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Abstract

To date, the only effective means to respond to the spreading
of COVID-19 pandemic are non-pharmaceutical interventions (NPIs),
which entail policies to reduce social activity and mobility restrictions.
Quantifying their effect is difficult, but it is key to reduce their social
and economical consequences. Here, we introduce a meta-population
model based on temporal networks, calibrated on the COVID-19 out-
break data in Italy and apt to evaluate the outcomes of these two types
of NPIs. Our approach combines the advantages of granular spatial
modelling of meta-population models with the ability to realistically
describe social contacts via activity-driven networks. We focus on
disentangling the impact of these two different types of NPIs: those
aiming at reducing individuals’ social activity, for instance through
lockdowns, and those that enforce mobility restrictions. We provide
a valuable framework to assess the viability of different NPIs, vary-
ing with respect to their timing and severity. Results suggest that
the effects of mobility restrictions largely depend on the possibility to
implement timely NPIs in the early phases of the outbreak, whereas

activity reduction policies should be prioritised afterwards.

Keywords— Calibration, Epidemic model, Meta-population, Mobility, Networks,

Non-pharmaceutical interventions

1 Introduction

Following the first report of the novel coronavirus (SARS-CoV-2) in Wuhan, COVID-
19 has risen above 43 million cases and 1,157,509 reported deaths as of 27th
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October 2020 [1]). The ongoing pandemic quickly reached Europe during Febru-
ary and March 2020, forcing most of the countries to implement unprecedented
non-pharmaceutical interventions (NPIs) to fight the spread [2, 3, 4, 5]. Some
of these interventions promote policies to reduce human-to-human interactions,
for example by enforcing social distancing, halting nonessential activities, closing
schools, and banishing large gatherings [2, 5]. Others limit human mobility by
means of travel restrictions and bans [6]. Due to the considerable economic and
social cost associated with the implementation of both of these types of policies
[7, 8, 9]), it is crucial to assess their effectiveness. Mathematical and computa-
tional epidemic models are key to accurately evaluate a wide range of what /if
scenarios, predicting the evolution of the pandemic for different choices of NPIs
[10, 11, 12, 6, 13, 14, 15, 16, 17].

One of the fundamental aspects of the spread of infectious diseases is its spatial
evolution and the concurrent role of human mobility patterns [18, 19, 20]. Exten-
sive studies on mobility within the COVID-19 pandemic revealed that population
movements are among the main drivers of the spatial spreading of the outbreak
[4, 21]. Network structures have emerged as a powerful framework to encapsulate
such mobility patterns within mathematical models of epidemics, especially by
means of meta-population models [22]. This modelling paradigm is based on the
definition of a set of communities (Provinces, Counties, or Regions), connected by
a network that captures daily short-range commuting and long-range mobility.

Different from typical meta-population models that assume homogeneous mix-
ing within communities [22, 23|, we propose a network structure that accounts
for the inherent, heterogeneous and time-varying nature of human interactions
[24, 25], together with behavioural changes in response to the pandemic evolution
[26, 27]. To this aim, individuals interact on the basis of a mechanism inspired

by activity-driven networks (ADNs) [28, 29]. Our model comprehends two key
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aspects of social communities, mobility patterns and temporal, heterogeneous net-
works of contacts. Within this meta-population model, we incorporate a variation
of a susceptible-infected-removed (SIR) epidemic process [30]. Such an epidemic
process allows to capture several key features of COVID-19, like the existence of
latency periods and the delay in the official reporting of infections and deaths.
We calibrate the model on epidemic data from the Italian COVID-19 outbreak
[31], to examine different scenarios that evaluate the spatial effects of NPIs. In
particular, we explore the interplay between reduction in social activity and mo-
bility restrictions. At the modelling level, the former mechanism acts upon the
network of contacts, while the latter modifies mobility patterns between commu-
nities. Our findings reveal that the timing of the interventions is essential toward
effective implementations. We conclude that mobility restrictions should be ap-
plied at the early stage of the epidemic and coupled with appropriate policies to
reduce social activity. Surprisingly, the impact of mobility restrictions is spatially
heterogeneous. For the Italian outbreak, this results in a greater benefit for South-
ern regions, that is, those located far from the initial outbreak. The overall effect
of early travel restrictions in these areas leads to 12% of reduction in the total
number of deaths. We also examine differential interventions among age cohorts,
determining that the application of severe restrictions only to the most vulnerable
age cohorts would not be sufficient to effectively reduce the deaths toll. Different
phenomena are observed upon the uplifting of containment measures, with the
contribution of mobility restrictions being negligible. In this phase of the fight
against the epidemic, policies limiting social activity (for instance, by enforcing
the use of face masks or social distancing) bestow the main benefits in mitigating

resurgent outbreaks.
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2 Methods

2.1 Model

2.1.1 Meta-population activity-driven model

We consider a population of n individuals partitioned into a set H = {1,..., K} of
communities, located in bounded geographical areas (administrative divisions, such
as Regions, Provinces or Municipalities), where ny, is the number of individuals in
the hth community. Communities are connected through a weighted graph that
models travel paths between them. The weight matrix W € [0,1]5*K called
routing matriz, is a matrix with with non-negative entries, zeros on the main
diagonal and row sums equal to 1, such that W}y is the fraction of members of
community h that move to community k£ per unit-time.

Individuals interact according to a mechanism inspired by ADNs [28, 29], which
accounts for the inherent, heterogeneous propensity of humans to interact with
others. Specifically, individuals are divided into P baseline activity classes 0 <
a1 < ag < --- < ap < 1, where the activity a; of individuals in the ith class
quantifies their nominal propensity to interact with others. At each time-step and
for each activity class ¢, a randomly selected fraction a; of individuals activates and
generates interactions with others. This fraction of the population is called active.
Active individuals may generate interactions within the community where they
are located, or they may travel and interact in other communities. This aspect
is included in a mobility parameter b € [0,1] that quantifies the baseline fraction
of the active population that commutes to other communities; the commuting
unfolds according to the routing matrix W (Fig. 1). The remaining fraction 1 — b
of the active population does not commute and interacts locally with individuals

randomly selected within their community. We assume that the P activity classes
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Figure 1: Schematics of the meta-population model.

are equally distributed in different communities. Specifically, we introduce the
activity distribution vector n € [0, 1]7 such that the expected number of individuals
with activity class a; in the Ath community is equal to the product nyn;. We finally
introduce a parameter m > 0 that captures the individuals’ interaction rate, that
is, the average number of interactions generated by each active individual in a
time-unit.

Two parameters o € [0,1] and S € [0,1] are introduced to model NPIs. The
former, «, models individuals’ self-isolation due to the awareness of the disease
spreading. In the model, this corresponds to scaling down the individual activity
from its baseline value a; to aa;. The latter, 5, captures the effect of mobility

restrictions, which are modelled by scaling down the baseline mobility parameter
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Figure 2: Schematics of the epidemic progression.

from b to Bb.

2.1.2 Disease progression

The disease progression is modelled according to an extension of the classical SIR
model (Fig. 2), which encapsulates a latency period between contagion and in-
fectiousness, a limited duration of the infectious period, coinciding with the peak
of the viral load, and a delay for deaths reporting [2]. Specifically, we adopt
a susceptible-exposed—infectious—non-infectious—removed (SEINR) compartmen-
tal model (Fig. 2). After contagion, infected individuals become initially exposed
(E) before spontaneously moving into the infectious (/) compartment with rate v.
Once the infectious period terminates (with rate p), individuals transition to the
non-infectious compartment (N), before recovering (or dying) with rate -, which
is represented by the R compartment. The compartment N captures the delay be-
tween the end of the infectious period and the reporting of a death. The number
of deaths is the most reliable parameter for calibration, given the uncertainty in
reporting active infectious cases. The parameters have immediate interpretation:
1/v is the average latency period of the disease (time from contagion to infec-
tiousness), 1/p is the average period of communicability (in which individuals are
infectious) and 1/7 captures the delay before reported deaths. Hence, 1/ + 1/~
is the average time from infectiousness to the reported death.

The contagion mechanism involves an interaction. We introduce a parameter

A € [0, 1] that captures the fraction of susceptible individuals that become exposed
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after an interaction with an infectious one. The contagion does not depend only on
A, but also on individual properties (their activity) and network structure, as well
as on the prevalence of infectious individuals. We denote by H?(t) the contagion
function, that is, the fraction of susceptible individuals with activity a; and who
belongs to community h that becomes infected at time ¢, whose expression is

detailed in the following.

2.1.3 Dynamics

We consider the generic activity class ¢ and community h € H. Let Szh, Ef‘, Iz-h and
Nih be the number of susceptible, exposed, infectious and non-infectious individuals
of class ¢ in community h, respectively. Clearly, nyn; — Slh — Ezh — Ilh — Nih is the
number of removed individuals in class ¢ and community h. In the thermodynamic
limit of large populations, n — oo, we write the following system of ordinary

difference equations:

SHE+1) = (1= TI)SH()
Bi(t+1) = TSHE) + (1 v)BA(Q) "
I(E+1) = B + (1 - wIh)

NMt+1) = pIP(t) + (1 —7)NMD).

We now detail the contagion mechanism and derive an explicit expression for
[%(¢). To simplify the notation, we omit time ¢, that is, II? is used to denote
I1%(t). In the thermodynamic limit of large populations n — co and assuming that
the epidemic prevalence is small so that we can neglect the probability of having
multiple interactions with infectious individuals at the same time, the quantity H?
can be written as the sum of four different terms. The first summand accounts

for the contagions caused by the fraction aa;(1— Bb) of active individuals from S»

that remains in the hth community and interacts there with infectious individuals;
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the second summand accounts for the infections caused by the fraction (1 —«fa;b)
of Slh that remains in community h and comes in contact there with active infected
individuals; the third and the fourth summands account for the contagions of the
fraction afBa;b of Sl-h that is active and moves to other communities interacting with
infected individuals or receiving interactions from active infectious individuals in

the community they move to, respectively. These four terms yield

" = maai(l— BL)AP, +m(1l — aBa;b)AQy,

+mafa;b Z Wi AP, + maBa;b Z Wi AQp,
keH keH

where

P
<Z 1 — afa;b) Ih + Z thZaﬁajbIk> (3a)
7j=1

keH 7=1

P P
(Z (1= Bb)aa;If + > Win Y aﬁajbfj’.f), (3b)

j=1 keH j=1

are the fraction of infectious and active infectious individuals that are present in
community h, respectively. The quantity

in = (1 — af(a)b)ny + aBla)h > Winn
keH

is the number of individuals who are located in community h, where (a) :=

Zil n;a; is the average activity of the population.

2.2 Model calibration

We calibrate the model to reproduce the COVID-19 outbreak in Italy, setting
Provinces as communities, using epidemiological parameters from the medical lit-
erature [32, 33, 34|, mobility data by the Italian National Institute of Statistics
(ISTAT) [35], and data of officially reported deaths [31]. Based on available empir-

ical data on social contacts per age groups [36], we partition the population in two

9
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activity classes. The population below 65 years old forms the high activity class,
and the population above 65 years old constitutes the low activity class. Differ-
ent mortality rates are associated with the two classes to estimate the number of
deaths, base on serology-informed data [37]. The details of the model calibration

can be found in the following.

2.2.1 Calibration of the meta-population model

The Italian territory is divided into K = 107 Provinces, which are chosen as
communities, extracting the corresponding population nj; from the census data
[35]. Provinces are grouped in 20 Regions, gathered in 5 macro-regions: North-
West, North-East, Centre, South and Islands (Supplementary material, Sec. S1
and Fig. S1).

We partition the population into P = 2 activity classes, based on age-stratified
data on social contacts [36], aggregating age-groups that form high or low number
of contacts, respectively. Specifically, the former contains people below 65 years
old, while the latter gathers people above 65 years old. According to the same
study, we set m = 19.77. The baseline activity classes a; and ay are determined
by matching the average number of contacts of the individuals in the classes.
The fraction 7; of population in each class is determined from the Italian age
distribution [35].

We consider two types of mobility: commuting pattern between Provinces and
long-range mobility. The former is directly obtained from the 2011 census data in
the ISTAT database [35], which has been validated and adopted to model mobility
in recent works on COVID-19 [12]. Comprehensive data on long-range mobility is
not available. We estimate it as follows. For each province, we consider the number
of nights spent in accommodation facilities over the period from February to May

2011, which represents the destinations of travellers [35]. Origins are estimated

10
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Figure 3: Heat-map representing the routing matrix W between Provinces
estimated from [35]. Colour-code represents the fraction of active people that

travel from a Province to another. Provinces are gathered in macro-regions.

based on the flows between macro-regions [35]. Assuming uniformity within each
macro-region, we set the origins proportional to the population of each Province.
Finally, W is obtained by combining the two origin-destination matrices (Fig. 3).
The mobility parameter b is estimated as the fraction of population that moves
outside their Province, using data from [35].

NPIs are implemented as follows. At t = ty, we set a = § = 1. Then, based on
empirical data [38], we consider a linear decrease along 15 days to reach a value
Qlow- Such a decrease begins on 5th March (day of the enforcement of the first

social distancing measures) and ended on 20th March (when a severe lockdown

11
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is enacted). Similar, § is reduced to [iow. Based on [38], we determined that
this switch occurred on 1st March for macro-regions North-Fast, North-West and
Centre, and on 7th March for South and Islands. The values of oy and Sloy are

identified from epidemic data.

2.2.2 Calibration of the epidemic parameters

Epidemic parameters are taken from the literature on COVID-19. Specifically,
the latency period 1/v and the infectious period 1/u are taken from [2], based on
clinical estimations from [39, 40], respectively; v is the inverse of the difference
between the average time from infectiousness to the reported death [41] and 1/p.
The infection probability A depends on the model of social interactions. Hence,
we identify it from real-world data.Table 1 reports the parameters used in our

simulations.

2.2.3 Parameter identification

We calibrated our model by fitting the temporal evolution of the reported deaths,
during the COVID-19 outbreak in Italy. Data at the Regional level were retrieved
from the official Italian Dipartimento della Protezione Civile [31] database. This
database starts on 24th February, and we had extended it backward in time for 20
days (until 4th February). We filled with zero deaths the section of the database
from 4th February to 20th February, and we manually corrected the database to
include seven deaths that were not reported therein in the period from 20th Febru-
ary to 23rd February (Supplementary material, Sec. S2). To calibrate the model
we focused on the period from 4th February (denoted as ty) to 18th May (denoted
as tend), namely until the first relaxation of NPIs. To enhance the reliability of
the data we applied a weekly moving average.

Using the SEINR epidemic progression model, we computed the deaths in

12



Value(s) Ref./Id.

v 0.156 day~! 12, 39]

o [0.149, 0.545] day'  [36]
p0.200 day ! 12, 40]

n o [0.768, 0.232] 136, 35]
0% 0.105 day ! [41, 2, 40]
b 0.09 135]

A 0.042 v

Qow  0.176 v

m o 19.77 136]

Biow 0 v

Table 1: Model parameters; check-marked parameters are identified.
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Province h for activity class i as a fraction of the removed individuals R(t),
according to the class fatality ratio fi = 0.045% and fo = 5.6%. The latter
was inferred from a serology-informed estimate performed on age-stratified data
from Geneva, Switzerland [37], scaled on the Italian age-distribution using census
data [35]. Since we had no access to information about the initial number of
exposed E!'(tg) or infected I(to) individuals, such initial conditions needed to be
identified. For each Province h and activity class i, we initialised the number of
exposed and infected as a fraction k; and ko of the total reported cases at the end

of the observation time (24th June) C”(tenq) from the official database [31]:
E}(to) = k1miC"(tena) and  I}(to) = koniC" (tena), (4)

where k1 and ko were identified together with the other parameters.

The parameter identification was formulated as a minimisation problem, solved
by means of a dual-annealing procedure [42]. Specifically, we defined the cost
function c¢ as the weighted sum of the squared error between the number of deaths
predicted by the model and the Regional real data, normalised with respect to
the maximum number of deaths in the Region. To this aim, we defined the set of
Regions R and the partition of Provinces into Regions as the function 7 : H — R,
such that w(h) = r if and only if Province h was located in Region r. For each
r € R, we introduced:

o 30 ( bra®)  Dnr=r f Rh(t)>27 (5)

nr nr
t=tg DMA DMA

and the cost function as the sum of ¢" weighted with the total number of deaths
in the Region r

c= Z (CT i Dr(t)> . (6)

reR t:to

Here, D" (t) indicates the reported deaths in Region 7, D}, ,(t) the weekly moving

average and D}”\/l 4 = maxy Dy 4(t) its maximum value. Using the fatality ratio,

14
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the model predicts fR"(t) deaths in the Province h at time ¢. Fig. 4 shows real

and simulated time-series with the identified parameters.

3 Results

3.1 Implementation of NPIs

Here, we elucidate the role of NPIs in halting the spread of COVID-19. We aim
at disentangling the contribution of the two most common kinds of interventions:
reduction of individuals’ activity, through lockdown or social distancing, and en-
forcement of mobility restrictions. We take as a reference the NPIs implemented
in Italy (detailed in the Supplementary material, Sec. S2) and identify the NPI-
related parameters from available data. The enforcement of lockdown and social
distancing policies, gradually enacted during a time-window of two weeks (from 5th
March 5 to 20th March) are modelled through a linear decrease of the o parameter
from 1 to ayew = 0.176. The effect of the nearly complete mobility restrictions be-
tween Provinces has been observed from 1st March in the northern macro-regions
and from 7th March in the southern ones [38]. We model these restrictions by
setting the mobility parameter to Bjow = 0 on the corresponding dates.

We start from investigating the effect of mobility restrictions in combination
with activity reduction policies (Fig. 5a). We simulate the mobility restrictions as
being applied on 4th February, that is, almost one month earlier than the actual
date. We compare the number of deaths over the time-window that ranges from
4th February to the date of the first relaxation of NPIs in Italy (18th May). We
observe that the effect of mobility restrictions becomes significant for intermediate
levels of activity reduction policies (that is, 0.3 < a < 0.7). On the other hand,

a negligible effect of mobility restrictions is registered for milder levels of activity

15
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Figure 4: Results of the model calibration aggregated at Region level. Model

parameters are summarised in Table 1 of the main document. The red area

2020

2020

2020

denotes the time interval before the implementation of activity reduction.

The green area denotes the 15-days in which « decreases linearly from 1 to
Now — 0.176.
dash-dotted vertical line denotes the implementation of mobility restrictions.

Orange curves illustrate the predictions from the model, blue curves are

actual deaths data from [31].
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In the white area, activity is reduced to aioy.

The black,



291

292

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

reduction policies (o > 0.7) and for extremely severe activity reductions (o < 0.3).
The latter, counter-intuitive finding, is due to a balance between the increased
number of deaths in some northern macro-regions (close to the initial outbreak)
and the decrease of deaths in others (Supplementary material, Fig. S5)

To detail this mechanism, we examine the number of deaths in each macro-
region, using different levels of mobility restrictions and setting the activity reduc-
tion to the lockdown level, ayoy = 0.176 (Fig. 5b). Our results suggest that the
impact of mobility restrictions is strongly dependent on their geographical loca-
tion, and it vanishes if not timely implemented. Notably, we find that the timely
implementation of severe mobility restrictions would have reduced the number of
deaths by more than 12% in the Islands macro-region (that is, far from where the
outbreak was initially located) over the duration of severe NPIs. Such an advan-
tage becomes smaller and smaller as the considered macro-regions are closer to
the initial location of the outbreak. Paradoxically, mobility restrictions becomes
even slightly detrimental if applied in the North-West macro-region, where the
outbreak started. This is due to the commute of infected individuals from the
most affected Provinces to the rest of the Provinces and of susceptible individuals
from less impacted Provinces to the rest of the country. For comparison, we also
report death count for the implementation of the same restrictions on 1st March,
corresponding to the actual date of their implementation. We observe that the
timing of NPIs is essential; an early application of travel restrictions by one month
would have saved twice as many lives. Similar results are obtained for the peak of
the epidemic incidence (Supplementary material, Figs. S6 and S7).

The large geographic variability of the number of deaths is confirmed in Figs. 6a—
6f, which depict the total number of deaths for two exemplary Provinces under
different timing and intensity of implementation of NPIs. While the Province of

Bergamo (in the North- West macro-region), one of the earliest and biggest out-

17
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Figure 5: Effect of early application of mobility restrictions. We consider the
total number of deaths over a time-window of 104 days from the beginning of
the simulations (4th February) to the time corresponding to the relaxation
of the most severe NPIs in Italy (18th May). In (a), we illustrate the inter-
play between the two NPI mechanisms, assuming an earlier application of
mobility restrictions, and activity reduction applied at the original date (5th
March). We consider different combinations of levels of activity reduction
and mobility restrictions. The heat map codes the reduction of deaths with
respect to a scenario where mobility restrictions are not applied. Panel (b)
details the effect of earlier mobility restrictions at a macro-regional level, as-
suming a level of activity reduction as per the lockdown phase (o = 0.176).
The inset illustrates the effect corresponding to the application of the same

restrictions at the actual date (1st March).
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Figure 6: Effect of activity reduction and mobility restrictions. We consider
the total number of deaths over a time-window of 104 days from the be-
ginning of the simulation (4th February) to the time corresponding to the
relaxation of the most severe NPIs in Italy (18th May). We investigate three
different intervention scenarios. In panels (a,d), both mobility restrictions
and activity reduction are applied at the actual application dates. In panels
(b,e) both strategies are hypothetically implemented earlier by 15 days. In
panels (c,g) mobility restrictions are further set earlier on 4th February, while
keeping activity reduction applied earlier by only 15 days. In panels (a—c),
the province of Sud Sardegna are illustrated as an example of the positive
effect of early mobility restrictions. In panels (d—f), the province of Bergamo
look unaffected by mobility restrictions. In (g), we illustrate the classification
of Provinces in affected and unaffected by mobility restrictions, considering

the scenarios relative to panels (c,f).
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breaks, seems unrelieved by mobility restrictions, the Province of Sud Sardegna (in
the Islands macro-region), an area much less affected by the pandemic than the
former, would have largely benefited by such an intervention. To deepen this as-
pect, we factor out the role of the two types of NPIs by performing a non-negative
matrix factorisation (NMF) [43] on the outcome of our simulations at the Province
level (details in the Supplementary material, Secs. S3 and S4). Specifically, we fo-
cus on values of a ranging over a +50% interval with respect to the value of the
lowest activity coefficient oy = 0.176, identified from real-world data during the
lockdown, and we simulate the early application of mobility restrictions with differ-
ent intensity levels and timing. The NMF allows to partition the Italian Provinces
in two sets. The first (in green in Fig. 6g) comprises Provinces where timely im-
plemented mobility restrictions are effective in reducing epidemic prevalence (for
example, Sud Sardegna). The second set (in brown in Fig. 6g) contains Provinces
for which mobility restrictions have instead a negligible impact. Predictably, most
of the Provinces in the North-West (where the outbreak started) are unaffected by
mobility restrictions, while the majority of Provinces in South and Islands would
benefit from an early implementation of such restrictions.

The NMF allows to detect some important exceptions. For instance, the
Provinces of Varese and Monza (close to the Milan metropolitan area) would
have benefited from timely mobility restrictions. We believe that this is due to the
initially small number of cases in those two Provinces, and to the large number
of daily commuters from those Provinces to the Milan Province and other neigh-
bouring locations, where the Italian outbreak started. Hence, the same dynamics
between North and South Italy is documented again over a much smaller spatial
scale, between Northern Provinces with larger initial difference in epidemic preva-
lence. Similar results are observed by performing the NMF for other intervention

scenarios (Supplementary material, Fig. S2).
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Finally, we discuss the possibility of implementing targeted activity reductions
that act independently on the two activity classes. This allows to study the ef-
fectiveness of differential intervention policies that could aim at strongly reducing
social activity for age cohorts that are more at risk of developing severe illness,
while implementing mild restrictions for younger people. Instead of a single pa-
rameter «, we thus introduce two parameters a; and oo that measure the activity
reduction for the high and the low activity class, respectively. The heat-map in
Fig. 7 illustrates the effect of different combinations of a; and aig on the total num-
ber of deaths; the level curves help understand the trade-off in targeting the two
classes. We observe that the total number of deaths is mostly determined by the
parameter a1, that is, the activity reduction for the high activity class. Hence, our
results suggest that implementing targeted stay-at-home policies in which severe
activity reductions are only enforced on the age cohorts that are more at risk (in
our scenario, people over 65 years old) is not sufficient to reduce the overall death

toll.

3.2 Relaxation of NPIs toward reopening strategies

The proposed meta-population model enables the analysis of reopening strategies
to uplift restrictions while avoiding resurgent outbreaks. This has recently emerged
as a key issue in the control of COVID-19 outbreaks in the medium- to long-term
period [44]. We run our calibrated model to simulate the epidemic until the date of
intervention uplifting. Then, we vary the values of parameters o and § to account
for the uplift of the containment measures. Similar to the previous analysis, we
consider a set of different options for the parameters after intervention uplifting
and different times for starting the reopening strategies. Specifically, we model

the uplifting of the reduction of social activity by varying the parameter « from
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Figure 7: Effect of targeted lockdown strategies. We consider the total num-
ber of deaths over a time-window of 104 days from the beginning of the
simulation (4th February) to the time corresponding to the relaxation of the
most severe NPIs in Italy (18th May). On the two axes, a; and asy cor-
respond to activity reduction of high and low activity classes, respectively.
Level curves are shown to clarify how targeted interventions should be com-
bined to produce the same effect on the total number of deaths. The black

dot represents the identified activity reduction in model calibration.
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Qlow, identified during the lockdown, to a value @ = 0.6. Likewise, we describe the
uplifting of mobility restrictions by varying the parameter 5 from 0 (no mobility
allowed) to 1 (nominal mobility reinstated).

Our results suggest that the effect of enforcing mobility restrictions upon the
relaxation of NPIs is negligible and dominated by the activity reduction (Fig. 8).
We evaluate the total number of deaths in a time-window of 60 days after the
relaxation date (18th May). Both at the Province level, for which we show the
examples of Sud Sargegna (Fig. 8a) and Bergamo (Fig. 8b), and at the aggregated
country level (Fig. 8c), the contribution of mobility restrictions is little or absent.
These results are confirmed by other scenarios with different relaxation dates and
a NMF-based analysis (Supplementary material, Secs. S5 and S6 and Figs. S3
and S4). Overall, this evidence indicates that activity reduction in the relaxation of
NPIs should be thoughtfully calibrated, trading-off the risk of resurgent outbreaks
and the social and economical costs associated with such policies. On the other
hand, the further enforcement of mobility restrictions within the country does not

seem to be beneficial in the relaxation phase.

4 Discussion

Motivated by the evidence of the key role of NPIs in the ongoing COVID-19
outbreak [2, 3, 4, 5], we made an effort to propose a parsimonious mathemati-
cal framework to study NPIs and elucidate their impact on epidemic spreading.
Specifically, we combined a meta-population model, capturing the spatial distri-
bution of the population and its mobility patterns [22, 23], with an ADN-based
structure, which reflects real-world features of social activity such as heterogeneity
[28, 29] and behavioural traits [26, 27]. We explicitly incorporated two types of

NPIs: actions aiming at reducing individuals’ activity (social distancing, forbid-
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Figure 8: Effect of the relaxation of NPIs, for different levels of post-
relaxation activity reduction and mobility restrictions. We consider the num-
ber of deaths over a time-window of 60 days from the relaxation date (18th
May). In (a), we report the results for Sud Sardegna, in (b) for Bergamo,

while in (c), we show the results aggregated at the country level.

ding gatherings and, in general, any measure that curtails the number of contacts
favouring the spread of the infection) and policies to restrict individuals’ mobility
(for instance, through travel bans). Through the lens of our modelling frame-
work, we disentangled the effect of these two types of policies depending on the
time of their implementation. We calibrated the model with data on the ongoing
COVID-19 outbreak in Italy [31].

We leveraged the model to explore a wide range of what /if scenarios on spatio-
temporal dynamics of COVID-19 spreading for different combinations of NPIs.
Our analysis allows to draw interesting conclusions on when and how to apply
NPIs to make the fight against the spread more effective. While the level of activ-
ity reduction is unequivocally a decisive factor, the impact of mobility restrictions
has a more entangled impact. First, we observed that mobility restrictions produce
benefits only if applied at the early stage of the outbreak, and only if paired with
appropriate activity reduction policies. Moreover, we discovered that the effect

of mobility restrictions is strongly dependent on space. In fact, through a non-
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negative matrix factorisation technique, we identified two sets of Provinces that
are differently affected by mobility restrictions. The first set, mostly consisting
of Provinces in the North (where the outbreak initially started), has little or no
benefit from mobility restrictions. The Provinces in the second set, instead, would
have benefited from early implementation of mobility restrictions. Surprisingly,
this set includes some of the Provinces in the north (most affected area). Then,
we discussed possible implementation of targeted NPIs, with severe restrictions
only for age cohorts that are more at risk of developing severe illness. Our mod-
elling framework brought to light concerning limitations in the implementation
of these targeted interventions: although economical reasons may prompt these
interventions, their public health value could be limited. Finally, while mobility
restrictions are useful in the early stage of the outbreak, their late implementation
is ineffective. A different scenario is observed for the relaxation of NPIs, where
the level of activity reduction should be carefully and gradually uplifted.

Our study outlines several avenues of future research, which can be pursued
leveraging the generality of the heterogeneous meta-population framework pro-
posed in this study. Although NPIs have been homogeneously implemented na-
tionwide through Decrees of the Prime Minister, the model could benefit from the
study of heterogeneous implementation (and relaxation) of NPIs between Provinces
and even the implementation of targeted mobility restrictions between specific
Provinces (through the modification of the routing matrix W), whose analysis is
envisaged for future research. The outcome of such an analysis can inform poli-
cymakers on targeted interventions that may reduce social and economical costs
while effectively halting the epidemic. Also, other classes may be added to our
model to explore other targeted intervention policies, such as those leading to safe
schools reopening. The introduction of a community that represents the rest of the

world would enable the study of the impact of closures of national borders. While
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we considered a simple model for the epidemic progression, additional compart-
ments and transitions may be added to capture hospitalisation or testing [45], and
used to analyse different what /if scenarios. Finally, the simplicity of our mathe-
matical framework may be conducive to a rigorous analytical treatment, involving
for example the computation of the epidemic threshold, toward providing further

insight into the effect of NPIs on the epidemic spreading.
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S1 Italian geographic organisation

The Italian territory is divided into four levels of administrative entities.
At the finer level, there are 7,903 municipalities (local administrative units
according to the European standards of Nomenclature of Territorial Units for
Statistics - NUTS) that are grouped in 107 Provinces (NUTS-3). Provinces
are then organised in 20 Regions (NUTS-2), which comprise five macro-
regions (NUTS-1): North-West, North-East, Centre, South and Islands. See
Fig. S1 for a map. We considered Provinces as the communities of our
meta-population model. Such a choice has two main motivations. First,
municipalities are not autonomous entities, since most of them are small and
may not be able to provide all the necessary basic services to the population
(supermarkets, hospitals, public offices, etc.). Hence, it could be unrealistic
to propose that they are completely isolated with respect to the epidemic.
Second, Provinces are the smallest administrative entities for which epidemic

data can be considered consistently accurate and equally detailed nationwide.



Bergamo

Center
Islands
North-East
North-West
South

Monza

Varese

Sud Sardegna

Figure S1: Administrative entities of Italy. The country is divided into 5
macro-regions, denoted by different colours in the figure. Macro-regions are
divided into 20 Regions (separated by black outlines), which are partitioned
into 107 Provinces (separated by white outlines). The Provinces used in the

main document (Bergamo, Monza, Sud Sardegna and Varese) are labelled.
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S2 Road map of NPIs in Italy

e 20th—23rd February 2020: seven deaths are registered due to COVID-
19, but they were not reported in [1], which starts reporting data from
24th February. These deaths are reported in the following news articles

(in Italian):

— https://www.agi.it/cronaca/news/2020-02-24/coronavirus

-italia-7190713

— https://www.adnkronos.com/fatti/cronaca/2020/02/24/cor
onavirus-tre-morti-italia pGiCwRQVUyb3fisOFs027K.html

— https://www.tgcom24 .mediaset.it/cronaca/lombardia/coro
navirus-morta-una-donna-in-lombardia-seconda-vittima

-italiana_15150431-202002a.shtml

— https://www.ilfattoquotidiano.it/2020/02/22/adriano-tr
evisan-78-anni-di-vo-euganeo-ecco-chi-e-la-prima-vit
tima-italiana-del-coronavirus—-la-paura-nel-paese-iso

lato/5713686

— https://www.ansa.it/canale_saluteebenessere/notizie/sa
nita/2020/02/24/coronavirus-_60aae600-8535-44d9-86de-4
8c4b71478ef .html

— https://www.repubblica.it/cronaca/2020/02/23/news/coro

navirus_italia-249329434/

o 21st—23rd February 2020: lockdown is enforced in the so called “red

zones,” areas around two municipalities in North Italy (Codogno in
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1

Lombardy and Vo’ in Veneto, located in North-West and North-Fast

macro-regions, respectively).

1st March 2020: mild social distancing measures are enforced in large

areas of North-West and North-FEast.

8th March 2020: strict lockdown is enforced in Lombardy and parts
of Veneto, Piemonte, Marche; mild social distancing measures are ex-

tended to the entire country.

11th March 2020: severe lockdown, including activity reduction and

mobility restrictions is extended nationwide.

18th May 2020: first relaxation of NPIs. Mitigation of the mobility
restrictions (travels within the same Region are allowed) and partial

reopening of commercial and productive activities.
3rd June 2020: complete relaxation of the mobility restrictions.

11th June 2020: further relaxation of NPIs.

All these interventions are recorded in the Gazzetta Ufficiale della Repub-
blica Italiana (Official Gazette of the Italian Republic) [2].
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S3 Details of the non-negative matrix factori-

sation (NMF)

Here, we explain the non-negative matrix factorisation (NMF) through the
scenario of early implementations of NPIs, whose results are shown in Fig. S2.
We simulated the total number of deaths, over a 104 days time-window, for
p different levels of «, ¢ different levels of 3, and for each Province h € H.
The results of these simulations were stored in a set of non-negative matrices
P, € RE*.

The NMF algorithm approximates each matrix P, as a weighted sum of
an arbitrary number of basis matrices, which help understand the effect of
NPIs on all the Provinces. We select two basis matrices, denoted as C'; and
(5, so that

P & kpC1 + kpaCy, (1)

where kj,; and kpo are two scalar weights that are specific to each matrix Pj,.
The identification of both weights and basis matrices is performed through
the following steps. First, we normalise the entries of each matrix P, between

RT'X(M), containing the

0 and 1. Then, we assemble a new matrix A €
vectorised of matrix P, at row h. Third, we minimise the residual in the
Frobenius norm ||A — KH||. to calculate matrices K € RT'XQ and H €
Rix 9 The two row vectors of matrix H contain the two basis matrices 4
and Cy in form of vectors, and the row vector h of matrix K comprises the

two weights kp1 and kps.
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S4 Application of NMF to the analysis of mo-
bility restrictions

The application of the approach is presented in Fig. S2. As an illustration,
we examine Fig. S2e-S2f that details further Fig. 6(c,f) of the main docu-
ment. From Fig. S2e, we register that matrix Cy encapsulates the beneficial
effect of mobility restrictions, since the numerical value of its entries reflect
the evidence that decreasing /S from 1 (no mobility restrictions) to 0 (no
mobility allowed) results in a remarkable decrease in the number of deaths.
On the contrary, matrix C' is associated with all the non-beneficial effects of
mobility restrictions. We remark that, by construction, the NMF yields the
two matrices C; and C equal for all the Provinces. Hence, the relative mag-
nitude of the two coefficients kj; and kj, indicates whether a given Province
is benefited or harmed by mobility restrictions. Fig. S2f plots the coefficient
pairs (kp1, kne), for each Province. To provide a more illustrative evidence,
a 2-means clustering algorithm [3] is applied to partition all Provinces in
two sets: those for which mobility restrictions are beneficial and those for
which they are detrimental. More details on the exemplary Provinces of
Sud Sardegna and Bergamo (explicitly labelled in Fig.S2f) are presented in
Fig. 6(c,f) of the main document. The other panels of Fig. S2 demonstrate
analogous results for different dates of applications of NPIs, for which the

effect of mobility restrictions is less evident.
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Figure S2: Effect of activity reduction and mobility restrictions on the total
number of deaths over a time-window of 104 days from the beginning of
the simulation (4th February) to the relaxation of the more severe NPIs
(18th May). We plot the two basis matrices for three different intervention
scenarios. In (a,b), both mobility restrictions and activity reduction are
applied as per the actual application dates. In (c,d), hypothetical 15-days
early implementation of both strategies. In (e,f), mobility restrictions are
enacted even earlier, on 4th February, while activity reduction is applied
15 days in advance with respect to its actual implementation. In (b,d,f),
we show the Province’s weights related to the two basis matrices, coloured
respect to the results of the k-means algorithm. This figure extends Fig. 6

in the main document, which shows two exemplary Provinces.



= S5  Further details on the uplifting timing of
125 NPIs

6 Figure S3 provides insight on the scenarios of uplifting of NPIs, with de-
127 tails on the two exemplary Provinces of Sud Sardegna (panels (a)—(c)) and

s Bergamo (panels (d)—(f)) and at the National level (panels (g)—(i)).
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Figure S3: Effect of the relaxation of NPIs, for different post-relaxation levels
of activity reduction and mobility restrictions. We consider the number of
deaths over a time-window of 60 days from the relaxation date for three
different scenarios. In (a,d,g), we consider a late hypothetical uplift of the
restrictions on July 1. In (b,e,h), we consider as relaxation date June 3, which
corresponds to the complete relaxation of mobility restrictions in Italy. In
(c,f}i), we consider as relaxation date 18th May, corresponding to the first
uplifting of NPIs in Italy. In (a—f), we report the results for two Provinces
that have shown different responses in the implementation of NPIs: (a—c)
Sud Sardegna and (d—f) Bergamo. In (g-i), we show the results aggregated
at the country. This figure provides further details to Fig. 8 of the main

document, which only contains panels (c,f,i).
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S6 NMEF to analyse the uplifting of mobility
restrictions

NMF was utilised to perform similar what-if analyses on the scenarios of
relaxation of NPIs. Results are illustrated in Fig. S4. In all the considered
scenarios, the first component explained most of the variations, due to the
smaller values of the entries of matrix Cy and of the corresponding weights.
As a result, travel restrictions are unlikely to have a primary effect during

relaxation of NPIs.

12



Relaxation on July 1

(a) C1 C2
0.6 0.6 0.4
- 0.8
0.5 0.5 0.3
- 0.6
s 0.4 s 0.4 02
-0.4
0.3 0.2 0.3 _o1
0.2 Coo 02 0.0
0.0 0.5 1.0 0.0 0.5 1.0
B B
Relaxation on June 3
(c) C1 C2
0.6 0.6 0.3
05 08 o5
0.6 0.2
s 0.4 s 0.4
-0.4
0.3 0.3 -0.1
-0.2
0.2 - 0.0 0.2 200
0.0 0.5 1.0 0.0 0.5 1.0
B B
(e) C1
0.6
0.5
s 0.4
0.3
0.2
0.0 0.5
B

(b)

ka2

(d)

k2

(f)

k2

0.6
0.54
0.4+
0.34
0.2+
0.14

0.0

0.6

0.54

0.4+

0.3 4

0.2+

0.14

0.0 4

0.6 1
0.54
0.4+
0.3+
0.2+
0.14

0.0

T
0.90

.
0.95
k1

Figure S4: Effect of the relaxation of NPIs, for different post-relaxation levels

of activity reduction and mobility restrictions. We consider the number of

deaths over a time-window of 60 days, and we show the two basis matrices

for three different scenarios. In (a,b), we show a late hypothetical relaxation

of the restrictions on 1st July. In (d,c), we consider as relaxation date 3rd

June, which corresponds to the complete relaxation of mobility restrictions

in Italy. In (e,f), we consider as relaxation date 18th May, corresponding to
the first uplifting of NPIs in Italy. In (b,d,f), we show the Provinces’ weights

related to the two basis matrices.
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Figure S5: Effect of early application of mobility restrictions. We consider
the total number of deaths over a time-window of 104 days from the beginning
of the simulations (4th February) to the time corresponding to the relaxation
of the most severe NPIs in Italy (18th May). We plot different combinations
of levels of activity reduction and mobility restrictions, implemented on 5th
March (actual date) and 4th February (early implementation), respectively.
For each level of activity reduction « (row of the heat-map), the effect of
mobility restrictions is reported in terms of the percentage difference in the
total number of deaths with respect to the corresponding case with no mo-
bility restrictions (8 = 1). We show the results for six Provinces, selected as
representative examples. This figure extends the results illustrated in Fig. 5
of the main document, which reports predictions aggregated at the country

level.
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Figure S6: Effect of early application of mobility restrictions on the peak of
the epidemic incidence. We consider the maximum number of new infected
individuals from the beginning of the simulations (4th February) to the time
corresponding to the relaxation of the most severe NPIs (18th May). In (a),
we consider the effect of different levels of mobility restrictions enacted on
4th February (almost one month earlier than the actual dates). The figure in-
set shows the effect of the same interventions applied on March 1 (the actual
application date in North Italy). The activity reduction parameter is fixed to
the lockdown level oy, = 0.176. Results are aggregated at the macro-region
level and reported as the variation of the infected individuals at the peak
of the epidemic incidence Cpear, With respect to the case with no mobility
restrictions (6 = 1). In (b), we consider different combinations of levels of ac-
tivity reduction and mobility restrictions, implemented on 5th March (actual
date) and 4th February (early implementation), respectively. For each level
of activity reduction « (row), the effect of mobility restrictions is reported
in terms of the percentage difference in the number of infected individuals
at the peak of the epidemic incidence with respect to the corresponding case

with no mobility restrictions (8 = 1).
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Figure S7: Effect of early application of mobility restrictions on the peak of

the epidemic incidence for six Provinces, selected as representative examples.

We consider the maximum number of new infected individuals from the be-

ginning of the simulations (4th February) to the time corresponding to the

relaxation of the most severe NPIs (18th May). We consider different combi-

nations of levels of activity reduction and mobility restrictions, implemented

on 5th March (actual date) and 4th February (early implementation), re-

spectively. For each level of activity reduction « (row), the effect of mobility

restrictions is reported in terms of the percentage difference in the number

of infected individuals at the peak of the epidemic incidence with respect to

the corresponding case with no mobility restrictions (5 = 1).
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