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Abstract

Worldwide urbanization demands for a deeper understanding of epidemic
spreading within urban environments. Here, we tackle this problem through an
agent-based model, in which agents move in a two-dimensional physical space
and interact according to proximity criteria. The planar space comprises several
locations, which represent bounded regions of the urban space. Based on
empirical evidence, we consider locations of different density and place them in a
core-periphery structure, with higher density in the central areas and lower
density in the peripheral ones. Each agent is assigned to a base location, which
represents where their home is. Through analytical tools and numerical
techniques, we study the formation mechanism of the network of contacts, which
is characterized by the emergence of heterogeneous interaction patterns. We put
forward an extensive simulation campaign to analyze the onset and evolution of
contagious diseases spreading in the urban environment. Interestingly, we find
that, in the presence of a core-periphery structure, the disease spread is not
affected by the time agents spend inside their base location before leaving it, but
it is influenced by their motion outside their base location: a strong tendency to
return to the base location favors the propagation of the disease. A simplified
one-dimensional version of the model is examined to gain analytical insight into
the spreading process and support our numerical findings. Finally, we investigate
the effectiveness of vaccination campaigns, supporting the intuition that
vaccination in central and dense areas should be prioritized.

Keywords: Agent-based model; core-periphery structure; epidemics; mobility;
temporal network

1 Introduction
The number of people living in urban areas has already exceeded 4 billions and it is

estimated to reach 7 billions by 2050 [1]. Global urbanization poses new challenges

in different sectors, ranging from transportation to energy supply, to environmental

degradation and healthcare [2]. Among these challenges, understanding how urban

environments shape the evolution of epidemic outbreaks and how designing effec-

tive containment strategies have recently drawn a lot of attention from researchers

and media. Paradigmatic are the examples of recent outbreaks, such as the 2003

SARS [3], 2012 MERS [4], and 2019–20 COVID-19 [5].

Analyzing how diseases spread within urban environments has been the topic

of various experimental and theoretical studies [6, 7, 8, 9, 10, 11]. Experimental

studies have offered a detailed analysis of urban environments [6, 7], suggesting
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specific preventive measures for both urban residents and travelers [8]. Theoretical

studies have provided insights on how to contain outbreaks [9], as well on possible

key drivers of contagion, such as the role of human mobility patterns [10] and socio-

economical risk factors [11].

Despite the importance of urban environments in the global diffusion of dis-

eases [12], how epidemic outbreaks unfold therein is yet to be fully elucidated. Some

attempts to mathematically describe the diffusion of diseases within and among

cities can be found in metapopulation models [13, 14, 15]. In these models, a fixed

network of spatial localities is used to model the mobility patterns between cities,

where homogeneously-mixed populations suffer from the epidemic process. While

metapopulation models can be, at least partially, tackled through analytical meth-

ods [13, 14, 15], considerable experimental evidence challenges the assumption of

homogeneously-mixed populations, which could yield misleading estimates of the

extent of epidemic outbreaks [16].

On the other side of the spectrum of epidemic models, agent-based mod-

els [9, 17, 18] constitute a valuable framework to offer a realistic description of

how diseases diffuse within urban environments. However, this advantageous fea-

ture is accompanied by some drawbacks, including the need of mobility data and

models, the use of massive computational resources when the system size scales up,

and the lack of analytical techniques for model characterizations. A viable approach

to agent-based modeling is based on two-dimensional representations, where agents

move and interact according to proximity criteria [19, 20, 21, 22, 23, 24, 25, 26]. As

a first approximation, the motion of the agents can be described according to a ran-

dom walk with sporadic long range jumps [19]. Building on this approximation, it

is possible to include realistic features such as nonhomogeneous infection rates [20]

and heterogeneous radii of interaction [22, 23]. Much work is needed, however, to

fully capture and describe realistic patterns of human mobility, which are shaped

by the complex structure of urban environments [27].

Here, we contribute to the field of agent-based modeling by presenting a two-

dimensional model that is capable of reproducing a spatially inhomogeneous urban-

like environment, in which a heterogeneous population follow realistic rules of mo-

bility. Inspired by previous theoretical studies [22, 23], we assume that agents have a

heterogeneous radius of interaction, which accounts for variations among individuals

in their involvement in social behavior and activities.

We consider a urban-like environment composed of multiple locations, each of

them representing a well-defined region of the urban space (that is, a neighbor-

hood of a city). Through this spatial organization, our model is able to encapsu-

late two key features of urban environments: first, it can reproduce typical core-

periphery structures, where central regions are more densely populated than pe-

ripheral ones [28, 29]; and, second, it allows to mimic the inhomogeneity in move-

ment patterns of humans, where people tend to spend most of their time in a few

neighborhoods — for example, experimental studies suggest that individuals spend

most time either at home or at work, while only sporadically visit other neigh-

bors [30, 31, 32].

To reproduce realistic conditions for agents’ mobility, we posit two different mo-

bility schemes, applied within and outside the agents’ base location (that is, where
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their home is). While the homogeneous mixing assumption seems reasonable within

the agents’ base location, we assume that agents tend to move outside of their base

location following a gravity model and a biased random walk. Hence, agents are

more likely to explore regions close to their base location rather than remotely-

located regions [30, 31, 32]. From this mobility pattern, we construct a network of

contacts, whose topology is examined in this study. Through some mathematical

derivations an numerical simulations, we seek to identify analogies between the pro-

posed agent-based model and existing temporal network approaches, where spatial

mobility is lumped into nodal parameters [33, 34, 35, 36, 37].

We adopt the proposed framework to study how urban-like environments shape

the diffusion of infectious diseases, using the illustrative epidemic progression mod-

els with the possibility of reinfection (susceptible–infected–susceptible, or SIS) or

permanent removal (susceptible–infected–removed, or SIR) [38]. Our results confirm

the intuition that agents’ density plays a critical role on diffusion of both SIS and

SIR processes. In the limit case where the entire urban area consists of one loca-

tion, agents that move outside the location only seldom interact with other agents,

thereby hindering the contagion process.

In the more realistic scenario of a core-periphery structure with multiple locations,

we unexpectedly find that the time spent by agents in their base location does not

influence the endemic prevalence in the SIS model and the epidemic size in the SIR

model, which are measures of the overall fraction of population that is affected by

the disease. A possible explanation for this counterintuitive phenomenon may be

in the agents’ mobility rules. In fact, commuting patterns that bring agents from

central areas to peripheral ones may yield a reduction in the diffusion in the central

areas. Contrarily, commuting patterns from peripheral to central areas lead to the

opposite effects. To detail the inner working principles of this unexpected result, we

present a minimalistic one-dimensional version of the model, which is amenable to

a complete analytical treatment.

We also explore the interplay between the agents’ radius of interaction and their

positioning in the core-periphery structure. We find that when agents’ with greater

radii are assigned to the less dense and peripheral locations, then the endemic preva-

lence (in the SIS model) and the epidemic size (in the SIR model) strongly decrease

with respect to a random assignment. Moreover, when agents’ with greater radii

are assigned to denser (and central) locations the fraction of population affected by

the disease is not sensibly increased. In real cities, our results support the intuition

that more central areas are the crossroads of individuals commuting in a city and

are critical for the spread of diseases.

Finally, we numerically analyze the effect of targeted vaccination strategies, which

consist of immunizing a portion of the population in a specific location, prior to the

disease onset. Consistent with the intuition that central locations play a key role on

the spread of epidemic diseases, we find that the best strategy is to prioritize the

vaccination of agents belonging to central urban areas.

The rest of the manuscript is organized as follows. In Table 1, we summarize

the notation and the nomenclature used throughout the paper. In Section 2, we

introduce the model of agents’ mobility. In Section 3, we describe and analyze

the temporal network formation mechanism. In Section 4, we numerically study the
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spread of epidemic diseases and compare several vaccination strategies. In Section 5,

we discuss our main findings and propose further research directions.

2 Model
We consider N ≥ 1 agents (also called agents), labeled by positive integers V :=

{1, . . . , N}, moving in a square planar space with side length D > 0 and with

periodic boundary conditions, similar to [19]. The position of agent i ∈ V at the

discrete time t ∈ Z≥0 in a Cartesian reference is denoted by (xi(t), yi(t)) ∈ [0, D]×
[0, D].

2.1 Urban-like environment

We deploy the N agents over L locations, each of them representing a bounded

portion of the square space. The set of all locations is L = {1, . . . , L} and each

location ` ∈ L occupies a convex region of the planar space Ω` ⊂ [0, D]× [0, D] with

area A`. We assume that all the locations are mutually disjoint and we order them

in ascending order according to their area, that is, A1 ≤ · · · ≤ AL. We hypothesize

that AL � D2, that is, each location is much smaller than the whole square space.

Each agent is assigned a specific, base location (that is, their home) according to

a map: β : V −→ L; we assume that each base locations is associated with the

same number of agents, n = N/L [1]. As a result, the density of agents assigned to

location `,

ρ` :=
n

A`
, (1)

varies with the location. Note that locations are sorted in descending order of den-

sity, that is ρ1 ≤ · · · ≤ ρL.

For simplicity, in the numerical simulations implemented throughout this paper,

the convex regions are taken as circles with nondecreasing radii Σ1 ≤ · · · ≤ ΣL.

Inspired by empirical and theoretical studies [28, 29, 39, 40], radii of the locations

are extracted from a power law distribution so that P [Σ` = Σ] ∼ Σ−γ (where P [·]
indicates probability), with bilateral cutoffs such that Σ` ∈ [Σmin,Σmax], for any

` ∈ L. The presence of cutoffs guarantees that all locations can be fit in the squared

space and allows for setting an upper bound on the maximum density (consistently

with real-world applications). Note that, since the radii are power law distributed

with exponent −γ, also the areas of the locations are power law distributed with

exponent −2γ with cutoffs such that A` ∈ [πΣ2
min, πΣ2

max].

Empirical studies on urban environments suggest that cities are constructed ac-

cording to a core-periphery structure, whereby locations with smaller areas and

denser population are located in their center, while locations with larger areas and

sparser population pertain to peripheral areas [28, 29], as shown in Fig. 1 (a). We

implement a heuristic algorithm to generate a locations’ layout according to a core-

periphery structure and qualitatively reproduce empirical results. Figure 1 (b) shows

the output generated by our algorithm, whose structure is qualitatively consistent

with the empirical observations reported in Fig. 1 (a). Details of the algorithm used

to create such a core-periphery structure are presented in Appendix A.

[1]We consider that N is a multiple of L.
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In this paper, unless otherwise specified, we consider that the n members of each

location are randomly chosen, independently of their radius of interaction. We also

examine the cases in which there is a correlation (positive or negative) between

the agents’ radius of interaction and the density in their base location: a positive

correlation means that agents with larger radius are assigned to denser (central)

locations, while a negative correlation identifies the case in which agents with larger

radius are placed in the less dense (peripheral) locations.

2.2 Law of motion

Agents’ positions evolve in time according to a discrete-time dynamics. Hence, their

positions are updated at each discrete time-step t ∈ Z≥0. The law of motion of the

generic agent i depends on whether it is outside or inside its base location β(i) ∈ L.

If agent i ∈ V is outside its base location, that is, (xi(t), yi(t)) /∈ Ωβ(i), it performs

a biased random walk toward its base location[2]; on the contrary, if it is inside its

base location, it can move to a random position (within its base location), or exit

according to a probabilistic mechanism.

Specifically, if the agent is not in its base location, thenxi (t+ 1) = xi(t) + v cos θi(t) ,

yi (t+ 1) = yi(t) + v sin θi(t) .
(2)

Here, v > 0 is the (constant) speed and θi(t) is an angle, determined as follows:

θi(t) := Φi(t) + α∆θit , (3)

where Φi(t) is the direction of the shortest path from (xi(t), yi(t)) to the region Ωβ(i);

∆θit is a random variable with values uniformly distributed in [−π, π), extracted

at every time t and for every agent i independently of the others; and α ∈ [0, 1] is

a randomness parameter that regulates how much the agents tend to deviate from

the shortest path to return to the base location, when they are outside it. When

α = 1, the agent moves completely at random, while, when α = 0, it moves along

the shortest path toward its location. The direction Φi(t) is formally defined by

introducing

(x̄i(t), ȳi(t)) := arg min
(x,y)∈Ωβ(i)

{(
xi(t)− x

)2
+
(
yi(t)− y

)2}
, (4)

so that

Φ(t) :=



arctan
ȳi(t)− yi(t)
x̄i(t)− xi(t)

if x̄i(t) > xi(t) ,

π + arctan
ȳi(t)− yi(t)
x̄i(t)− xi(t)

if x̄i(t) < xi(t) ,

+
π

2
if x̄i(t) = xi(t) and ȳi(t) > yi(t) ,

−π
2

if x̄i(t) = xi(t) and ȳi(t) < yi(t) .

(5)

[2]The distance between a point and a set is defined as the minimum Cartesian

distance between the point and a generic point of the set.
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When the agent is in its base location, (xi(t), yi(t)) ∈ Ωβ(i), the law of motion

is defined as follows. Given a parameter p ∈ [0, 1] (constant in time and equal for

all agents), with probability 1− p, the agent moves to a position chosen uniformly

at random within its base location, so that its position is completely uncorrelated

with the previous one. Otherwise, with probability p, the agent jumps outside its

base location, ending in a position of the remaining space according to a distance

decay law. In particular, we assume that the probability of jumping at a distance d

from the border of the base location decays exponentially, that is,

Pjump(d) ∼ e−cd , (6)

where the constant c > 0 is the decay rate. Specifically, the expected distance at

which an agent jumps is equal to 1/c. A sensible choice of the exponent in the law in

Eq. (6) yields a typical behavior observed in many empirical studies [41, 42], whereby

agents tend to gravitate within and around their base location, while sporadically

initiating journeys toward further locations [43]. Two salient snapshots of agents’

motion are illustrated in Figs. 2 (a) and 2 (c).

3 Temporal network of contacts
Upon the mobility model, we construct the network of contacts, which is the means

through which the disease spreads. In this vein, agents create undirected temporal

links based on proximity with other agents. Specifically, agent i ∈ V contacts all

other agents located within a circle of radius σi centered in its current position

(xi(t), yi(t)). We assume that agents have heterogeneously distributed radii, ex-

tracted from a power law G(σ) ∼ σ−ω, with suitable cutoffs so that σ ∈ [σmin, σmax].

An undirected temporal link between two agents i and j is created when the

Euclidean distance at time t between the position of agent i, (xi(t), yi(t)), and the

position of agent j, (xj(t), yj(t)), is less than or equal to the maximum of the two

radii σi and σj , that is,√(
xi(t)− xj(t)

)2
+
(
yi(t)− yj(t)

)2 ≤ max{σi, σj} . (7)

Figures 2 (b) and 2 (d) show two consecutive instances of the network formation

process. Toward modeling of epidemics in urban environments, our model allows

agents inside a location to interact with agents outside the location, see, for example,

agents 2 and 3 in Figs. 2 (a) and 2 (b).

The intricacy of the motion patterns and the nonsmooth process for generating

the network of contacts hinder the analytical tractability of the model in its general

formulation. However, for some cases it is possible to establish analytical insight

on some model features. For example, it can be possible to analytically study the

number of connections generated by the nodes, which represent potential paths

of infection throughout the population. We examine two special cases: either in

a free space, without any location (L = 0), or when the law of motion of the

agents outside their base locations is deterministic (α = 0) and the locations are

uniformly distributed in the plane. The general case of a core-peripheral structure

and stochasticity in the motion out of the location is treated through numerical

simulations.
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3.1 Analytical results on two special cases

We begin our analysis by considering the special case of a free space, that is, L = 0,

where agents perform simple random walks with constant velocity in the plane. In

this scenario, Eq. (3) should be intended without the component associated with

the location Φi(t) and with α = 1.

According to Eq. (7), at time t, agent i creates undirected interactions with the

agents that are located within a circle of radius σi about its position. Since all

the agents move according to an unbiased random walk, when the system is in its

steady state, the expected fraction of agents within the circle is proportional to the

ratio between the area of the circle and the whole planar space. We denote such a

quantity as

E
[
k+
i

]
=
πσ2

i

D2
(N − 1) , (8)

where E[·] indicates expectation.

Further, agent i can form undirected interactions with other agents if it is located

within their radii of interaction. To avoid double counting and exclude connections

that are in Eq. (8), the radius of j should be greater than the one of i, and i should

be in the circular crown centered in the location of j, between the circles of radius

σi and σj . The probability of such an event is estimated as π(σ2
j − σ2

i )/D2. Let us

introduce the set Ci of agents with radius of interaction greater than σi and let us

define 〈σ2〉i = |Ci|−1
∑
j∈Ci σ

2
j as their average square radius. The expected fraction

of connections formed by agent i with other agents beyond those included in Eq. (8)

is

E
[
k−i
]

=
1

D2
π
∑
j∈Ci

(σ2
j − σ2

i ) =
π

D2
|Ci|
(
〈σ2〉i − σ2

i

)
. (9)

By summing Eqs. (8) and (9), we conclude that the average number of agents

that an agent interacts with in a unit time, termed its average degree ki, is equal

to

E
[
ki
]

= E
[
k+
i

]
+ E

[
k−i
]

=
π

D2

(
(N − 1)σ2

i + |Ci|
(
〈σ2〉i − σ2

i

))
. (10)

In the limit of large systems, N →∞, we approximate

|Ci| ≈ (N − 1)
σ1−ω
i − σ1−ω

max

σ1−ω
min − σ

1−ω
max

(11)

and

〈σ2〉i ≈
(ω − 1)(σ3−ω

max − σ3−ω
i )

(3− ω)(σ1−ω
i − σ1−ω

max )
. (12)

Details on the derivation of Eqs. (11) and (12) can be found in Appendix B. Sub-

stituting these expressions in Eq. (10), the expected degree of node i in the limit of
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large systems reads

E
[
ki
]
≈ (N − 1)π

D2

((
1− σ1−ω

i − σ1−ω
max

σ1−ω
min − σ

1−ω
max

)
σ2
i +

(ω − 1)(σ3−ω
max − σ3−ω

i )

(3− ω)(σ1−ω
min − σ

1−ω
max )

)
. (13)

Note that when the agent radius is close to the minimum, that is, σi ≈ σmin,

Eq. (13) is dominated by the second term, while when the agent radius is close to

the maximum, that is, σi ≈ σmax, the right hand side of Eq. (13) scales as with σ2
i .

Now, we consider the limit case in which agents move straight toward their base

location, that is, α = 0, and we assume that locations are uniformly distributed in

the planar space. We observe that the system is ergodic [44] and the steady-state

probability that a agent is inside its own base location is equal to

qin := lim
t→∞

P
[
(xi(t), yi(t)) ∈ Ωβ(i)

]
=

1

1 +
pecv

ecv − 1

=
ecv − 1

ecv (1 + p)− 1
. (14)

The derivation of Eq. (14) is reported in Appendix B. When the system reaches

its stationary state, the number of agents in location ` is equal to the sum of two

contributions. The first one consists of agents whose base location is Ω` and are in

that location, that is, on average, nqin. The second one is due to agents whose base

location is not Ω`, but are in Ω`. The second contribution is relatively small since

locations are placed randomly in the entire space D × D, and we discard it when

the system is large.

The steady-state density in location ` can be approximated by considering only

the agents assigned to it. Hence, the expected number of connections of agent i

within its base location is approximated by

E [kin,i] ≈
qin

πΣ2
`

π
(

(n− 1) qinσ
2
i + |Ci,`|qin

(
〈σ2〉i,` − σ2

i

))
, (15)

where Ci,` and 〈σ2〉i,` are the set of nodes with radius greater than σi in loca-

tion ` and their average square radius, respectively. In the limit of large systems

and assuming the distribution of the radii of interaction to be independent of the

agents’ base locations, then |Ci,`| ≈ n−1
N−1Ci and 〈σ2〉i,` ≈ 〈σ2〉i. Combining Eqs. (11)

and (12) into Eq. (15), we obtain

E [kin,i] ≈
q2
in

πΣ2
`

(n−1)π

(
σ2
i +

σ1−ω
i − σ1−ω

max

σ1−ω
min − σ

1−ω
max

(
(ω − 1)(σ3−ω

max − σ3−ω
i )

(3− ω)(σ1−ω
i − σ1−ω

max )
− σ2

i

))
. (16)

When a core-periphery structure is present, as in Fig. 1, locations are not uni-

formly distributed in space and often are close to each other. For instance, a central

location ` is surrounded by other locations and interactions generated by agents

whose base location is not Ω` cannot be neglected. This case is discussed in the

following, by means of numerical simulations.
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3.2 Numerical results

We conclude this section with some numerical simulations to validate our analytical

findings and explore the more general case of multiple locations arranged in a core-

periphery structure. In our numerics, we estimate the agents’ average degree by

averaging all the interactions recorded over a sufficiently long time window (T � 1,

where T is the duration of the observation).

In Fig. 3 (a), we consider the case without locations. Our numerical results are

consistent with our analytical prediction in Eq. (13), that is, agents with a greater

radius of interaction have a greater average degree. In Fig. 3 (b), we examine the case

of multiple locations uniformly distributed in a vast space. From Eq. (16), we observe

that E[kin,i] is inversely proportional to the square of the radius of location β(i).

In Fig. 3 (b), we multiply the numerical estimation of each agents’ average degree

by the corresponding location’s squared radius, to allow a graphical representation

of the comparison between numerical estimations and analytical predictions. Once

again numerical results are in close agreement with analytical findings from Eq. (16).

In order to offer insight into the influence that a core-periphery structure has on

the agents’ average degree, we analyze three different scenarios. First, we study the

case in which agents are strongly tied to their base location, such that they have

low probability of jumping outside their base location (small p) and low probability

of deviating from the shortest path to return to the base location, when they are

outside (small randomness α), in Fig. 4 (a). Second, we examine the case in which

the probability of jumping outside their base location and the agents’ randomness

in the random walk are intermediate, in Fig. 4 (b). Finally, we investigate the case

in which agents tend to spend most of their time outside their base location (large

p and α), in Fig. 4 (c).

In general, we observe that agents with larger radius of interaction have a larger

average degree. More specifically, we note that, among the agents with small radius

of interaction, the agents that are assigned to central locations have a larger average

degree than agents with small radius of interaction that are assigned to peripheral

locations. This result is independent of the time spent outside their base location

(that is, independent of p and α). Interestingly, the same argument does not apply

when agents have a large radius of interaction. In this situation, agents assigned

to peripheral locations may have a greater degree than agents assigned to central

ones because their high radius of interaction allows a multitude of interactions,

independently from the position of their base location.

Further, we comment that time spent outside the base location (regulated by p and

α) is inversely proportional to the dispersion of the agents’ degree. In fact, the largest

dispersion in agents’ degree is registered when the probability of jumping outside

the base location and the agent’s randomness are small, in Fig. 4 (a). Dispersion

in agents’ degree decreases as the probability of jumping outside the base location

and the agent’s randomness increase, in Fig. 4 (b) and in Fig. 4 (c). A possible

explanation of this phenomenon can be based on the following argument. The more

agents spend time inside their base location, the more they remain isolated from

other agents in the system. On the contrary, agents’ isolation is reduced when they

spend more time outside their base location: they are able to interact with all the

agents in the system, and, as a consequence, the dispersion in their degree decreases.
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4 Epidemic processes
Here, we investigate on the spreading of epidemics over spatially-distributed popula-

tions that behave according to the presented model. We focus on the impact of three

salient model’s characteristics on the SIS and SIR epidemic processes. Namely, (i)

the random exploration of the space governed by the parameter α, (ii) the probabil-

ity of jumping outside the base location p, and (iii) the presence of a core-periphery

structure. Interestingly, when a core-periphery structure is present, the time spent

outside the base location does not play an important role in the evolution of the

contagion process.

Even though the complexity of the mobility mechanism and of the presence of

a geographical structure hinders the general mathematical treatment of the epi-

demics, some mathematical insight can be obtained by studying a simplified, one-

dimensional version of our model, as reported in Appendix C. Then, we study

whether some regions of our core-periphery structure are more susceptible from the

presence of agents with greater radius. To this end, we consider the effect of having

agents with greater radius of interaction in either the more central or more periph-

eral locations, thereby discovering that central locations are important for sustain-

ing the overall diffusion. Finally, we analyze the outcome of vaccination strategies,

finding that the highest beneficial effect for the entire population is registered when

the vaccination of agents in central locations is prioritized.

We consider an infectious disease with the possibility of re-infection (SIS model) or

immunization (SIR model), after the contraction of the infection. In the SIS model,

agents can be either susceptible to the disease or infected [38]. Two mechanisms

characterize the epidemic dynamics: infection propagation and recovery process.

The former occurs when an infected agent contacts a susceptible one, who may

become infected with a probability λ, independently of the others. The latter con-

sists of the spontaneous transition from the infected state to the susceptible one

and occurs with probability µ at each unit time, independently of the others. In the

SIR model, instead, individuals who recover cannot be infected again and transition

from the infected state to a removed state with probability µ per unit time [38].

In the SIS model, we examine the endemic prevalence (that is, the total number of

cases in the long-term), which has typically two possible outcomes: either it quickly

dies out and tends to zero, or it fluctuates around a quantity greater than zero for a

nonnegligible amount of time, denoted by i∗. For the SIR model, instead, the fraction

of infected individuals in the system always dies out in the long-run. However, the

total fraction of individuals who have been infected may vary, depending on the

model parameters. The SIR epidemic size, denoted as r∞, is defined as the fraction

of recovered individuals at the end of the epidemic process.

4.1 Impact of key parameters

We start our analysis by exploring the case of a space containing one location, that

is, L = 1, which is the base for all the agents. Our results reveal that increasing

either α or p reduces the impact of the epidemic disease, both in the case of possible

reinfection (SIS), as shown in Fig. 5 (a), and in the case of immunization after recov-

ery (SIR), as illustrated in Fig. 5 (b). Specifically, in the SIS process, the endemic

prevalence, i∗, is high when α and p are low because agents spend more time inside



Nadini et al. Page 11 of 24

the location, which is the densest region of the entire space, thus favoring interac-

tions between agents. On the contrary, when agents spend more time outside the

location (by increasing either α or p [3]), interactions become more sporadic, and so

the likelihood that the disease spreads is lower. From our numerical simulations, we

observe that there is a threshold for α (in this case, α is close to 0.5), beyond which

the spread of diseases is halted. Simulations with different values of the parameters

show a similar behavior, with varying values of the threshold α. As a result, in the

SIS dynamics, the disease is not able to spread and the endemic prevalence tends

to zero, in Fig. 5 (a); a similar behavior is observed for the SIR process. Consistent

results are found for the one-dimensional approximation in Appendix C.

Next, we consider the case in which multiple locations are present. We investigate

a scenario with L = 100 locations, as reported in Fig. 6. Our numerical results

suggest that that increasing the agent’s randomness, α, still reduces the endemic

prevalence (in the SIS model) and the epidemic size (in the SIR model), i∗ and r∞,

similar to the case of a single location. Numerical results in Figs. 6 (a) and 6 (c),

however, seem to display a nonmonotonic behavior of the fraction of population

affected by the disease, whereby small values of α may favor the epidemic outbreak

instead of hindering its inception. We record the existence of a threshold for α (in

our simulations, this is close to 0.5) at which a sharp transitions takes place for

both the endemic prevalence (in the SIS model) and the epidemic size (in the SIR

model). According to Eq. (3), by increasing α, agents’ randomness is increased and,

as a consequence, agents are less likely to interact with each other and support the

spread of the disease.

Surprisingly, we observe that the probability of jumping outside the base location,

p, seems to have a negligible effect on the outcome of the SIS and SIR disease

processes. A reason for this phenomenon may be found in the following intuition.

The core-periphery structure analyzed in our work, in Fig. 1, allows two contrasting

effect to simultaneously occurs. On the one hand, agents moving outside the central

areas are likely to end in peripheral ones, decreasing the agents’ density in the

central regions and increasing the density in the peripheral ones. On the other

hand, agents moving outside the peripheral areas are likely to end in the central

ones, thereby increasing the density in the central regions and decreasing the density

in the peripheral ones. Overall, these two opposite effects tend to balance each

other. Similar evidence is gathered in the one-dimensional version of the model in

Appendix C.

4.2 Impact of correlation between agents’ radius and locations’ density

Here, we study the impact of the correlation between the radius of interaction of

agent i, σi, and the density of its base location, ρβ(i). We compare the uncorrelated

case (analyzed earlier in Figs. 6 (a) and 6 (c)), where agents are randomly assigned to

a location, with the cases of either positive or negative correlation between the two

variables. In the case of positive correlation, agents with larger radius are assigned

to denser (and central) locations. In the case of negative correlation, agents with

[3]In order to allow to agents to exit from the base location, the probability to jump

outside should be p > 0.
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larger radius belong to the less dense (and peripheral) locations. We consider a

scenario with L = 100 locations, whose results are illustrated in Fig. 7.

Both the endemic prevalence, i∗, and the epidemic size, r∞, are marginally affected

by a positive correlation, while they strongly diminish if the radii and locations

are negatively correlated, as shown in Figs. 7 (a) and 7 (b), respectively. In both

the positive-correlated and uncorrelated cases, agents with larger radii occupy the

central locations, thereby sustaining the diffusion of the disease. On the other hand,

if agents with large radii are relegated to peripheral and sparser areas, it would be

more difficult for them to create connections and fuel the diffusion process.

4.3 Vaccination strategies

Finally, we study the effect of different vaccination strategy applied to our pop-

ulation. Specifically, we consider a purely randomized strategy and two targeted

vaccination policies. In the three strategies, we assume that a fraction of the pop-

ulation is vaccinated and is thus immune to the disease. In the “Random” vacci-

nation mechanism, we vaccinate a fraction of the population, sampled uniformly

at random. In the “Center” targeted mechanism, we select such a fraction starting

from the agents assigned to the most central locations. In the “Peripheral” targeted

mechanism, we choose such a fraction starting from the agents assigned to the most

peripheral locations.

From Fig. 8, we observe that prioritizing the vaccination of agents assigned to

the most central locations has the most beneficial effect for the prevention of the

diffusion of the epidemic disease, while the worst strategy focuses vaccination in

peripheral areas. In fact, agents whose base locations are in the center can easily

reach all portions of the environment, thereby contacting the majority of the agents.

By focusing the vaccination on central areas, the contacts generated by these agents

do not contribute to the spread, thereby significantly reducing the contagion.

5 Discussion and conclusion
In this paper, we studied a class of agent-based models [19], in which agents move in

a two-dimensional space and interact according to proximity criteria. We extended

such class of models by encapsulating a core-periphery structure, typical of urban

environments [28, 29], where central areas are more densely populated than periph-

eral ones. Our urban-like environment is partitioned in several locations, each of

them representing a restricted portion of the space where a fraction of agents tend

to spend most of their time (that is, the neighborhood where the agents have their

home). Agents’ law of motion depends on whether they are inside or outside their

base location. When agents are inside their base location, they take a random posi-

tion within the base location at every time-step. When outside, they tend to move

back to their base location by following a biased random walk. We also introduced a

simplified, one-dimensional version of the model, whose analysis allows for gaining

analytical insight into the process.

The contribution of the study is fourfold. First, we analytically and numerically

studied the temporal network formation mechanism, demonstrating that hetero-

geneously distributed radii of interaction in the population generate heterogeneity

in the degree distribution of the temporal network of contacts, similar to what is

observed in many real-world systems [45, 46, 47].
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Second, we investigated the role of the urban-like environment on the spread of epi-

demic outbreaks. Specifically, we considered epidemic prevalence in the susceptible–

infected–susceptible (SIS) model and epidemic size in the susceptible–infected–

recovered (SIR) model. We found that both these quantities, which measure the

fraction of the system that is affected by the disease, are hindered by increasing

the randomness of the agents’ law of motion. In fact, increasing agents’ random-

ness increases the chances that agents randomly explore areas without other agents,

thereby diminishing the contagions. Interestingly, we discovered that the endemic

prevalence and epidemic size have nontrivial relationships with the probability of

jumping outside the base location. When the entire urban environment is modeled

as a unique location, larger probabilities of jumping outside hinder the epidemic

diffusion. In fact, outside the location, interactions between agents are rare, slow-

ing down the disease spread. Instead, when multiple locations are arranged in a

core-peripheral structure, our numerical results suggest that epidemic prevalence

and size are independent of the probability of jumping outside the base location.

A possible explanation for this phenomenon might be that, when agents in central

locations jump outside them, they are likely to end in peripheral locations, dimin-

ishing the fraction of agents in central areas. This event is compensated by agents

from peripheral locations that jump in central ones. Our numerical results are in

agreement with the theoretical findings in the simplified, one-dimensional, version

of our agent-based model.

Third, we found that central locations play a key role on the diffusion of epi-

demic diseases. In particular, we studied the influence of the correlation between

agents’ radius and locations’ density. When these quantities are negatively corre-

lated, agents with larger radius belong to less dense (peripheral) locations, while

when positively correlated, agents with larger radius belong to denser (central) lo-

cations. The endemic prevalence (in the SIS model) and the epidemic size (in the

SIR model) are only marginally favored by the presence of many agents with large

radius in the more central locations (positive correlation), while the diffusion of the

epidemic is hindered if central locations are mostly assigned to agents with small

radius of interaction (negative correlation).

Finally, we studied the effect of targeted vaccination strategies. We found that

the vaccination of agents that belong to central locations is the most beneficial

approach for the entire population, leading to the smallest epidemic prevalence.

Our analysis corroborates our previous observation that central (and more dense)

locations are crucial in the diffusion of disease processes. We emphasize that the pro-

posed vaccination strategy can be implemented with information about the system

at the mesoscopic level of locations, that is, without any information on the spe-

cific properties of single individuals (for instance, their radius of interaction). With

information at the individual level, the proposed policy can be improved by com-

bining knowledge about locations and radii of interaction prioritizing vaccination

of central agents with large radius of interaction, which acts as “superspreaders.”

A main limitation of our work resides in the assumption that each agent belongs to

a unique location, while the remaining urban area is only seldom explored. A more

realistic approach could consider agents that may be assigned to multiple locations.

Our theoretical study of the one-dimensional case is able to provide insight into
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some aspects of our model. However, a general mathematical theory is missing. We

believe that our preliminary results constitute a starting point for performing a more

general theoretical analysis of the two-dimensional model. Furthermore, variations

of the proposed model can be easily generated. For instance, the gravity law in our

model could be replaced by the one recently proposed in [48].

Overall, our work determines that central urban areas are critical in the diffusion

of epidemic diseases within a city, being the crossroad of most of the urban popu-

lation, and thus should be carefully included into mathematical models of epidemic

outbreaks. By vaccinating individuals in central urban areas, we can halt the overall

contagion better than randomly distributing limited vaccination supplies. Our effort

may help practitioners and epidemiologists to ease the development of proper con-

tainment strategies and to reach heard immunity [49] within urban environments.

Appendix A: Algorithm to generate a core-periphery structure
From a practical point of view, packing all convex regions L` (locations) in the

square space D × D is a nondeterministic polynomial-time hardness (NP-hard)

problem [50, 51], often requiring to find approximate methods [52, 53, 54]. In our

study, we aim to reproduce the core-periphery structure present in real urban areas,

as shown in Fig. 1 (a). To this end, we developed a heuristic algorithm that unfolds

according to the following steps.

1 Place the center of the denser location, (xc1, y
c
1), in the center of the square

space, (xc1, y
c
1) = (D/2, D/2).

2 Initialize `← 1, σin ← 0, and σout ← 〈σ〉 =
∑L
`=1 σ`/L.

3 Create a circular crown centered in (D/2, D/2) with internal radius σin and

external radius σout.

4 Randomly place the center of location `+1 in the crown and check for overlaps.

i) If location `+ 1 does not overlap with other locations, then the location

is placed. Increase the index ` by 1, that is, ` ← ` + 1. If ` = L, then

terminate the algorithm. Otherwise, resume it to step 4.

ii) If an overlap occurs, then repeat the current assignment in 4. After a

number of consecutive failed attempts (we set this limit to 100), stop the

current iteration and move to step 5.

5 Set σin ← σout and σout ← σout + 〈σ〉, and resume the algorithm to step 3.

Appendix B: Analysis of the temporal network of interactions
Here, we compute the quantities |Ci| and 〈σ2〉i, in the limit of large systems N →
∞. We start with |Ci|. The probability density function G(σ) of the power law

distribution of the radii of interaction, G(σ) ∼ σ−ω with cutoffs, so that σ ∈
[σmin, σmax], as

G(σ) =


ω − 1

σ1−ω
min − σ

1−ω
max

σ−ω if σ ∈ [σmin, σmax] ,

0 otherwise .
(17)

From the expression of G(σ), we compute |Ci| using a central limit theorem argu-

ment [55], which ensures that, for large N ,

|Ci| ≈ (N − 1)

∫ σmax

σi

G(σ)dσ = (N − 1)
σ1−ω
i − σ1−ω

max

σ1−ω
min − σ

1−ω
max

. (18)
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We define the conditional probability density function

Gi(σ) := G(σ |σ ≥ σi) =
G(σ)

P [σ > σi]
=

G(σ)∫ σmax

σi
G(σ)dσ

=
ω − 1

σ1−ω
i − σ1−ω

max

σ−ω , (19)

where the first equality holds due to scale invariance of the power law distribution,

and then explicit computation is performed using the expression of G(σ). Using

again the central limit theorem [55] and Eq. (19), we compute 〈σ2〉i as

〈σ2〉i ≈
∫ σmax

σi

σ2Gi(σ)dσ =
(ω − 1)(σ3−ω

max − σ3−ω
i )

(3− ω)(σ1−ω
i − σ1−ω

max )
. (20)

Next we calculate the probability for a node to be in its base location when α = 0,

which corresponds to the case in which agents move deterministically outside of

their base location. We consider the generic agent i that belongs to location Ωβ(i).

Since Aβ(i) � D2, we use the approximation D → ∞. We introduce the following

partition of the planar space,

C
(i)
h :=

{
(x, y) ∈ [0, D]2 : (h− 1)v < min

(ξ,η)∈Ωβ(i)

√
(x− ξ)2 + (y − η)2 ≤ hv

}
, (21)

for any h ∈ Z≥0. Note that C
(i)
h is the region of the plane from which agent i

reaches its base location β(i) in exactly h time-steps. Consequently, when h = 0

agents are inside their base location, that is, C
(i)
0 = Ωβ(i). Any point (x, y) of the

D × D planar space can be mapped onto this partition through the projection

z(i) : [0, D]× [0, D] −→ Z≥0, defined as

z(i)(x, y) = h ⇐⇒ (x, y) ∈ C(i)
h . (22)

Using the mapping z(i), for each agent i ∈ V, we define the stochastic process

zi(t) : Z≥0 −→ Z≥0 as zi(t) := z(i)(xi(t), yi(t)). Since α = 0, when an agent is

outside its base location, then its law of motion is purely deterministic and it moves

in the direction of the location. Therefore, if zi(t) = h 6= 0, then, zi(t+ 1) = h− 1.

If zi(t) = 0, the agent is inside its base location, from which it exits only through a

jump, which is statistically characterized by Eq. (6). Hence, with probability 1− p
the process zi(t) remains in state 0 at the following time-step. Else, if a jump occurs,

the process zi evolves to state h with probability equal to

qh =

∫ hv

(h−1)v

Pjump(x) dx =

∫ hv

(h−1)v

ce−cx dx = e−cv(h−1) − e−cvh . (23)

The transition probabilities of zi(t) depend only on the state h in which the

process is and on the model parameters. The process zi(t) is a Markov chain, whose
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structure is illustrated in Fig. 9 and whose transition matrix is

M =


1− p pq1 pq2 pq3 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .
...

...
...

. . .
. . .

 . (24)

We observe that, if p > 0, then the Markov chain is ergodic and it converges to its

unique stationary distribution π, which can be computed as the left eigenvector of

M associated with the eigenvalue 1 [56]. When the system has reached its steady

state, the probability for each agent to be inside its base location, qin = π0, that is

derived from the left eigenvalue equation for M in Eq. (24) (with unitary eigenvalue),

that is,{
π0 = (1− p)π0 + π1,

πh = πh+1 + pqhπ0 , ∀h ∈ Z>0 .
(25)

From Eq. (25), the expression of qh in Eq. (23), and using that
∑∞
h=0 πh = 1, we

derive

qin = π0 =
ecv − 1

(1 + p)ecv − 1
, (26)

while the probability that the agent is outside its base location is

qout = 1− qin = 1− ecv − 1

(1 + p)ecv − 1
=

pecv

(1 + p)ecv − 1
. (27)

Appendix C: Analytical study of SIS and SIR in a
one-dimensional lattice

Here, we propose a simplified version of the agent-based model which provides

some analytical intuitions on the results of the numerical simulations in Figs. 5

and 6. Our simplified model considers that agents move in a discrete, infinitely

long, one-dimensional lattice with periodic boundary conditions (that is, a ring).

The L locations occupy consecutive positions on the lattice and a fixed number of

n = N/L agents belong to each one, as their base location.

To generate a contact, agents should occupy the same position along the lattice.

Agents belong to a unique base location in the lattice, which they may leave with

probability p. We use a geometric distribution [55] to describe the agents’ law of

motion, that is, the probability of jumping at a distance d from the base location

is equal to

Pjump(d) = (1− c)d−1
c , (28)

where c > 0 is a constant parameter that governs the decay rate, similar to Eq. (6).

Once outside their base location, agents move toward their base location by making



Nadini et al. Page 17 of 24

one step toward it, similar to the two-dimensional model with α = 0. A schematic

representation of the one-dimensional model is provided in Fig. 10.

We remark that this one-dimensional agent-based model maintains some key fea-

tures of the model studied in the main text, that is: (i) the presence of closely-spaced

base locations, (ii) a stochastic mechanism that governs the probability of jumping

outside the base location, and (iii) a gravity law that biases the agents to jump

close to the base location according to an exponential distribution.

We start our analysis by computing the probability that agents are in their base

location, denoted by ψin, or in a position at a distance d from it, ψd, when the

system is at steady state. For p > 0, the system is ergodic and we can compute ψin

and ψd at steady state [56]. Similar to Appendix B, from the steady-state equation

we derive the following recursive system of equations:{
ψin = (1− p)ψin + 2ψ1 ,

ψd = ψd+1 +
p

2
Pjump(d)ψin , ∀ d ∈ Z>0 ,

(29)

where the factor 2 is because there are two positions at a distance d from any

location ` ∈ L, as in Fig. 10.

From Eq. (29), the expression of Pjump(d) in Eq. (28), and using that ψin +

2
∑∞
d=1 ψd = 1, we derive

ψin =
c

c+ p
, (30)

and

ψd =
cp (1− c)d−1

2(c+ p)
. (31)

Given that each agent is randomly assigned to one of the L locations, the proba-

bility that a generic agent i ∈ V is inside location ` is equal to

q` =
1

L
ψin +

1

L

L−∑̀
x=1

ψx +
1

L

`−1∑
x=1

ψx , (32)

where the first term refers to the probability that the agent is in its base location

and its base location is `, while the second and third terms correspond to the

probability that the agent belongs to another base location and it occupies location

`. Similarly, we compute the probability that agents are in a position not occupied

by any location and at a distance d from the closest location as

qout,d =
1

L

L+d−1∑
x=d

ψx , (33)

where we assume that the closest location is ` = 1. By a simple change of variables,

we can write an equivalent expression when the closest location is ` = L.

In the SIR and SIS processes, the disease propagates from infected agents to

susceptible ones occupying the same position of the one-dimensional lattice. We
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define as s(t), i(t), and (for the SIR model only) r(t) the fractions of susceptible,

infected, and recovered agents at time t, respectively. For large-scale systems, we can

compute the fraction of susceptible, infected, and recovered agents along the lattice

by using the central limit theorem [55]. The fraction of susceptible, infected, and

recovered agents inside location ` is s`(t) = q`s(t), i`(t) = q`i(t), and r`(t) = q`r(t),

respectively. Similarly, the fraction of susceptible, infected, and recovered agents at

a distance d from the closest location is sout,d(t) = qout,ds(t), iout,d(t) = qout,di(t),

and rout,d(t) = qout,dr(t), respectively.

We now compute the probability that an agent becomes infected at time t. We

first consider the probability of not being infected. In location `, such a probability is

equal to 1−λi`(t) for each contact. On average, an agent contacts q`N other agents,

the probability of not being infected in location ` is equal to Λ`(t) = (1− λi`(t))q`N .

Similarly, the probability of not being infected at a distance d from the closest

location is equal to Λout,d = (1− λiout,d(t))
qout,dN . Thus, the contagion probability

of an agent inside its base location ` is the complement of Λ`(t), that is,

Λ`(t) = 1−
(
1− λi`(t)

)q`N = 1−
(
1− λq`i(t)

)q`N , (34)

and the contagion probability when the agent is at a distance d from the base

location is the complement of Λout,d(t)

Λout,d(t) = 1−
(
1− λiout,d(t)

)qout,dN = 1−
(
1− λqout,di(t)

)qout,dN , (35)

The evolution of the fraction of infected agents at time t+ 1 is determined by the

following equation:

i(t+ 1) = i(t)− µi(t) +
L∑
`=1

s`(t)Λ`(t) + 2
∞∑
d=1

sout,d(t)Λout,d(t)

= i(t)− µi(t) +
L∑
`=1

q`s(t)Λ`(t) + 2
∞∑
d=1

qout,ds(t)Λout,d(t) .

(36)

The evolution of the fraction of infected agents depends on four terms: (i) the

fraction of infected at time t, (ii) the fraction of newly recovered, (iii) the fraction

of newly infected in any location, and (iv) the fraction of newly infected outside all

the locations.

The evolution of the SIS model is fully determined by Eq. (36), since s(t) = 1−i(t).
For the SIR model, instead, Eq. (36) should be coupled with the following equation,

which describes the evolution of the fraction of recovered agents,

r(t+ 1) = r(t) + µi(t) , (37)

and with the constraint that s(t) = 1 − r(t) − i(t). The evolution of the fraction

of recovered agents only depends on the fraction of recovered at time t and the

fraction of newly recovered.

We compute the epidemic threshold of both SIR and SIS disease processes by

studying the stability of the disease-free equilibrium in Eq. (36). We linearize
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Eq. (36) and expand the expressions for the contagion probabilities in Eqs. (34)

and (35) about the disease-free equilibrium i∗ = 0, obtaining

i(t+ 1) = i(t)− µi(t) +
L∑
`=1

λq3
`Ni(t) + 2

∞∑
d=1

λq3
out,dNi(t) . (38)

The epidemic threshold is computed by imposing i(t+1) = i(t) in Eq. (38), obtaining

λ

µ
=

1

N

(
L∑
`=1

q3
` + 2

∞∑
d=1

q3
out,d

) . (39)

In the case of one location, L = 1, the threshold in Eq. (39) reduces to

λ

µ
=

1

N

(
q3
1 + 2

∞∑
d=1

q3
out,d

) =
4 (c+ p)

3 (
3− 2c+ c2

)
Nc2

(
2c (3− 2c+ c2) + p3

) , (40)

where the last equality is obtained by substituting the explicit terms for q1 and

qout,d from Eqs. (32) and (33), respectively, and computing the sum of the obtained

series. From inspection of Eq. (40), we observe that increasing the probability of

jumping outside the location, p, contributes to increasing the epidemic threshold

and thus lowers the endemic prevalence and epidemic size, similar to Fig. 5 (b).

When many locations are present, that is, L→∞, the contribution of the second

term at the denominator yields a marginal contribution to the epidemic threshold

in Eq. (40), so that,

λ

µ
≈ 1

N

∞∑
`=1

q3
`

. (41)

We observe that the epidemic threshold is now independent from any choice of the

probability of jumping outside the location, p, as suggested by the numerical studies

of Fig. 6 (b).
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Figures

Figure 1 Qualitative comparison between real datasets from an experimental study [28], in (a),
and the output of our algorithm, in (b). (a) Experimental results about human digital activity
density in the cities of Milan and Rome, Italy. The highest density is registered in central areas,
while a lower densities are observed in peripheral ones. (b) Using our algorithm, we generate
L = 1, 000 circular locations distributed in rings of decreasing densities. The first few rings
contain the denser locations (dark central regions) and may parallel the city center of a urban
environment, while the outer rings are less dense and represent peripheral areas (light gray
regions). Source of (a): [28]. Parameters used to generate (b): D = 1, 000, Σmin = 3, Σmax = 30,
and γ = 2.1. Details of the generative algorithm used are available in Appendix A.
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Figure 2 Schematic representation of two snapshots of our model with N = 4 agents and L = 2
locations. The entire space is delimited with solid black lines. In (a) and (c), we represent only the
agents’ motion and the border of the locations is represented with dashed black lines. Agents 1
and 2 are assigned to location A := β(1) = β(2), while agents 3 and 4 are assigned to location
B := β(3) = β(4). Direction and modulus of the agents’ velocity is drawn with solid red arrows.
The position where agent 1 will jump is indicated with a dotted red arrow. The four arrows
around a agent indicate that it will move in a random position inside its own location. In (b) and
(d), we show the temporal network formation mechanism. Agents’ radii of interaction are
represented with solid circles, and undirected links are represented with solid blue lines.

Figure 3 Relationship between the agents’ average degree and radius of interaction. (a)
Comparison between numerical results and analytical predictions from Eq. (13), for the case
without base locations. Simulation results are generated with the following parameter set: L = 0,
D = 100, 000, σmin = 5, and σmax = 500. (b) Comparison between numerical results and
analytical predictions from Eq. (16), in the case of multiple base locations, uniformly distributed
in the domain. In the simulations, we use the following parameters: L = 10, D = 109,
Σmin = 1, 000, Σmax = 10, 000, σmin = 10, σmax = 100, p = 0.3, and α = 0. Agents are initially
inside their base location and interactions are recorded after 100 steps to allow the agents to
reach a steady-state configuration. Other parameter values are N = 10, 000, v = 500,
c = 4 · 10−4, ω = 2.4, and γ = 2.1, and T = 5, 000.

Figure 4 Relationship between the agents’ average degree and radius of interaction in an
urban-like environment. Darker circles represent agents assigned to more peripheral locations,
while brighter ones indicates agents belonging to more central locations. We set: (a) p = 0.1 and
α = 0, (b) p = 0.4 and α = 0.2, and (c) p = 0.8 and α = 0.4. Agents are initially inside their
base location and contacts are recorded after 100 steps to allow the agents to reach a
steady-state configuration. Other parameter values are L = 100, N = 10, 000, D = 109,
Σmin = 100, Σmax = 10, 000, σmin = 1, σmax = 1, 000, v = 500, c = 4 · 10−4, ω = 2.4, γ = 2.1,
and T = 5, 000.

Figure 5 Influence of the agents’ randomness, α, and the probability of jumping outside the
location, p, on the endemic prevalence of the SIS model, (a)–(b), and the epidemic size of the SIR
model, (c)–(d). Curves represent the median of 100 independent simulations; 95% confidence
bands are displayed in gray. Agents are initially inside their base location and the infection starts
after 100 steps to allow the agents to reach a steady-state configuration. The fraction of
randomly chosen initial infected is 0.01. Other parameter values are L = 1, N = 10, 000,
D = 109, Σmin = 100, Σmax = 10, 000, σmin = 1, σmax = 1, 000, v = 500, c = 4 · 10−4, ω = 2.4,
γ = 2.1, λ = 0.15, and µ = 0.1.

Figure 6 Influence of the agents’ randomness, α, and the probability of jumping outside the
location, p, on the endemic prevalence (SIS model), (a)–(b), and the epidemic size (SIR model),
(c)–(d). Curves represent the median of 100 independent simulations; 95% confidence bands are
displayed in gray. Agents are initially inside their base location and the infection starts after 100
steps to allow the agents to reach a steady-state configuration. The fraction of randomly chosen
initial infected is 0.01. Other parameter values are L = 100, N = 10, 000, D = 109, Σmin = 100,
Σmax = 10, 000, σmin = 1, σmax = 1, 000, v = 500, c = 4 · 10−4, ω = 2.4, γ = 2.1, λ = 0.15, and
µ = 0.1.

Figure 7 Impact of different ways of assigning agents to their locations on the endemic prevalence
(SIS model), (a), and the epidemic size (SIR model), (b). The “Uncorrelated” case represents a
random assignment. In the “Pos. Correlated” case, agents with larger radii are assigned to the
denser (central) locations, while, in the “Neg. Correlated” case, agents with larger radii belong to
the less dense (peripheral) locations. Curves represent the median of 100 independent simulations;
95% confidence bands are displayed in gray. Agents are initially inside their base location and the
the infection starts after 100 steps to allow the agents to reach a steady-state configuration. The
fraction of randomly chosen initial infected is 0.01. Other parameter values are L = 100,
N = 10, 000, D = 109, Σmin = 100, Σmax = 10, 000, σmin = 1, σmax = 1, 000, v = 500,
c = 4 · 10−4, ω = 2.4, γ = 2.1, λ = 0.15, and µ = 0.1.
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Figure 8 Effect of different vaccination strategies on the endemic prevalence (SIS model),
(a)-(b)-(c), and epidemic size (SIR model), (d)-(e)-(f). The vaccination coverage represents the
fraction of immune agents prior to the disease onset. In “Random”, we select the fraction of
agents to vaccinate at random; in “Center”, we vaccinate first the agents that are assigned to
central base locations, while in “Peripheral”, we prioritize vaccination for agents that belongs to
the peripheral agents. We set: (a)-(d) p = 0.1 and α = 0.0, (b)-(e) p = 0.4 and α = 0.2, and
(c)-(f) p = 0.8 and α = 0.4. Curves represent the median of 100 independent simulations; 95%
confidence bands are displayed in gray. Agents are initially inside their base location and the
infection starts after 100 steps to allow the agents to reach a steady-state configuration. The
fraction of randomly chosen initial infected is 0.01. Other parameter values are L = 100,
N = 10, 000, D = 109, Σmin = 100, Σmax = 10, 000, σmin = 1, σmax = 1, 000, v = 500,
c = 4 · 10−4, ω = 2.4, γ = 2.1, λ = 0.15, and µ = 0.1.

Figure 9 Transition graph of the Markov chain zi(t).

Figure 10 Schematic of the one-dimensional simplified version of the agent-based model. (a)
Scenario where only one base location is present (in black). (b) Scenario where multiple base
locations are present.
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Tables

Symbol Description

V Set of all agents
L Set of all locations
N Number of agents in the system
L Number of locations in the system
n Number of agents in each location
D Side of the square planar space
T Total number of discrete time-steps in the observation window
t Index for discrete time instants
` Index for the locations in the system

i, j Indices for the agents in the system
ρ` Density of location ` in the system

β(i) Function that maps agent i to its base location
Ω` Region of space occupied by location `

xi(t), yi(t) Position occupied by agent i in the planar space at time t
θi(t) Direction of the motion of agent i at time t
Φi(t) Angle of the direction of the shortest path from xi(t), yi(t) to Ωβ(i)
∆θit Angle drawn uniformly at random in [0, 2π) for agent i at time t

v Velocity of agents outside their base location
α Randomness in the agents’ motion toward their base location
p Probability of jumping outside the base location

Pjump(d) Probability of jumping at a distance d from the base location
qin Probability of being inside the base location
qout Probability of being outside the base location
q` Probability of being inside Ω`

qout,d Probability of being at a distance d from the closest location
Ψin,Ψout,Ψd Probability that agents are inside, outside, and at a distance d

from their base location
P (Σ) Probability density distribution of locations’ radii

γ Exponents of the power law distribution of locations’ radii
Σmin,Σmax Lower and higher cut-off of the distribution of locations’ radii

G(σ) Probability density distribution of agents’ radii of interaction
ω Exponents of the power law distribution of radii of interaction

σmin, σmax Lower and higher cut-off of the distribution of radii of interaction
ki Degree of agent i
λ Infection probability per contact
µ Recovery probability per unit time

s(t), i(t), r(t) Fraction of susceptible, infected, and recovered agents in the system
s`(t), i`(t), r`(t) Fraction of susceptible, infected, and recovered agents in Ω`

sout,d(t), iout,d(t), rout,d(t) Fraction of susceptible, infected, and recovered agents at distance d
from the closest location

Λ`(t) Contagion probability in Ω`
Λout,d(t) Contagion probability at a distance d from the closest location

〈·〉 Statistical average of the quantity “·”
E[·] Expected value of the quantity “·”
P [·] Probability of an event “·”

Table 1 Nomenclature of the variables and notation used in the paper.
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