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Abstract17

To date, the only effective means to respond to the spreading18

of COVID-19 pandemic are non-pharmaceutical interventions (NPIs),19

which entail policies to reduce social activity and mobility restrictions.20

Quantifying their effect is difficult, but it is key to reduce their social21

and economical consequences. Here, we introduce a meta-population22

model based on temporal networks, calibrated on the COVID-19 out-23

break data in Italy and apt to evaluate the outcomes of these two types24

of NPIs. Our approach combines the advantages of granular spatial25

modelling of meta-population models with the ability to realistically26

describe social contacts via activity-driven networks. We focus on27

disentangling the impact of these two different types of NPIs: those28

aiming at reducing individuals’ social activity, for instance through29

lockdowns, and those that enforce mobility restrictions. We provide30

a valuable framework to assess the viability of different NPIs, vary-31

ing with respect to their timing and severity. Results suggest that32

the effects of mobility restrictions largely depend on the possibility to33

implement timely NPIs in the early phases of the outbreak, whereas34

activity reduction policies should be prioritised afterwards.35

Keywords— Calibration, Epidemic model, Meta-population, Mobility, Networks,36

Non-pharmaceutical interventions37

1 Introduction38

Following the first report of the novel coronavirus (SARS-CoV-2) in Wuhan, COVID-39

19 has risen above 43 million cases and 1, 157, 509 reported deaths as of 27th40
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October 2020 [1]). The ongoing pandemic quickly reached Europe during Febru-41

ary and March 2020, forcing most of the countries to implement unprecedented42

non-pharmaceutical interventions (NPIs) to fight the spread [2, 3, 4, 5]. Some43

of these interventions promote policies to reduce human-to-human interactions,44

for example by enforcing social distancing, halting nonessential activities, closing45

schools, and banishing large gatherings [2, 5]. Others limit human mobility by46

means of travel restrictions and bans [6]. Due to the considerable economic and47

social cost associated with the implementation of both of these types of policies48

[7, 8, 9]), it is crucial to assess their effectiveness. Mathematical and computa-49

tional epidemic models are key to accurately evaluate a wide range of what/if50

scenarios, predicting the evolution of the pandemic for different choices of NPIs51

[10, 11, 12, 6, 13, 14, 15, 16, 17].52

One of the fundamental aspects of the spread of infectious diseases is its spatial53

evolution and the concurrent role of human mobility patterns [18, 19, 20]. Exten-54

sive studies on mobility within the COVID-19 pandemic revealed that population55

movements are among the main drivers of the spatial spreading of the outbreak56

[4, 21]. Network structures have emerged as a powerful framework to encapsulate57

such mobility patterns within mathematical models of epidemics, especially by58

means of meta-population models [22]. This modelling paradigm is based on the59

definition of a set of communities (Provinces, Counties, or Regions), connected by60

a network that captures daily short-range commuting and long-range mobility.61

Different from typical meta-population models that assume homogeneous mix-62

ing within communities [22, 23], we propose a network structure that accounts63

for the inherent, heterogeneous and time-varying nature of human interactions64

[24, 25], together with behavioural changes in response to the pandemic evolution65

[26, 27]. To this aim, individuals interact on the basis of a mechanism inspired66

by activity-driven networks (ADNs) [28, 29]. Our model comprehends two key67
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aspects of social communities, mobility patterns and temporal, heterogeneous net-68

works of contacts. Within this meta-population model, we incorporate a variation69

of a susceptible–infected–removed (SIR) epidemic process [30]. Such an epidemic70

process allows to capture several key features of COVID-19, like the existence of71

latency periods and the delay in the official reporting of infections and deaths.72

We calibrate the model on epidemic data from the Italian COVID-19 outbreak73

[31], to examine different scenarios that evaluate the spatial effects of NPIs. In74

particular, we explore the interplay between reduction in social activity and mo-75

bility restrictions. At the modelling level, the former mechanism acts upon the76

network of contacts, while the latter modifies mobility patterns between commu-77

nities. Our findings reveal that the timing of the interventions is essential toward78

effective implementations. We conclude that mobility restrictions should be ap-79

plied at the early stage of the epidemic and coupled with appropriate policies to80

reduce social activity. Surprisingly, the impact of mobility restrictions is spatially81

heterogeneous. For the Italian outbreak, this results in a greater benefit for South-82

ern regions, that is, those located far from the initial outbreak. The overall effect83

of early travel restrictions in these areas leads to 12% of reduction in the total84

number of deaths. We also examine differential interventions among age cohorts,85

determining that the application of severe restrictions only to the most vulnerable86

age cohorts would not be sufficient to effectively reduce the deaths toll. Different87

phenomena are observed upon the uplifting of containment measures, with the88

contribution of mobility restrictions being negligible. In this phase of the fight89

against the epidemic, policies limiting social activity (for instance, by enforcing90

the use of face masks or social distancing) bestow the main benefits in mitigating91

resurgent outbreaks.92
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2 Methods93

2.1 Model94

2.1.1 Meta-population activity-driven model95

We consider a population of n individuals partitioned into a set H = {1, . . . ,K} of96

communities, located in bounded geographical areas (administrative divisions, such97

as Regions, Provinces or Municipalities), where nh is the number of individuals in98

the hth community. Communities are connected through a weighted graph that99

models travel paths between them. The weight matrix W ∈ [0, 1]K×K , called100

routing matrix, is a matrix with with non-negative entries, zeros on the main101

diagonal and row sums equal to 1, such that Whk is the fraction of members of102

community h that move to community k per unit-time.103

Individuals interact according to a mechanism inspired by ADNs [28, 29], which104

accounts for the inherent, heterogeneous propensity of humans to interact with105

others. Specifically, individuals are divided into P baseline activity classes 0 <106

a1 < a2 < · · · < aP ≤ 1, where the activity ai of individuals in the ith class107

quantifies their nominal propensity to interact with others. At each time-step and108

for each activity class i, a randomly selected fraction ai of individuals activates and109

generates interactions with others. This fraction of the population is called active.110

Active individuals may generate interactions within the community where they111

are located, or they may travel and interact in other communities. This aspect112

is included in a mobility parameter b ∈ [0, 1] that quantifies the baseline fraction113

of the active population that commutes to other communities; the commuting114

unfolds according to the routing matrix W (Fig. 1). The remaining fraction 1− b115

of the active population does not commute and interacts locally with individuals116

randomly selected within their community. We assume that the P activity classes117
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Figure 1: Schematics of the meta-population model.

are equally distributed in different communities. Specifically, we introduce the118

activity distribution vector η ∈ [0, 1]P such that the expected number of individuals119

with activity class ai in the hth community is equal to the product nhηi. We finally120

introduce a parameter m ≥ 0 that captures the individuals’ interaction rate, that121

is, the average number of interactions generated by each active individual in a122

time-unit.123

Two parameters α ∈ [0, 1] and β ∈ [0, 1] are introduced to model NPIs. The124

former, α, models individuals’ self-isolation due to the awareness of the disease125

spreading. In the model, this corresponds to scaling down the individual activity126

from its baseline value ai to αai. The latter, β, captures the effect of mobility127

restrictions, which are modelled by scaling down the baseline mobility parameter128
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Figure 2: Schematics of the epidemic progression.

from b to βb.129

2.1.2 Disease progression130

The disease progression is modelled according to an extension of the classical SIR131

model (Fig. 2), which encapsulates a latency period between contagion and in-132

fectiousness, a limited duration of the infectious period, coinciding with the peak133

of the viral load, and a delay for deaths reporting [2]. Specifically, we adopt134

a susceptible–exposed–infectious–non-infectious–removed (SEINR) compartmen-135

tal model (Fig. 2). After contagion, infected individuals become initially exposed136

(E) before spontaneously moving into the infectious (I) compartment with rate ν.137

Once the infectious period terminates (with rate µ), individuals transition to the138

non-infectious compartment (N), before recovering (or dying) with rate γ, which139

is represented by the R compartment. The compartment N captures the delay be-140

tween the end of the infectious period and the reporting of a death. The number141

of deaths is the most reliable parameter for calibration, given the uncertainty in142

reporting active infectious cases. The parameters have immediate interpretation:143

1/ν is the average latency period of the disease (time from contagion to infec-144

tiousness), 1/µ is the average period of communicability (in which individuals are145

infectious) and 1/γ captures the delay before reported deaths. Hence, 1/µ + 1/γ146

is the average time from infectiousness to the reported death.147

The contagion mechanism involves an interaction. We introduce a parameter148

λ ∈ [0, 1] that captures the fraction of susceptible individuals that become exposed149
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after an interaction with an infectious one. The contagion does not depend only on150

λ, but also on individual properties (their activity) and network structure, as well151

as on the prevalence of infectious individuals. We denote by Πh
i (t) the contagion152

function, that is, the fraction of susceptible individuals with activity ai and who153

belongs to community h that becomes infected at time t, whose expression is154

detailed in the following.155

2.1.3 Dynamics156

We consider the generic activity class i and community h ∈ H. Let Shi , Ehi , Ihi and157

Nh
i be the number of susceptible, exposed, infectious and non-infectious individuals158

of class i in community h, respectively. Clearly, nhηi − Shi − Ehi − Ihi −Nh
i is the159

number of removed individuals in class i and community h. In the thermodynamic160

limit of large populations, n → ∞, we write the following system of ordinary161

difference equations:162

Shi (t+ 1) = (1−Πh
i (t))Shi (t)

Ehi (t+ 1) = Πh
i S

h
i (t) + (1− ν)Ehi (t)

Ihi (t+ 1) = νEhi (t) + (1− µ)Ihi (t)

Nh
i (t+ 1) = µIhi (t) + (1− γ)Nh

i (t).

(1)

We now detail the contagion mechanism and derive an explicit expression for163

Πh
i (t). To simplify the notation, we omit time t, that is, Πh

i is used to denote164

Πh
i (t). In the thermodynamic limit of large populations n→∞ and assuming that165

the epidemic prevalence is small so that we can neglect the probability of having166

multiple interactions with infectious individuals at the same time, the quantity Πh
i167

can be written as the sum of four different terms. The first summand accounts168

for the contagions caused by the fraction αai(1−βb) of active individuals from Shi169

that remains in the hth community and interacts there with infectious individuals;170
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the second summand accounts for the infections caused by the fraction (1−αβaib)171

of Shi that remains in community h and comes in contact there with active infected172

individuals; the third and the fourth summands account for the contagions of the173

fraction αβaib of Shi that is active and moves to other communities interacting with174

infected individuals or receiving interactions from active infectious individuals in175

the community they move to, respectively. These four terms yield176

Πh
i = mαai(1− βb)λPh +m(1− αβaib)λQh

+mαβaib
∑
k∈H

WhkλPk +mαβaib
∑
k∈H

WhkλQk,
(2)

where

Ph =
1

ñh

(
P∑
j=1

(1− αβajb)Ihj +
∑
k∈H

Wkh

P∑
j=1

αβajbI
k
j

)
, (3a)

Qh =
1

ñh

(
P∑
j=1

(1− βb)αajIkj +
∑
k∈H

Wkh

P∑
j=1

αβajbI
k
j

)
, (3b)

are the fraction of infectious and active infectious individuals that are present in

community h, respectively. The quantity

ñh = (1− αβ〈a〉b)nh + αβ〈a〉b
∑
k∈H

Wkhnk

is the number of individuals who are located in community h, where 〈a〉 :=177 ∑P
i=1 ηiai is the average activity of the population.178

2.2 Model calibration179

We calibrate the model to reproduce the COVID-19 outbreak in Italy, setting180

Provinces as communities, using epidemiological parameters from the medical lit-181

erature [32, 33, 34], mobility data by the Italian National Institute of Statistics182

(ISTAT) [35], and data of officially reported deaths [31]. Based on available empir-183

ical data on social contacts per age groups [36], we partition the population in two184
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activity classes. The population below 65 years old forms the high activity class,185

and the population above 65 years old constitutes the low activity class. Differ-186

ent mortality rates are associated with the two classes to estimate the number of187

deaths, base on serology-informed data [37]. The details of the model calibration188

can be found in the following.189

2.2.1 Calibration of the meta-population model190

The Italian territory is divided into K = 107 Provinces, which are chosen as191

communities, extracting the corresponding population nh from the census data192

[35]. Provinces are grouped in 20 Regions, gathered in 5 macro-regions: North-193

West, North-East, Centre, South and Islands (Supplementary material, Sec. S1194

and Fig. S1).195

We partition the population into P = 2 activity classes, based on age-stratified196

data on social contacts [36], aggregating age-groups that form high or low number197

of contacts, respectively. Specifically, the former contains people below 65 years198

old, while the latter gathers people above 65 years old. According to the same199

study, we set m = 19.77. The baseline activity classes a1 and a2 are determined200

by matching the average number of contacts of the individuals in the classes.201

The fraction ηi of population in each class is determined from the Italian age202

distribution [35].203

We consider two types of mobility: commuting pattern between Provinces and204

long-range mobility. The former is directly obtained from the 2011 census data in205

the ISTAT database [35], which has been validated and adopted to model mobility206

in recent works on COVID-19 [12]. Comprehensive data on long-range mobility is207

not available. We estimate it as follows. For each province, we consider the number208

of nights spent in accommodation facilities over the period from February to May209

2011, which represents the destinations of travellers [35]. Origins are estimated210
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Figure 3: Heat-map representing the routing matrix W between Provinces

estimated from [35]. Colour-code represents the fraction of active people that

travel from a Province to another. Provinces are gathered in macro-regions.

based on the flows between macro-regions [35]. Assuming uniformity within each211

macro-region, we set the origins proportional to the population of each Province.212

Finally, W is obtained by combining the two origin-destination matrices (Fig. 3).213

The mobility parameter b is estimated as the fraction of population that moves214

outside their Province, using data from [35].215

NPIs are implemented as follows. At t = t0, we set α = β = 1. Then, based on216

empirical data [38], we consider a linear decrease along 15 days to reach a value217

αlow. Such a decrease begins on 5th March (day of the enforcement of the first218

social distancing measures) and ended on 20th March (when a severe lockdown219
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is enacted). Similar, β is reduced to βlow. Based on [38], we determined that220

this switch occurred on 1st March for macro-regions North-East, North-West and221

Centre, and on 7th March for South and Islands. The values of αlow and βlow are222

identified from epidemic data.223

2.2.2 Calibration of the epidemic parameters224

Epidemic parameters are taken from the literature on COVID-19. Specifically,225

the latency period 1/ν and the infectious period 1/µ are taken from [2], based on226

clinical estimations from [39, 40], respectively; γ is the inverse of the difference227

between the average time from infectiousness to the reported death [41] and 1/µ.228

The infection probability λ depends on the model of social interactions. Hence,229

we identify it from real-world data.Table 1 reports the parameters used in our230

simulations.231

2.2.3 Parameter identification232

We calibrated our model by fitting the temporal evolution of the reported deaths,233

during the COVID-19 outbreak in Italy. Data at the Regional level were retrieved234

from the official Italian Dipartimento della Protezione Civile [31] database. This235

database starts on 24th February, and we had extended it backward in time for 20236

days (until 4th February). We filled with zero deaths the section of the database237

from 4th February to 20th February, and we manually corrected the database to238

include seven deaths that were not reported therein in the period from 20th Febru-239

ary to 23rd February (Supplementary material, Sec. S2). To calibrate the model240

we focused on the period from 4th February (denoted as t0) to 18th May (denoted241

as tend), namely until the first relaxation of NPIs. To enhance the reliability of242

the data we applied a weekly moving average.243

Using the SEINR epidemic progression model, we computed the deaths in244

12



Value(s) Ref./Id.

ν 0.156 day−1 [2, 39]

a [0.149, 0.545] day−1 [36]

µ 0.200 day−1 [2, 40]

η [0.768, 0.232] [36, 35]

γ 0.105 day−1 [41, 2, 40]

b 0.09 [35]

λ 0.042 X

αlow 0.176 X

m 19.77 [36]

βlow 0 X

Table 1: Model parameters; check-marked parameters are identified.
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Province h for activity class i as a fraction of the removed individuals Rhi (t),245

according to the class fatality ratio f1 = 0.045% and f2 = 5.6%. The latter246

was inferred from a serology-informed estimate performed on age-stratified data247

from Geneva, Switzerland [37], scaled on the Italian age-distribution using census248

data [35]. Since we had no access to information about the initial number of249

exposed Ehi (t0) or infected Ihi (t0) individuals, such initial conditions needed to be250

identified. For each Province h and activity class i, we initialised the number of251

exposed and infected as a fraction k1 and k2 of the total reported cases at the end252

of the observation time (24th June) Ch(tend) from the official database [31]:253

Ehi (t0) = k1ηiC
h(tend) and Ihi (t0) = k2ηiC

h(tend), (4)

where k1 and k2 were identified together with the other parameters.254

The parameter identification was formulated as a minimisation problem, solved255

by means of a dual-annealing procedure [42]. Specifically, we defined the cost256

function c as the weighted sum of the squared error between the number of deaths257

predicted by the model and the Regional real data, normalised with respect to258

the maximum number of deaths in the Region. To this aim, we defined the set of259

Regions R and the partition of Provinces into Regions as the function π : H → R,260

such that π(h) = r if and only if Province h was located in Region r. For each261

r ∈ R, we introduced:262

cr =

tend∑
t=t0

(
Dr
MA(t)

D̄r
MA

−
∑

h:π(h)=r fR
h(t)

D̄r
MA

)2

, (5)

and the cost function as the sum of cr weighted with the total number of deaths263

in the Region r264

c =
∑
r∈R

(
cr

tend∑
t=t0

Dr(t)

)
. (6)

Here, Dr(t) indicates the reported deaths in Region r, Dr
MA(t) the weekly moving265

average and D̄r
MA = maxtD

r
MA(t) its maximum value. Using the fatality ratio,266
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the model predicts fRh(t) deaths in the Province h at time t. Fig. 4 shows real267

and simulated time-series with the identified parameters.268

3 Results269

3.1 Implementation of NPIs270

Here, we elucidate the role of NPIs in halting the spread of COVID-19. We aim271

at disentangling the contribution of the two most common kinds of interventions:272

reduction of individuals’ activity, through lockdown or social distancing, and en-273

forcement of mobility restrictions. We take as a reference the NPIs implemented274

in Italy (detailed in the Supplementary material, Sec. S2) and identify the NPI-275

related parameters from available data. The enforcement of lockdown and social276

distancing policies, gradually enacted during a time-window of two weeks (from 5th277

March 5 to 20th March) are modelled through a linear decrease of the α parameter278

from 1 to αlow = 0.176. The effect of the nearly complete mobility restrictions be-279

tween Provinces has been observed from 1st March in the northern macro-regions280

and from 7th March in the southern ones [38]. We model these restrictions by281

setting the mobility parameter to βlow = 0 on the corresponding dates.282

We start from investigating the effect of mobility restrictions in combination283

with activity reduction policies (Fig. 5a). We simulate the mobility restrictions as284

being applied on 4th February, that is, almost one month earlier than the actual285

date. We compare the number of deaths over the time-window that ranges from286

4th February to the date of the first relaxation of NPIs in Italy (18th May). We287

observe that the effect of mobility restrictions becomes significant for intermediate288

levels of activity reduction policies (that is, 0.3 < α < 0.7). On the other hand,289

a negligible effect of mobility restrictions is registered for milder levels of activity290
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Figure 4: Results of the model calibration aggregated at Region level. Model

parameters are summarised in Table 1 of the main document. The red area

denotes the time interval before the implementation of activity reduction.

The green area denotes the 15-days in which α decreases linearly from 1 to

αlow = 0.176. In the white area, activity is reduced to αlow. The black,

dash-dotted vertical line denotes the implementation of mobility restrictions.

Orange curves illustrate the predictions from the model, blue curves are

actual deaths data from [31].
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reduction policies (α > 0.7) and for extremely severe activity reductions (α < 0.3).291

The latter, counter-intuitive finding, is due to a balance between the increased292

number of deaths in some northern macro-regions (close to the initial outbreak)293

and the decrease of deaths in others (Supplementary material, Fig. S5)294

To detail this mechanism, we examine the number of deaths in each macro-295

region, using different levels of mobility restrictions and setting the activity reduc-296

tion to the lockdown level, αlow = 0.176 (Fig. 5b). Our results suggest that the297

impact of mobility restrictions is strongly dependent on their geographical loca-298

tion, and it vanishes if not timely implemented. Notably, we find that the timely299

implementation of severe mobility restrictions would have reduced the number of300

deaths by more than 12% in the Islands macro-region (that is, far from where the301

outbreak was initially located) over the duration of severe NPIs. Such an advan-302

tage becomes smaller and smaller as the considered macro-regions are closer to303

the initial location of the outbreak. Paradoxically, mobility restrictions becomes304

even slightly detrimental if applied in the North-West macro-region, where the305

outbreak started. This is due to the commute of infected individuals from the306

most affected Provinces to the rest of the Provinces and of susceptible individuals307

from less impacted Provinces to the rest of the country. For comparison, we also308

report death count for the implementation of the same restrictions on 1st March,309

corresponding to the actual date of their implementation. We observe that the310

timing of NPIs is essential; an early application of travel restrictions by one month311

would have saved twice as many lives. Similar results are obtained for the peak of312

the epidemic incidence (Supplementary material, Figs. S6 and S7).313

The large geographic variability of the number of deaths is confirmed in Figs. 6a–314

6f, which depict the total number of deaths for two exemplary Provinces under315

different timing and intensity of implementation of NPIs. While the Province of316

Bergamo (in the North-West macro-region), one of the earliest and biggest out-317
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(a) (b)(a)
(a)
( (b)

(b)
(b)(b)

Figure 5: Effect of early application of mobility restrictions. We consider the

total number of deaths over a time-window of 104 days from the beginning of

the simulations (4th February) to the time corresponding to the relaxation

of the most severe NPIs in Italy (18th May). In (a), we illustrate the inter-

play between the two NPI mechanisms, assuming an earlier application of

mobility restrictions, and activity reduction applied at the original date (5th

March). We consider different combinations of levels of activity reduction

and mobility restrictions. The heat map codes the reduction of deaths with

respect to a scenario where mobility restrictions are not applied. Panel (b)

details the effect of earlier mobility restrictions at a macro-regional level, as-

suming a level of activity reduction as per the lockdown phase (αlow = 0.176).

The inset illustrates the effect corresponding to the application of the same

restrictions at the actual date (1st March).
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Figure 6: Effect of activity reduction and mobility restrictions. We consider

the total number of deaths over a time-window of 104 days from the be-

ginning of the simulation (4th February) to the time corresponding to the

relaxation of the most severe NPIs in Italy (18th May). We investigate three

different intervention scenarios. In panels (a,d), both mobility restrictions

and activity reduction are applied at the actual application dates. In panels

(b,e) both strategies are hypothetically implemented earlier by 15 days. In

panels (c,g) mobility restrictions are further set earlier on 4th February, while

keeping activity reduction applied earlier by only 15 days. In panels (a–c),

the province of Sud Sardegna are illustrated as an example of the positive

effect of early mobility restrictions. In panels (d–f), the province of Bergamo

look unaffected by mobility restrictions. In (g), we illustrate the classification

of Provinces in affected and unaffected by mobility restrictions, considering

the scenarios relative to panels (c,f).
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breaks, seems unrelieved by mobility restrictions, the Province of Sud Sardegna (in318

the Islands macro-region), an area much less affected by the pandemic than the319

former, would have largely benefited by such an intervention. To deepen this as-320

pect, we factor out the role of the two types of NPIs by performing a non-negative321

matrix factorisation (NMF) [43] on the outcome of our simulations at the Province322

level (details in the Supplementary material, Secs. S3 and S4). Specifically, we fo-323

cus on values of α ranging over a ±50% interval with respect to the value of the324

lowest activity coefficient αlow = 0.176, identified from real-world data during the325

lockdown, and we simulate the early application of mobility restrictions with differ-326

ent intensity levels and timing. The NMF allows to partition the Italian Provinces327

in two sets. The first (in green in Fig. 6g) comprises Provinces where timely im-328

plemented mobility restrictions are effective in reducing epidemic prevalence (for329

example, Sud Sardegna). The second set (in brown in Fig. 6g) contains Provinces330

for which mobility restrictions have instead a negligible impact. Predictably, most331

of the Provinces in the North-West (where the outbreak started) are unaffected by332

mobility restrictions, while the majority of Provinces in South and Islands would333

benefit from an early implementation of such restrictions.334

The NMF allows to detect some important exceptions. For instance, the335

Provinces of Varese and Monza (close to the Milan metropolitan area) would336

have benefited from timely mobility restrictions. We believe that this is due to the337

initially small number of cases in those two Provinces, and to the large number338

of daily commuters from those Provinces to the Milan Province and other neigh-339

bouring locations, where the Italian outbreak started. Hence, the same dynamics340

between North and South Italy is documented again over a much smaller spatial341

scale, between Northern Provinces with larger initial difference in epidemic preva-342

lence. Similar results are observed by performing the NMF for other intervention343

scenarios (Supplementary material, Fig. S2).344
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Finally, we discuss the possibility of implementing targeted activity reductions345

that act independently on the two activity classes. This allows to study the ef-346

fectiveness of differential intervention policies that could aim at strongly reducing347

social activity for age cohorts that are more at risk of developing severe illness,348

while implementing mild restrictions for younger people. Instead of a single pa-349

rameter α, we thus introduce two parameters α1 and α2 that measure the activity350

reduction for the high and the low activity class, respectively. The heat-map in351

Fig. 7 illustrates the effect of different combinations of α1 and α2 on the total num-352

ber of deaths; the level curves help understand the trade-off in targeting the two353

classes. We observe that the total number of deaths is mostly determined by the354

parameter α1, that is, the activity reduction for the high activity class. Hence, our355

results suggest that implementing targeted stay-at-home policies in which severe356

activity reductions are only enforced on the age cohorts that are more at risk (in357

our scenario, people over 65 years old) is not sufficient to reduce the overall death358

toll.359

3.2 Relaxation of NPIs toward reopening strategies360

The proposed meta-population model enables the analysis of reopening strategies361

to uplift restrictions while avoiding resurgent outbreaks. This has recently emerged362

as a key issue in the control of COVID-19 outbreaks in the medium- to long-term363

period [44]. We run our calibrated model to simulate the epidemic until the date of364

intervention uplifting. Then, we vary the values of parameters α and β to account365

for the uplift of the containment measures. Similar to the previous analysis, we366

consider a set of different options for the parameters after intervention uplifting367

and different times for starting the reopening strategies. Specifically, we model368

the uplifting of the reduction of social activity by varying the parameter α from369
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Figure 7: Effect of targeted lockdown strategies. We consider the total num-

ber of deaths over a time-window of 104 days from the beginning of the

simulation (4th February) to the time corresponding to the relaxation of the

most severe NPIs in Italy (18th May). On the two axes, α1 and α2 cor-

respond to activity reduction of high and low activity classes, respectively.

Level curves are shown to clarify how targeted interventions should be com-

bined to produce the same effect on the total number of deaths. The black

dot represents the identified activity reduction in model calibration.
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αlow, identified during the lockdown, to a value α = 0.6. Likewise, we describe the370

uplifting of mobility restrictions by varying the parameter β from 0 (no mobility371

allowed) to 1 (nominal mobility reinstated).372

Our results suggest that the effect of enforcing mobility restrictions upon the373

relaxation of NPIs is negligible and dominated by the activity reduction (Fig. 8).374

We evaluate the total number of deaths in a time-window of 60 days after the375

relaxation date (18th May). Both at the Province level, for which we show the376

examples of Sud Sargegna (Fig. 8a) and Bergamo (Fig. 8b), and at the aggregated377

country level (Fig. 8c), the contribution of mobility restrictions is little or absent.378

These results are confirmed by other scenarios with different relaxation dates and379

a NMF-based analysis (Supplementary material, Secs. S5 and S6 and Figs. S3380

and S4). Overall, this evidence indicates that activity reduction in the relaxation of381

NPIs should be thoughtfully calibrated, trading-off the risk of resurgent outbreaks382

and the social and economical costs associated with such policies. On the other383

hand, the further enforcement of mobility restrictions within the country does not384

seem to be beneficial in the relaxation phase.385

4 Discussion386

Motivated by the evidence of the key role of NPIs in the ongoing COVID-19387

outbreak [2, 3, 4, 5], we made an effort to propose a parsimonious mathemati-388

cal framework to study NPIs and elucidate their impact on epidemic spreading.389

Specifically, we combined a meta-population model, capturing the spatial distri-390

bution of the population and its mobility patterns [22, 23], with an ADN-based391

structure, which reflects real-world features of social activity such as heterogeneity392

[28, 29] and behavioural traits [26, 27]. We explicitly incorporated two types of393

NPIs: actions aiming at reducing individuals’ activity (social distancing, forbid-394
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(a) (b) (c)

Figure 8: Effect of the relaxation of NPIs, for different levels of post-

relaxation activity reduction and mobility restrictions. We consider the num-

ber of deaths over a time-window of 60 days from the relaxation date (18th

May). In (a), we report the results for Sud Sardegna, in (b) for Bergamo,

while in (c), we show the results aggregated at the country level.

ding gatherings and, in general, any measure that curtails the number of contacts395

favouring the spread of the infection) and policies to restrict individuals’ mobility396

(for instance, through travel bans). Through the lens of our modelling frame-397

work, we disentangled the effect of these two types of policies depending on the398

time of their implementation. We calibrated the model with data on the ongoing399

COVID-19 outbreak in Italy [31].400

We leveraged the model to explore a wide range of what/if scenarios on spatio-401

temporal dynamics of COVID-19 spreading for different combinations of NPIs.402

Our analysis allows to draw interesting conclusions on when and how to apply403

NPIs to make the fight against the spread more effective. While the level of activ-404

ity reduction is unequivocally a decisive factor, the impact of mobility restrictions405

has a more entangled impact. First, we observed that mobility restrictions produce406

benefits only if applied at the early stage of the outbreak, and only if paired with407

appropriate activity reduction policies. Moreover, we discovered that the effect408

of mobility restrictions is strongly dependent on space. In fact, through a non-409
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negative matrix factorisation technique, we identified two sets of Provinces that410

are differently affected by mobility restrictions. The first set, mostly consisting411

of Provinces in the North (where the outbreak initially started), has little or no412

benefit from mobility restrictions. The Provinces in the second set, instead, would413

have benefited from early implementation of mobility restrictions. Surprisingly,414

this set includes some of the Provinces in the north (most affected area). Then,415

we discussed possible implementation of targeted NPIs, with severe restrictions416

only for age cohorts that are more at risk of developing severe illness. Our mod-417

elling framework brought to light concerning limitations in the implementation418

of these targeted interventions: although economical reasons may prompt these419

interventions, their public health value could be limited. Finally, while mobility420

restrictions are useful in the early stage of the outbreak, their late implementation421

is ineffective. A different scenario is observed for the relaxation of NPIs, where422

the level of activity reduction should be carefully and gradually uplifted.423

Our study outlines several avenues of future research, which can be pursued424

leveraging the generality of the heterogeneous meta-population framework pro-425

posed in this study. Although NPIs have been homogeneously implemented na-426

tionwide through Decrees of the Prime Minister, the model could benefit from the427

study of heterogeneous implementation (and relaxation) of NPIs between Provinces428

and even the implementation of targeted mobility restrictions between specific429

Provinces (through the modification of the routing matrix W ), whose analysis is430

envisaged for future research. The outcome of such an analysis can inform poli-431

cymakers on targeted interventions that may reduce social and economical costs432

while effectively halting the epidemic. Also, other classes may be added to our433

model to explore other targeted intervention policies, such as those leading to safe434

schools reopening. The introduction of a community that represents the rest of the435

world would enable the study of the impact of closures of national borders. While436
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we considered a simple model for the epidemic progression, additional compart-437

ments and transitions may be added to capture hospitalisation or testing [45], and438

used to analyse different what/if scenarios. Finally, the simplicity of our mathe-439

matical framework may be conducive to a rigorous analytical treatment, involving440

for example the computation of the epidemic threshold, toward providing further441

insight into the effect of NPIs on the epidemic spreading.442
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S1 Italian geographic organisation28

The Italian territory is divided into four levels of administrative entities.29

At the finer level, there are 7, 903 municipalities (local administrative units30

according to the European standards of Nomenclature of Territorial Units for31

Statistics - NUTS) that are grouped in 107 Provinces (NUTS-3). Provinces32

are then organised in 20 Regions (NUTS-2), which comprise five macro-33

regions (NUTS-1): North-West, North-East, Centre, South and Islands. See34

Fig. S1 for a map. We considered Provinces as the communities of our35

meta-population model. Such a choice has two main motivations. First,36

municipalities are not autonomous entities, since most of them are small and37

may not be able to provide all the necessary basic services to the population38

(supermarkets, hospitals, public offices, etc.). Hence, it could be unrealistic39

to propose that they are completely isolated with respect to the epidemic.40

Second, Provinces are the smallest administrative entities for which epidemic41

data can be considered consistently accurate and equally detailed nationwide.42
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Bergamo

Sud Sardegna 

Monza

Varese

Figure S1: Administrative entities of Italy. The country is divided into 5

macro-regions, denoted by different colours in the figure. Macro-regions are

divided into 20 Regions (separated by black outlines), which are partitioned

into 107 Provinces (separated by white outlines). The Provinces used in the

main document (Bergamo, Monza, Sud Sardegna and Varese) are labelled.
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S2 Road map of NPIs in Italy43

• 20th–23rd February 2020: seven deaths are registered due to COVID-44

19, but they were not reported in [1], which starts reporting data from45

24th February. These deaths are reported in the following news articles46

(in Italian):47

– https://www.agi.it/cronaca/news/2020-02-24/coronavirus48

-italia-719071349

– https://www.adnkronos.com/fatti/cronaca/2020/02/24/cor50

onavirus-tre-morti-italia pGiCwRQVUyb3fisOFs027K.html51

– https://www.tgcom24.mediaset.it/cronaca/lombardia/coro52

navirus-morta-una-donna-in-lombardia-seconda-vittima53

-italiana 15150431-202002a.shtml54

– https://www.ilfattoquotidiano.it/2020/02/22/adriano-tr55

evisan-78-anni-di-vo-euganeo-ecco-chi-e-la-prima-vit56

tima-italiana-del-coronavirus-la-paura-nel-paese-iso57

lato/571368658

– https://www.ansa.it/canale saluteebenessere/notizie/sa59

nita/2020/02/24/coronavirus- 60aae600-8535-44d9-86de-460

8c4b71478ef.html61

– https://www.repubblica.it/cronaca/2020/02/23/news/coro62

navirus italia-249329434/63

• 21st–23rd February 2020: lockdown is enforced in the so called “red64

zones,” areas around two municipalities in North Italy (Codogno in65
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Lombardy and Vo’ in Veneto, located in North-West and North-East66

macro-regions, respectively).67

• 1st March 2020: mild social distancing measures are enforced in large68

areas of North-West and North-East.69

• 8th March 2020: strict lockdown is enforced in Lombardy and parts70

of Veneto, Piemonte, Marche; mild social distancing measures are ex-71

tended to the entire country.72

• 11th March 2020: severe lockdown, including activity reduction and73

mobility restrictions is extended nationwide.74

• 18th May 2020: first relaxation of NPIs. Mitigation of the mobility75

restrictions (travels within the same Region are allowed) and partial76

reopening of commercial and productive activities.77

• 3rd June 2020: complete relaxation of the mobility restrictions.78

• 11th June 2020: further relaxation of NPIs.79

All these interventions are recorded in the Gazzetta Ufficiale della Repub-80

blica Italiana (Official Gazette of the Italian Republic) [2].81
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S3 Details of the non-negative matrix factori-82

sation (NMF)83

Here, we explain the non-negative matrix factorisation (NMF) through the84

scenario of early implementations of NPIs, whose results are shown in Fig. S2.85

We simulated the total number of deaths, over a 104 days time-window, for86

p different levels of α, q different levels of β, and for each Province h ∈ H.87

The results of these simulations were stored in a set of non-negative matrices88

Ph ∈ Rp×q
+ .89

The NMF algorithm approximates each matrix Ph as a weighted sum of90

an arbitrary number of basis matrices, which help understand the effect of91

NPIs on all the Provinces. We select two basis matrices, denoted as C1 and92

C2, so that93

Ph ≈ kh1C1 + kh2C2, (1)

where kh1 and kh2 are two scalar weights that are specific to each matrix Ph.94

The identification of both weights and basis matrices is performed through95

the following steps. First, we normalise the entries of each matrix Ph between96

0 and 1. Then, we assemble a new matrix A ∈ R|H|×(pq)+ , containing the97

vectorised of matrix Ph at row h. Third, we minimise the residual in the98

Frobenius norm ||A−KH||F to calculate matrices K ∈ R|H|×2+ and H ∈99

R2×(pq)
+ . The two row vectors of matrix H contain the two basis matrices C1100

and C2 in form of vectors, and the row vector h of matrix K comprises the101

two weights kh1 and kh2.102
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S4 Application of NMF to the analysis of mo-103

bility restrictions104

The application of the approach is presented in Fig. S2. As an illustration,105

we examine Fig. S2e-S2f that details further Fig. 6(c,f) of the main docu-106

ment. From Fig. S2e, we register that matrix C2 encapsulates the beneficial107

effect of mobility restrictions, since the numerical value of its entries reflect108

the evidence that decreasing β from 1 (no mobility restrictions) to 0 (no109

mobility allowed) results in a remarkable decrease in the number of deaths.110

On the contrary, matrix C1 is associated with all the non-beneficial effects of111

mobility restrictions. We remark that, by construction, the NMF yields the112

two matrices C1 and C2 equal for all the Provinces. Hence, the relative mag-113

nitude of the two coefficients kh1 and kh2 indicates whether a given Province114

is benefited or harmed by mobility restrictions. Fig. S2f plots the coefficient115

pairs (kh1, kh2), for each Province. To provide a more illustrative evidence,116

a 2-means clustering algorithm [3] is applied to partition all Provinces in117

two sets: those for which mobility restrictions are beneficial and those for118

which they are detrimental. More details on the exemplary Provinces of119

Sud Sardegna and Bergamo (explicitly labelled in Fig.S2f) are presented in120

Fig. 6(c,f) of the main document. The other panels of Fig. S2 demonstrate121

analogous results for different dates of applications of NPIs, for which the122

effect of mobility restrictions is less evident.123
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2
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Figure S2: Effect of activity reduction and mobility restrictions on the total

number of deaths over a time-window of 104 days from the beginning of

the simulation (4th February) to the relaxation of the more severe NPIs

(18th May). We plot the two basis matrices for three different intervention

scenarios. In (a,b), both mobility restrictions and activity reduction are

applied as per the actual application dates. In (c,d), hypothetical 15-days

early implementation of both strategies. In (e,f), mobility restrictions are

enacted even earlier, on 4th February, while activity reduction is applied

15 days in advance with respect to its actual implementation. In (b,d,f),

we show the Province’s weights related to the two basis matrices, coloured

respect to the results of the k-means algorithm. This figure extends Fig. 6

in the main document, which shows two exemplary Provinces.
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S5 Further details on the uplifting timing of124

NPIs125

Figure S3 provides insight on the scenarios of uplifting of NPIs, with de-126

tails on the two exemplary Provinces of Sud Sardegna (panels (a)–(c)) and127

Bergamo (panels (d)–(f)) and at the National level (panels (g)–(i)).128
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(d)

(a)

(g)

(e)

(b)

(h)

(f)

(c)

(i)

Figure S3: Effect of the relaxation of NPIs, for different post-relaxation levels

of activity reduction and mobility restrictions. We consider the number of

deaths over a time-window of 60 days from the relaxation date for three

different scenarios. In (a,d,g), we consider a late hypothetical uplift of the

restrictions on July 1. In (b,e,h), we consider as relaxation date June 3, which

corresponds to the complete relaxation of mobility restrictions in Italy. In

(c,f,i), we consider as relaxation date 18th May, corresponding to the first

uplifting of NPIs in Italy. In (a–f), we report the results for two Provinces

that have shown different responses in the implementation of NPIs: (a–c)

Sud Sardegna and (d–f) Bergamo. In (g–i), we show the results aggregated

at the country. This figure provides further details to Fig. 8 of the main

document, which only contains panels (c,f,i).
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S6 NMF to analyse the uplifting of mobility129

restrictions130

NMF was utilised to perform similar what-if analyses on the scenarios of131

relaxation of NPIs. Results are illustrated in Fig. S4. In all the considered132

scenarios, the first component explained most of the variations, due to the133

smaller values of the entries of matrix C2 and of the corresponding weights.134

As a result, travel restrictions are unlikely to have a primary effect during135

relaxation of NPIs.136
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Figure S4: Effect of the relaxation of NPIs, for different post-relaxation levels

of activity reduction and mobility restrictions. We consider the number of

deaths over a time-window of 60 days, and we show the two basis matrices

for three different scenarios. In (a,b), we show a late hypothetical relaxation

of the restrictions on 1st July. In (d,c), we consider as relaxation date 3rd

June, which corresponds to the complete relaxation of mobility restrictions

in Italy. In (e,f), we consider as relaxation date 18th May, corresponding to

the first uplifting of NPIs in Italy. In (b,d,f), we show the Provinces’ weights

related to the two basis matrices.
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S7 Additional supporting simulations and fig-137

ures138
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Figure S5: Effect of early application of mobility restrictions. We consider

the total number of deaths over a time-window of 104 days from the beginning

of the simulations (4th February) to the time corresponding to the relaxation

of the most severe NPIs in Italy (18th May). We plot different combinations

of levels of activity reduction and mobility restrictions, implemented on 5th

March (actual date) and 4th February (early implementation), respectively.

For each level of activity reduction α (row of the heat-map), the effect of

mobility restrictions is reported in terms of the percentage difference in the

total number of deaths with respect to the corresponding case with no mo-

bility restrictions (β = 1). We show the results for six Provinces, selected as

representative examples. This figure extends the results illustrated in Fig. 5

of the main document, which reports predictions aggregated at the country

level.
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(a) (b)

Figure S6: Effect of early application of mobility restrictions on the peak of

the epidemic incidence. We consider the maximum number of new infected

individuals from the beginning of the simulations (4th February) to the time

corresponding to the relaxation of the most severe NPIs (18th May). In (a),

we consider the effect of different levels of mobility restrictions enacted on

4th February (almost one month earlier than the actual dates). The figure in-

set shows the effect of the same interventions applied on March 1 (the actual

application date in North Italy). The activity reduction parameter is fixed to

the lockdown level αlow = 0.176. Results are aggregated at the macro-region

level and reported as the variation of the infected individuals at the peak

of the epidemic incidence Cpeak, with respect to the case with no mobility

restrictions (β = 1). In (b), we consider different combinations of levels of ac-

tivity reduction and mobility restrictions, implemented on 5th March (actual

date) and 4th February (early implementation), respectively. For each level

of activity reduction α (row), the effect of mobility restrictions is reported

in terms of the percentage difference in the number of infected individuals

at the peak of the epidemic incidence with respect to the corresponding case

with no mobility restrictions (β = 1).
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Figure S7: Effect of early application of mobility restrictions on the peak of

the epidemic incidence for six Provinces, selected as representative examples.

We consider the maximum number of new infected individuals from the be-

ginning of the simulations (4th February) to the time corresponding to the

relaxation of the most severe NPIs (18th May). We consider different combi-

nations of levels of activity reduction and mobility restrictions, implemented

on 5th March (actual date) and 4th February (early implementation), re-

spectively. For each level of activity reduction α (row), the effect of mobility

restrictions is reported in terms of the percentage difference in the number

of infected individuals at the peak of the epidemic incidence with respect to

the corresponding case with no mobility restrictions (β = 1).
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