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Abstract. Diagnosis of various pancreatic lesions in CT images is a
challenging task owing to a significant overlap in their imaging appear-
ance. An accurate diagnosis of pancreatic lesions and the assessment of
their malignant progression, or the grade of dysplasia, is crucial for opti-
mal patient management. Typically, the grade of dysplasia is confirmed
histologically via biopsy, yet certain radiological findings, including ex-
trapancreatic, can serve as diagnostic clues of the disease progression.
This work introduces a novel method of transforming intermediate acti-
vations for processing intact imaging data of varying sizes with convnets
with linear layers. Our method allows to efficiently leverage the 3D in-
formation of the entire abdominal CT scan to acquire a holistic picture
of all radiological findings for an improved and more precise classifica-
tion of pancreatic lesions. Our model outperforms current state-of-the-
art methods in classifying four most common lesion types (by 2.92%),
while additionally diagnosing the grade of dysplasia. We conduct a set
of experiments to illustrate the effects of a holistic CT analysis and the
auxiliary diagnostic data on the accuracy of the final diagnosis.

1 Introduction

Pancreatic cancer (PC) is one of the most aggressive types of cancer and is
currently the fourth most common cause of cancer-related deaths in the United
States [1]. PC is often asymptomatic but is associated with distinct precursor
cystic lesions, such as intraductal papillary mucinous neoplasms (IPMNs) and
mucinous cystic neoplasms (MCNs). Early detection and diagnosis of such lesions
offer an opportunity to prevent the progression of the disease. However, cystic
pancreatic lesions are a heterogeneous group of lesions, which also include serous
cystadenomas (SCAs) and solid-pseudopapillary neoplasms (SPNs), which are
considered to have a low malignant potential [23]. Despite the widespread use of
high-resolution imaging, such as computed tomography (CT), the non-invasive
diagnosis and characterization of pancreatic lesions is still a challenge even for
an experienced radiologist due to the overlapping demographic and appearance
characteristics (Fig. 1) of lesions [10]. The potential complications and risks
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T: IPMN, D: IG T: IPMN, D: HG T: SCA, D: NA

T: SPN, D: NAT: MCN, D: LG T: MCN, D: IG

Fig. 1. Types (T) of different pancreatic lesions in CT and associated grades of dys-
plasia (D), namely, low- (LG), intermediate- (IG), or high-grade (HG) dysplasia.

associated with surgical resection make an accurate non-invasive diagnostic as-
sessment critically important.

Optimal management of pancreatic lesions also relies on the malignant pro-
gression of a lesion to estimate which patients would benefit the most from a
surgical resection as only a small portion of lesions progress to PC during the
lifetime of a patient. The malignant progression of a lesion is associated with the
grade of dysplasia, namely, low- (LG), intermediate- (IG), or high-grade (HG)
dysplasia. Current guidelines recommend to observe LG and IG precursor lesions
and to resect HG lesions to decrease the risk of invasive PC [2]. Traditionally,
the grade of dysplasia is determined pathologically via a biopsy procedure. How-
ever, some studies show that certain radiological features indicate an association
with the HG dysplasia in pancreatic lesions. These features include the dilation
of the main pancreatic duct [6] or the common bile duct [19], extrapancreatic
malignant neoplasms [4], and lesion size and location [20].

Previous work. Significant progress has been made in the development of
computer-aided diagnosis (CAD) systems to aid the clinicians in the process of
differentiation of various abnormalities in radiological images [5, 14, 17, 18, 27,
29, 30, 33], including for classification of pancreatic lesions [9, 13, 15, 24, 25, 32].
Latter methods mainly focus on the classification of the pre-segmented lesions
into the four most common lesion types, or their sub-groups (benign vs. ma-
lignant, SCN vs. non-SCN, etc.), ignoring the grades of dysplasia for lesions
with malignant potential. In addition, due to the significant variations in the
size of the original 3D regions with lesions, previous methods often divide them
into smaller 3D or 2D subvolumes or patches of fixed size. Each patch is then
analyzed individually, and the final probabilities are generated as the average
between all patches. In such an approach, the spatial relationship between the
patches is neglected, leading to the potential inconsistencies between individual
classifications and an overall limited diagnostic performance. A similar in spirit,
yet different, issue is common in the analysis of gigapixel pathology images [22,
26]. Finally, another common limitation of these works is the diagnosis of pan-
creatic lesions in isolation from the surrounding vascular structures and organs,
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including the pancreas, which leads to the loss of additional potential diagnostic
clues.

In this paper, we attempt to approach the diagnosis of pancreatic lesions
along with the associated grade of dysplasia in a holistic, rather than an isolated
way. We hypothesize that while the radiological appearance of lesions provides
some diagnostic clues, a more accurate diagnosis is possible by analyzing the
entire peritoneal region in a CT scan, and obtaining a complete picture of all
clinical findings, including extrapancreatic. The contributions of our paper are
the following: a method for efficient transformation of intermediate activations
in convolutional networks (convnets) with linear layers to process CT volumes of
varying sizes; improved pancreatic lesion classification results (by 2.92%), along
with the prediction of the associates grade of dysplasia; and, to the best of our
knowledge, this work is the first to describe a lesion classification method based
on the holistic analysis of the entire intact abdominal CT scan. The importance
of the holistic approach is illustrated by a comprehensive set of experiments.

2 Method

Let Xi be the available diagnostic records of a patient i with a pathologically
confirmed pancreatic lesion of type ti with the associated grade of dysplasia di.
These records Xi include an abdominal CT scan Ii, and the optional binary
segmentation masks of the pancreas M i

p and the lesion M i
l , and the patient’s

age ai at the acquisition time and their gender gi. The goal is to model a function
Fθ(Xi) = (̂ti, d̂i) using a convnet, where t̂i ∈ T = {IPMN, MCN, SCA, SPN}
and d̂i ∈ D = {NA, LG, IG, HG} are the estimated probabilities of the lesion
type and dysplasia. Each abdominal scan Ii of size Zi×Hi×Wi is a stack of Zi
axial 2D slices of size Hi×Wi. While the dimensions of each 2D slice are typically
unvarying and are equal to 512× 512 regardless of the scanning equipment, the
number of slices Zi in each scan varies between patients depending on patient’s
size and positioning inside the scanner. Unlike the traditional solutions, our
proposed model allows us to avoid dividing the input scan Ii into subvolumes of
predefined size or individual 2D slices, but keep it intact to preserve the spatial
information and to obtain a holistic picture of all pathological findings which
may be present in the CT scans along with the pancreatic lesions.

Base Model: The overview of our model is illustrated in Fig. 2. It consists
of the convolutional backbone F1

θ (Xi) = Ai for feature extraction (Fig. 2(a)),

and the classification head F2
θ (Ai) = (̂ti, d̂i) (Fig. 2(c)). In other words, our

target function can be expressed as Fθ(Xi) = F2
θ (F1

θ (Xi)) = (̂ti, d̂i). The back-
bone F1

θ consists of three convolutional layers of various kernel sizes and strides,
each followed by a Leaky ReLU activation function, proceeded by nine ResNet
bottleneck blocks [11]. The classification head F2

θ includes an additional 1×1×1
convolutional layer to reduce the size of the activation maps generated by the
backbone and two linear layers which perform the final classification.

The convolutional backbone F1
θ is agnostic to the size Zi ×Hi ×Wi of the

input volumes in Xi, and generates the activation maps Ai of size Zi

16 ×
Hi

16 ×
Wi

16 ,
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Fig. 2. Schematic view of our classification framework. The main classification model
consists of (a) a feature extractor F1

θ , or backbone, and (c) a classification head F2
θ . The

backbone processes a full intact 3D CT scan of arbitrary size Zi×H×W with optional
segmentation masks of the pancreas M i

p and lesion(s) M i
l provided as a second channel,

and generates a tensor of activations maps of size Zi/16×H ′ ×W ′. These activation
maps are (c’) adaptively padded to a predefined size Zmax ×H ′ ×W ′, flattened, and
passed to the classification head which generated the final output. During training,
padded activation maps can be organized into batches for faster processing (see Sec.
2). To improve the classification performance, the backbone was augmented with a (b)
conditioned decoder and pre-trained for segmentation.

or more specifically, Zi

16 ×H ′ ×W ′, as the dimensions Hi ×Wi of 2D slices are
constant, but the number of slices Zi varies between each volume. As a result,
the size of the input Ai to the classification head F2

θ constantly varies. However,
traditionally organized networks with linear layers require the input to be of fixed
size. Common workarounds include zero-padding of the original 3D volumes in
Xi and adaptive pooling of the final activations to a fixed size. These approaches
come with limitations. The former significantly increases memory requirements
and computational complexity due to a larger size of the input and the interme-
diate activation maps. On the other hand, adaptive pooling can potentially lead
to a severe loss of spatial information encoded in the activation maps. Instead,
we propose a simple, yet effective way of transforming the activation maps to a
fixed size, which can be processed by the linear layers. Particularly, we propose
to adaptively pad the final activations Ai generated by the convolutional back-
bone F1

θ to a pre-defined size Zmax before reshaping, or flattening, them to a 1D
tensor and passing them to the classification head F2

θ . Our proposed approach
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allows one to process input data Xi of varying size, while avoiding the increase
of computational complexity and the loss of the important spatial information.

However, as the original data samples Xi are left unpadded and can signif-
icantly vary in size, they cannot be easily collated into batch tensors for more
efficient processing that takes advantage of the parallelism. To accelerate the
training process, we propose the following: during the forward step, each sample
Xi from a desired batch of size N is first processed individually by the backbone
F1
θ . Then, the padded activations maps Ai are combined into a batch tensor

of size N and are processed jointly by the classification head F2
θ . Consequently,

during the backward step, gradients can be accumulated across all N samples
in the batch, and the gradient updates can be applied to both F2

θ and F1
θ .

The efficiency of the proposed framework is evaluated and compared against the
traditional input padding in Sec. 3.

Due to many medical datasets being often rather small, training a classifica-
tion model from scratch might lead to overfitting. Moreover, it is unlikely that
the model will learn to reliably detect and use extrapancreatic abnormalities,
such as renal lesions, for the diagnosis of pancreatic lesions. Instead, the model
will likely use irrelevant features. To alleviate this issue, we propose to pretrain
our feature extractor F1

θ for a segmentation task using an additional decoder
branch. The architecture of the decoder (Fig. 2(b)) is similar to the backbone,
yet significantly narrower. Such an architecture puts more load on the backbone
and forces it to learn robust feature representations, potentially at the cost of
a limited segmentation performance. Additionally, we condition the decoder [8]
to relax the dataset requirements, and to allow us to train a single multi-class
segmentation model on multiple binary or ternary, rather than multi-class, seg-
mentation datasets.

3 Experiments

Datasets: To train and evaluate the proposed model, we utilize three datasets
of CT scans with various abdominal pathologies. Specifically, during the ini-
tial segmentation pre-training step, we use the publicly available Liver Tumor
Segmentation (LiTS) dataset [3], the Kidney Tumor Segmentation (KiTS19)
dataset [12], and a dataset with pancreatic lesions (PLD). The latter is also
used during the final classification training and evaluation steps. The CT im-
ages in each dataset were minimally preprocessed by being downsampled from
Zi×512×512 to Zi×128×128 (Zi ∈ [76, 190]). The information loss due to this
step is minimal. Furthermore, this is optional and is not a principal part of our
framework. Additionally, we normalize the CT intensities to [−1, 1] range after
clipping the original values around [−300, 300] range. This procedure imitates
the standard radiologists reading protocol for pancreatic lesion evaluation (sim-
ilar to window/level adjustments), while also preserving intensity consistency
between scans.

LiTS dataset consists of 131 manually annotated contrast-enhanced abdomi-
nal CT volumes with various hepatic tumors collected from several clinical sites.
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Table 1. Comparison of the segmentation accuracy (mean DSC, %) of our single pre-
trained conditioned model against previous works evaluated on the same or similar
datasets. (Note that outperforming SOTA results was not the goal of this paper.)

Method
LiTS [3] KiTS19 [12] Misc.

Liver Tumor Kidneys Tumor Pancreas Lesion

Ours 83.53 65.45 81.48 75.69 66.05 85.93

Myronenko et al. [31] - - 97.42 81.03 - -
Isensee et al. [16] 95.8 72.5 - - - -

Zhou et al. [34] - - - - 86.65 63.94

The gender and age distribution of the subjects in the dataset, as well as the
used imaging equipment, are unknown.

KiTS19 dataset consists of 210 manually annotated contrast-enhanced CT
scans (60% males and 40% females; mean age, 60) with renal lesions collected
from several clinical sites. The imaging equipment is unknown.

PLD dataset contains 141 contrast-enhanced abdominal CT scans (44 males
and 97 females; mean age, 59± 17) collected with Siemens SOMATOM scanner
(Siemens Medical Solutions, Malvern, PA), using venous phase protocol. The
dataset exhibits examples of the four most common pancreatic lesions: 74 cases
of IPMNs, 17 cases of MCNs, 33 cases of SCAs, and 17 cases of SPNs. Each
scan was accompanied with the segmentation outlines of the pancreas and the
lesion(s) generated by a semi-automatic framework [7]. The histopathological
diagnosis for each subject was confirmed by a pancreatic pathologist based on
the subsequent resection. The grade of dysplasia on IMPNs and MCNs was noted
on a three-grade scale: LG (IPMNs: 18, MCNs: 11), IG (IPMNs: 29, MCNs: 5),
HG (IPMNs: 27, MCNs: 1). Examples of various lesions from this dataset are
illustrated in Fig. 1.

Data augmentation: The data augmentation routine plays an important
role in our method. Each image was augmented with random rotations within
±25◦ range, random vertical and horizontal translations within ±15 pixels range,
and random scaling within ±5% range, during both segmentation pre-training
and the final classification training stages. More importantly, as padding the
activations extracted by the backbone might introduce an additional source for
data overfitting (the model might get biased to the original size of the tensor),
we perform random volume clippings (±15 voxels) along Z direction to alleviate
such detrimental effects.

Pre-training: During the initial segmentation pre-training step, our back-
bone network F1

θ and the additional decoder were trained to minimize a loss func-

tion, based on the common Dice Similarity Coefficient (DSC) metric, L(M, M̂) =

1− 2
∑
M

⊙
M̂∑

M+
∑
M̂

. We use AdaBound optimizer [28] with the initial rate of 1e−4, and

the final rate of 0.01. Prior to training, we defined a lookup table of conditional
values for the decoder for each of the six segmentation classes (i.e., liver, liver tu-
mors, kidneys, etc.) with random values sampled from [−20, 20], as suggested by
Dmitriev et al. [8]. A mix of all three datasets was randomly split into training,
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Table 2. Classification performance comparison across different experiments and com-
petitive models. Different inputs Xi to our model are in parenthesis: raw CT scan;
binary lesion mask, Mp; patient’s age and gender, AG.

Type
Dysplasia

(4-point scale)
Both

Dysplasia
(3-point scale)

Both

Li et al. [25] 72.80% - - - -
Dmitriev et al. [9] 83.60% - - - -

Ours (CT) 48.23% 30.49% 19.15% 47.52% 27.66%
Ours (CT + Mp) 85.81% 71.63% 61.70% 72.34% 62.41%

Ours (CT + Mp + AG) 86.52% 75.17% 67.37% 75.88% 68.08%

Ours (CT + Mp + AG)
without pre-training

73.75% 59.57% 35.46% 62.41% 38.29%

validation, and testing sets using a 70/10/20 ratio. The results were evaluated
using the DSC metric and are presented in Table 1. We additionally compare
our results against previous works evaluated on the same or similar datasets. It
is important to emphasize that updating the state-of-the-art (SOTA) segmenta-
tion results was not our goal during this pre-training step, especially given the
decoder architecture deliberately bounded in performance.

Classification Results and Discussion: Our experiments are conducted
on the PLD dataset using stratified 5-fold cross-validation with similar type and
dysplasia distributions in training and testing folds. Each training fold was fur-
ther split into training and validation sets using a 90/10 ratio for early stopping
to prevent overfitting. Each experiment considered different key parameters. Par-
ticularly, we studied the effects of various combinations of input data Xi on the
final performance, namely, the raw CT scan Ii, binary masks of the pancreas M i

p

and the lesion(s) M i
l , and the age and gender of the patient. Additionally, we

compared the impact of segmentation pre-training on classification performance.
In each experiment, the model was trained to minimize the joint class-balanced
cross-entropy loss (for lesion type and dysplasia) using Adam optimizer [21] with
the initial learning rate of 1e − 4. We recorded the overall accuracy of predict-
ing lesion type, the associated grade of dysplasia on 4-point (LG, IG, HG, NA)
and 3-point (LG or IG, HG, NA) scales, and both (lesion type and dysplasia
together). The final classification results are reported in Table 2.

The model trained only on the raw CT scans performed poorly and did
not surpass the 50% accuracy mark for predicting lesions type, and performed
even worse on predicting the grade of dysplasia. A likely explanation of such
performance is the models inability to deduct the target structure for classifica-
tion, namely, pancreatic lesions. To bring attention of the model to the pancreas
and its lesions, we experimented with augmenting the raw CT scan with binary
masks of the pancreas M i

p, lesion(s) M i
l , and both, as a second channel. This

simply helps to bring the attention of the model to the pancreas and pancreatic
lesions within the CT scan rather than to mask out areas outside of the mask.
We observed significant, yet compatible, performance improvements in each ex-
periment, and the best results were achieved using only binary masks of the
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lesions. Finally, we examined if these results could be improved by feeding the
age and gender of the patient to the classification head, as these demographical
features are considered important diagnostic clues [10]. In this experiment, we
slightly increased the number of units in the first linear layer of the classification
head from 128 to 130, to accommodate the extra input, and combined the ac-
tivations generated by the backbone with patient’s age and gender, which were
normalized and binarized, respectively. We observed an additional improvement
in the performance, outperforming previous solutions [9] by 2.92% in predicting
the type, while also predicting the grade of dysplasia with >67% accuracy.

Additionally, we examined the importance of our holistic diagnostic ap-
proach, namely, analysis of the entire CT volume without splitting it into smaller
pieces and identification of all clinical findings, such as extrapancreatic abnor-
malities. In our approach, the latter was encouraged through pre-training the
backbone F1

θ to detect and segment various lesions, such as renal and hepatic
tumors. To evaluate the importance of this step, we compared the performance
of the pre-trained model and the model trained from scratch, using the raw CT
scan, a binary mask of the lesion, and the age and gender of the patient as the
input data. The results are reported in Table 2. Notably, model ability to diag-
nose the lesion type was affected significantly less than its ability to diagnose the
grade of dysplasia. We believe this can be attributed to the model being able to
learn to utilize demographical and radiological features of the lesions to correctly
predict their type, but not being able to reliably identify additional diagnostic
clues outside of the pancreas to diagnose the grade of dysplasia. The results of
the experiment support the importance of our holistic diagnostic approach.

Finally, we conducted another experiment to assess and compare the benefits
of our proposed adaptive padding of the activation maps against the traditional
padding of input data. Particularly, we measured the differences in the memory
requirements and computation time required to complete one forward and back-
ward pass between these two approaches. For this experiment, we set Zmax = 12,
which equals to Zi = 16×12 = 192 for traditional padding, and we fixed the num-
ber of samples per batch N = 5 (batching of the padded activation maps passed
to the classification head vs. batching of the padded original input volumes).
All experiments were performed on NVidia RTX6000. The proposed method re-
quired 2.3 GB of GPU memory as opposed to 6.1 GB when padding the original
volumes. While the proposed method was 56.8% slower in this experiment, one
can speed up the processing with larger N . The same approach might be impos-
sible when using the traditional padding technique as the memory requirements
will increase significantly, especially for very large volumes (e.g., 192×512×512).

4 Conclusion

We presented a simple, yet effective, method of adaptive padding of intermediate
activations for processing intact imaging data of varying size with convnets with
linear layers, and an efficient training procedure for such a setup. Our method
applied for a holistic diagnosis of the pancreatic lesion showed improved perfor-
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mance, while also predicting the associated grades of dysplasia. Despite extensive
evaluation and experiments with various sources of input data, our study has
several limitations. Specifically, a loss function which explicitly addresses the
fact that benign lesions do not have associated grade of dysplasia could be an
interesting direction for future work. Furthermore, potential performance gains
could be achieved by using or combining images of different modalities. Addi-
tionally, a large, potentially multi-center, clinical study is needed to verify the
robustness of our system.
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17. Jiménez-Sánchez, A., Mateus, D., Kirchhoff, S., Kirchhoff, C., Biberthaler, P.,
Navab, N., Ballester, M.A.G., Piella, G.: Medical-based deep curriculum learn-
ing for improved fracture classification. Med Image Comput Comput Assist Interv
pp. 694–702 (2019)

18. Kanayama, T., Kurose, Y., Tanaka, K., Aida, K., Satoh, S., Kitsuregawa, M.,
Harada, T.: Gastric cancer detection from endoscopic images using synthesis by
GAN. Med Image Comput Comput Assist Interv pp. 530–538 (2019)

19. Kawamoto, S., Horton, K.M., Lawler, L.P., Hruban, R.H., Fishman, E.K.: Intra-
ductal papillary mucinous neoplasm of the pancreas: Can benign lesions be dif-
ferentiated from malignant lesions with multidetector CT? RadioGraphics 25(6),
1451–1468 (2005)

20. Khashab, M.A., Shin, E.J., Amateau, S., Canto, M.I., Hruban, R.H., Fishman,
E.K., Cameron, J.L., Edil, B.H., Wolfgang, C.L., Schulick, R.D., et al.: Tumor
size and location correlate with behavior of pancreatic serous cystic neoplasms.
American Journal of Gastroenterology 106(8), 1521–1526 (2011)

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Kong, B., Wang, X., Li, Z., Song, Q., Zhang, S.: Cancer metastasis detection via
spatially structured deep network. Inf Process Med Imaging pp. 236–248 (2017)

23. Kowalski, T., Ali Siddiqui, D.L., Mertz, H.R., Mallat, D., Haddad, N., Malhotra,
N., Sadowski, B., Lybik, M.J., Patel, S.N., Okoh, E., et al.: Management of pa-
tients with pancreatic cysts: analysis of possible false-negative cases of malignancy.
Journal of Clinical Gastroenterology 50(8), 649 (2016)

24. LaLonde, R., Tanner, I., Nikiforaki, K., Papadakis, G.Z., Kandel, P., Bolan, C.W.,
Wallace, M.B., Bagci, U.: INN: Inflated neural networks for IPMN diagnosis. Med
Image Comput Comput Assist Interv pp. 101–109 (2019)

25. Li, H., Lin, K., Reichert, M., Xu, L., Braren, R., Fu, D., Schmid, R., Li, J., Menze,
B., Shi, K.: Differential diagnosis for pancreatic cysts in CT scans using densely-
connected convolutional networks. arXiv preprint arXiv:1806.01023 (2018)

26. Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field.
arXiv preprint arXiv:1806.07064 (2018)

27. Liang, D., Lin, L., Hu, H., Zhang, Q., Chen, Q., Han, X., Chen, Y.W., et al.:
Combining convolutional and recurrent neural networks for classification of focal
liver lesions in multi-phase CT images. Med Image Comput Comput Assist Interv
pp. 666–675 (2018)



Holistic Analysis of Abdominal CT 11

28. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic
bound of learning rate. Proc. of ICLR (May 2019)

29. Luo, L., Chen, H., Wang, X., Dou, Q., Lin, H., Zhou, J., Li, G., Heng, P.A.:
Deep angular embedding and feature correlation attention for breast MRI cancer
analysis. Med Image Comput Comput Assist Interv pp. 504–512 (2019)

30. Manvel, A., Vladimir, K., Alexander, T., Dmitry, U.: Radiologist-level stroke clas-
sification on non-contrast CT scans with deep U-Net. Med Image Comput Comput
Assist Interv pp. 820–828 (2019)

31. Myronenko, A., Hatamizadeh, A.: 3d kidneys and kidney tumor semantic segmen-
tation using boundary-aware networks. arXiv preprint arXiv:1909.06684 (2019)

32. Wei, R., Lin, K., Yan, W., Guo, Y., Wang, Y., Li, J., Zhu, J.: Computer-aided
diagnosis of pancreas serous cystic neoplasms: a radiomics method on preoperative
MDCT images. Technology in Cancer Research & Treatment 18 (2019)

33. Zhao, Z., Lin, H., Chen, H., Heng, P.A.: PFA-ScanNet: Pyramidal feature aggre-
gation with synergistic learning for breast cancer metastasis analysis. Med Image
Comput Comput Assist Interv pp. 586–594 (2019)

34. Zhou, Y., Li, Y., Zhang, Z., Wang, Y., Wang, A., Fishman, E.K., Yuille, A.L.,
Park, S.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma
segmentation. Med Image Comput Comput Assist Interv pp. 155–163 (2019)


