26], Kautz
and Singleton provided a strongly explicit construction1 that
uses t = min{N,O(d2 log2

dN)} tests. This gap between
explicit and randomized group testing constructions was
closed in [27], which introduced an explicit construction
with t = min{N,O(d2 logN)} tests. All these construc-
tions had O(tN) decoding complexity. Another main re-
search line focused on developing low-complexity decoding
schemes, particularly motivated by emerging applications in-
volving massive datasets [28]–[30]. A group testing scheme
is called efficiently decodable if the decoding rule can iden-
tify the defective set in poly(t) time complexity. [29] in-
troduced a randomized construction with t = O(d2 logN)
and decoding complexity poly(t), and furthermore showed
that their construction can be derandomized in the regime
d = O(logN/ log logN). Later, [30] removed the constraint
on d and provided an explicit construction that can be decoded
in time poly(t). This progress in combinatorial group testing
lead to an explicit and efficiently decodable construction that
has the same number of tests as the best known achievability
result of t = min{N,O(d2 logN)}.

In contrast, probabilistic group testing schemes assume a
random defective set of size d and allow for an arbitrarily
small probability of reconstruction error. It is known that
probabilistic group testing schemes require t = Ω(d logN)
tests and optimal schemes with such minimal number tests
exist when d = O(N1−α) for some constant α > 0 [17]–[19].
However these schemes are randomized, i.e. their existence
is established by a probabilistic argument. Recently, there
has been progress towards developing explicit and efficiently
decodable constructions for probabilistic group testing, anal-
ogous to the combinatorial case. [31] presented a strongly
explicit scheme with t = Θ(d log2N/ log d) tests, which
is order-optimal when d is proportional to Nα for α ∈
(0, 1). More recently, [23] showed that Kautz and Singleton’s
strongly explicit scheme is order-optimal for probabilistic
group testing, i.e. achieves t = Θ(d logN) in the regime
where d = Ω(log2N). In terms of efficient decoding, [32],
[33] and a related approach in [34] introduced randomized

1A t×N group testing matrix is called strongly explicit if any column of
the matrix can be constructed in time poly(t). A matrix is called explicit if
it can be constructed in time poly(t,N).
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schemes that are efficiently decodable (poly(t) decoding com-
plexity) and require t = O(d log d logN) tests. Finally, [35]
introduced a randomized construction that is order-optimal, i.e.
it uses t = Θ(d logN) tests, and at the same time efficiently
decodable. However, to the best of our knowledge there is no
order-optimal construction that is both explicit and efficiently
decodable in the probabilistic group testing framework.

In this paper, we close this gap. We introduce a (strongly)
explicit and efficiently decodable construction for probabilistic
group testing with t = Θ(d logN) tests. This can be seen as
the counterpart of the progress made in combinatorial group
testing. Indeed, the progression in the probabilistic case is
more complete than the combinatorial setting on two fronts:
(1) the number of tests t = Θ(d logN) is optimal, i.e. matches
the lower bound t = Ω(d logN); (2) our construction is
strongly explicit. Our result builds on ideas from [23] and [35];
we modify the Kautz and Singleton’s strongly explicit scheme
[26], in a manner similar to [23] but in a different parameter
setting, to conform to the decoding method introduced in [35].

II. SYSTEM MODEL AND BASIC DEFINITIONS

For any t × N matrix M , we use Mi to refer to its i’th
column and Mij to refer to its (i, j)’th entry. We denote the set
of coordinates where Mi has nonzero entries by supp(Mi). For
an integer m ≥ 1, we denote the set {1, . . . ,m} by [m]. The
Hamming weight of a column of M will be simply referred
to as the weight of the column.

In the probabilistic group testing setting, there is a random
defective set S of size d among the items [N ]. We define
S as the set of all possible defective sets, i.e., the set of all(
N
d

)
subsets of [N ] with cardinality d, and let S be uniformly

distributed over S.2 The goal is to determine S from the binary
measurement vector Y of size t taking the form

Y =
∨
i∈S

Mi, (1)

where the t×N binary measurement matrix M indicates which
items are included in the test, i.e., Mij = 1 if the item j
participates in test i. We focus on the noiseless model for
the sake of brevity, however, our results also apply to the
noisy setting with i.i.d. bit flips in the test measurements.
In words, the measurement vector Y is the Boolean OR
combination of the columns of the binary measurement matrix
M corresponding to the defective items. Note that in this
noiseless case, the randomness in the measurement vector Y
is only due to the random choice of the defective set.

Given M and Y , a decoding procedure forms an estimate
Ŝ of S. The performance metric we consider in this paper is
the average probability of error for exact recovery, given by

Pe , Pr(Ŝ 6= S).

Our goal is to design a group testing scheme, i.e. the matrix
M and a decoding strategy that outputs Ŝ given Y , such that
Pe → 0 as N, d→∞.

2This assumption is not critical. Our results carry over to the setting where
the defective items are sampled with replacement.

III. MAIN RESULTS

A. Overview

We first describe our construction coupled with the de-
coding strategy introduced in [35]. Our construction will be
the column-wise concatenation of two binary measurement

matrices M1 and M2, i.e. M =

[
M1

M2

]
. We will employ the

Kautz-Singleton construction [26] for generating M1 and M2

will be generated based on M1 and the erasure correction code
introduced in [36]. We point out that both M1 and M2 are
constructed a priori as we focus on the non-adaptive case.

We first note that since Y =
∨
i∈SMi, we have supp(Mi) ⊆

supp(Y ) for each i ∈ S. Therefore, a naive decoding rule
would be to go through each column j ∈ [N ] of M and call
item j defective if supp(Mj) ⊆ supp(Y ), and non-defective
otherwise. If we can ensure that the event

supp(Mj) 6⊆ supp(Y ) = ∪i∈Ssupp(Mi) ∀j ∈ [N ]\S

occurs for a fraction of the S’s approaching to 1, this decoding
rule will output the defective set correctly with vanishing
probability of error. However, the decoding complexity is
O(tN), which is not poly(t) in the sparse setting (e.g.,
d = O(poly(logN))) and t = Θ(d logN).

Taking this into account, we design M1 as follows. We em-
ploy the Kautz-Singleton construction [26] (will be described
shortly), with potentially much smaller number of columns
compared to N . In particular, we will use the Kautz-Singleton
construction MKS of size Θ(d log d)×Θ(d3), which satisfies
the event3

supp(MKS
j ) 6⊆ ∪i∈Ssupp(MKS

i ) ∀j ∈ [Θ(d3)]\S (2)

with probability approaching to 1. We then define the bi-
nary measurement matrix M1 of size Θ(d log d) × N by
concatenating the Kautz-Singleton construction MKS row-
wise with itself such that we have N columns4, i.e. M1 =[
MKS MKS . . . MKS

]
. Note that if Θ(d3) � N (e.g.

d = O(poly(logN))), same columns repeat multiple times in
M1. This procedure is illustrated in Figure 1.

We define Y 1 as the measurement vector corresponding to
the test matrix M1, i.e., Y 1 =

∨
i∈SM

1
i . We will take Y 1 and

apply the naive decoding rule described above to the original
matrix MKS resulting from the Kautz-Singleton construction.
If all defective items have different columns from the Kautz-
Singleton construction and the condition (2) is satisfied, this
decoding rule will identify d columns of MKS corresponding
to defective items. We will show that the time complexity of
this operation is O(Θ(log d) ·Θ(d3)) = O(d3 · log d), however,
the issue is that the columns of MKS are repeated multiple
times in M1, therefore the identified columns correspond to
many items including non-defectives. We need to have an
additional mechanism to figure out the defectives among them.

3Slightly overloading the notation, S is d random columns over Θ(d3)
columns here.

4For the sake of brevity, we assume Θ(d3)|N . Violation of this assumption
only changes the constants to handle adding/removing dummy columns to get
exactly N columns.
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Fig. 1. An example illustrating our construction and the decoding procedure (best viewed in color). There are 8 items and two of them are defectives (item
3 and item 5). In this example, M1 = [MKS MKS] and we have Y 1 = M1

3

∨
M1

5 . Applying the naive decoding rule over MKS as explained in Section III
outputs MKS

1 and MKS
3 correctly since supp(MKS

2 ) 6⊆ Y 1 and supp(MKS
4 ) 6⊆ Y 1. However, MKS

1 belongs to both M1
1 and M1

5 and MKS
3 belongs to both

M1
3 and M1

7 . Therefore, we need an additional step figuring out the defectives among them. This additional step is performed with the help of the second
construction M2. Each block in the erasure-correcting code represents a symbol from an alphabet A and each symbol has a binary representation of l bits. In
this example, w = 4 and wKS = 2, therefore, each entry that is equal to 1 in a column of M1 is replaced by column-wise concatenated binary representations
of w/wKS = 2 symbols (2 · l bits) from the corresponding codeword in the erasure-correcting code. Each zero entry is simply replaced by 2 · l zeros. For
decoding, we know from the first step that the defective items have MKS

1 and MKS
3 in their columns. We look at the entries that are equal to 1 for MKS

1 and
MKS

3 . We see that the first entries are intersecting and the second entries are not intersecting. Using Y 2, we see the codeword [Erasure, Erasure, Blue, Red]
for MKS

1 , which gives us item 5 as defective from the erasure-correcting code. Similarly, using Y 2, we see the codeword [Erasure, Erasure, Blue, Green] for
MKS

3 , which gives us item 3 as defective from the erasure-correcting code. We exploit the knowledge of our construction to figure out the erasure positions
and clean positions for each column decoded in the first step.

To recap, the goal of the first construction M1 is to figure
out which columns of MKS belong to the defectives, however,
these columns also belong to some non-defectives in M1.
The second submatrix M2 allows to resolve this ambiguity
and figure out the defective items. Towards this goal, we
will require one more condition to be satisfied by the Kautz-
Singleton construction MKS. We require that each column in
M1 has a constant weight wKS, and that furthermore

|supp(MKS
j )\ ∪i∈S\{j} supp(MKS

i )| ≥ wKS/2 ∀j ∈ S, (3)

with probability approaching to 1. In words, we ask that for
any column in S, at least half of its support is not covered by
the union of the support of the remaining columns in S.

In the second submatrix M2, similar to [35], we utilize the
following erasure-correcting code introduced in [36].

Lemma 1 ( [36]: Thm. 1, [35]: Lemma 4). For any r ∈ (0, 1)
and arbitrarily small ε > 0, there exists an alphabet A whose
size is a constant depending only on ε, and a codebook C (with
codeword symbols on A) and associated encoder/decoder pair,
such that the following properties hold:
• C has rate r, i.e., the number of codewords is |A|wr,

where w is the block length.
• The decoder corrects any (worst-case) fraction 1− r− ε

of erasures.
• The encoding and decoding time are linear in the block

length.

We fix r = 1/3 and ε = 1/6. The alphabet size is
|A| = 2l for some constant l. We have N items, therefore,
the number of codewords is equal to N , i.e., |A|wr = N ,
which implies w = (3/l) · logN = Θ(logN). We note
that in this construction, each codeword is unique and the
decoder can correct any fraction 1− r − ε = 1/2 of erasures
from the codewords. Finally, M2 is constructed as follows.
We first copy M1 to M2. We then replace each bit of
M1 with α , (w/wKS) · l number of bits as follows. A
zero entry of M1 is simply replaced by α zeros. The non-
zero entries in a given column of M1 are replaced by the
binary representations of the symbols in the corresponding
codeword in the erasure-correcting code. The weight of each
column of M1 is wKS, therefore each non-zero entry of M1

is replaced by the binary representations of w/wKS symbols,
i.e. α = (w/wKS) · l bits. See Fig. 1 for an illustration of
this step. We will see that wKS = Θ(log d), hence, M2 has
Θ(d log d)·Θ(logN/ log d)·l = Θ(d logN) rows and has size
Θ(d logN) × N . Therefore, M is of size Θ(d logN) × N ,
which is order-optimal in the probabilistic group testing.

We explain the purpose of this construction as follows.
Assume that using Y 1 and MKS, we correctly identify the
columns MKS

i1
, . . . ,MKS

id
that correspond to the defective

items. We define Y 2 as the measurement vector corresponding
to the test matrix M2, i.e., Y 2 =

∨
i∈SM

2
i . If MKS satisfies

the condition (3), this allows at least half of the symbols
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of the erasure-correcting codeword of each defective item
to be observed in Y 2 without any collisions, i.e. in non-
intersecting positions, with the symbols of the codewords of
the other defective items. The intersecting symbols can simply
be regarded as erasures. The locations of the erasures can
be identified from the columns MKS

i1
, . . . ,MKS

id
decoded in

the first step. Since the erasure-correcting code corrects any
fraction 1/2 of erasures, we can identify the defective items
without any errors in this step. See Fig. 1 for an illustration.

B. Analysis

We describe the Kautz-Singleton construction employed in
Section III-A. Kautz and Singleton provide a construction by
converting a Reed-Solomon (RS) code [37] to a binary matrix.
We begin with the definition of Reed-Solomon codes.

Definition 1. Let Fq be a finite field and α1, . . . , αn be distinct
elements from Fq . Let k ≤ n ≤ q. The Reed-Solomon code
of dimension k over Fq , with evaluation points α1, . . . , αn is
defined with the following encoding function. The encoding
of a message m = (m0, . . . ,mk−1) is the evaluation of the
corresponding k−1 degree polynomial fm(X) =

∑k−1
i=0 miX

i

at all the αi’s:

RS(m) = (fm(α1), . . . , fm(αn)).

The Kautz-Singleton construction starts with a [n, k]q RS
code with n = q and N = qk. Each q-ary symbol is then
replaced by a unit weight binary vector of length q, via
“identity mapping" which takes a symbol i ∈ [q] and maps
it to the vector in {0, 1}q that has a 1 in the i’th position and
zero everywhere else. Note that the resulting binary matrix
will have t = nq = q2 rows (tests).

While the choice n = q is appropriate for the combinatorial
group testing problem, we will shortly see that we need to
set q = Θ(d) and n = Θ(log d) in our problem. In Section
III-A, we required that the Kautz-Singleton construction MKS

of size Θ(d log d) × Θ(d3) satisfies the conditions (2) and
(3) with probability approaching to 1. We show this in the
following theorem.

Theorem 1. The Kautz-Singleton construction with parame-
ters n = Θ(log d), k = 3, and q = Θ(d) provides a binary
matrix MKS of size Θ(d log d)×Θ(d3) with constant weight
columns wKS = Θ(log d). When S is the set of d columns
chosen uniformly at random among all columns in MKS, the
following conditions

supp(MKS
j ) 6⊆ ∪i∈Ssupp(MKS

i ) ∀j ∈ [Θ(d3)]\S,
|supp(MKS

j )\ ∪i∈S\{j} supp(MKS
i )| ≥ wKS/2 ∀j ∈ S

are satisfied with probability at least 1−Θ(1/d).

We prove this theorem in Appendix. Building on the con-
struction and decoding procedure introduced in Section III-A
and the results of Theorem 1, we show the main result of this
work in the following theorem.

Theorem 2. Under the model introduced in Section II, the
strongly explicit construction introduced in Section III-A has

t = Θ(d logN) tests and satisfies Pe ≤ Θ(1/d) under the
decoding procedure introduced in Section III-A. Furthermore,
the decoding time is O(d3 · log d+ d · logN).

Proof. We begin with the number of tests of our construc-

tion M =

[
M1

M2

]
. We know from Theorem 1 that M1

is of size Θ(d log d) × N with constant weight columns
wKS = Θ(log d). We further know from Section III-A that
the block length of the code in Lemma 1 is w = Θ(logN)
and each symbol has l bits representation for some con-
stant l. M2 is generated by replacing each bit of M1 with
(w/wKS) · l = Θ(logN/ log d) number of bits. Therefore, M2

has Θ(d log d) ·Θ(logN/ log d) = Θ(d logN) rows and is of
size Θ(d logN)×N . Hence, M is of size Θ(d logN)×N .

We next analyze the error probability. We have a correct
decoding based on successfully completing three steps as
follows. First, we require that the defective items have different
columns in M1, i.e., they correspond to different columns in
the Kautz-Singleton construction MKS. Since MKS is of size
Θ(d log d) × Θ(d3), the probability of two random columns
having the same column in M1 can be bounded by 1/Θ(d3).
Applying union bound over

(
d
2

)
pairs among d defectives, the

probability of error for this requirement is bounded by Θ(1/d).
Given that all defectives have different columns

MKS
i1
, . . . ,MKS

id
, applying the naive decoding procedure

with Y 1 over the columns of MKS returns these columns
with error probability at most Θ(1/d) from Theorem 1.
Furthermore, these columns also satisfy (3). Although
MKS
i1
, . . . ,MKS

id
correspond to the defective items, they also

correspond to some non-defective items as well.
Finally, for each j ∈ [d], we take MKS

ij
and find out the

non-intersecting entries in its support by comparing with the
rest of the columns in {MKS

i1
, . . . ,MKS

id
}\MKS

ij
. We know from

(3) that each column has at least half of its support that is
not intersecting with the other defective columns. We take the
corresponding non-intersecting symbols from Y 2 and consider
the intersecting symbols as simply erasures. The erasure-
correcting code is capable of correcting any fraction 1/2 of
erasures, therefore, we can identify the defective items with
zero-error in this step. Applying union bound over the failure
of these three steps, error probability is bounded by Θ(1/d).

We next discuss the decoding complexity. Regarding the
naive decoding rule and checking if supp(MKS

j ) ⊆ supp(Y 1)
is satisfied for each column j ∈ [Θ(d3)], this can be done
by looking at the positions in the support of MKS

j . Since
we have wKS = Θ(log d) and MKS has Θ(d3) columns, the
decoding complexity here is O(d3 · log d). In the second step,
we first find out the positions in the support of each decoded
column that are not intersecting with the support of any other
decoded columns. Since wKS = Θ(log d), in total this requires
O(d2 · log d) time complexity. Finally, given that we know
the non-intersecting symbols for each decoded column, the
decoding time is linear in the block length w = Θ(logN)
for the erasure-correcting code, therefore, figuring out the
defectives require O(d · logN) time complexity. Overall, the
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decoding time is O(d3 · log d+ d · logN).

We conclude that the construction introduced in Section
III-A is strongly explicit and efficiently decodable with order-
optimal number of tests t = Θ(d logN) and achieves Pe → 0
in the probabilistic group testing framework.

APPENDIX

The proof of Theorem 1: We note that the Kautz-Singleton
construction produces a binary matrix MKS with qk columns
and nq rows. Each symbol is mapped to a vector in {0, 1}q that
has only a single 1, therefore, each column has constant weight
wKS = n. We will fix the parameters n = Θ(log d), k = 3, and
q = Θ(d), therefore, MKS will be of size Θ(d log d)×Θ(d3)
with constant weight columns wKS = Θ(log d).

Using union bound, the probability of failing either condi-
tion in Theorem 1 can be bounded as follows

Pe ≤
∑

j∈[q3]\S

Pr
(
supp(MKS

j ) ⊆ ∪i∈Ssupp(MKS
i )
)

+
∑
j∈S

Pr
(
|supp(MKS

j )\ ∪i∈S\{j} supp(MKS
i )| < n/2

)
≤

∑
j∈[q3]\S

Pr
(
|supp(MKS

j )\ ∪i∈S supp(MKS
i )| < n/2

)
+
∑
j∈S

Pr
(
|supp(MKS

j )\ ∪i∈S\{j} supp(MKS
i )| < n/2

)
≤
∑
j∈[q3]

Pr
(
|supp(MKS

j )\ ∪i∈S[q3]/{j}
supp(MKS

i )| < n/2
)

(4)

where in the last equation S[q3]/{j} is uniformly distributed on
the sets of size d among the items in [q3]/{j}. The inequality
(4) holds because |S\{j}| = d − 1 while |S[q3]\{j}| = d,
therefore, Pr

(
|supp(MKS

j )\ ∪i∈S\{j} supp(MKS
i )| < n/2

)
≤

Pr
(
|supp(MKS

j )\ ∪i∈S[q3]/{j}
supp(MKS

i )| < n/2
)

.
Fix any n distinct elements α1, α2, . . . , αn from Fq .

We denote Ψ , {α1, α2, . . . , αn}. We note that
|supp(MKS

j )\ ∪i∈S[q3]/{j}
supp(MKS

i )| < n/2 occurs if and
only if the corresponding symbols of MKS

j are contained in
the union of symbols of S[q3]/{j} in the RS code for at
least n/2 rows in [n]. Denoting fmi

(X) as the polynomial
corresponding to the column MKS

i , let us define the random
set Υ = {α ∈ Ψ : fmj (α) ∈ {fmi(α) : i ∈ S[q3]/{j}}}. We
then have

Pr
(
|supp(MKS

j )\ ∪i∈S[q3]/{j}
supp(MKS

i )| < n/2
)

= Pr (|Υ| > n/2) .

We note that

|Υ| = |{α ∈ Ψ : fmj
(α) ∈ {fmi

(α) : i ∈ S[q3]/{j}}}|
= |{α ∈ Ψ : 0 ∈ {fmi

(α)− fmj
(α) : i ∈ S[q3]/{j}}}|

= |{α ∈ Ψ : 0 ∈ {fmi
(α) : i ∈ S′}}|

where in the last equality the random set of polynomials
{fmi(X) : i ∈ S′} is generated by picking d nonzero
polynomials of degree at most k − 1 without replacement.

We define the random polynomial h(X) ,
∏
i∈S′

fmi(X).

Note that, for any α ∈ Ψ we have 0 ∈ {fmi
(α) : i ∈

S′} ⇔ h(α) = 0. We next bound the number of roots of the
polynomial h(X). We will use the following result from [38].

Lemma 2 ( [38, Lemma 3.9]). Let Rq(l, k) denote the set of
nonzero polynomials over Fq of degree at most k that have l
distinct roots in Fq . For all powers q and integers l, k,

|Rq(l, k)| ≤ qk+1 · 1

l!
.

Let r denote the number of roots of a random nonzero
polynomial of degree at most k − 1. We have E[r] ≤ 1 since
there is exactly one value of m0 that makes fm(X) = 0 for
any fixed X and m1, . . . ,mk−1. Furthermore, using Lemma

2, we get E[r2] ≤
k−1∑
i=1

i2

i!
=
k−1∑
i=1

i

(i− 1)!
< 2e where the first

inequality is due to Pr(r = i) = |Rq(i, k − 1)|/qk ≤ 1/i!
from Lemma 2. Hence we can bound E[r2] < 6. We denote
ri as the number of roots of the polynomial fmi

(X) and rh
as the number of roots of the polynomial h(X). Note that
rh ≤

∑
i∈S′ ri. We use the Bernstein concentration bound

[39, Proposition 1.4] to
∑
i∈S′ ri and obtain

Pr

(∑
i∈S′

ri > 2d

)
≤ Pr

(
1

d

∑
i∈S′

(ri − E[ri]) > 1

)

≤ exp

(
− d

12 + k(2/3)

)
.

Since we picked k = 3, the number of roots of h(X) is
bounded by 2d with probability at least 1− exp(−d/14).

Let A be the event of h(X) having at most 2d number
of roots. We can bound Pr{|Υ| ≥ n/2|A} by calculating
the probability of having at least n/2 symbols from Ψ when
we pick 2d symbols from [q] uniformly at random without
replacement. Let us fix q = 10d. Hence, if we ensure n ≤ 4d,
then we have

Pr{|Υ| ≥ n/2|A} ≤

(
n
n/2

)(
q−n/2
2d−n/2

)(
q
2d

)
(i)

≤ 2n
(10d− n/2)!

(2d− n/2)!8d!

2d!8d!

10d!

= 4n/2
2d(2d− 1) . . . (2d− n/2 + 1)

10d(10d− 1) . . . (10d− n/2 + 1)

≤ (4/5)
n/2

where we use
(
n
n/2

)
≤ 2n in (i). We then have

Pr
(
|supp(MKS

j )\ ∪i∈S[q3]/{j}
supp(MKS

i )| < n/2
)

≤ exp (−d/14) + (5/4)
−n/2

.

Applying the summation over all j ∈ [q3] in (4), we obtain
Pe ≤ (10d)3 exp(−d/14) + (10d)3 (5/4)

−n/2. Therefore, the
average probability of error can be bounded as Pe ≤ Θ(1/d)
by choosing n = 8

log(5/4) log d. The condition n ≤ 4d required
in the proof is also satisfied under this choice for sufficiently
large d.
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