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Extended defects in crystals, such as dislocations, stacking faults and grain boundaries, play a crucial role in
determining a wide variety of materials properties. Extended defects can also lead to novel electronic proper-
ties in two-dimensional materials, as demonstrated by recent discoveries of emergent electronic phenomena
in twisted graphene bilayers. This paper describes several approaches to construct crystallographic models of
two-dimensional extended defects in crystals for �rst-principles electronic structure calculations, including (i)
crystallographic models to parameterize generalized cohesive zone models for fracture studies and meso-scale
models of dislocations and (ii) crystallographic models of twisted bilayers. The approaches are implemented
in an open source software package called MultiShifter.

I. INTRODUCTION

Extended defects play an important role in many materials
applications, a�ecting electronic, functional and mechanical
properties. The simplest two-dimensional extended defect is
a surface created upon cleaving two halves of a crystal1–3.
The two halves of a crystal can also be rigidly sheared rela-
tive to each other as occurs in many layered battery materials
that undergo stacking sequence phase transformations upon
intercalation4–6. Plastic deformation of crystals is mediated
by the passage of dislocations that glide along a slip plane.
While a dislocation is an extended one-dimensional defect, it
often dissociates into a pair of partial dislocations that bound
an extended two-dimensional stacking fault7 .

Two-dimensional extended defects are also present in het-
erostructures of 2D materials8. 2D materials exhibit unique
electronic properties that are absent in their three dimen-
sional counterparts. Furthermore, new electronic behavior
can emerge when a pair of two-dimensional building blocks
are twisted relative to each other9–11, as was recently demon-
strated for graphene12,13. The twisting of a pair of stacked
two-dimensional materials by an angle θ around an axis that
is perpendicular to the sheets breaks the underlying transla-
tional symmetry of the 2D building blocks. A new �eld of
"twistronics" has emerged that seeks to understand and ex-
ploit the electronic properties that arise upon twisting a pair
of two-dimensional materials14.

Here we describe a generalized framework and accom-
panying software package, called MultiShifter15, to facil-
itate the study of the thermodynamic and electronic proper-
ties of periodic two-dimensional defects in crystalline solids
from �rst principles. We introduce the concept of a gen-
eralized cohesive zone model that simultaneously encapsu-
lates the energy of decohesion and rigid glide of two halves
of a crystal. We then detail how super cells and crystallo-
graphic models can be constructed to accommodate a pair
of two-dimensional slabs that have been twisted relative to
each other by an angle θ. MultiShifter15 automates the
construction of crystallographic models of extended two-
dimensional defects and of two-dimensional layered mate-
rials to enable (i) the study of surfaces, (ii) the calculation of
cohesive zone models16–24 used as constitutive laws for frac-

ture studies25–27, (iii) the calculation of generalized stacking
fault energy surfaces needed as input for phase �eld28–32 and
Peierls-Nabarro33–39 models of dislocations and (iv) the con-
struction of models of twist grain boundaries40 and twisted
2D materials14. The crystallographic models generated by
MultiShifter can then be fed into �rst-principles electronic
structure codes to calculate a range of thermodynamic and
electronic properties. MultiShifter consists of C++ and
Python routines and draws on crystallographic libraries of
the CASM software package41–43.

II. MATHEMATICAL DESCRIPTIONS

A. Degrees of freedom

We consider displacements of two half crystals relative to a
particular crystallographic plane P as illustrated in Figure 1.
The half crystals could be two-dimensional materials such as
a pair of graphene sheets or two-dimensional slabs of MoS2.
They could also be the bottom and top half of a macroscopic
crystal that has a stacking fault or that is undergoing cleav-
age. There are several ways in which the two half crystals can
be displaced. As schematically illustrated in Figure 1a, they
may be separated by a distance d along a direction perpen-
dicular to the plane P and they can be made to glide relative
to each other by a translation vector τ parallel to the plane P.
One half can also be twisted relative to the other by an angle θ
around a rotation axis r that is perpendicular to the planeP as
illustrated in Figure 1b. It is rare that uniform deformations
across an in�nite plane P as illustrated in Figure 1 occur in ac-
tual materials processes. Nevertheless, the energy and elec-
tronic structure associated with such idealized deformations
are crucial ingredients for a wide variety of mesoscale mod-
els of plastic deformation and fracture25–32,35–39 and help un-
derstand emergent electronic properties in two-dimensional
materials14.
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FIG. 1. (a) Two halves of a crystal separated by a distance d can glide
by a vector τ parallel to the plane P. (b) The two halves of a crystal
can also be twisted by an angle θ around a twist axis r perpendicular
to the plane P .

B. Mathematical expression for a generalized cohesive
zone model

A generalized cohesive zone model describes the energy
of a bicrystal as the two half crystals are rigidly separated
by d and translated relative to each other by τ . A conve-
nient reference state for the energy scale is the bicrystal at
in�nite separation (i.e. d → ∞). In this state, the energy of
the bicrystal is independent of separation d and translation
τ . There are well-known and well tested functional forms for
the dependence of the energy on separation21,44–47. A general
relationship takes the form20,21

ucz(d, τ ) = −2γ

[
1 +

δ

λ
+

nmax∑
n=2

αn

(
δ

λ

)n]
e−δ/λ (1)

where δ = d − d0 measures the degree of separation rela-
tive to an equilibrium separation of d0 and where the energy
ucz is per unit area of the plane P. The dependence of the en-
ergy on the translation vector τ can be built into Equation (1)
by making the parameters γ, λ and αn each functions of the
translation vector τ : i.e. γ (τ ), λ (τ ) and αn (τ ). The equi-
librium separation d0 is also a function of τ and corresponds

to the minimum of ucz(δ, τ ) as a function of d at �xed τ . The
dependence of ucz (δ, τ ) on τ at �xed δ or d is periodic and
has the same 2-dimensional periodicity as that of the crystal-
lographic plane P. This means that the parameters that ap-
pear in Equation (1) are also periodic functions of τ .

When all the αn are set to zero, we recover the universal
binding energy relation (UBER) that is able to describe the co-
hesive properties of metals with remarkable accuracy44,45,47.
The additional parameters αn are necessary to capture de-
viations from the UBER form due to deviations from purely
metallic bonding21.

The coe�cient 2γ is related to the energy of cleaving a
crystal into two bicrystals

2γ (τ ) =
Ecleaved − Ebulk (τ )

Asurface
(2)

where Ebulk (τ ) is the energy of the bicrystal at separation
d=d0 (τ ) and translation τ , Ecleaved is the energy of the
bicrystals at in�nite separation and Asurface is the area of
the exposed surfaces. 2γ (τ ) corresponds to the minimum of
ucz (δ, τ ) at each τ with respect to interslab separation δ and
is referred to as the generalized stacking fault energy (GSFE),
also known as the γ surface. The GSFE is an essential ingre-
dient of mesoscale simulation techniques such as phase �eld
models28–32 and Peierls-Nabarro35–39 models of dislocations.

When cleaving a single crystal across a plane P (as op-
posed to a bicrystal consisting of two di�erent materials), it
is common to set the origin of translations τ at the shift co-
inciding with a perfect crystal (i.e. no stacking fault). In that
case γ0 = γ (τ = 0) becomes equal to the surface energy
for the crystallographic plane P in the absence of any sur-
face reconstructions48. The generalized cohesive zone model
can serve as a constitutive law to describe the response of a
solid ahead of a transgranular crack tip25–27. The elastic con-
stant, C , along the direction of separation is a function of the
parameters of Equation (1) according to21

C = 2d0
2γ

λ2

(
1

2
− α2

)
(3)

Since the parameters, d0, γ, λ and αn of Equation (1) are
periodic functions of τ , they can each be expressed as a
Fourier series. For example, the τ dependence of γ can be
expressed as

γ (τ ) =
∑
K

γ̃Ke
−iKτ (4)

where the sum extends over K vectors of the two-
dimensional reciprocal lattice of the two-dimensional unit
cell of the crystallographic plane P. The expansion coe�-
cients, γ̃K , are the Fourier transform of γ.

C. Extensions to account for twist

The twisting of two halves of a crystal or of a pair of two-
dimensional materials will generally break any translational
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symmetry that may have existed before. It is only for a subset
of special twist angles θ that a supercell translational sym-
metry is preserved9–11,49. The energy of the bicrystal will not
only depend on the relative separation d and translation τ ,
but also on the choice of rotation axis r and twist angle θ49.
This dependence can be formulated generally as

u (d, τ , r, θ) = ucz (d, τ ) + ut (d, τ , r, θ) (5)

where ucz is the reference energy in the absence of a twist,
and can be expressed using a form such as Eq 1. The func-
tion ut (d, τ , r, θ) accounts for the twist energy and is equal
to zero when θ=0. While the θ dependence of ut (d, τ , r, θ)
could be represented as a Fourier series, as it is periodic in θ,
it may exhibit cusps and therefore not be a smooth function
of θ40,50. The expansion coe�cients of such a Fourier series
would be a function of d, τ and r.

III. CREATING SLAB MODELS

Most electronic structure methods impose periodic bound-
ary conditions on the crystallographic model. In this section,
we describe how crystallographic models can be constructed
to realize crystal separation, glide and twist within super cells
that have periodic boundary conditions.

A. Constructing slab geometries to parameterize cohesive
zone models

A cohesive zone model such as Equation (1) can be pa-
rameterized by �tting to training data as calculated with a
�rst-principles electronic structure method. It is possible to
accommodate the periodic boundary conditions that these
methods impose using a slab geometry as illustrated in Fig-
ure 2a. The unit cell then consists of a slab of crystal with
its periodic images separated by layers of vacuum parallel to
the plane P. For bulk crystals, the crystal slab must be suf-
�ciently thick to avoid interactions between periodic images
of the surfaces adjacent to the vacuum layer.

To construct a crystallographic model consisting of slabs
parallel to a plane P, it is necessary to �rst identify a super-
cell of the primitive cell vectors, a, b and c, such that two
supercell vectors, A and B span the plane P. The vectors
A and B can be determined by connecting the origin to the
closest non-collinear lattice points that lie on a plane parallel
to P that also passes through the origin. A third vector, s,
can then be chosen as the shortest translation vector of the
parent crystal structure that is not in the plane P. The vec-
tor s determines the smallest possible thickness of the slab.
The thickness of the slab can be adjusted by multiplying s by
an integer, l. It is usually desirable to translate the resulting
vector ls parallel to P (by an integer linear combination ofA
and B) until its projection onto the plane P falls within the
unit cell spanned by A and B. This new vector, C , is then
the third super cell vector of the slab model.

The next task is to sample di�erent values of slab separa-
tions d and relative translations τ . Due to translational pe-

(a)

(b)

FIG. 2. (a) A slab of fcc that has been cleaved along the (1,1,1) plane.
The unit cell of the slab has had 3Å of vacuum inserted above the
exposed plane. The conventional unit cell of fcc is also shown for
reference. (b) Symmetric equivalence of translation vectors paral-
lel to the (1,1,1) plane of fcc. Spots with the same color correspond
to translation vectors that generate symmetrically equivalent struc-
tures.

riodicity of the crystal, only translation vectors τ within a
two-dimensional unit cell spanned by the A and B vectors
of the super cell need to be considered. One approach is to
generate a uniform grid within the unit cell of possible trans-
lation vectors τ , as is illustrated in Figure 2b for an fcc crystal
in which one half is sheared relative to another half along a
(111) plane. The two half crystals often have additional sym-
metries that make a subset of the translations τ equivalent
to each other. Symmetric equivalence between two di�erent
translation vectors τ1 and τ2 can be ascertained by mapping
the resultant crystals onto each other with a robust crystal
mapping algorithm51. Figure 2b shows the orbits of equiva-
lent translation vectors τ for fcc by assigning the same color
to all translation vectors that are equivalent by symmetry.
The choice of supercell may break some symmetries of the
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underlying crystal, making symmetric equivalence of trans-
lation vectors τ dependent on the particular supercell. For
each symmetrically distinct translation vector τ it is possible
to generate a grid of separations d over increments of ∆d.
This can be realized by adding ∆dn̂ to C while keeping the
Cartesian coordinates of the atoms within the unit cell un-
changed. The vector n̂ is a unit vector normal to the A-B
plane.

The parameterization of a generalized cohesive zone
model can occur in two steps. The �rst step is to calculate
the energy of separation over a discrete set of separations
d for each symmetrically distinct translation vector τ . The
resultant energy versus separation d relation can then be �t
to an xUBER relation, Eq 1. The parameterization of an xU-
BER relation over all symmetrically distinct translation vec-
tors τ will generate numerical values for the adjustable pa-
rameters, d0, γ, λ and αn, of the xUBER, Equation (1), over
a uniform grid of translation vectors τ . The dependence of
the adjustable parameters on τ can then be represented with
a Fourier series such as Eq. 4, thereby allowing for the accu-
rate interpolation at any translation vector τ .

B. Crystallographic models for twisted bicrystals

In addition to separation and glide, it is also possible to
twist the two halves of a bicrystal by rotating one half relative
to the other around a rotation axis, r, that is perpendicular
to P. It is increasingly recognized that interesting electronic
properties can emerge when a pair of two-dimensional mate-
rials are rotated relative to each other in this manner12–14,52.
In bulk materials, special grain boundaries, referred to as
twist boundaries, can be generated by twisting the top half
of a crystal around an axis that is perpendicular to the grain
boundary40. A challenge for electronic structure calculations
is to identify a supercell that is able to accommodate the
twisted half crystals.

A Moiré pattern emerges when a periodic two-
dimensional lattice is rotated relative to a second periodic
lattice. Figure 3a, for example, shows the emergence of a
Moiré pattern after a pair of two-dimensional triangular
lattices (brown and green) have been rotated relative to each
other by 5◦. The Moiré pattern is itself periodic, but has
lattice vectors that are usually much larger than those of the
two-dimensional lattices that have been rotated. Further-
more, the lattice of the Moiré pattern is rarely commensurate
with the lattices of the twisted half crystals. This is evident
in Figure 3a, where the lattice points of the Moiré pattern,
shown as the intersections of the grey lines, do not exactly
overlap with sites of the twisted triangular lattices shown in
brown and green. Only a subset of particular twist angles
θ produce Moiré patterns that are commensurate with the
twisted two-dimensional lattices9–11,14. The Moiré lattice can,
nevertheless, serve as a guide to identify a supercell that can
accommodate the twisted half crystals for �rst-principles
electronic structure calculations. But since the Moiré lattices
for most twist angles θ only approximately coincide with
sites of the twisted lattices, both half crystals must usually

A

B

(a)

(b)

(c)

FIG. 3. (a) Superposition of two triangular lattices in which one
(green) has been rotated 5 degrees relative to the other one (brown).
The resulting interference pattern forms the Moiré lattice. (b) The
reciprocal lattices of the two triangular lattices of (a). (c) The recip-
rocal lattice of the Moiré lattice (black vectors) can be constructed
by taking the di�erence between the reciprocal lattice vectors of the
rotated lattices (shown as gray vectors).
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be deformed slightly such that they can be accommodated
within a common supercell.

The lattice of the Moiré pattern can be determined by
working in reciprocal space. Consider a three dimensional
unit cell with lattice vectors A, B and C . Assume that the
vectors A and B form the two-dimensional lattice parallel
to the plane P (e.g. a two-dimensional triangular lattice) and
that the third vector C is perpendicular to P. The rotation
axis r is therefore parallel to C . It is convenient to work
with a 3 × 3 matrix L = [A,B,C] where each lattice vec-
tor appears as a column of L. The reciprocal lattice vectors
of the lattice L are then the column vectors of the matrix K
de�ned by

K = 2π
(
L−1

)ᵀ (6)

The application of a rotation θ to a lattice L around a rotation
axis that is parallel to C produces a lattice Lθ . The lattice
vectors of the two-dimensional Moiré pattern, M, will have a
reciprocal lattice represented by the matrix KM in which the
upper left 2×2 block is equal to the corresponding di�erence
between the reciprocal lattices of L and Lθ (i.e. [KM ]i,j =

[K]i,j − [Kθ]i,j for i, j = 1, 2) and the third axis, which is
una�ected by the rotation is the same as that of K and Kθ

(i.e. [KM ]3,3 = [K]3,3 = [Kθ]3,3). The Moiré lattice is then

M = 2π
(
K−1
M

)ᵀ (7)

This is illustrated in Figure 3b and Figure 3c for a pair of
triangular lattices. The green triangular lattice of Figure 3b
has been rotated by an angle θ relative to the brown trian-
gular lattice. The reciprocal lattice vectors of the green and
brown triangular lattices are shown in Figure 3c. The two
grey vectors in Figure 3c are the di�erences of the recipro-
cal lattice vectors of the rotated green lattice and those of the
�xed brown lattice. The grey vectors, when translated to the
origin of reciprocal space, span the unit cell of the reciprocal
lattice of the Moiré pattern. This is illustrated by the thick
black arrows in Figure 3c with the grid representing the re-
ciprocal lattice points of the Moiré lattice. (For large rotation
angles θ, it is possible that one of the reciprocal lattice vec-
tors of KM falls outside of the Wigner-Seitz cell of either K
or Kθ . In these situations, the o�ending reciprocal lattice
vector of KM must be translated back into the Wigner-Seitz
cell of either K or Kθ .)

The example illustrated by Figure 3b and Figure 3c is for a
special angle θ for which the Moiré lattice is commensurate
with the two rotated lattices. For these special angles, the
reciprocal lattice vectors K and Kθ (brown and green vec-
tors in Figure 3c) coincide with sites of the reciprocal lattice
of the Moiré lattice KM . Only a subset of twist angles pro-
duce Moiré lattices that are commensurate with the twisted
lattices14.

In general, the Moiré lattice points do not exactly coincide
with sites of either the L or Lθ lattices, as illustrated by the
example of Figure 3a for a pair of triangular lattices that have
been rotated by 5o. Nevertheless, the Moiré lattice can guide
the search for a supercell that can simultaneously accommo-
date the twisted pair of two-dimensional lattices. The �rst

task is to identify the super cells of L and Lθ that are close to
that of the Moiré lattice. A super cell of a lattice can be gen-
erated as an integer linear combination of the lattice vectors
A,B, C according to

S = LT (8)

where T is a 3×3 integer matrix and where the columns of S
contain the super cell lattice vectors. The sought after integer
matrix T is one that generates a super cell S that is closest
to that of the Moiré pattern Mθ . This can be obtained by
rounding each element of the matrix L−1Mθ to the nearest
integer. A similar matrix Tθ must be determined by rounding
the elements of L−1

θ Mθ to the nearest integer. The resulting
super cells, S = LT and Sθ = LθTθ , will usually not coin-
cide exactly. However, they can both be strained and twisted
slightly to a common supercell S̄ de�ned as the average of S
and Sθ according to

S̄ =
1

2
(S + Sθ) (9)

This supercell can be used to accommodate the twisted
bicrystal.

The amount of strain and twist needed to �t both bicrys-
tals in S̄ can be calculated as follows. The dimensions of the
bottom half of the bicrystal with superlattice S will need to
be deformed according to

FS = S̄ (10)

where F, the deformation gradient, is a 3 × 3 matrix. The
deformation gradient F can be factored into a product of a
symmetric stretch matrix U and a rotation matrix R accord-
ing to F = RU. The stretch matrix U describes the de-
formation of the crystal, while the rotation matrix R in this
situation corresponds to a rotation around C . A similar de-
formation gradient exists for the top half of the bicrystal with
FθSθ = S̄ and Fθ = RθUθ . If the rotation angles of R and
Rθ are φ1 and φ2, respectively, then the two bicrystals need
to undergo an additional relative twist of ∆θ = φ2−φ1 to �t
into S̄. The actual rotation angle when describing the twisted
bicrystal with a periodic supercell S̄ is then θ+∆θ. Hence, it
is generally not possible to realize the target twist angle of θ
when using a periodic supercell to accommodate the twisted
halves.

Information about the strains is embedded in the stretch
matrices U for the bottom half and Uθ for the top half. We
use the Biot strain de�ned as E = U− I where I is the iden-
tity matrix53. The strain is restricted to the two-dimensional
space parallel to the twist plane. We assume that this plane is
parallel to the x̂-ŷ plane of the Cartesian coordinate system
used to represent the lattice vectors. Convenient metrics of
the degree with which the two bicrystals are strained is the
square root of the sum of the squares of the eigenvalues of
the strain matrices E and Eθ (i.e.

√
λ21 + λ22 where λ1 and

λ2 are the non zero eigenvalues of the strain matrices).
A re�nement of the above approach can be used to lower

the error in the target angle ∆θ and the incurred strains.
However, the improvement comes at the cost of requiring
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FIG. 4. The Moiré lattice (gray) that emerges when a pair of triangu-
lar lattices have been rotated by 15 degrees, and one of its possible
super cells (black). By using a supercell of the Moiré lattice, it is pos-
sible to generate a crystallographic model to accommodate a twisted
bicrystal that requires less deformation.

larger super cells. Instead of identifying super cells S and
Sθ of the lattices L and Lθ that are as close as possible to the
Moiré lattice M, the super cells S and Sθ can be matched to
super cells of M. This is illustrated in Figure 4 for a pair of
triangular lattices that are being rotated by a target angle of
θ = 15◦. When matching super cells S and Sθ to the Moiré
lattice M itself, as described above, the actual twist angle is
θ = 12.117◦. In contrast, when matching the super cells S
and Sθ to a

√
3a×

√
3a supercell of the Moiré lattice M the

actual rotation angle becomes 14.911◦, which is much closer
to the target angle of 15◦. However, the common super cell
that accommodates the twisted bicrystal is three time larger.
There are special twist angles for which super cells of their
Moiré lattice can be found that are commensurate with the
under lying lattices of the bicrystals. For these special twist
angles ∆θ and the strain order parameters will be zero. Fig-
ure 5 plots the number of triangular lattice unit cells that are
needed in the super cells of a subset of commensurate twist
angles. It is clear that very large super cells are necessary for
most commensurate twist angles.

IV. MULTISHIFTER

The MultiShifter software package constructs crystal-
lographic models of extended two-dimensional defects that
separate a pair of bicrystals as described in the previous sec-
tion. This includes crystallographic models to parameterize
generalized cohesive zone models such as Eq. 1 and crystal-
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FIG. 5. Number of triangular lattice sites within the super cells of
bilayers with a commensurate twist angle.

lographic models of twisted bicrystals. Figure 6 illustrates a
schematic �owchart of MultiShifter.

The �rst step of the MultiShifter work�ow is to con-
struct the slab building blocks. The user provides the primi-
tive cell of a crystal (prim in Figure 6) and the Miller indices of
the crystallographic plane P. In the slice step, MultiShifter
constructs the thinnest supercell of prim with lattice vectors
A and B parallel to the plane P and the shortest vector C
that is not in the planeP. The resulting super cell contains the
slab unit (Figure 6) that constitutes the fundamental build-
ing block of subsequent crystallographic models. The slab
unit must next be made thicker when modeling three dimen-
sional materials or stacked when modeling the twist of two-
dimensional materials. The slab thickness is increased based
on user input. This occurs with the stack step. Depending
on the basis of the crystal, an additional translate may be
required, where the basis atoms in the slab unit are rigidly
shifted, changing the position through which the plane P
penetrates the crystal. For example, when exploring the glide
of CoO2 sheets in a layered battery material such as LiCoO2,
P should extend between the oxide layers, not through them.

At this point, the MultiShifter work�ow diverges into
two tracks. The �rst (right arrows), generates crystallo-
graphic models of crystal cleavage and glide with respect to
a plane P. A list of separations d is speci�ed (cleave) and for
each of these separations a second grid of glide vectors τ may
be enumerated (shift). Symmetrically equivalent translation
grid points are tagged as such. Directories with input �les
for the VASP54–57 �rst-principles electronic structure soft-
ware package are then generated. Upon completion of static
electronic structure calculations, a list of �rst-principles en-
ergies are available to paramaterize a generalized cohesive
zone model.

An alternative to the imposed regular grid of translation
vectors is to use the mutate step. With this approach, a single
custom structure that has been shifted by an arbitrary vector
τ and separated by a custom value d from its periodic image
is created.
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FIG. 6. Flowchart of the possible MultiShifter commands

A second track in the MultiShifter work�ow (left ar-
rows) generates crystallographic models of twisted bicrys-
tals. Here the user provides a target twist angle θ and a max-
imum number of two-dimensional unit cells for the super cell
that will accommodate the twisted bicrystals. MultiShifter
next determines the Moiré lattice and then identi�es the su-
per cells of two bicrystals that best match a super cell of the
Moiré lattice. A crystallographic model is output along with
the actual twist angle θ + ∆θ and values of the strain order
parameters η1, η2 and η3. When twisting a pair of bicrystals
within a unit cell constrained by periodic boundary condi-
tions (including the C axis) two interfaces are necessarily
introduced. One is the twist interface of interest, while the
other is usually separated by a large slab of vacuum. For two-
dimensional materials, the vacuum is not necessarily a draw-
back. For twist grain boundaries, however, the thicknesses
of the twisted slabs should be su�ciently large such that the
free surfaces in contact with vacuum do not a�ect the energy
and electronic structure of the twist boundary.

V. EXAMPLES

A. Cohesive zone models of simple metals

As an illustration of a generalized cohesive zone model,
we consider cleavage and glide with respect to a (111) plane
of fcc Al. Figure 7a shows the energy of an Al crystal as it is
cleaved along a pair of neighboring (111) planes for three dif-
ferent translational shifts τ . The points were calculated with
density functional theory (DFT) within the generalized gra-
dient approximation (GGA-PBE) using the VASP plane wave
code54–59. The projector augmented wave (PAW) method58

was used with a plane-wave energy cuto� of 520 eV. K-points
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FIG. 7. (a) Energy versus separation of fcc Al as the crystal is sep-
arated between a pair of adjacent (111) planes as calculated using
the super cell shown in Figure 2a. The dashed lines represent UBER
�ts through the �rst-principles (DFT) data points. Separation curve
for perfect fcc, a stacking fault, and a translation that places a pair
of adjacent (111) planes directly on top of each other are shown in
blue, orange, and green respectively. (b) Energy of the same Al su-
per cell as a function of glide parallel to the (111) plane evaluated
at the d0 separation for each glide vector. (c) The value of d0 as a
function of glide (relative to the equilibrium separation of fcc Al).
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were generated using a fully automatic mesh with a length
parameter Rk = 50 Å−1. The UBER form of Eq. 1 was �t
through the DFT points and is shown as dashed lines in Fig-
ure 7a. As is clear from Figure 7a, the UBER curve is able to
�t the DFT data very well. The blue points in Figure 7a reside
on the energy versus separation curve for perfect fcc corre-
sponding to τ = 0. The di�erence in energy at d0, where the
curve has a minimum, and the energy for large separations
corresponds to the surface energy 2γ. The energy versus
separation curve when separating pairs of (111) planes that
form a stacking fault corresponding to τ = 1/3A+ 1/3B is
very similar, as is evident by the orange points in Figure 7a,
although the minimum is not as deep and the equilibrium
spacing d0 is slightly shifted to a larger distance. The ener-
gies of separation for a translation that puts atoms of adja-
cent (111) planes directly on top of each other (green points
in Figure 7a) is also very well described with an UBER curve.
The minimum is at a much higher energy compared to other
translations.

By performing similar DFT calculations over a uniform
grid of symmetrically distinct translation vectors, it becomes
possible to express the τ dependence of the adjustable pa-
rameters of the UBER curve as a Fourier series. Figure 7b,
for example shows the dependence of 2γ on the translation
τ . It exhibits the periodicity of the (111) plane of fcc Al, with
the global minima corresponding to perfect fcc and the other
minima corresponding to stacking faults. Figure 7c shows the
dependence of the equilibrium separation, d0, between two
half crystals of fcc Al as a function of τ . This plot looks very
similar to the 2γ surface of Figure 7b, with the minimum in
d0 coinciding with the fcc stacking and the maximum in d0
coinciding with a stacking for which a pair of adjacent (111)
planes are directly on top of each other.

While slip in fcc predominantly occurs on (111) planes,
there are often multiple slip planes in more complex crystal
structures such as hcp. Figure 8a schematically shows two
slip planes in hcp: basal slip, prismatic slip and pyramidal
slip. Each plane has a di�erent periodicity. Figure 8b and
�g. 8c shows the energy at �xed spacing d for the pyrami-
dal and prismatic slip planes of hcp Mg. The DFT method to
calculate these energy surfaces was the same as that used for
Al in Figure 7, except that a plane wave cuto� of 650 eV was
used.

B. Crystallographic models of twisted two-dimensional
materials: triangular lattices and honeycombs

MultiShifter facilitates the construction of crystallo-
graphic models of twisted two-dimensional materials. As de-
scribed in section III B, most twist angles θ do not produce
structures that have periodic boundary conditions. The im-
position of periodic boundary conditions, therefore, requires
an adjustment of the target twist angle θ by ∆θ and some
degree of strain within the twisted two-dimensional build-
ing blocks. We explore the variation in the error ∆θ in the
target twist angle and the strain within the twisted build-
ing blocks due to the imposition of periodic boundary con-
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FIG. 8. (a) Di�erent slip planes of an hcp crystal. (b) The energy of
hcp Mg as a function of glide parallel to the pyramidal plane eval-
uated at d0 for each glide vector. (c) The energy of hcp Mg as a
function of glide parallel to the prismatic plane evaluated at d0.
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ditions for a pair of triangular lattices. This is of relevance
for two-dimensional materials such as MoS2 and graphene
since their two-dimensional lattices are triangular. Of inter-
est is the variation of ∆θ and strain with twist angle θ and
maximum super cell size.

MultiShifter determines the best super cell for a twisted
bicrystal with target twist angle θ that is smaller than a user
speci�ed maximum. The "best" super cell is de�ned as the su-
per cell that minimizes

√
λ21 + λ22, where λ1 and λ2 are the

non-zero eigenvalues of the strain matrix. This strain metric
is equal to zero for super cells that are commensurate with the
lattices of the twisted bicrystal. The size of a super cell is mea-
sured in terms of the number of primitive two-dimensional
unit cells of the fundamental slab building blocks.

Figure 9 and Figure 10 shows ∆θ and
√
λ21 + λ22 as a func-

tion of θ for two scenarios. The error ∆θ versus θ of Fig-
ure 9a is for super cells that were generated using the prim-
itive Moiré lattice only. For small angles close to zero, the
absolute error is small, however, for larger angles, the error
∆θ can be very large. The black circles correspond to an-
gles for which there is a commensurate super cell that can
accommodate the twisted pair of bicrystals. As is evident in
Figure 9a, the primitive Moiré lattice is not su�ciently large
to identify the commensurate super cell for those special an-
gles, as a large fraction of them have large errors ∆θ. Simi-
larly, the strain for super cells generated using the primitive
Moiré lattice is also large as shown in Figure 10a. Figure 9b
plots ∆θ versus θ as determined by considering super cells
of the Moiré lattice to identify the optimal super cell of the
twisted bicrystals. A cap of 1000 primitive unit cells was used
for Figure 9b and Figure 10b. The error in the target angle
∆θ is dramatically reduced and almost all special angles for
which commensurate super cells exist now have an error ∆θ
equal to zero, indicating that all commensurate super cells
have been found.

VI. DISCUSSION AND CONCLUSION

Two-dimensional defects in bulk crystals play an out-sized
role in determining the properties of many crystalline mate-
rials. The energy of two-dimensional extended defects are a
crucial ingredient to a variety of meso-scale models of frac-
ture and dislocations25–32,35,39. The information of relevance
for such models can be encapsulated in a generalized cohe-
sive zone model that describes the energy of a pair of bicrys-
tals as a function of the perpendicular separation and parallel
glide of a pair of crystallographic planes. In this paper, we
have described how such a generalized cohesive zone model
can be formulated and how crystallographic models can be
constructed for the �rst-principles electronic structure cal-
culations that are needed to parameterize the cohesive zone
model. The MultiShifter code automates the construction
of periodic crystallographic models of decohesion and glide.
It can also be used to generate crystallographic models for
surface calculations. However, with the exception of the sim-
plest materials, most surfaces undergo surface reconstruc-
tions to eliminate dangling bonds. This requires an additional
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FIG. 9. (a) The error ∆θ in the target rotation angle when using the
Moiré lattice to determine the cell of the twisted bicrystal. (b) By
considering super cells of the Moiré lattice to identify the cell of the
twisted bicrystal, it is possible to dramatically reduce the error ∆θ.
A cap of 1000 triangular lattice sites was imposed when enumerat-
ing super cells of the Moiré lattice. The black circles correspond to
twist angles for which commensurate super cells exist.

enumeration step48.
Twisted two-dimensional materials are currently attract-

ing much attention due to the promise of emergent electronic
properties in such structures14. We have described an ap-
proach to construct crystallographic models of twisted bilay-
ers within periodic unit cells. Only a subset of twist angles
generate bilayer structures that are periodic. For all other
angles, the imposition of periodic boundary conditions re-
sults in an error in the target twist angle and some degree
of strain within the constituent bilayers. MultiShifter con-
structs these crystallographic models and quanti�es the twist
angle error and the strain.

In the construction of cohesive zone models, a question
often arises as to whether to allow for relaxations or not.
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FIG. 10. (a) The strain (as measured with
√
λ2
1 + λ2

2, where λ1 and
λ2 are the non-zero eigenvalues of the strain matrix) as a function
of the target twist angle θ when using the Moiré lattice to gener-
ate the cell of the twisted pair of triangular lattices. (b) The strain
when using super cells of the Moiré lattice to generate the cell of the
twisted triangular lattice (a cap of 1000 triangular lattice sites was
imposed). The black circles correspond to twist angles for which
commensurate super cells exist.

When including relaxations, it is important to carefully ex-
tract the energy of homogeneous elastic relaxations of the
adjacent slabs since the cohesive zone model should only de-
scribe the energy between the cleaved planes. These sub-
tleties are discussed in great detail in18,47. For simple metals,

empirical evidence suggests that relaxations do not need to
be explicitly taken into considerations when parameterizing
a cohesive zone model for decohesion18,47.

Many applications require a generalized cohesive zone
model for a multi-component solid. The cohesive zone model
will then not only depend on the local concentration, but
also on the local arrangement of di�erent chemical species.
This dependence can be accounted for with the cluster expan-
sion approach43,60 as has been done in the context of hydro-
gen embrittlement18 and fracture in Li-ion battery electrode
materials61. Often cohesive zones must be treated as open
systems to which mobile species can segregate and thereby
alter cohesive properties. In these circumstances it is conve-
nient to formulate cohesive zone models at constant chemical
potential as opposed to constant concentration18,20,24 A clus-
ter expansion approach has also been used to describe the
dependence of the γ surface on composition and short-range
ordering in a refractory alloys62.

In summary, MultiShifter is a code that automates the
construction of crystallographic models within periodic unit
cells to enable the construction of cohesive zone models and
the study of twisted bilayers of two-dimensional materials
with �rst-principles electronic structure methods. Multi-
Shifter can also be used to construct models with highly
distorted local environments that are representative of dis-
locations, grain boundaries and surfaces for the purposes of
training machine learned inter-atomic potentials.

VII. ACKNOWLEDGEMENT

The scienti�c work in this paper was supported by
the National Science Foundation DMREF grant: DMR-
1729166 “DMREF/GOALI: Integrated Computational Frame-
work for Designing Dynamically Controlled Alloy -Oxide
Heterostructures”. Software development was supported by
the National Science Foundation, Grant No. OAC-1642433.
Computational resources provided by the National Energy
Research Scienti�c Computing Center (NERSC), supported
by the O�ce of Science and US Department of Energy under
Contract No. DE-AC02-05CH11231, are gratefully acknowl-
edged, in addition to support from the Center for Scienti�c
Computing from the CNSI, MRL, and NSF MRSEC (No. DMR-
1720256).

VIII. DATA AVALIABILITY

The data used as an example for the application of Multi-
Shifter cannot be shared at this time due to time limitations.

∗ avdv@ucsb.edu
1 F. Dross, J. Robbelein, B. Vandevelde, E. Van Kerschaver, I. Gor-

don, G. Beaucarne, and J. Poortmans, Applied Physics A 89, 149
(2007).

2 C. A. Sweet, K. L. Schulte, J. D. Simon, M. A. Steiner, N. Jain, D. L.
Young, A. J. Ptak, and C. E. Packard, Applied Physics Letters 108,
011906 (2016).

mailto:avdv@ucsb.edu


11

3 J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park,
R. Zhao, S. Sundaram, X. Li, et al., Science 362, 665 (2018).

4 M. D. Radin, J. Alvarado, Y. S. Meng, and A. Van der Ven, Nano
letters 17, 7789 (2017).
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