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Abstract— Imaging photoplethysmography (iPPG) could
greatly improve driver safety systems by enabling capabilities
ranging from identifying driver fatigue to unobtrusive early
heart failure detection. Unfortunately, the driving context
poses unique challenges to iPPG, including illumination and
motion. First, drastic illumination variations present during
driving can overwhelm the small intensity-based iPPG signals.
Second, significant driver head motion during driving, as well as
camera motion (e.g., vibration) make it challenging to recover
iPPG signals. To address these two challenges, we present two
innovations. First, we demonstrate that we can reduce most
outside light variations using narrow-band near-infrared (NIR)
video recordings and obtain reliable heart rate estimates.
Second, we present a novel optimization algorithm, which we
call AutoSparsePPG, that leverages the quasi-periodicity of
iPPG signals and achieves better performance than the state-
of-the-art methods. In addition, we release the first publicly
available driving dataset that contains both NIR and RGB video
recordings of a passenger’s face with simultaneous ground truth
pulse oximeter recordings.

Index Terms— Remote photoplethysmography, imaging photo-
plethysmography, near-infrared, heart rate, driver monitoring.

I. INTRODUCTION

EVERY year, there are 6 million car accidents in the U.S.,
of which 94% are caused by human error, including

distraction and fatigue [2], [3]. Furthermore, heart disease
is the leading cause of death—every 40 seconds someone
suffers from a heart attack in the U.S. [4]. If a heart attack
happens during driving, the driver is no longer able to control
the vehicle and poses an immediate threat to himself and to
others present on the road. Continuous and unobtrusive vital
signs measurements could prevent a large number of these
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accidents by early detection of fatigue [5], distraction [6], and
potentially even life-threatening episodes such as heart attacks
and tachycardia [7]–[13].

Over the last few years, camera-based measurement of vital
signs, including heart rate (HR) [14], breathing rate [15],
and heart rate variability (HRV) [15], has reached sufficient
accuracy to have potential in diverse realistic applications [14],
[16], [17]. These measurements of vital signs with a camera
are known as imaging photoplethysmography (iPPG). They are
derived from minuscule intensity variations of skin regions
with each cardiac cycle, caused by varying blood volume
over time. Remotely measuring vital signs with cameras
could improve driver monitoring systems and be seamlessly
incorporated inside the car, without requiring the user to wear
a contact device.

In addition to measuring vital signs, recording a driver’s face
with a camera can provide information about gaze [18], head
pose [19], blinking rate [20], changes in facial expression [21],
and other subtle facial parameters [22]–[24], for more accurate
multi-modal measurements of the driver’s mental and health
status.

Unfortunately, there are unique sources of noise in a moving
vehicle that make most existing iPPG methods unsuitable for
this application. First, the outdoor ambient light varies drasti-
cally and suddenly during driving (e.g., while driving through
the shadows of buildings, trees, etc.), making it difficult to dis-
tinguish iPPG signals from other intensity variations. Second,
there is significant motion of the driver’s head and face due to
a number of factors, such as the motion of the car, the driver
looking around both within and outside the car (for oncoming
traffic, looking into rear- and side-view mirrors, etc.), and the
driver talking. Third, there are currently no publicly available
datasets with video recordings captured during driving that
have simultaneous ground truth measurements of vital signs.
Therefore, it is difficult to fully understand the challenges that
driving poses for iPPG measurement.

While iPPG methods using RGB color cameras are more
robust to motion than iPPG using near-infrared (NIR), they fail
in presence of uncontrolled ambient illumination. On the other
hand, iPPG using NIR cameras (with NIR illumination that is
invisible to the subject) can be robust in most illumination
settings, but it is not as robust to large motion as RGB
methods. However, when large motion and light variations are
present, no existing methods, in either NIR or RGB, work
well (See Table I). In this work, we present a system-level
solution. We leverage the robustness of narrow-band NIR to
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TABLE I

ROBUSTNESS OF NIR AND RGB SYSTEMS TO DIFFERENT LIGHT AND MOTION SETTINGS

Fig. 1. A. Spectrum of ambient light sources present during driving. Most
of the ambient light is reduced in NIR, especially around 940 nm [25]–[27].
B. RGB cameras are more susceptible to ambient light variations than NIR
cameras.

Fig. 2. The top row illustrates state-of-the-art approaches for measuring
iPPG signals with RGB camera recordings, which leverage multiple camera
channels to obtain motion-robust iPPG signals. However, RGB cameras
are susceptible to ambient light variations. The bottom row illustrates our
proposed monochromatic NIR system, which is robust to ambient light
variations, and our AutoSparsePPG algorithm that is capable of robustly
recovering iPPG signals in the presence of motion.

uncontrolled illumination, and we design an AutoSparsePPG
algorithm to enable robustness to motion in NIR. The contri-
butions of this paper include the following:

1) Hardware: We design a narrow-band NIR system, and
we find an optimal wavelength range that reduces the
majority of ambient light variations during driving,
including sunlight (see Fig. 1).

2) Algorithm: We develop an iPPG algorithm robust to
motion which outperforms the state-of-the-art methods
in NIR recordings (see Fig. 2).

3) Dataset: We release the first publicly available video
dataset that contains video recordings in RGB and NIR
captured during driving, as well as synchronized ground
truth pulse oximeter measurements.1

1Our MR-NIRP Car Dataset may be downloaded here:
https://computationalimaging.rice.edu/databases/.

Fig. 3. Examples of ambient light variations in RGB during driving.

II. CHALLENGES FOR IPPG IN THE CAR

In videos, iPPG signals are detectable as minuscule ampli-
tude variations modulating the intensity of skin pixels. Due
to the weakness of the iPPG signal, existing techniques for
estimating iPPG are highly susceptible to nuisance factors
that affect image intensity. In order for iPPG techniques to be
successfully deployed in car-related applications, the primary
challenges that need to be overcome are ambient illumination
variations and motion of both the car and the person in the
car.

A. Ambient Illumination Variations

Because iPPG is a low-intensity signal, the signal-to-noise
ratio needs to be amplified by signal processing techniques,
such as spatial averaging and incorporating information from
multiple heartbeat cycles. In most existing work, temporal
averaging is performed over 5–10 seconds (about 5–10 cardiac
cycles) [28]. In many applications, it is reasonable to assume
that ambient illumination is constant over this time span,
and that the intensity variations on a stationary subject’s face
are primarily due to iPPG variations. In the driving context,
however, traditional algorithms that assume constant or slowly
varying illumination do not work well.

There are several illumination-based challenges for iPPG
in the driving context. First, during driving the amount of
light falling on the driver’s face can change suddenly and
drastically, as sunlight is blocked and revealed by buildings or
trees during the day, or as the car drives underneath streetlamps
or past oncoming vehcles’ headlights at night. Second, the
ambient light can illuminate different facial regions from
different angles and with different brightness. This results
in a non-uniform pattern of light and shadow across the
face (Fig. 3a), making it difficult to directly combine these
facial regions to compute iPPG signals. Third, there is a high
dynamic range across time and space. The driver’s face may
be very bright (even completely saturated) when it is in direct
sunlight (Fig. 3b), but very dark either when the car is in the
shadow cast by a building during the day (Fig. 3c) or at night
(Fig. 3d). As a result of these high-frequency, high-amplitude
spatio-temporal variations in facial illumination, traditional
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Fig. 4. Examples of sources of motion present during driving.

iPPG algorithms that operate on RGB videos fare poorly in
driving applications.

B. Large Motion

During driving, the car’s velocity changes frequently due
to the driver engaging the accelerator or the brakes, steering
around turns, and traversing hills and bumps in the road. All of
these changes in velocity produce involuntary motion of the
driver’s head. Moreover, the driver exhibits both rigid head
motion (looking around for oncoming traffic, looking into
the rear- or side-view mirrors, and looking at other objects
inside or outside the car) and non-rigid facial motion (talking,
singing, eating, or making facial expressions). See Fig. 4 for
motion examples. Head motion can rapidly change the surface
normals at each pixel, leading to substantial changes in image
intensity that often overwhelm the minuscule iPPG signals.
Additionally, the motion of the car causes some vibrations of
the camera and lights used for data collection.

We compared the amount of facial motion of subjects
under two categories of car motion and two categories of
subject motion. The car was either parked in a garage with
the engine running or driving in a city. The subjects were
either asked to sit as still as possible so that any motion (e.g.,
due to changes in car velocity) was unintentional, or they
were asked to behave as if they were driving: look out the
windshield, glance at rear-view and side-view mirrors, and talk
naturally. We computed the amount of facial motion within
each 10-second time window as the average Euclidean distance
between the positions of each detected facial landmark in two
adjacent frames:

1

K

K−1∑
k=1

T−1∑
t=1

√
(Tt+1,k,x − Tt,k,x)2 + (Tt+1,k,y − Tt,k,y)2,

where K is the number of facial landmarks and T is the dura-
tion of the time window. We averaged the motion (measured
in pixels) over all 10-second time windows and across all
subjects.

The amount of involuntary motion caused only by the
moving car was large (∼224 pixels)—comparable to the
amount of voluntary motion performed when the car was
still (∼216 pixels). The amount of voluntary motion was
twice as large as the amount of involuntary motion, both
during driving (voluntary:∼415 pixels, involuntary:∼224 pix-
els) and when the car was parked (voluntary:∼216 pixels,
involuntary:∼114 pixels), making this a very challenging
high-noise scenario. An average size of the face for these
videos was 130 × 180 pixels.

C. Lack of Publicly Available Driving Datasets

As the challenges facing iPPG estimation in the car are
fundamentally different from those in more stationary appli-
cations, such as video-conferencing [29], datasets that were
acquired in other contexts are not useful to study iPPG
estimation in the driving context. Almost all existing publicly
available iPPG datasets were captured indoors, with RGB
cameras and with controlled illumination. Some of these
datasets have head motion, but the motion is mostly caused by
facial expressions and talking, which is radically different from
the head motion caused by a moving vehicle. Consequently,
previous datasets are not useful for understanding the chal-
lenges for iPPG during driving. There have been few papers
attempting to measure iPPG in the car using cameras [8], [30],
and so far only one group is planning to publicly release their
dataset [30]. Therefore, it is difficult to understand how the
ambient light and motion artifacts impact the iPPG signal
quality during driving, and how much more severe these
artifacts are compared to those in indoor recordings.

III. RELATED WORK

A. Algorithms Based on Multiple Color Channels

Almost all state-of-the-art iPPG algorithms achieving the
highest accuracy and motion robustness rely on combinations
of the [R, G, B] channels. Linear combinations of the color
channels can be used to separate the heart rate signal from
noise [14], [31], [32]. However, the use of RGB cameras
requires sufficiently bright and controlled visible light, and
will not work well at night or when the ambient light is
varying drastically. Van Gastel et al. used three NIR cameras,
each fitted with a different narrow-band filter, to achieve
robustness to both motion and light variations [33]. However,
using multiple cameras can be cost-prohibitive, and image
registration from multiple camera views may be challenging.

B. Algorithms Applicable to Monochrome Recordings

When the ambient illumination is either dark or varying
rapidly, as in the driving context, monochrome NIR recordings
(with NIR illumination) are a cost-effective way to eliminate
illumination-based noise. However, most of the state-of-the-art
algorithms use three color channels (e.g., RGB) for motion
robustness, so they will not work on monochrome recordings.
There have been a few algorithmic solutions proposed that
model the properties of the iPPG signal without relying on
multiple channels. Kumar et al. showed that by identify-
ing which facial regions have strong signals and weighing
them by their SNR measure, robust heart rate estimates
can be obtained using only the green color channel [28].
We proposed the SparsePPG algorithm, which leveraged the
fact that iPPG signals are sparse in the frequency domain
and low-rank across facial regions [1]. However, many of
these methods require setting fixed optimization parame-
ters or thresholds beforehand, making it hard to generalize
them to new datasets with different cameras or lighting
conditions.
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C. Addressing Uncontrolled Illumination

Blackford et al. demonstrated the feasibility of obtaining
iPPG measurements with RGB cameras outdoors with sunlight
as the source of illumination [34], but the subjects were
stationary and the outside light was not varying suddenly.
Chen et al. [35] used broadband NIR light for night and
low-light settings. However, the iPPG signals obtained using
NIR are much more noisy than using visible light [36], [37].
Using broadband NIR recordings improves the signal strength
compared to narrow-band NIR because it allows more light to
be captured by the camera. However, broadband NIR is still
susceptible to ambient light variations that may occur at NIR
frequencies, especially those caused by sunlight. We demon-
strate the feasibility of using very narrow-band (10 nm pass-
band) filters with a monochrome NIR camera to achieve heart
rate estimation accuracy comparable to benchmark methods
that use RGB cameras.

D. iPPG During Driving

There have been few papers that attempted to estimate iPPG
during a realistic driving scenario. Kuo et al. used spatially
averaged green-channel intensities from a single region on
the face to compute the average heart rate during driving,
but obtained accuracy below 20% for more than half of the
subjects in their dataset [8]. Wu et al. used a k-nearest neigh-
bor classifier applied to the strongest five frequency peaks of
the chrominance signal’s frequency spectrum [7]. However,
they only reported results for two participants. We release the
first publicly available iPPG driving dataset and show that
we obtain reliable results in heart rate estimation using the
proposed NIR set up.

IV. HANDLING ILLUMINATION NOISE WITH NIR IMAGING

A. Illumination Variations in Visible and NIR

The sources of the ambient light in images captured dur-
ing driving include sunlight, streetlamps, and headlights of
other vehicles. Most modern street lighting uses low-pressure
sodium lamps which predominantly emit visible light [38].
The light bulbs used in car headlights are usually halogen or
xenon bulbs which also mostly operate in the visible range,
though they also emit some NIR light. However, sunlight
contains energy in NIR, visible, and ultraviolet wavelengths
(see Figure 1).

We measured which wavelengths dominate the ambient
light in the car due to sunlight by capturing measurements
with a spectrometer (Ocean Optics USB2000+) through a
car window that was either open or closed (see Figure 5).
There is a large drop off in the energy at longer wavelengths,
starting at about 930 nm. The reason for the sudden drop-off
in the spectral energy of the sunlight at the Earth’s surface
at around 930 nm is that water in the atmosphere absorbs
light in a wavelength band that includes 940 nm [39]. The
other sources of illumination variations during driving, such
as street lights and headlights, are predominantly in the visible
spectrum and can also be reduced using an NIR filter.

Fig. 5. Sunlight spectrum measured with the car window open (solid blue
line) and closed (solid green line), and passband of the 940 ± 5 nm bandpass
filter (dotted magenta line). The majority of sunlight energy that reaches the
car interior is in wavelengths shorter than 930 nm. The glass in the car window
also blocks a significant portion of the NIR light from the sun.

B. Design Choices in Active NIR Imaging

In this subsection, we discuss several design choices and
trade-offs necessary to consider when building an active NIR
illumination system for measuring iPPG.

1) Achieving Uniform Illumination: Illumination intensity
across the face can be non-uniform due to the variation in the
3D directions of the normals across the face surface, due to
shadows cast on the face, and due to different parts of the face
being at different distances from each illuminator. To make the
illumination more uniform across the face, we used two light
sources, placed on each side of the face and at roughly equal
distances from the head. In addition, we placed horizontal and
vertical diffusers on the light sources to widen the light beams
reaching the face, so that the center of the face would not be
much more brightly lit than the periphery.

2) Capturing Well-Exposed Images: We would like the
images of the face to be sufficiently well exposed in order
to measure strong iPPG signals. However, the intensity of
the illumination is inversely proportional to the square of the
distance from the light source to the face. If the face is too
close to the illumination, the images will be saturated and
will not contain iPPG information, but as the person moves
farther back from the lights, the images will become dimmer
and have weaker iPPG signals. It is also important to keep the
camera exposure fixed during the duration of the recording
to obtain clean iPPG signals. We experimentally selected the
most favorable position of the illuminators inside the car and
their brightness setting to avoid capturing saturated images,
while recording well-exposed images at a range of possible
distances between the subject’s face and the camera. We tested
different distances (ranging from 7 cm to 50 cm) by having the
participant sit inside the car and lean forward and backward,
while the position of the camera was fixed.

3) Bandwidth, Light Efficiency, and Eye Safety: The more
narrow the optical bandpass filter on the camera, the more
ambient light can be rejected, reducing the amount of noise
corrupting the iPPG signals during driving. However, when
very narrow filters are used, the captured images become dark
and the strength of the iPPG signals decreases. Therefore,
using narrow-band filters requires using bright illumination
matching the passband wavelength of the filter to obtain
well-exposed images.
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NIR light can be shined on a person’s face without causing
discomfort because it is invisible to the human eye, making
it easy to use very bright lights. Because the NIR lights are
not visible to the human eye, however, the pupillary light
reflex does not narrow the pupils to limit the amount of light
reaching the eyes, even when very bright NIR lights are used.
Consequently, care needs to be taken to ensure that the NIR
illumination is within the eye safety limits. We conducted
these computations (included in Supplementary Materials),
according to the OSRAM eye safety note [40].

C. Lower iPPG SNR in NIR

The iPPG signals are strongest in the green part of the light
spectrum because of larger absorption of hemoglobin in that
wavelength range [37]. In contrast, iPPG recordings in NIR are
significantly weaker and less robust to noise than recordings
captured in RGB [16], [36], [37]. Moreover, most camera
sensors’ sensitivity decreases in the NIR range with increas-
ing wavelength, leading to larger camera quantization noise.
Finally, monochrome recordings do not enable using redundant
information in multiple camera channels for denoising, which
is commonly used for motion robustness in RGB recordings
(see Fig. 2) [14], [31], [32]. In summary, while narrow-band
NIR can be used to reduce the noise due to ambient light,
it is at the cost of lower signal-to-noise ratio (SNR) and
less robustness to motion. Therefore, one must use iPPG
algorithms that can be robust to motion in the low-SNR regime
of NIR.

V. ALGORITHMS: MOTION COMPENSATION

A. Computing iPPG Signals From Video Intensities

As blood flows through a skin region, the concentration of
hemoglobin changes over time, changing the amount and color
of light absorbed by the skin. When we record a video of a skin
region, a camera can register those small intensity variations
caused by blood flow, referred to as the iPPG signal.

The quantization noise of the camera sensor, vn(t), can
be reduced by spatial averaging of groups of pixels, which
is a commonly used pre-processing step for extracting iPPG
signals from a video recording. Therefore, we obtain the raw
iPPG signals from the video frames by spatially averaging the
pixel intensities within each of N = 48 regions of interest
on the face. We define those N = 48 facial regions by first
detecting 68 facial landmarks using the OpenFace library [41],
then interpolating and extrapolating the detected landmarks to
obtain a total of 145 points that include the forehead region,
as shown in part 1 of Fig. 6. We focus on regions around
the forehead, cheeks, and chin area, because these regions
tend to exhibit stronger iPPG signals [28]. We exclude noisy
regions such as eyes, nose, mouth, the boundary of the face,
and the very top of the forehead that often contains hair. For
every facial region j ∈ {1, . . . , N}, the raw iPPG signal p j (t)
obtained from the mean intensities is a one-dimensional time
series signal, where t ∈ {1, . . . , T } is the video frame index
within a time window of length T frames. We stack the signals
from all N facial regions into an iPPG matrix P of size T×N .
We process the iPPG signals within 10-second sliding time

Fig. 6. Overview of our proposed AutoSparsePPG algorithm. (1) PPG signals
are computed from each facial region. (2) We suppress noise components
using projections onto the orthogonal complement of the motion noise (H, V)
and the noise from ambient light variations B (computed from background
regions). (3) From the partially denoised iPPG signals Z, we then recover the
quasiperiodic iPPG signal’s sparse frequency spectrum (X).

windows that overlap by 1
3 second (10 frames overlap for

our 30 frames per second (fps) videos). We used a 10-second
window to process the signals, following [28], because it was
short enough to accommodate the heart rate variations, but
long enough to be robust to variations in noise over time.

We normalize each time window’s signals by subtracting
the mean intensity over time of each region’s signals and
then dividing by that mean. We bandpass-filter the signals to
restrict them to the standard cardiac frequency range [42 bpm,
240 bpm] [32].

1) Temporal Averaging of Facial Landmark Locations:
When we detect facial landmarks in each frame independently,
there is a high-frequency jitter in the position of the detected
landmarks, even when the face is stationary. This causes the
pixels included in different small facial regions to correspond
to slightly different regions on the face for each video frame,
changing the average intensities over time and leading to
small errors that accumulate over time and affect the iPPG
performance. We found that when there is large motion and
lighting variations, tracking algorithms tend to make errors that
compound over time, causing the estimated positions of the
facial landmarks to drift away from the correct facial locations.
Instead, we estimate the position of each facial landmark in
frame t by averaging the detected positions of the landmark
from frame t − 5 to t + 5.

2) Motion Robustness Using Median of Regions: For addi-
tional robustness to small variations in facial regions’ positions
over time, we grouped the N = 48 small regions (called mean
regions, because the signal for each small region is the mean
over all of its pixels) into five larger regions with a spatial
median, as shown on the right in part 1 of Fig. 6. We call the
five larger regions median regions, because the signal for each
larger region is obtained by computing for each time step the
median across the signals from the small regions that make
up the large region. As we detail in Supplementary Materials,
using the five large median regions improves performance by
as much 9% compared to only using the 48 mean regions.
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3) Pre-Processing by Discarding Noisy Facial Regions:
Some of the facial regions may be severely corrupted by
noise for a long time during driving (e.g., due to occlusions
or shadows), or they may simply not contain physiologically
strong iPPG (e.g., due to hair) [28]. In that case, the iPPG
signals cannot be recovered from these regions, and including
them in our data would corrupt the final heart rate estimates.

We assume that iPPG signals are weak and slowly varying
intensity variations, so any regions that have very large energy
within a short time window should be removed as likely
containing noise. We remove regions with �2 norms exceeding
the threshold of median(||Pt ||2)+ 1

2σ(||Pt ||2), where σ is the
standard deviation, computed over all five facial regions for
each considered time window. The �2 norm is computed over
time, and the standard deviation is computed over the five
spatial regions.

B. Reducing Noise Using Orthogonal Projections

Different facial regions may be contaminated differently
by noise caused by changes in ambient illumination, motion
alignment errors, and facial expressions, so the noise may
be high-dimensional. However, blood flows through all facial
regions with approximately the same temporal profile during
the cardiac cycle, so the underlying iPPG signal should be
low-rank across facial regions [42]. To suppress noise that is
corrupting the iPPG signal, we orthogonally project (OP) the
noisy iPPG signal P onto the noise subspace Q, then subtract
this projected signal from P. This is equivalent to projecting
the noisy iPPG signal onto the orthogonal complement of the
noise subspace.

We approximate the motion noise by summarizing the
motion of the face with two time-varying 5-dimensional (5D)
signals: a 5D horizontal motion signal H, and a 5D vertical
motion signal V. We also compute a 5D time-varying back-
ground illumination signal B, to approximate the noise caused
by time-varying illumination at various locations.

To extract the 5D horizontal motion signal H, we first
measure the horizontal motion of each of the N = 48
small facial regions by spatially averaging the positions of
the four corners of the region in each frame. We then reduce
those 48 dimensions into five dimensions, one for each large
region, by computing the median of the motion signals across
all of the small regions that belong to that large region. The
sequence of these 5D signals across all time steps in the 10-
second time window is the T × 5 matrix H. The 5D vertical
motion signal V is computed similarly.

To obtain a 5D time-varying signal B that represents the
background ambient light intensity variation, we selected five
regions in the background not containing the face area, shown
in magenta in the center image of part 1 of Fig. 6. We split
each of these five large background regions into small (30×30
pixel) regions, spatially average the intensity values within
each small region, and take the median of the resulting nine
values to obtain a single value for the large region. We do
this for each of the five large background regions in each
frame, resulting in a T × 5 matrix B. Finally, we concate-
nate these three noise sources into one noise signal matrix
Q = [H |V |B] of dimensions T×15. We orthogonally project

the noisy iPPG signal matrix P onto the noise subspace Q
and subtract that projection from the iPPG signal matrix P,
to obtain the OP-denoised signal Z:

Z = P − QQT

QT Q
P. (1)

C. AutoSparsePPG: Adaptive Sparse Spectrum Estimation

1) Sparse Spectrum Estimation: iPPG signals are quasiperi-
odic, which means that they have slowly varying frequency.
Over a short time window, they can be approximated as
periodic signals with a dominant frequency and its harmon-
ics. Thus, we can model the iPPG signals as sparse in the
frequency domain. All facial regions containing iPPG should
have the same sparse frequency spectrum and the same support
of the frequency coefficients, corresponding to the underlying
noise-free heartbeat signal. We model the OP-denoised signal
Z as a sum of two components: the desired iPPG signal
Y, whose frequency spectrum, X, has only a few non-zero
coefficients; and the inlier noise, E, that was not removed by
OP:

Z = Y+ E = F−1X+ E, (2)

where F−1 is the inverse Fourier transform.
We want the columns of X to be jointly sparse to ensure

that the frequency components are sparse and all regions
have the same support, resulting in entire rows of X being
either zero or non-zero. Conversely, we want to be able to
remove facial regions which are noisy in the whole time
window. We additionally make sure that the energy in the
remaining facial regions is not very large, because the iPPG
signals are very weak signals and large amplitudes likely
correspond to noise. To do so, we force the entire columns
to be either zero or non-zero by formulating this problem
following the SparsePPG approach [1] with a mixed �2,1 norm
regularization:

min
X,E

1

2

∥∥∥Z− F−1X− E
∥∥∥2

F
+ λ

(
‖X‖2,1 + μ‖ET‖2,1

)
, (3)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and the
�2,1 norm of a matrix X is defined as

‖X‖2,1 =
∑

t

√∑
j

X (t, j)2.

The �2,1 regularization is applied such that the �2 norm of the
columns of X (facial regions) is followed by an �1 norm along
the rows (frequency coefficients) to ensure sparsity within the
computed column norms. Conversely, the �2 norm of the rows
of E (time dimension) is followed by an �1 norm across the
columns (facial regions) to sum up the row norms and ensure
sparsity across the facial regions.

2) Adaptive Regularization Parameter Selection: The
choice of regularization parameters, λ and μ, has a significant
impact on the performance of heart rate estimation. Changing
either of these parameters can lead to as much as a 30%
difference in HR estimation accuracy. Moreover, very different
parameter values are optimal for different videos.
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Algorithm 1 AutoSparsePPG Algorithm for Solving (4)

input: Z, X0, E0, α
set: τ0 = ‖X0‖2,1 + μ‖E0T‖2,1

1: ∇X0 ← X0 − F
(
Z− E0

)
2: ∇E0 ← E0 + X0 − Z

3: τ ← τ0 + ||Z−F−1X0−E0||2F
max([||∇X0 ||2,∞,μ||∇E0 ||2,∞])

4: for k← 1 to K do
5: X̃k ← Xk−1 − α∇Xk−1

6: Ẽk ← Ek−1 − α∇Ek−1

7: (Xk, Ek)← proj2,1(X̃
k, Ẽk , τ )

8: ∇Xk ← Xk − F
(
Z− Ek

)
9: ∇Ek ← Ek + Xk − Z

return: XK , EK

We propose the AutoSparsePPG algorithm, which automat-
ically selects the parameter λ adaptively based on the data.
Following the work of Van den Berg et al. for solving sparse
optimization problems with least squares constraints [43],
we can rewrite (3) as:

min
X,E
||Z− F−1X− E||2F

subject to ‖X‖2,1 + μ‖ET‖2,1 < τ, (4)

where τ is defined as:
τ = τ0 + ||Z− F−1X− E||2F

max([||∇X||2,∞, μ||∇E||2,∞]) .

Here, τ0 = ||X||2,1+μ||ET||2,1 for some initial X and E, and
∇X and ∇E are the gradients of ||Z−F−1X−E||2F with respect
to X and E, respectively.

The parameter λ is initialized to λ0:

λ0 = ||Z||F√
card(X)card(E)

where card is the cardinality (the number of the elements of the
matrix). Then in each iteration, λ is updated using Newton’s
root finding method applied to the equation

‖X‖2,1 + μ‖ET‖2,1 = τ.

Consequently, we use the following update rule to modifying
λ in order to satisfy the τ constraint:

λk+1 = max

(
0, λk +

‖Xk+1‖2,1 + μ‖ET
k+1‖2,1 − τ

β(‖Xk+1‖2,0 + μ‖ET
k+1‖2,0)

)
,

where β is a step size parameter, ‖Xk+1‖2,0 computes the
number of nonzero column-norms of Xk+1, and X and
E are initialized with zeros. A detailed description of the
AutoSparsePPG framework is presented in Algorithms 1
and 2. Algorithm 2 details our algorithm for the proj2,1 step
(Step 7) of Algorithm 1. Please see [43] for details about the
convergence and stability of Newton’s root finding method.

To combine the denoised signals from each facial region,
we take a median in each frequency bin across the regions of
X. A median is more robust to outliers than a mean when some
of the facial regions are corrupted by noise. We found that
when we instead used a mean in each frequency bin, the results

Algorithm 2 proj2,1 : Constrained �2,1 Projector

input: X̃, Ẽ, τ, α.
set: λ← 0, X← X̃, E← Ẽ
define: R(X, E) := ‖X‖2,1 + μ‖ET‖2,1
Compute row and column norms

1: Xr ← [‖X(1, :)‖2, . . . ‖X(T, :)‖2]T
2: Ec ← [‖E(:, 1)‖2, . . . ‖E(:, J )‖2]
3: while R(X, E) > τ do

Apply soft-thresholding
4: X← X̃

Xr
	max {Xr − αλ; 0}

5: E← Ẽ
Ec
	max {Ec − μαλ; 0}

Compute row and column norms
6: Xr ← [‖X(1, :)‖2, . . . ‖X(T, :)‖2]T
7: Ec ← [‖E(:, 1)‖2, . . . ‖E(:, J )‖2]

Update λ
8: g←−‖Xr‖0 − μ‖Ec‖0
9: λ← max

{
0, λ− R(X,E)−τ

αg

}
return: X, E

were often erroneous in the presence of noise. The frequency
component for which the power of the frequency spectrum is
maximum is the heart rate output by our algorithm for the
given time window. Part 3 of Fig. 6 illustrates an example of
the sparse frequency spectrum of the underlying iPPG signal
recovered from noisy video data.

D. Fusion of Time Windows

The human heart rate varies slowly over time, so the iPPG
signals from multiple facial regions can be approximated to be
a stationary process within a short time window. By using the
information from previous time windows, we can improve the
iPPG denoising and remove a lot of abrupt changes caused
by noise. We process the iPPG signals using sliding time
windows. For each time window, the signal to be processed is a
weighted average of two sources: the previous time window’s
already processed and denoised data, and the current time
window’s noisy data that has not yet been processed.

This weighted average is defined as follows:
P = α

[
Po
Pn

]
+ (1− α)

[
Ỹo
Pn

]
. (5)

Here,
[

Po
Pn

]
represents the unprocessed, noisy data from the

current time window. Po denotes the data from the portion
of the current time window that overlaps with the previous
(old) time window, while Pn denotes the data from the new
portion of the current time window (the portion that does not
overlap with the previous time window). Note that the old
data, Po, were already processed (denoised) in the previous
time step; the processed, denoised version of Po (which was
output at the previous time step) is denoted Ỹo. The parameter
α controls how much we weigh the previous window’s results.
The smaller the value of α, the more we take into account the
previous time window’s estimate.

As part of the pre-processing within each time window,
we may have rejected a different number of facial regions,
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Fig. 7. Sample video frames from our new MR-NIRP Car Dataset, in NIR (left image of each pair) and RGB (right image of each pair).

resulting in different dimensions of the input iPPG signals
in the consecutive time windows. Therefore, after processing
each time window, we first recompose the signal in the missing
regions by linearly interpolating from neighboring regions in
order to use the described weighted time window fusion.
We selected all optimization coefficients that gave the best
performance on our data by using a leave-one-subject-out
cross-validation.

VI. MR-NIRP CAR DATASET

In this section we present the experimental conditions and
the setup used to collect our new dataset, the MERL-Rice
Near-Infrared Pulse (MR-NIRP) Car Dataset.

A. Data Collection Conditions

To decouple the effects of motion and ambient light varia-
tions on the quality of the iPPG signals, we recorded videos in
the car in two different driving conditions: inside the garage,
and driving in the city. Inside the garage, the engine was
running but the car was parked. During the driving scenario,
we drove around the block in the city, where we often had
to stop at traffic lights. Sudden stopping, accelerating, and
turning introduced additional motion artifacts, making it more
difficult to recover iPPG signals than it would be while driving
at a constant speed on a highway. In each of the two driving
conditions, we recorded data with two different head motion
conditions. In the first (minimal head motion), we asked the
participants to sit as still as possible. In the second (additional
head motion), we asked the participants to talk naturally and
to look through the windshield and in the side and rear-view
mirrors to simulate the amount of motion that would be present
during natural driving.

We collected data on 18 healthy subjects2 aged 25–60
years with varying skin tones. One of the subjects was
recorded twice during driving, once during the day and once
at night. Therefore there are 19 recordings with city driving,
and 18 recordings for condition in the garage. Of the 18
subjects, two subjects were female, and five subjects had facial
hair. We recorded four videos at night and 14 during the day.
Of those 14 videos, eight were recorded in sunny weather and
six in overcast conditions. Examples of captured images in
NIR and RGB are shown in Fig. 7. None of our participants
wore glasses during the data collection. However, the presence
of glasses should not significantly affect the performance of
any algorithms evaluated on our dataset since the eye region is

2The study was approved by MERL’s Institutional Review Board, and all
participants signed an informed consent form for the use and public release
of their data.

excluded, as shown in Fig. 6 part 1. All of the NIR recordings
were included, but we had to exclude the RGB recordings of
two subjects during city driving and one subject in the garage
because the video frames were so dark that facial landmarks
were not detected. We had the subjects sit in the passenger seat
(the subjects did not control the car) during recording, for two
reasons: for safety; and to reduce the amount of hand motion
in order to avoid corrupting the pulse oximeter signals. This
was important, because we found that even small involuntary
motions of the hand significantly affected the recorded pulse
oximeter (ground truth) signals.

B. Experimental Setup

We mounted the NIR (Point Grey Grasshopper
GS3-U3-41C6NIR-C) and the RGB (FLIR Grasshopper3
GS3-PGE-23S6C-C) cameras next to each other on the
dashboard in front of the subject. The lenses we used had
a focal length of 8 mm for the NIR camera and 4.5 mm
for the RGB camera. The NIR camera was fitted with
a 940 nm hard-coated optical density bandpass filter from
Edmund Optics with a 10 nm passband. We also compared
the performance with a 975 nm bandpass filter with a 50 nm
passband and “dark frame subtraction” to further reduce
ambient light, however we found there was not a significant
improvement in the results (see the Supplementary Materials).
We used four Bosch EX12LED-3BD-9W illuminators, two
on each side of the subject’s face. Each illuminator was fitted
with a 95-degree diffuser in the vertical direction and an
80-degree diffuser in the horizontal direction, to broaden the
beam of light and to make sure that the illumination of the
face was relatively uniform. We used ambient illumination for
the RGB camera. We obtained a ground-truth PPG waveform
using a CMS 50D+ finger pulse oximeter recorded at 60 fps.

We recorded 10-bit raw images with 640 × 640 resolu-
tion at 30 fps, with no gamma correction and with fixed
exposure that was set at the beginning of the video capture
to make sure the face was well lit. When the images were
well exposed, we always set the gain to zero, and when it
was very dark, we increased the gain until the face region
was sufficiently bright. All the recordings captured inside the
garage were 2 minutes long; the recordings captured during
driving ranged from 2–5 minutes in duration, depending on
how long it took us to drive around the block.

VII. RESULTS

A. Compared Benchmark Algorithms

We compared the performance of our proposed
AutoSparsePPG algorithm to five state-of-the-art iPPG
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TABLE II

HR ESTIMATION ERRORS ON MR-NIRP CAR DATASET (“MINIMAL” HEAD MOTION)

TABLE III

HR ESTIMATION ERRORS ON MR-NIRP INDOOR DATASET [1]

methods: SparsePPG [1], DistancePPG [28], ICA [14],
CHROM [31] and POS [32] (detailed in the Supplementary
Materials). Since ICA, CHROM, and POS require multiple
camera channels, they cannot be applied to NIR recordings.
To evaluate the single-channel (monochromatic) methods
AutoSparsePPG, SparsePPG, and DistancePPG on the RGB
recordings, we used only the green channel. Comparisons of
variations of AutoSparsePPG, including the use of 48 mean
facial regions rather than 5 median facial regions, are in the
Supplementary Material. We evaluated all compared methods
on the same videos, using the same pre-processing and the
same time window parameters as our proposed method.

To evaluate the performance of the compared algo-
rithms, we use two error measures: (i) root mean squared
error (RMSE) computed between the ground truth and esti-
mated heart rate (HR) over all ten-second time windows,
and (ii) percentage of the time that the HR error is less
than 6 bpm (PTE6). We chose an error threshold of 6 bpm
because it is the expected frequency resolution on a ten-second
window. Unlike RMSE, which can be strongly impacted by
large outliers (e.g., an estimated heart rate that is extremely
incorrect for a short period of time), PTE6 can be thought of
as roughly measuring the percent of time that the estimated
heart rate is correct vs. incorrect.

B. MR-NIRP Car Dataset

The results on our new MR-NIRP Car dataset for the mini-
mal head motion condition are summarized in Table II. There
were often large and sudden movements of the head caused by
the motion of the car, even though the participant was trying to
sit still. When RMSE errors were larger than 15 bpm, we have
replaced those results with RMSE “> 15 bpm” to indicate
that heart rate was estimated incorrectly and that the iPPG
signal was not recovered well. Our proposed AutoSparsePPG
method significantly outperforms all state-of-the-art methods
on NIR videos. On RGB videos, AutoSparsePPG outperforms
the state-of-the-art single-channel methods (SparsePPG and
DistancePPG) both while driving and while parked in the
garage. On RGB videos, AutoSparsePPG (which uses only the
green camera channel) outperforms even the methods that use
three camera channels (ICA, CHROM, and POS) while parked
in the garage, but it does not do as well as them while driving.
This is because driving induces significant head motion, which
three-channel methods are better able to suppress. Due to
the large amount of head motion in this condition, methods
that use three camera channels often perform better than the
single-channel methods on RGB videos.

Despite having only one channel, our NIR method performs
slightly better (has higher PTE6) than the best 3-channel RGB
method during daytime driving, and performs much better
than the best RGB method during night driving. In summary,
we achieve the following improvements with our proposed
NIR hardware and AutoSparsePPG algorithm:

• Despite the head motion that is present during driving,
our NIR setup with our AutoSparsePPG algorithm outper-
forms the state-of-the-art RGB algorithms in all driving
conditions, achieving higher PTE6 by 6.6% on average
(Driving All conditions).

• During daytime driving, our system slightly outperforms
the best RGB method, with PTE6 higher by 2.7%
(Driving Day).

• Our NIR method achieves the most significant improve-
ments over RGB methods during night driving when it is
dark, increasing PTE6 by 31.9% (Driving Night).
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• Our proposed NIR setup and AutoSparsePPG algorithm
are robust in all lighting conditions and partially robust to
motion, whereas RGB methods fail when the illumination
is too low (Driving Night).

While parked in the garage, there was enough light for RGB
methods and not much lighting variation; hence, accuracy
is high for both NIR and RGB (PTE6 > 80%). However,
our NIR method performs a bit worse than RGB in this
setting, probably because the iPPG signal is stronger in visible
frequencies than in NIR.

The videos collected with additional head motion during
driving in fact had very large motion caused by the subject
looking around and talking combined with motion due to the
car accelerating, stopping, starting, and turning. Consequently,
most methods performed very poorly on these driving videos
in both NIR and RGB (with PTE6 < 30% for most methods).
These results are summarized in Table I of the Supplementary
Material.

C. MR-NIRP Indoor Dataset

We additionally compared the performance of
AutoSparsePPG to several state-of-the-art methods on
the publicly available MERL-Rice Near-Infrared Pulse (MR-
NIRP) Indoor Dataset [1], which has simultaneous RGB and
NIR recordings captured in an indoor setting and was the only
publicly available dataset that had narrow-band NIR videos
with motion. Since before this paper there were no publicly
available driving datasets with ground truth physiological
signals, MR-NIRP Indoor is the most similar existing dataset
to our new MR-NIRP Car dataset. The MR-NIRP Indoor
dataset contains videos recorded of subjects seated in a
lab performing two tasks: a stationary task and a motion
task. In the stationary task, subjects were asked to sit still
for 3 minutes. In the motion task, subjects were asked to
count out loud from zero to ten and perform random slight
head motion.

On NIR videos, our proposed AutoSparsePPG outperformed
all other methods in both the stationary and motion tasks
(Table III). The results of AutoSparsePPG on stationary NIR
videos are close to the performance of the best RGB methods
on stationary RGB videos, demonstrating that NIR recordings
can be nearly as robust as RGB when the motion is not very
large. Most methods performed very well on the stationary
task in RGB recordings because the data are clean and there
are not many sources of noise. In the presence of motion, the
three-channel methods ICA and CHROM performed best on
RGB videos. Finally, the results of AutoSparsePPG on NIR
videos are similar to its results on RGB videos (especially in
the stationary task), demonstrating that our proposed algorithm
is able to achieve robustness to motion and noise even in the
more noisy NIR videos.

VIII. DISCUSSION

Our experiments demonstrate that by using narrow-band
NIR light sources and filter, our proposed AutoSparsePPG
algorithm achieves good heart rate estimation performance that
is robust to ambient light variations and low light settings,

when there is not too much motion. In the presence of
significant motion, however, multi-channel RGB methods are
more robust. On the other hand, while three-channel RGB
methods can be motion robust, they are easily corrupted by
ambient light variations. Furthermore, since we cannot shine
visible light on a person’s face without causing discomfort and
dangerous driving conditions, it is not feasible to use RGB in
low light settings.

One way to achieve robustness to both ambient light and
motion might be to use multiple NIR cameras to enable
linear combinations of multiple NIR channels, similar to
algorithms designed for RGB recordings (e.g., ICA, CHROM,
POS). Alternatively, RGB and NIR cameras could be used
jointly, to leverage RGB motion robustness when the lighting
variations are not large, and to leverage the robustness of NIR
to uncontrolled lighting when the ambient light is varying or
is too dark for RGB. In both of these cases, using multiple
NIR cameras can be expensive, and errors in registering
images from multiple cameras may also adversely affect iPPG
signals. Therefore, the most promising future avenue may be
to use a single NIR camera but to develop more motion-robust
algorithms.

On average, there is 7.5 to 10 BPM difference in average
HR between drowsy and alert states [9], [44], so HR error less
than that may be required for driving applications. We achieve
the required accuracy when the car is parked, and we are close
during driving but the accuracy needs to be improved by 3–4
BPM. Clinically approved gold standard contact devices have
RMSE errors in average HR on the order of 3 bpm. State-
of-the-art camera-based methods use an already relaxed error
standard of 6 bpm. However, in a very challenging driving
scenario a larger average RMSE might be acceptable if time
windows that have large errors can be detected and ignored.
We do not expect any method to work all the time in a very
challenging driving scenario, but if we could identify time
windows that have unreliable HR estimates, then the system
making decisions based on these measurements could discount
them.

IX. CONCLUSION

The presented work is the first detailed study of the sources
of noise for iPPG during driving. We have identified and
analyzed the unique challenges for iPPG technology posed by
a realistic driving scenario, and we presented hardware and
algorithmic solutions to these challenges. First, we showed
that the variations in uncontrolled ambient light affecting RGB
recordings during driving can be significantly reduced with a
narrow-band NIR hardware set up.

Second, we showed that a degree of motion robustness can
be achieved in monochrome NIR recordings with the proposed
AutoSparsePPG algorithm, despite the significantly lower
SNR of iPPG signals in NIR compared to the visible range.
AutoSparsePPG outperformed the state-of-the-art methods that
do not require multiple camera channels. While the proposed
NIR set up can reduce a lot of light variations, it is not as
motion robust as methods that leverage multiple RGB chan-
nels. However, while methods using multiple camera channels
(e.g., ICA) and RGB recordings sometimes performed better
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in presence of motion, our proposed AutoSparsePPG with the
NIR set up was the only method that performed consistently
well in all conditions—in presence of both lighting variations
(e.g., night and day) and moderate motion (such as that caused
by driving).

Third, we are releasing the first publicly available driving
dataset with simultaneous video and pulse oximeter record-
ings, both to allow for a fair comparison of future methods to
our work and to enable further studies of how different sources
of noise affect iPPG during driving.

While our proposed system achieves state-of-the-art per-
formance in estimating vital signs during driving, the pro-
posed system still struggles in presence of large motion.
More improvements may be needed before the system can
be deployed in a real driver monitoring system.
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