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Abstract—We demonstrate a versatile thin lensless camera with a designed phase-mask placed at sub-2 mm from an imaging CMOS
sensor. Using wave optics and phase retrieval methods, we present a general-purpose framework to create phase-masks that achieve
desired sharp point-spread-functions (PSFs) for desired camera thicknesses. From a single 2D encoded measurement, we show the
reconstruction of high-resolution 2D images, computational refocusing, and 3D imaging. This ability is made possible by our proposed
high-performance contour-based PSF. The heuristic contour-based PSF is designed using concepts in signal processing to achieve
maximal information transfer to a bit-depth limited sensor. Due to the efficient coding, we can use fast linear methods for high-quality
image reconstructions and switch to iterative nonlinear methods for higher fidelity reconstructions and 3D imaging.

Index Terms—lensless imaging, diffractive masks, phase retrieval refocusing, 3D imaging.
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1 INTRODUCTION

AMYRIAD of emerging applications such as wear-
ables, implantables, autonomous cars, robotics, inter-

net of things (IoT), virtual/augmented reality, and human-
computer interaction ( [1], [2], [3], [4], [5], [6]) are driving
the miniaturization of cameras. The use of traditional lenses
adds weight and cost, are rigid and occupies volume, and
have a stringent requirement of focusing distance that is
proportional to the aperture. For these reasons, a radical
redesign of camera optics is necessary to meet the miniatur-
ization demands [7].

Lightweight cameras can be created by replacing the lens
with a thinner focusing element, like a diffractive lens [8].
In this paper, the terms focusing or lensing optics will be
used to describe optical elements that can produce a point-
spread-function (PSF) of low support (Fig. 1). In these cases,
the sensor measurements resemble an image, albeit some
haziness or blurriness due to chromatic and spherical aber-
rations. With the help of computational methods, the effects
of aberrations can be alleviated. However, working in the
lensing regime does not reduce the thickness of the camera.
This is due to the requirement of the focusing distance that
is proportional to the aperture. The use of metalenses [9] are
limited for the same reason. Therefore, we need to step in
the non-focusing regime to truly reduce the thickness of the
camera.

Recently, lenless cameras were demonstrated to achieve
small form factors by forgoing the need to capture “image”
like measurements on the sensor. Instead, what these cam-
eras capture are highly multiplexed measurements, which
are computationally demultiplexed into images by incorpo-
rating calibrated camera responses. Inevitably, these cam-
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Fig. 1. [Top] Non-lensing optics provides a way to achieve thin devices at
low-cost. Among the various non-lensing optics, phase-masks are ver-
satile in their designs and can produce a larger space of Point-spread-
functions (PSF). [Bottom] PSFs from various optics are shown. Lensing
optics have a small PSF support while non-lensing optics display large
PSFs. The non-lensing optics’ PSFs were experimentally camptured.

eras have point-spread-functions (PSFs) with large support.
The design of the point-spread-functions is instrumental
in guaranteeing high-quality reconstructionshowever, previ-
ous lensless designs lack the precise control of point-spread-
functions. One of the core contributions of this paper is a
framework to precisely realize high-performance PSFs.

A lensless camera consists of an encoding element or
a “mask” placed at a close distance from an imaging sen-
sor. Various masks have been considered like amplitude
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Fig. 2. Phase-masks are essentially transparent material with different
heights at different locations. This causes phase modulation of incoming
wavefront and resultant wave interference produces the PSF at the
sensor plane. The above image shows the closeup image of the phase-
mask using in PhlatCam. The right most image was taken using a
scanning electron microscope (SEM).

masks [10], [11], [12], phase gratings [13] and diffuser [14].
Amplitude masks were designed to produce binary PSFs,
phase gratings were designed to produce robust nulls, and
diffusers were used for its pseudorandom caustic pattern.
However, each of these masks is limited in their designabil-
ity (Fig. 1).

While the design of amplitude masks is straightforward,
there are two inherent issues: (1) they block a significant
amount of light, and (2) diffraction effects cause the PSF
to deviate from the original design. On the other extreme,
diffusers are inherently statistical while having a minimal
light loss. The statistical nature puts the diffuser low on the
design flexibility scale.

For our lensless system, we propose to use phase-masks
as our optical masks. Among the various diffraction masks,
phase-masks have proven to be versatile in realizing a
variety of point-spread-functions [15], [16], [17], [18], [19],
[20], with and without the assistance of lenses. Additionally,
phase-masks are highly light-efficient and hence opera-
tionally better suited for a range of illumination scenarios.

The designability of phase-masks allows us to realize
high-performance PSFs and hence improve the overall per-
formance of the lensless system. To that end, we propose a
PhlatCam design that benefits from our following contribu-
tions:

1) We propose a Near-field Phase Retrieval (NfPR) frame-
work to design phase-mask that produces the target
PSF at the desired device thickness.

2) We propose a high-performance contour PSF and show
its superior performance compared to previous lensless
PSFs.

3) We show the application of PhlatCam for (a) 2D imag-
ing at any scene depth, (b) refocusing at medium scene
depth, and (c) 3D imaging at close scene depth.

2 RELATED WORK

2.1 Previous Lensless Imagers
Without the lens, a bare sensor captures the average light
intensity of the entire scene. [21] has shown imaging with
a bare sensor by exploiting shadows cast by defects on the
sensor’s cover glass, and the anisotropy of pixel response
to achieve some level of light modulation. Due to limited
control on the light modulation, the possible reconstruction
quality is limited to low resolutions. An alternate way to
achieve bare sensor imaging is to have an active illumination

Fig. 3. Our proposed phase-mask framework takes the input of target
PSF and the desired device geometry and outputs an optimized phase-
mask design.

behind the object to produce light modulation through
shadows [22] or interference fringes [23]. This technique
was used to create high-resolution wide field-of-view (FoV)
microscopy images. However, adding an active illumination
behind the object makes the imaging system bulkier and
impractical for photography.

To passively achieve a higher control of light modula-
tion, an encoding “mask” is placed in front of an imaging
sensor [7]. Lensless imaging has been shown with a variety
of diffractive masks [10], [11], [12], [13], [14], [19], [24]. The
masks produce a point-spread-function (PSF) on the sensor
which can be undone using computational algorithms to
produce high-quality images.

2.2 Diffractive Masks

Diffractive masks used for lensless cameras can be broadly
categorized into amplitude masks and phase masks. Am-
plitude masks were used by [10], [11], [12], [24] and phase
masks were used by [13], [14], [19].

2.2.1 Amplitude Masks

An amplitude mask modulates the amplitude of incident
light by either passing, blocking, or attenuating photons. For
ease of fabrication, a binary amplitude is commonly used,
and the light modulation by casting shadows. Hence, the
PSF of the amplitude mask is its shadow.

A concerning issue in using an amplitude mask is the
light throughput. Since the mask modulates light by creating
shadows, a significant amount of photons are lost, leading
to low signal-to-noise-ratio (SNR) sensor capture. Low SNR
is undesirable for low light scenarios and photon-limited
imaging like fluorescence or bioluminescence imaging. Ad-
ditionally, decoding the lensless sensor capture tends to
amplify noise leading to poor reconstruction. Amplitude
masks also suffer from diffraction effects, which limit the
range of achievable PSFs. Diffraction issue is discussed
further in Section 2.3.

2.2.2 Phase Masks

A phase-mask modulates the phase of incident light by the
principles of wave optics [25]. Phase-masks allow most of
the light to pass through, providing high SNR. Hence, they
are desirable for low light scenarios and photon-limited
imaging.

We propose to use phase-mask for our lensless camera
and present a mask design algorithm to achieve desirable
PSFs.



2.3 Mask Design
2.3.1 Amplitude Masks
Among all masks, designing an amplitude mask based on a
desirable PSF is the most straightforward. The pattern of a
binary amplitude mask is merely the PSF itself, where the
bright regions of the PSF correspond to the open areas of
the mask, and the dark regions correspond to the blocking
areas [7].

However, the range of PSFs achievable using the above
mentioned, ray-optics based, amplitude mask design is lim-
ited due to diffraction. As a rule of thumb, the Fresnel num-
ber NF [26] associated with the amplitude mask can help in
determining whether the PSF will be close to the pattern
of the mask or different. If the Fresnel number is much
greater than 1, then geometrical properties are valid, and
the shadow PSF mimics the mask pattern. When the Fresnel
number falls below 1, the cast PSF will deviate from the
mask pattern. This aspect is elaborated in supplementary
Section 2, and the effect of diffraction in amplitude mask
PSF is shown in Supp. Fig. 1.

2.3.2 Phase Masks
Odd-symmetry phase gratings were proposed by [27] to
achieve robust nulls in the PSF. The wavelength and depth-
robust nulls are produced along the axis around which
phase gratings have an odd-symmetry. However, this design
doesn’t guarantee intensity distributions in the non-null
regions of the PSF.

The use of diffuser as a phase mask for lensless imaging
was proposed by [14]. Diffusers are low cost and produce
caustics patterns. The best performance is achieved from a
diffuser when its placed at a distance where it produces the
highest contrast caustics. However, since the phase profile
of a diffuser is inherently statistical, the optimal distance
varies from one to another. Hence, it is harder to design
lensless cameras of desired thicknesses with diffusers.

[28] proposed phase mask design using phase retrieval
algorithms and subsequently implemented using a phase
spatial light modulator in [19]. We follow a similar approach
in designing our phase mask for a desirable PSF and then
fabricate our phase-mask. The camera thickness is a design
parameter in our approach and allows us to create lensless
cameras of desired thicknesses.

2.4 PSF Engineering
Various PSFs have been used for lensless imaging for their
attractive properties. We describe them below.

Separable PSF A separable PSF is constructed by an
outer product of two 1-D vectors. Such construction sim-
plifies the imaging model as convolution along the rows of
the image followed by convolution along the columns. In
matrix form, this operation can be written as a product of
2-D image with a few small 2-D matrices [10], [11], [24]. An
example of separable PSF is shown in Fig. 7(a), constructed
from outer product of two maximum length sequences [10],
[29], [30].

Fresnel Zone Aperture A Fresnel Zone Aperture (FZA)
PSF is constructed like a Fresnel zone plate [31] and was
used by [12], [32]. Multiplying the sensor capture with
a virtual FZA results in overlapping moiré fringes. Fast
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Fig. 4. Conventional imaging and PhlatCam. PhlatCam is 5–10×
thinner and can reconstruct high-fidelity images from multiplexed mea-
surements. Additionally, PhlatCam can function in more ways than
conventional camera. Specifically, PhlatCam can produce 2D images
for any scene distance, refocused images at medium distance and 3D
imaging at close distance.

reconstruction is done by applying a 2-D Fourier transform
on the moiré fringes. An example of FZA PSF is shown in
Fig. 7(b).

Spiral PSF A spiral PSF was proposed by [27]. To cover
a large sensor area, [13] proposed tessellating the spiral
PSF. An example of the tessellated spiral PSF is shown in
Fig. 7(c). A single unit of the tessellation is shown on the
top left corner.

We propose a high-performance Contour PSF that pro-
vides us the ability to perform high-resolution (a) 2D imag-
ing, (b) re-focusing, and (c) 3D imaging at different depth
ranges.

3 DIFFRACTIVE LENSLESS IMAGING

3.1 Imaging Architecture
PhlatCam has a fabricated diffractive element called phase
mask placed at a distance d from an imaging sensor (Fig-
ure 5(a)). A phase mask modulates the phase of incident
light and produces a pattern at the sensor through construc-
tive and destructive interference. In the following sections,
we’ll describe how the phase mask produces interference
pattern and the consequent diffractive imaging model.

3.2 Propagation
When a phase mask, with phase profile φ(ξ, η), is illumi-
nated with a coherent collimated light, the intensity pattern
p(x, y) captured by the imaging sensor placed at distance d
is given by magnitude square of Fresnel propagation [26]:

p(x, y) =
∣∣∣Fd (ejφ(ξ,η))∣∣∣2

=

∣∣∣∣ 1

jλd

∫ ∫
ejφ(ξ,η) exp

[
j
π

λd

(
(x− ξ)2 + (y − η)2

)]
dξdη

∣∣∣∣2 ,
(1)



where Fd(·) denotes fresnel propagation by distance d and
λ is the wavelength of light. For simplicity, let’s consider
a one-dimensional (1D) phase mask with phase map φ(ξ)
and drop the scaling term. Then, the pattern produced from
collimated light parallel to optical axis is given by

p(x) =

∣∣∣∣∫ ejφ(ξ) exp
[
j
π

λd
(x− ξ)2

]
dξ

∣∣∣∣2
=

∣∣∣∣∫ ejφ(ξ) exp
[
j
π

λd
(ξ2 − 2xξ)

]
dξ

∣∣∣∣2 , (2)

where the quadratic term was expanded and a constant
phase term was removed since we are considering only
intensity.

3.3 Point Spread Function
The collimated light or planar waves can be said to be
generated from an on-axis point source at a sufficiently large
distance from the mask. Then, p(x) (or p(x, y) for 2D) can
be called as the point-spread-function (PSF) of the system.

If the point source is off-axis, illuminating the phase
mask at an angle θ, it imparts a linear phase ej

2π
λ sin(θ)ξ to

Eq. 2 and the resultant intensity pattern is

Iθ(x) =

∣∣∣∣∫ ej
2π
λ sin(θ)ξ ejφ(ξ) exp

[
j
π

λd
(ξ2 − 2xξ)

]
dξ

∣∣∣∣2
=

∣∣∣∣∫ ejφ(ξ) exp
[
j
π

λd
(ξ2 − 2(x− d sin(θ))ξ)

]
dξ

∣∣∣∣2
= p(x− d sin(θ)).

Hence, an off-axis point source causes a lateral shift of the
PSF. If the point source is at a distance z∞ and height xh
then by paraxial approximation

δz∞(x− xh)→ p

(
x− d

z∞
xh

)
, (3)

where δz(x) denotes point source at distance z from the
mask. The shift property is illustrated in Figure 5(b) and can
be stated as
Property 1. Shift invariance: A lateral shift of point source

causes translation of PSF on the sensor plane.

The above property is also called “memory effect” [33],
[34] and was recently used to perform non-invasive imaging
through scattering media [35], [36], [37] and wavefront sens-
ing [38]. As we will see later, the shift invariance property
helps us to write the imaging model as a convolutional
model.

For a point source at a finite distance z from the mask,
it imparts an additional quadratic phase ej

π
λz ξ

2

to Eq. 2 to
give an intensity response as:

Iz(x) =

∣∣∣∣∫ ej
π
λz ξ

2

ejφ(ξ) exp
[
j
π

λd
(ξ2 − 2xξ)

]
dξ

∣∣∣∣2
=

∣∣∣∣∫ ejφ(ξ) exp

[
j
π

λ
(
1

d
+

1

z
)(ξ2 − 2

x

1 + d/z
ξ)

]
dξ

∣∣∣∣2
≈
∣∣∣∣∫ ejφ(ξ) exp

[
j
π

λd
(ξ2 − 2

x

1 + d/z
ξ)

]
dξ

∣∣∣∣2
= p

(
x

1 + d/z

)
.
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Fig. 5. Illustration of properties of phase mask in a lensless imaging
setup.

Here we assumed d � z which would be the case for our
lensless cameras. Therefore, following the same notations as
Eq. 3 we have

δz(x)→ pz(x) = p

(
x

1 + d/z

)
, (4)

which is a geometrical magnification of the PSF. The mag-
nification property is illustrated in Figure 5(c) and can be
stated as
Property 2. An axial shift of point source causes magnifica-

tion of PSF on the sensor plane.

As we will see later, the PSF variation with scene depth
will be exploited for refocusing of images and 3D image
reconstruction.

3.4 Convolutional model
A real world 2D scene i (x, y; z) at distance z can be as-
sumed to be made up of incoherent point sources. Each
point source will produce a shifted version of PSF pz(x, y)
and since the sources are incoherent to each other, the
shifted PSFs will add linearly in intensity [26] at the sensor.
By Property 1 of the PSF, we can write the imaging model
as following convolution model:

b (x, y) = pz(x, y) ∗ i (x, y; z). (5)

Here, b is the sensor’s capture and ∗ denotes 2D convolution
over (x, y).

For a 3D scene, the sensor capture is the sum of convo-
lutions at different dephts and the imaging model can be
written as:

b (x, y) =
∑
z

pz(x, y) ∗ i (x, y; z). (6)

The above sections established the relation between
phase mask and PSF. In the following sections, we propose a
high-performance PSF and lay out a method to design phase
mask for the desired PSF.



4 DESIGNING PHLATCAM

Designing PhlatCam consists of of two parts: (1) PSF engi-
neering and (2) phase-mask optimization. Performance of
PhlatCam relies on the PSF while the phas-mask optimiza-
tion makes the PSF realizable.

4.1 PSF Engineering
A lensless camera encodes an image onto the sensor by
convolution of the scene with a PSF. From convolution
theorem [39], we can infer that for maximal information
transfer, large and almost flat magnitude spectrum is de-
sirable in the PSF. An another way to look at this is that
the deconvolution of PSF involves the inversion of the PSF’s
frequency spectrum and low values of magnitude spectrum
will lead to amplification of noise at those frequencies.

Imaging sensors captures light intensity, which implies
that the values in the PSF are always positive. A positive PSF
will have larger contribution at DC or the zero-frequency
component compared to other frequencies. Hence, efforts
need to be taken to minimize the DC component. Addition-
ally, sensors don’t have infinite precision and are usually
limited to 8- to 12-bit precision. These two factors also need
to be considered when designing the PSF.

Designing the PSF could, potentially, be achieved using
many methods such as optimizing over a theoretical met-
ric [8], [40] or using a data-driven approach [17], [41]. In this
paper, we take a heuristic approach based on the domain
knowledge of signal processing. Considering the previously
mentioned factors, we state the desired characteristics of the
PSF and the corresponding reasoning as follows:

a Contain all directional filters to capture textural fre-
quencies at all angles.

b Spatially sparse to minimize the DC component of
PSF’s Fourier transform.

c High contrast (i.e. binary) to compensate for limited bit
depth of sensor pixels.

d Large regions of contiguous zero intensity to further
compensate for limited bit depth of sensor pixels.

Proposed Contour-based PSF
We make the observation that contour lines with sufficient
random orientation satisfies all the criterions mentioned
above, as shown in Figure 6. There are, however, many
possible ways to generate contour PSFs. In our case, we
chose to produce contours from Perlin noise [42] due to
it’s guarenteed randomness and the ability to control the
sparsity.

In graphics, Perlin noise [42] is a popular tool to pro-
duce random landscape textures. What we are after is the

Fig. 6. Our Contour PSF is generated by applying canny edge detection
on Perlin noise [42].

MTF Comparison

N
o

rm
a

liz
e

d
 a

.u
.

Contour-PSF (ours)
Separable MSEQ10

FZA32

Spiral13

Diffuser14

Random binary

10-3

10-2

10-1

100

Normalized Frequency0

Fig. 7. Modulation Transfer Function (MTF) of lensless point-spread-
functions (PSFs). The MTF is computed as the radially averaged mag-
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Diffuser [14], Random binary, and our Contour PSF. The PSFs are visu-
alized in Fig. 10. The magnitude spectrum of the proposed Contour PSF
remains large for entire frequency range indicating better invertibility
characteristic.

boundary contours of such landscape textures, which will
invariably (a) contain a set of randomly oriented curves
that can function as directional filters, (b) be sparse, (c) be
binary, and (d) contain large empty regions. To produce the
contour PSF, we apply canny edge detection to a generated
Perlin noise. Such generation of PSF is a good candidate for
lensless imaging and satisfy the above mentioned character-
istics. Illustration of generating a contour PSF is shown in
Fig. 6. The high performance of our proposed contour-based
PSF is validated using the modulation transfer function
(MTF) metric in Fig. 7 and using simulated reconstruction
in Fig. 10.

4.2 Phase-mask Design
Our goal is to optimize a phase-mask design that produces
the target PSF at the target device thickness d (the distance
between the sensor and mask). A thing to note is that
the phase-mask performs a complex-valued modulation
of light wavefront while the target PSF is a real-valued
intensity distribution. Hence, obtaining phase-mask profile
from the PSF is an undetermined problem. However, there
exists computational methods called the phase retrieval
algorithms [43] that tries to solve this precise problem of
computing complex-valued fields from real-valued intensi-
ties.

Usually phase retrieval algorithms are applied in the
case of systems involving lens and function under the far-
field approximation of Fraunhofer diffraction (implemented
with just a Fourier transform) [26], [43]. In our case, we
are devoid of lens and are within the regime of near-field
Fresnel diffraction (has an additional quadratic phase). .
Hence, we call our phase-mask optimization algorithm as
Near-field Phase Retrieval (NfPR).

NfPR is motivated by [28] and is similar to the
Gerchberg-Saxton (GS) algorithm [44], a popularly used
phase retrieval algorithm. The way we differ from the
GS algorithm is by replacing the Fourier transforms with
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near-field Fresnel propagation. NfPR does not guarantee an
unique solution. However, what we are after is a phase-
mask that can produce the target PSF and not the unique
phase-mask profile.

The near-field phase retrieval algorithm for phase mask
optimization can be described as follows. The algorithm
uses an iterative approach, iterating between the fields at
the mask plane and the sensor plane while simultaneously
enforcing constraints at the two planes—the amplitude of
the field at the mask plane is unity and intensity of the field
at the sensor plane is the target engineered PSF. Forward
Fresnel propagation is used to go from mask plane to sensor
plane, while backward Fresnel propagation (by negating the
distance in Eq. 1) is used to go from sensor plane to mask
plane. The iterative algorithm is summarized in Alg. 1 and
visually illustrated in Fig. 8. The phase mask optimization
requires the following inputs: the target PSF, mask to sensor
distance, and wavelength of light. The wavelength of light
is chosen to be the mid visible wavelength of 532 nm.

Phase-mask height map

To physically implement the phase-mask, the phase profile
needs to be transformed into the height map of the final
mask substrate. Assuming n as the refractive index of the
mask substrate, the height map is given by:

h(x, y) =
λ

2π(n− 1)
φ(x, y). (7)

Fabrication

Advancements in fabrication techniques have made it pos-
sible for physically realizing diffractive masks with quick
turnaround times. In this paper, we use a recently developed
2-photon lithography 3D printing system [45] that allows for

Algorithm 1 Phase mask design
Input: Target PSF p(x, y), wavelength λ, mask to sensor

distance d and refractive index n of mask substrate.
Output: Mask’s phase profile φ(ξ, η) and height map

h(ξ, η).
Mp ←

√
p

repeat
Mφ ← F−d(Mp) {Back propagate from sensor to
mask}
φ← phase(Mφ)
Mφ ← ejφ {Constrain amplitude of mask to be unity}
Mp ← Fd(Mφ) {Forward propagate from mask to
sensor}
Mp ←

√
p � ej phase(Mp) {Constrain amplitude to be√

PSF}
until maximum iterations

Proposed Contour PSF Captured PSF

500 µm

Fig. 9. The proposed PSF, designed phase-mask, and the experimen-
tally realized PSF of PhlatCam are shown. The experimental PSF
closely resembles the proposed PSF design, showing the effectiveness
of the phase mask design framework.

rapid prototyping of different phase-masks without signifi-
cant overhead preparation. With an optimized final phase-
mask design, fabrication can be scaled through the manu-
facturing pipeline such as photolithography and reactive-
ion-etching processes. The fabricated phase-mask is shown
in Fig. 2.

4.3 Reconstruction Algorithms
Recovering the scene image from the sensor measurement
can be posed as a convex optimization problem, where the
forward model is the convolution of PSF with the image.
Regularization based on image prior is added to the opti-
mization problem to robustify against measurement noise
and avoid large amplification of noise in the reconstruction.

For this section, we will be deviating slightly from the
notations in the previous sections. The prominent changes
are: ‘x’ will denote the scene (instead of ‘i’) and ‘d’ will
denote scene depth (instead of device thickness). In effect,
we solve the following minimization problem:

x̂ = arg min
x≥0

1

2

∥∥∥∥∥b−∑
d

pd ∗ xd

∥∥∥∥∥
2

F

+ γR(x), (8)

where ‖·‖F denotes the Frobenius norm, R(·) denotes the
regularization function, and γ is the weighting of the regu-
larization.

4.4 2D Reconstruction
The reconstruction becomes 2D image reconstruction under
two contexts. First, if all the scene elements are sufficiently
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of the four desired characteristics of PSF. However, random binary PSF doesn’t satisfy the fourth characteristic, that is large contiguous regions of
zero intensity. As seen from above, contour PSF consistently produces better results.

far (i.e. scene depth ≫ device thickness), the dependance
of PSF with depth is almost none (Eq. 4). In such case,
pd ≈ p∞, and xd ≈ x∞. Second, when refocusing to a
particular depth. At both these times, the summation in
Eq. 8 is removed and we solve the following problem:

x̂ = arg min
x≥0

1

2
‖b− p ∗ x‖2F + γR(x), (9)

where p = pd(or)p∞, and x = xd (or) x∞ according to the
context.

4.4.1 Fast Reconstruction

For fast reconstructions, Tikhonov regularization (R(·) =
‖·‖F ) can be used—which has a closed form solution given
by Wiener deconvolution. Using the Convolution Theo-
rem [46], the solution can be computed in real time with the
Fast Fourier Transform (FFT) algorithm. By differentiating
Eq. 9 and setting to zero, we get the following solution for
the Tikhonov regularized reconstruction:

x̂ = F−1
(

(F(p))∗ �F(b)

|F(p)|2 + γ

)
, (10)

where F(·) is the fourier transform operator, (·)∗ is the
complex conjugate operator and ‘�’ represents hadamard
product.

4.4.2 High-fidelity Reconstruction

The reconstruction quality can be further improved by us-
ing total-variation (TV) regularization [47], which uses the
image prior that natural images have sparse gradients. The
TV regularized minimization problem is given by:

x̂ = arg min
x≥0

1

2
‖b− p ∗ x‖2F + γ‖Ψ(x)‖1, (11)

where, Ψ is the 2D gradient operator, and ‖·‖1 is the l1 norm.
We opt for an iterative ADMM [48] approach to solve the
above problem.

Let H be the 2D convolution matrix and we use the
following variable splitting:

x̂ = arg min
w≥0,z,x

1

2
‖b−Hx‖2F + γ ‖z‖1

s.t. z = Ψx,w = x.
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Then the ADMM steps at iteration k are as follows:

zk+1 ← S γ
µz

(
Ψx+ ρkz/µz

)
wk+1 ← max

(
x+ ρkw/µw, 0

)
xk+1 ←

(
HTH + µzΨ

TΨ + µwI
)−1

rk,

where,
rk = HTb + ΨT (µzz

k+1 − ρkz) + µww
k+1 − ρkw.

Sµ is the soft-thresholding operator with a threshold value
of µ, and ρw and ρz are the Langrage multipliers associated
with w and z, respectively. The scalars µw and µz are the
penalty parameters that are computed automatically using
a tuning strategy. Operations of H and Ψ can be computed
using Fast Fourier Transform (FFT), making each step of the
ADMM fast.

4.5 3D Reconstruction
For 3D imaging, we use both TV and sparsity regular-
izations and solve using ADMM approach. Let H be the
2D convolution matrix with PSF pd at depth d. Then the
reconstruction problem is posed as:

x̂ = arg min
x≥0

1

2

∥∥∥∥∥b−∑
d

Hdxd

∥∥∥∥∥
2

F

+ γ
∑
d

‖Ψxd‖1 + γ1 ‖x‖1 .

We use the following variable splitting:

x̂ = arg min
w≥0,z,x

1

2
‖b− Sv‖2F + γ

∑
d

‖zd‖1 + γ1 ‖t‖1

s.t. vd = Hdxd, zd = Ψxd, w = x, t = x,

where Sv =
∑
d vd is the sum along depth operator. Then

the ADMM stepps at iteration k are as follows:

vk+1
d ← (STS + µvI)−1(STb + µvHdx

k
d + ρkv)

zk+1
d ← S γ

µz

(
Ψxkd + ρkz/µz

)
wk+1 ← max

(
xk + ρkw/µw, 0

)
tk+1 ← S γ1

µt

(
xk + ρkt /µt

)
xk+1
d ←

(
µvH

T
d Hd + µzΨ

TΨ + µwI + µtI
)−1

rkd ,

where,
rkd = HT

d (µvv
k+1 − ρkv) + ΨT (µzz

k+1
d − ρkz) + µww

k+1 −
ρkw + µtt

k+1 − ρkt .

Sµ is the soft-thresholding operator with a threshold value
of µ, and ρw, ρt, and ρz are the Langrage multipliers
associated with w, t and z, respectively. The scalars µw,
µt, and µz are the penalty parameters that are computed
automatically using a tuning strategy. Operations of Hd, Ψ,
and S can be computed using Fast Fourier Transform (FFT),
making each step of the ADMM fast.

The key difference between the above 3D algorithm and
the algorithm presented in [14] is that we use the summing
operator S instead of the slicing operator in [14]. The use
of summing operator makes each iteration of ADMM much
more stable and results in high quality reconstruction within
a few iterations.

5 IMAGING PROTOTYPE

5.1 Prototype preparation

We generated a contour-based PSF with 14% sparsity from
Perlin noise [42]. The continuous phase mask profiles (in
radians) were optimized at 532 nm wavelength of light with
2 µm spatial resolution to produce the PSF at sensor to
mask distance of 1.95 mm. The height map of the phase-
mask was computed for the mask substrate with refractive
index of 1.52. The height map was further discretized into
height steps of 200 nm to fit the specifications of fabrication.
The phase mask was fabricated using two-photon lithog-
raphy 3D printer (Photonic Professional GT, Nanoscribe
GmbH [45]). The phase mask was printed on a 700 µm thick,
25 mm square fused silica glass substrate using Nanoscribe’s
IP-DIP photoresist in a Dip-in Liquid Lithography (DiLL)
mode with a 63× microscope objective lens. The IP-DIP
has a refractive index of 1.52. The fabricated phase mask
is shown in Fig. 2.

We used a FLIR Blackfly S color camera with Sony
IMX183 sensor to build our prototype. Without binning, the
pixel pitch per color channel is 4.8 µm, and with binning,
the pixel pitch per color channel is 9.6 µm. The camera
housing was replaced with a 3D printed housing to get
unobstructed access to the protective glass on the sensor.
The phase mask was affixed (face down) on the protective
glass of the sensor using double-sided adhesive carbon
tape. Two layers of carbon tape were sufficient to attain
the desired distance (1.95 mm) between the phase mask
and the sensor, the distance at which the PSFs appear the
sharpest. The affixing carbon tape also acted as a square
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Fig. 12. Experimental results: Photography. The shortest distance to the
scene is about 0.5m, extending all the way to 3m in the bottom scene.
The bottom scene is a frame from video reconstruction. The video can
be found in the supplementary material.

aperture (6.7 mm×5.3 mm) to restrict the shifts of the PSF to
be within the sensor.

The PSF design, optimized phase mask profile and com-
parison of PSF from 3D printed phase mask is shown in
Fig. 9.

Calibration
There can be discrepancies between the physically imple-
mented PSFs and the target engineered PSFs due to phase
mask height discretization and fabrication inaccuracies.
Hence, we experimentally capture the PSFs and use these
PSFs for our computation. We approximate a point source
by back illuminating a pinhole aperture and capturing sen-
sor data by placing prototypes at different desired depths.
For the plot Figure 11, PSFs were captured at distances
ranging from 7 in (∼178 mm) to 13 in (∼330 mm), with steps
of 1 in (25.4 mm) using a pinhole aperture of 1 mm diameter.
For photography example (Figs. 12,17), PSF was captured at
16 in (∼406 mm). The PSF for microscopy example (Fig. 13)
was captured at 10 mm from the fluorescence filter using a
pinhole aperture of 15 µm diameter. For refocusing (Fig. 15)
and 3D imaging (Fig. 16), PSFs were captured at distances
ranging from 10 mm to 110 mm, with steps: 1 mm for range
10–30 mm, and 5 mm for range 30–110 mm, using a pinhole
aperture of 250 µm diameter.

5.2 Resolution characterization
From the lensless camera geometry, theoretical upper-limit
resolution of a lensless camera can be derived as:

Resolvable feature =
Mask-Scene distance
Mask-Sensor distance

(Pixel pitch)

(12)
From experimental testing using fluorescent USAF tar-

get, we find that using contour PSF achieves close to theo-
retical resolution as shown in Fig. 11. The pixel pitch of the
camera is 4.8 µm.
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Fluorescence Microscopy Setup

Spacer

Phase mask
Fluorescence

filter

Excitation light source

Imaging sensor
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10 mm

(Not to scale)

Captured ReconstructedCaptured

500 µm

Convallaria (Ground Truth)

200 µm

Fig. 13. Experimental results: Microscopy. [Top-left] Fluorescence mi-
croscopy setup. [Top-right] Ground truth image of fluorescent sample
taken using 2.5× microscope objective lens. The sample is a root cell
from lily-of-the-valley (Convallaria majalis) stained with green fluores-
cent dye. [Bottom] Sample capture (at 10mm away) and reconstruction.

5.3 Depth-dependance Characterization

PhlatCam has depth-dependent PSF that can be exploited
for refocusing scenes at different depths and also to perform
3D imaging. The effect of depth on PSF is magnification or
scaling, where the PSF shrinks at the rate of 1/depth as the
scene depth increases (Eq. 4). This effect is a direct outcome
of Fresnel propagation. The correlation of PSFs rapidly de-
creases at closer depths and has broader correlation profiles
at farther depths. This property can be used for 2D imaging
at far depths, computational depth refocusing of scenes at
medium depth range, and 3D imaging of scenes at a closer
depth range. Fig. 14 shows the magnification and correlation
of the depth-dependant PSFs.

5.4 Imaging Experiments

5.4.1 2D Imaging

We show 2D imaging using PhlatCam under various sce-
narios. Photography experiments are shown in Figs. 12, 17,
while microscopy experiment is shown in Fig. 13. For all the
reconstructions, the camera was 2×2 binned to have a pixel
pitch of 9.6 µm. Additionally, the biography images are also
taken with the PhlatCam.

We, also, experimentally (Fig. 17) compare the proposed
PhlatCam with two other prototypes: (a) amplitude mask
designed for separable PSF (FlatCam [10]), (b) phase mask
designed for separable PSF, and (c) proposed phase mask
designed for Contour PSF. FlatCam reconstructions are per-
formed using Tikhonov regularization [10], and using deep
learning method [49]. Both the phase-mask reconstructions
are performed with Eq. 9.

5.4.2 Image Refocusing

At medium depth ranges, the depth-dependant PSFs un-
correlate slowly. Hence, the exact 3D reconstruction would
be ill-conditioned. However, the PSF correlation fall-off can
be exploited for performing computational refocusing from
single captured measurements. We perform refocusing by
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Fig. 14. PhlatCam has depth dependent PSF that magnifies as the
scene gets closer. The magnification falls with inverse depth relation.
By looking at the correlation of PSFs, we can broadly categorize scene
depth into 3 regimes. At close distances, the correlation falls quickly,
enabling us to reconstruct 3D images. At the medium distances, the
correlation falls gradually over a wider depth range. In this distance
range, we can perform computational refocusing. At much larger depth,
the dependence of PSF with depth saturates and all far scene points
can be said to be beyond the hyperfocal distance of PhlatCam, thereby
allowing only reconstruction of 2D images.

Refocus at 45 mm Refocus at 75 mm Refocus at 110 mm

Fig. 15. We showcase the refocusing ability of PhlatCam. Three objects
at three different distances comes into focus when we use the appropri-
ate depth PSF for the reconstruction.

reconstructing the image from the single capture by choos-
ing the appropriate depth PSF. Scene points away from
the selected depth appear blurry while the scene points
at the selected depth plane appear sharp. Our refocusing
experiment is shown in Fig. 15.

5.4.3 3D Imaging

At very close depth range, the depth-dependant PSFs un-
correlate at a fast rate. This property can be exploited to
perform 3D imaging. Our 3D imaging experiment is shown
in Fig. 16.

6 DISCUSSION AND CONCLUSION

We demonstrated PhlatCam, a designed lensless imaging
system that can perform high-fidelity 2D imaging, computa-
tional refocusing, and 3D imaging. These abilities are made
possible by our proposed Contour PSF and the phase mask
design algorithm. We used traditional optimization-based
algorithms to reconstruct images in this paper. In the future,
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Fig. 16. We showcase the 3D image reconstruction ability of PhlatCam
at very close distance. The scene is a handwritten text, written using
phosphorescent paint. The letter ‘L’ is at the closest distance from the
camera, at 10mm, and the letter ‘T’ is at 38mm from the camera. Hence,
the scene ranges from 0 to 28mm.

we will incorporate data-driven methods (like [49], [50]), to
improve the reconstruction quality.

In this work, we used a heuristic approach borne
from concepts of signal processing to engineer a high-
performance PSF. As a future direction, we aim to optimize
the PSF over a theoretical metric or through an end-to-end
data-driven approach.
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