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FlatNet: Towards Photorealistic Scene
Reconstruction from Lensless Measurements

Salman S. Khan, Varun Sundar, Vivek Boominathan, Ashok Veeraraghavan, and Kaushik Mitra

Abstract—Lensless imaging has emerged as a potential solution towards realizing ultra-miniature cameras by eschewing the bulky
lens in a traditional camera. Without a focusing lens, the lensless cameras rely on computational algorithms to recover the scenes
from multiplexed measurements. However, the current iterative-optimization-based reconstruction algorithms produce noisier and
perceptually poorer images. In this work, we propose a non-iterative deep learning-based reconstruction approach that results in orders
of magnitude improvement in image quality for lensless reconstructions. Our approach, called FlatNet, lays down a framework for
reconstructing high-quality photorealistic images from mask-based lensless cameras, where the camera’s forward model formulation is
known. FlatNet consists of two stages: (1) an inversion stage that maps the measurement into a space of intermediate reconstruction by
learning parameters within the forward model formulation, and (2) a perceptual enhancement stage that improves the perceptual quality
of this intermediate reconstruction. These stages are trained together in an end-to-end manner. We show high-quality reconstructions
by performing extensive experiments on real and challenging scenes using two different types of lensless prototypes: one which uses a
separable forward model and another, which uses a more general non-separable cropped-convolution model. Our end-to-end approach

is fast, produces photorealistic reconstructions, and is easy to adopt for other mask-based lensless cameras.

Index Terms—lensless imaging, image reconstruction

1 INTRODUCTION

Merging applications such as wearables, augmented reality,
virtual reality, biometrics, and many others are driving an
acute need for highly miniaturized imaging systems. Unfor-
tunately, current-generation cameras are based on lenses —
and these lenses typically account for more than 90% of the
cost, volume and weight of cameras. While lenses and optics
have been miniaturized by two orders of magnitude, over
the last century, we are inching up against fundamental laws
(diffraction limit and Lohman’s scaling law [3]) precluding
further miniaturization.

Over the last decade, lensless imaging systems have
emerged as a potential solution for light-weight, ultra-
compact, inexpensive imaging. The basic idea in lensless
imaging is to replace the lens with an amplitude [1] or a
phase mask [2], [4]; typically placed quite close to the sensor.
These lensless imaging systems provide numerous benefits
over lens-based cameras. The need for a lens, which is a
major contributor towards the size and weight of a cam-
era, is eliminated. In addition, a lensless design permits a
broader class of sensor geometries, allowing sensors to have
more unconventional shapes (e.g. spherical or cylindrical)
or to be physically flexible [5]. Moreover, lensless cameras
can be produced with traditional semiconductor fabrication
technology and therefore exploit all of its scaling advantages
- yielding low-cost, high-performance cameras [6].

Due to the absence of any focusing element, the sensor
measurements recorded in a lensless imager are no longer
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photographs of the scene but rather highly multiplexed
measurements. Reconstruction algorithms are needed to
undo the effects of this multiplexing and produce pho-
tographs of the scene being imaged. However, the design
of a recovery algorithm for lensless cameras is a challenging
task mainly because of the large support of the Point Spread
Functions (PSFs) inherent to lensless design. In particular,
the recovery algorithms face the following challenges. First,
large support of PSFs result in large linear systems which
makes such systems difficult to store and invert. Second,
large PSFs also result in a very high degree of global
multiplexing. Conventional data-driven methods like con-
volutional neural networks which are designed for natural
images are not suited to handle this amount of multiplexing
due to their limited receptive field. Third, lensless design
results in ill-conditioned systems which affect the quality
of reconstruction as well as noise characteristic of such
systems. The poor reconstruction quality can be observed in
the Tikhonov regularized reconstructions shown in Figure
1. Therefore, lensless cameras need robust and efficient
algorithms to overcome these challenges.

Keeping the above challenges in mind, we propose a
feed-forward deep neural network for photorealistic lens-
less reconstruction, which we refer to as FlatNet. FlatNet
learns a direct mapping from lensless measurements to
scene outputs. FlatNet consists of two stages: the first stage
is a learnable inversion stage that brings the multiplexed
measurements back to image space. This stage depends on
the camera model. The second stage enhances this interme-
diate reconstruction using a fully convolutional network. It
should be noted that the two stages are trained in an end-
to-end fashion. It was shown in [2] that separable lensless
mask based lensless cameras have inferior characteristics as
compared to their existing non-separable counterparts. In
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Fig. 1. Lensless imaging. Lensless cameras require computation to recover the true scene from measurements. In this work we propose a
deep learning based lensless reconstruction algorithm for both separable [1] and non-separable mask [2] based lensless cameras that produce

photorealistic reconstructions for real and challenging scenarios.

our previous work [7], we had demonstrated FlatNet's effec-
tiveness for separable lensless model. But it cannot be triv-
ially used for non-separable mask based lensless cameras.
Here we extend the previous work to handle non-separable
lensless model. In particular, we propose an efficient imple-
mentation of the learnable intermediate mapping for non-
separable lensless model which is based on Fourier domain
operations. We also propose an initialization scheme for
this learnable intermediate stage that doesn’t require explicit
PSF calibration. We show that the intermediate mapping is
robust for cases where the lensless model is non-circulant.
This happens when the sensor size is smaller than the full
measurement size required for deconvolution. Finally, to
verify the robustness and efficiency of FlatNet, we perform
extensive experiments on challenging real scenes captured
using separable mask based lensless camera called FlatCam
[1] and the non-separable mask based lensless camera called
PhlatCam [2]. To summarize, the key contributions of this
paper are:

o We propose an efficient implementation for the learn-
able intermediate stage of non-separable or general
lensless model. In [7], we had only shown this for
the separable lensless model. Here we non-trivially
extend it to the general lensless case.

o We verify the robustness of the proposed learnable
intermediate mapping for the non-separable lensless
model on challenging scenarios where the lensless
system does not follow a full convolutional or circu-
lant assumption.

e We propose an initialization scheme for the non-
separable lensless model that doesn’t require explicit
PSF calibration.

e Similar to the display and direct captured measure-
ments collected using the separable mask FlatCam
and described in our previous work [7], we collect
corresponding datasets for the non-separable mask
PhlatCam [2].

e We also collect a dataset of unconstrained indoor
lensless measurements paired with corresponding

unaligned webcam images which is finally used to
finetune our proposed FlatNet to robustly deal with
unconstrained real-world scenes.

e Our method outperforms previous traditional and
deep learning based lensless reconstruction methods.

1.1 Related work
1.1.1 Lensless imaging

Lensless imaging involves capturing an image of a scene
without physically focusing the incoming light with a lens.
It has been widely used in the past for X-ray and gamma
ray imaging for astronomy [8], [9], but its use for visible
spectrum applications has only recently been studied. In a
lensless imaging system, the scene is captured either directly
on the sensor [10] or after being modulated by a mask
element. Types of masks that have been used include phase
gratings [11], random diffusers [4], designed phasemasks
[2], amplitude masks [1], [12], compressive samplers [13],
[14] and spatial light modulators [15], [16]. Replacing lens
with the above masks result in multiplexed sensor capture
that lacks any resemblance to the scene imaged. A rec-
ognizable image is then recovered using a computational
reconstruction algorithm. In this paper, we develop a deep
learning based reconstruction algorithm for both separable
and non-separable mask based lensless cameras.

1.1.2

Image reconstruction is a core aspect of most computational
imaging problems [1], [2], [4], [17], [18]. In general, image
reconstruction for computational imaging is ill-posed and
requires regularization. Traditional methods for image re-
construction involve solving regularized least squares prob-
lems. Numerous regularizers based on heuristics have been
developed in the past. These include the sparsity in gradient
domain [2], [4], [19], wavelet/frequency domain sparsity
[20], etc. However, these methods suffer from the fact that
often the resulting cost function doesn’t have a closed-form
minima and an iterative approach has to be taken to solve it.

Image reconstruction
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Moreover, the regularizers are based on heuristics and may
not be ideal for the specific task at hand.

Deep neural network have also been designed to solve
image reconstruction problems in computational imaging
systems. A class of deep learning based solution involves
learning of regularizers or proximal mapping stage and then
iteratively solving a MAP problem. Methods like [21], [22],
[23] fall under this category. Another class of algorithm is
designed as a feed-forward deep neural network that has
either been trained in a supervised or self-supervised man-
ner. Works on compressive image recovery [24], [25], [26],
Fourier Ptychography [27], lensless recovery [28] fall under
this category. Among these feed-forward networks, [26], [28]
are inspired by the physics of the imaging model and are
unrolled versions of traditional optimization frameworks.
Although these methods provide interpretability, the draw-
backs they offer include increased computation and higher
memory consumption due to large number of unrolled
iterations. The proposed method and its preliminary version
[7] fall under the category of physics inspired deep neural
network as well. However, they don’t involve any unrolling
thereby avoiding large computational and memory cost.

2 MASK BASED LENSLESS IMAGING

Mask based lensless imagers, unlike their lens-based coun-
terparts, measure a global linear multiplexed version of the
scene. This multiplexing is a function of the mask placed in
front of the sensor. Mathematically, this is given as:

y = dx +n, @)

where z and y are the vectorized representations of the
scene and measurement respectively, ® represents the gen-
eralized linear transformation, and n is the additive noise.
In general, ® has a large memory footprint, and hence, stor-
ing and computing with ® is computationally intractable.
Reconstructing a scene with O(N?) pixels from a sensor
measurement of O(N?) pixels requires ® with O(N*) ele-
ments. For example, a 1-megapixel scene and a 1-megapixel
sensor requires ® with ~ 10'? elements. However, by
careful design of masks and using a forward model derived
from physics, the computational complexity can be greatly
reduced.

The modulation performed by the mask characterizes
the linear matrix ®. By using a low-rank separable mask
pattern, the huge ® can be broken down into smaller matri-
ces [1], [29]. Specifically, in [1], the single-separable lensless
forward model reduces to:

Y =&, X0 + N, )

where, ®;, and ®p are the separable breakdown of ®, X is
the 2D scene irradiance, Y is the 2D recorded measurement,
and N models additive noise.

By adding a small enough aperture over a non-separable
mask and thereby ensuring that the off-axis shifted PSF
stays within the sensor, [2] showed that the lensless forward
model can be written as a convolutional model:

Y =PxX +N, 3)

where P is PSF of the system. PSF of a lensless camera
is the pattern projected by the mask on the sensor when
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illuminated by a single point source [2]. The PSF shifts when
the point source moves laterally, and for a general scene, the
sensor measurement is the weighted sum of various shifted
PSFs, leading to a convolutional model.

If the sensor isn’t large enough compared to the PSF, the
PSF can shift out of the sensor for an oblique angled scene
point. In such a case, [4] uses a cropped convolution model:

Y =C(PxX)+N, )

where C is the sensor cropping operation. Such a system
described by Equation 4 is no longer circulant. For a separa-
ble mask, the cropping is already incorporated in the model
matrices 7, and Pg.

In this work, we will be primarily focusing on two
prototypes of lensless cameras, (a) FlatCam [1] that has
a separable mask and, (b) PhlatCam [2] that has a non-
separable mask. We explore a data-driven approach that
incorporates the lensless imaging models to produce pho-
torealistic reconstructions from the above cameras. We also
explore an alternate approach to sensor cropping for Phlat-
Cam by preprocessing the sensor measurement [30].

3 FLATNET

To address the challenges involved in lensless image re-
construction, we take a data-driven approach for scene re-
covery. We model our reconstruction framework into a two
stage fully trainable deep network. This two stage network
is then jointly trained in an adversarial setup.

Trainable camera inversion. The first stage of FlatNet is
a learnable intermediate mapping called the Trainable Cam-
era Inversion stage that learns to invert the lensless forward
model obtaining intermediate reconstructions from globally
multiplexed lensless measurements. We implement separate
formulations of this trainable inversion stage for separable
and non-separable lensless models exploiting the properties
of the forward model for each type of these lensless systems.

Perceptual enhancement. The second stage of FlatNet,
called the Perceptual Enhancement stage, is a fully convolu-
tional network that enhances the intermediate reconstruc-
tion obtained from the trainable inversion stage giving it
more photorealistic appearance.

3.1 Trainable camera inversion

In the first stage of our network, we learn to invert the
forward operation of the lensless camera model. This al-
lows us to obtain an intermediate representation with local
structures intact. To implement this, we follow a separate
approach for separable and non-separable lensless camera
models. Owing to the computational simplicity of a separa-
ble model, we will first describe the implementation of the
inversion stage for the separable model.

3.1.1 Separable model

Given the lensless model described in Equation 2, we learn
two layers of left and right trainable matrices that act
directly on 2-D measurements. This can be mathematically
represented as,

Xinterm = f(W1YW2); (5)
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Fig. 2. Overall architecture of the FlatNet. The lensless camera measurement is first mapped into an intermediate image space using a trainable
camera inversion layer. This stage is implemented separately for the separable and the non-separable case. A U-Net [31] then enhances the
perceptual quality of the intermediate reconstruction. We use a weighted combination of three losses in training our network: a perceptual loss [32]
using a VGG16 network [33], mean-square error (MSE), and adversarial loss using a discriminator neural network [34].

where Xinterm is the output of this stage, f is a pointwise
nonlinearity (which in our case is a leaky ReLU), Y is the
input measurement, and W; and W; are the corresponding
weight matrices for this stage. The dimension of the weight
matrices depends on the dimension of the measurement and
the scene dimension we want to recover i.e. the dimension
of W is the same as the dimension of the transpose of ®,
while the dimension of W5 is the same as the dimension of
®R. Eventually, these matrices learn to invert the forward
matrices 7, and ® . We refer to this version of FlatNet for
separable lensless model as FlatNet-sep. It is important to
initialize the weight matrices of this stage properly, so that
the network does not get stuck in local minima. This can be
done in two ways.

Calibrated initialization. For this approach, we initialize
our weight matrix W; with the transpose of ®;, and W,
with ® g, akin to back-projection. These calibration matrices
(®;, and ®r) in (2) are physically obtained by the method
described in [1]. This mode of initialization leads to faster
convergence while training.

Uncalibrated initialization. Calibration of FlatCam re-
quire careful alignment with display monitor [1], which can
be a time consuming and inconvenient process especially
for large volumes of FlatCams. Even a small error in cali-
bration can lead to severe degradation in the performance
of the reconstruction algorithm. To overcome the problems
involved in calibration, we also propose a calibration-free
approach by initializing the weight matrices with carefully
designed pseudo-random matrices.

Initializing with any pseudo-random matrices of ap-
propriate size does not yield successful reconstruction. To
carefully design the random initialization, we make the
following two observations regarding the FlatCam forward
model: the calibration matrices have a “toeplitz-like” struc-
ture and the slope of constant entries in the ‘toeplitz-
like” structure can be approximately determined using the

FlatCam geometry, in particular the distance between the
mask and the sensor and the pixel pitch. As the FlatCam’s
geometry is known apriori, we can construct the pseudo-
random ‘toeplitz-like” matrices with appropriate slope, and
size, thereby making our approach calibration free. We
discuss the generation of these pseudo-random matrices in
more detail in the supplementary. The weight matrix W is
initialized with the adjoint of the random matrix constructed
corresponding to ®;, while the matrix W5 is initialized with
the random matrix constructed corresponding to ®r. We
observed that the training time increased slightly for this
initialization in comparison to transpose initialization.

3.1.2 Non-separable model

Unlike in the separable model, it is infeasible to implement
the trainable inversion stage in the non-separable model as
a matrix multiplication layer owing to the extremely large
dimension of ®. However, one can still implement it in the
Fourier domain. In order to implement the inversion stage
efficiently, we analyze the forward model given in Equations
1 and 3. Following the observation that the forward model
is purely convolutional for an appropriate sensor dimension
i.e. the forward operation is described by Equation 3, we
model our trainable inversion stage for the non-separable
case in the form of a learned inverse implemented as
Hadamard product in Fourier domain. This stems from
the fact that the inverse of a circulant system given by
Equation 3 is also circulant and can be diagonalized by
Fourier transform.
Mathematically, this operation is given as,

Xinterm - ]:_1(]:(W) © ]:(Y))v (6)

where Xpierm is the output of this stage and Y is the
measurement, F(.) and F~!(.) are the DFT and the In-
verse DFT operations, W is the filter that is learned (akin
to Wi and W5 in the separable model) and © refers to
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Hadamard product. For a N x M dimensional measurement,
the dimension of W is N x M. We found that using non-
linearity such as ReLU has no noticeable effect on the final
output and as a result we did not include it in the non-
separable model. The convolutional model of Equation 3
would require a large sensor as the PSF’s in lensless systems
have large spatial dimension and in some scenarios it would
be infeasible to use such a large sensor. Such a case would
require the lensless model to follow Equation 4. Of course,
we cannot accurately represent the inverse of the system
described by Equation 4 through a convolutional filter as
the system is no longer circulant. As a result, one could ask
if the proposed trainable inversion stage will still be valid
if a smaller sensor was used? To answer this question, we
show in Section 4.4.2, that with a small modification to the
trainable inversion stage described in Equation 6, we can
handle these cropped-convolutional or non-circulant cases
without significant drop in the performance. We refer to
this version of FlatNet for non-separable lensless model as
FlatNet-Gen.

Calibrated initialization. Like the separable model, ini-
tialization of W' is important for convergence of the training
process. Assuming we have a calibrated PSF and H is
the Fourier transform of this PSE, in our experiments, we
initialize W using F~* (ﬁ;lr), i.e the regularized pseudo-
inverse of the PSF or the well-known Wiener filter. In this
expression, K is a regularization parameter.

Uncalibrated initialization. We also propose an initial-
ization scheme that doesn’t require explicit PSF calibration.
Given the mask pattern and the camera geometry, one can
simulate the PSF of the lensless systems. Specifically, for
PhlatCam, given the height profile of the mask, we use
Fresnel propagation to simulate the PSF as described in
[2]. This initialization scheme is particularly useful for cases
where the PSF exceeds the sensor size (see Section 4.4.2). It
should be noted here that this mode of initialization can be
used for cases where we have access to height profile, for
example in [2]. For cases where getting a rough estimate of
the height profile is not possible, for example when random
diffusers are used, calibrated mode of initialization should
be preferred.

3.2 Perceptual enhancement

Once we obtain the output of the trainable inversion stage,
which is of same dimension as that of the natural image
we want to recover, we use a fully convolutional network
to map it to the perceptually enhanced image. Owing to its
large scale success in image-to-image translation problems
and its multi-resolution structure, we choose a U-Net [31]
to map the intermediate reconstruction to the final percep-
tually enhanced image. We keep the kernel size fixed at 3x3
while the number of filters is gradually increased from 128
to 1024 in the encoder and then reduced back to 128 in
the decoder. In the end, we map the signal back to 3 RGB
channels.

For the non-seperable case, we deal with slightly larger
dimensional scenes. Similar to [35], we find it useful to em-
ploy Pixel-Shuffle [36] to downsample intermediate image
before U-Net. By allowing U-Net to operate on a smaller
spatial resolution (as a result bigger contextual area), we
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recover finer details for the increased image dimensions.
Moreover, downsampling by Pixel-Shuffle doesn’t throw
away pixels and hence can be inverted exactly unlike other
downsampling methods.

3.3 Discriminator architecture

We train FlatNet-sep and FlatNet-gen in an adversarial
setup. We use a discriminator framework to classify Flat-
Net’s output as real or fake. We find that using a discrimi-
nator network improves the perceptual quality of our recon-
struction. We use 4 layers of 2-strided convolution followed
by batch normalization and the swish activation function
[37] in our discriminator. Same discriminator architecture
was used for both FlatNet-sep and FlatNet-gen.

3.4 Loss function

An appropriate loss function is required to optimize our
system to provide the desired output. Pixelwise losses like
mean absolute error (MAE) or mean squared error (MSE)
have been successfully used to capture signal distortion.
However, they fail to capture the perceptual quality of im-
ages. As our objective is to obtain high quality photorealis-
tic reconstructions from lensless measurements, perceptual
quality matters. Thus, we use a weighted combination of
signal distortion and perceptual losses. The losses used for
our model are given below:

Mean squared error: We use MSE to measure the dis-
tortion between the ground truth and the estimated output.
Given the ground truth image I;e and the estimated image
Ieqt, this is given as:

- Iest||§- (7)

Perceptual loss: To measure the semantic difference be-
tween the estimated output and the ground truth, we
use the perceptual loss introduced in [32]. We use a pre-
trained VGG-16 [33] model for our perceptual loss. We
extract feature maps between the second convolution (after
activation) and second max pool layers, and between the
third convolution (after activation) and the fourth max pool
layers. We call these activations ¢22 and ¢43, respectively.
This loss is given as,

Lyvse = || Lrue

Lpercept = H¢22 (Itrue) — $22 (Ies’t)“g +
643 (Tiwe) = das(Lest) 3 ()

Adversarial loss: Adversarial loss [34], [38] was added to
further bring the distribution of the reconstructed output
close to those of the real images. Given the discriminator D
described in Section 3.3, this loss is given as,

Eadv = - log(D(Iest))- (9)

Our discriminator, consisting of 4 layers of 2-strided convo-
lution followed by batch normalization and ReLU activation
function, classifies the generator output as real or fake.

Total generator loss: Our total loss for the FlatNet while
training is a weighted combination of the three losses and is
given as,

L = M\ Lyse + A2£percept + A3 Lady- (10)
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where, Ai, A2 and A3 are weights assigned to each loss.
Discriminator loss: Given I, Iire and discriminator D,
the discriminator was trained using the following loss,

Lisc = — log(D(Itrue)) - IOg(l - D(Iest))-

Contextual Loss: For finetuning FlatNet-gen on un-
aligned PhlatCam and webcam pairs (described in Section
4.5), we use only contextual loss as proposed in [39]. De-
noting output image features (¢44(les:)) as {p;} ,, target
image features (¢44(Iirye)) as {g; }j\le and number of pixels
in each of these feature maps as IV, contextual loss finds the
nearest neighbour feature match ¢ = arg min, D(p, qj)é\’:l
for each p. We then minimize the summed distance of all
such feature pairs. The distance metric we adopt here is
cosine-distance, although it could also be L;, Lo, etc. This
loss term is given by:

(11)

N
1 .
Econtextual = N Z mlan[N]]D)(pia qj) (12)
i=1
We found ¢44 to be a suitable feature extractor based on
the computational cost and sharpness of reconstruction.

4 EXPERIMENTS AND RESULTS

In this section, we describe all our experiments. We per-
form all our experiments on real data. We will refer to
the FlatNet for separable model as FlatNet-sep and for the
non-separable model as FlatNet-gen. They will further be
suffixed by -C and -UC to indicate calibrated or uncali-
brated method of initialization respectively. Unless specif-
ically mentioned, simply using FlatNet-gen or FlatNet-sep
would indicate FlatNet-gen-C or FlatNet-sep-C i.e. FlatNets
initialized with the calibrated method of initialization.

4.1 Dataset

Supervised training of deep neural networks require large
scale labelled dataset. However, collecting a large scale
dataset for lensless images is a challenging task. One could
use the known lensless model to simulate measurements
from the available natural image datasets. This, however,
will sometimes fail to mimic the true imaging model due
to several non-idealities. To overcome this challenge, we
collect a large dataset by projecting images on monitors
and capturing this projection using lensless cameras. This
not only takes care of the true imaging model for lensless
camera, it also helps us collect a labelled dataset for lensless
images. We follow the same dataset collection procedure
for both FlatCam [1] and PhlatCam [2]. For our work, we
use a subset of ILSVRC 2012 [40]. Specifically, we used
10 random images from each class as our ground truth.
Of the 1000 classes, we kept 990 classes for training and
the rest for testing. So in total, we used 9900 images for
training and 100 images for testing. Before capturing the
dataset, we resize the images displayed on monitor so as
to cover the entire field of view (FoV) of camera. We call
this dataset the Display Captured Dataset. For this dataset,
the ground truth images are the ones that were projected
on the monitor screen. The monitor was kept beyond the
hyperfocal distance of the cameras to avoid the variation of
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the PSF with depth. The hyperfocal distance for the FlatCam
prototype is around a foot and for the PhlatCam prototype
is around 16 inches. To test the FlatNet on real scenes,
we also capture measurements of objects placed directly
in front of the camera. Using FlatCam we collect 15 such
measurements while using PhlatCam we collect 20 such
measurements. We call this dataset Direct Captured Dataset.
This dataset doesn’t have corresponding ground truths
for the measurements. To demonstrate the effectiveness of
FlatNet-gen on unconstrained indoor scenarios, we collect a
dataset of unaligned PhlatCam and webcam captures using
the setup described in Figure 13. This dataset consists of 475
training samples and 25 test samples. We call this dataset the
Unconstrained Indoor Dataset. Samples from our datasets
can be seen in Figure 3. We will release this dataset upon
acceptance of this manuscript

4.2

The FlatCam prototype uses a Point Grey Flea3 camera with
1.3MP e2v EV76C560 CMOS sensor and a pixel size of 5.3
pm. All the ground truth images were resized to 256 x 256
as the FlatCam is calibrated to produce 256 x 256 output
images. This ensures that there is no misalignment among
the input and ground truth pairs. We directly used the Bayer
measurements, split into 4 channels (R,Gr,Gb,B), as our
input to the network and convert them into 3 channel RGB
within the network. FlatCam measurements of dimension
512 x 640 x 4 in batches of 4 were used as inputs for training.
A smaller batch size was used due to memory constraints.
We set A as 1, Ay to be 1.2 and A3 to be 0.6. For transpose
initialization, we trained our model for 45K iterations while
for random initialization, we trained it for 60K iterations.
The Adam [41] optimizer was used for all models. We
started with a learning rate of 10~ and gradually reduced it
by half every 5000 iterations. The PhlatCam prototype used
is a Basler Ace4024-29uc with 12.2MP Sony IMX226 sensor
with a pixel size of 1.85um. All the ground truth images
were resized to 384 x 384 which is equal to the FoV of the
prototype. We directly used the Bayer measurements, split
into 4 channels (R,Gr,Gb,B), as our input to the network and
convert them into 3 channel RGB within the network. We
used the same set of \;’s as that for FlatNet-sep. The full
measurements used were of dimension 1280 x 1408 x 4.
For the small sensor experiments of Section 4.4.2, we use
measurements of dimension 608 x 864 x 4.

Implementation details

4.3 Comparison with other approaches
4.3.1 Separable lensless model

In this subsection, we show results for the amplitude mask
FlatCam that follows a separable model.

We compare FlatNet-sep with the closed form Tikhonov
reconstruction described in [1] and a total variation based
reconstruction implemented using TVAL3 [19].

Qualitative discussion. In Figure 4, we compare our
methods, FlatNet-sep-UC with uncalibrated initialization
and FlatNet-sep-C with calibrated initialization, with tradi-
tional methods, Tikhonov and TVAL3. As can be observed
from the reconstructions, the Tikhonov regularized recon-
structions are prone to severe vignetting effects which is
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Fig. 3. Samples from our collected datasets. All our experiments are conducted on real data captured using lensless prototypes. We collect
Display Captured Dataset using both separable and non-separable prototypes to train FlatNet-sep and FlatNet-gen, respectively. We also collect
Direct Captured Dataset by placing objects in front of the lensless cameras under controlled illumination. Finally, to improve the robustness of
FlatNet, we collect a dataset of Unconstrained Indoor Scenes using PhlatCam and Webcam pairs.

TABLE 1
Average Metrics on Display Captured FlatCam measurements.
FlatNet-sep with transpose initialization (FlatNet-sep-C) gives the best
result. Comparable performance of FlatNet-sep-UC indicates that our
approach can be used for situations where careful calibration isn’t
possible.

Method PSNR (in dB) | SSIM | LPIPS T.I“fer.e““e
ime (in sec)
Tikhonov 1095 033 | 079 0.03
TVAL3 T1.81 036 | 0752 1528
FlaiNet-sep-UC 19.06 062 | 0274 0.006
FlatNet-sep-C 19.62 0.64 | 0.256 0.006

somewhat reduced in the TVAL3 results. Inset images in Fig-
ure 4 show the preservation of finer details in our approach.
Figure 5 shows the performance of the various methods for
direct captured measurements. Tikhonov regularization has
a tendency to suppress low signal values and as a result
has difficulty restoring the poorly illuminated background

for most of the scenes in Figure 5. The performance of
TVALS3 [19] is also similar. FlatNet-sep, on the other hand,
produces higher quality photorealistic reconstruction. Note
that our uncalibrated model FlatNet-sep-UC gives similar
performance to that of the calibrated model FlatNet-sep-
C. Thus, our method does not require explicit calibration
unlike the rest of the approaches.

Quantitative discussion. We present the quantitative
performance of FlatNet for separable mask FlatCam in Table
1. For evaluation, we use PSNR, SSIM and the recently
proposed LPIPS [42]. Higher PSNR and SSIM score indi-
cate better performance while lower LPIPS indicates better
perceptual quality. It can be clearly seen that our approach
using transpose initialization (FlatNet-sep-C) outperforms
all the other reconstruction techniques for FlatCam. The
next best approach is the FlatNet-sep using random initial-
ization (FlatNet-sep-UC), which unlike other methods, is a
calibration-free technique. We also compare the inference
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9.65/0.74

22.78/0.19

14.29/0.76

12.32/0.8

20.56/0.28 20.62/0.27
(c) TVAL3 (d) FlatNet-sep-UC (e) FlatNet-sep-C

PSNR/LPIPS 11.01/0.77 12.08/0.71
(a) Groundtruth (b) Tikhonov

Fig. 4. Display Captured Reconstructions for FlatCam. Ground truth images are shown in a). Finer details like the text in the first image and
spots on the insect in the second image are lost in b) Tikhonov regularized and c) TVALS3 reconstruction. Finer details are better preserved in

FlatNet-sep for both d) uncalibrated and e) calibrated initializations.

- - ‘né?
nEm. C
‘MW (L] H lﬁ‘[ﬂﬂ

(b) TVAL3 (c) FlatNet-sep-UC (d) FlatNet-sep-C

(a) Tikhonov

Fig. 5. Direct Captured Reconstructions for FlatCam: a) Details in the border and darker regions are lost in the Tikhonov regularized
reconstructions. b) TVALS3 reconstructs the border but is unable to restore the sharpness. The proposed end-to-end models for both ¢) random
and d) transpose initializations produce the best reconstructions. These methods are robust to noise and does not contain any regularization

parameters.
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PSNR/LPIPS
(a) Groundtruth

10.27/0.79
(b) Tikhonov

12.36/0.79
(¢) TV-ADMM
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18.52/0.28
(d) Le-ADMM

19.47/0.24
(e) FlatNet

Fig. 6. Display Captured Reconstructions for PhlatCam. While the learning based methods clearly outperform traditional methods like Tikhonov
and TV-based ADMM, FlatNet-gen has superior performance in terms of reconstructing finer details.

(a) Tikhonov

(b) TV-ADMM

(c) Le-ADMM (d) FlatNet-gen

Fig. 7. Direct Captured Reconstructions for PhlatCam. FlatNet-gen has fewer artifacts while Le-ADMM suffers from blurry reconstructions and

hallucinated artifacts.

time for various approaches in the same table. The Tikhonov
and TVAL3 [19] regularized reconstructions are computed
on Intel Core i7 CPU with 16 GB RAM while the rest of the
approaches are evaluated on Nvidia GTX 1080 Ti GPU.

4.3.2 Non-separable lensless model

For experiments on the non-separable model, we compare
FlatNet-gen with traditional and learning based approaches.
We describe these approaches below.

Traditional approaches. In traditional method, we com-
pare FlatNet-gen with traditional Tikhonov regularized re-
construction implemented in Fourier domain (as Wiener
restoration filter) and total variation regularized reconstruc-
tion implemented using ADMM [4]

Learning based approaches. For learning based ap-
proach, we use the unrolled deep network described in [28].

However, for fairness, we use the five stage unrolled ADMM
followed by our perceptual enhancement stage.

Qualitative discussion. Figure 6 shows the display cap-
tured reconstruction for PhlatCam. We can clearly see higher
quality reconstruction for FlatNet-gen in comparison to tra-
ditional Tikhonov regularized reconstruction or Wiener de-
convolution and ADMM based method. It also results in bet-
ter quality reconstruction than the Le-ADMM model. This
trend in performance is also observed in the direct captured
reconstructions in Figure 7. It should also be noted that
Le-ADMM, despite having fewer parameters, is extremely
memory and computation intensive due to the large number
of intermediates/primal and dual variables calculated at
each stage of the unrolled ADMM. It is due to this significant
increment in memory consumption, that it becomes infea-
sible to implement this model on the captured PhlatCam
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TABLE 2
Average Metrics on Display Captured PhlatCam measurements.
FlatNet-gen produces higher quality results without compromising on
the inference time for both the real PSF case (FlatNet-gen-C) and the
simulated PSF case (FlatNet-gen-UC). Le-ADMM shows larger
difference in quality between the real and simulated PSF cases owing
to its stronger dependence on the PSF.

Method PSNR (in dB) | SSIM | LPIPS T.I“fer.e““e
ime (in sec)

Tikhonov 12,67 025 | 0.758 0.03
TV-ADMM 1351 026 | 0.755 180
Te-ADMM-UC 1835 049 | 0407 0.08
Te-ADMM-C 20.29 051 | 0333 0.08
FlatNet-gen-UC 2053 054 | 0318 0.03
FlatNet-gen-C 20.94 0.55 | 0.29 0.03

measurements without downsampling. In our comparison,
we downsample the measurements by a factor of 4 (sim-
ilar to [28]) before passing them through the Le-ADMM
network. Unless explicitly mentioned, we will refer to this
downsampled Le-ADMM model as Le-ADMM. Downsam-
pling operation leads to compromise in the reconstruction
resolution resulting in the lack of sharpness observed in
the final reconstruction. On the other hand, the FlatNet-gen
has significantly lower memory requirement that doesn’t re-
quire any downsampling pre-processing thereby preventing
any loss of sharpness or resolution. We also provide com-
parison for FlatNet-gen initialized with uncalibrated PSF in
the supplementary material. We call this model FlatNet-gen-
ucC.

Quantitative discussion. The quantitative results are
provided in Table 2. Along with the uncalibrated FlatNet-
gen model, we also provide the performance of uncalibrated
version of Le-ADMM in this table. It is referred to as Le-
ADMM-UC. The consistency with visual results is main-
tained in the quantitative metrics. It can be clearly seen that
FlatNet-gen outperforms all other methods quantitatively.
FlatNet-gen-UC performs almost at par with FlatNet-gen-
C and outperforms Le-ADMM-UC. It should be noted that
the difference between FlatNet-gen-C and FlatNet-gen-UC
is smaller as compared to Le-ADMM-C and Le-ADMM-
UC. This is primarily due to the stronger dependence of
Le-ADMM on the true PSF while FlatNet-gen requires the
knowledge of PSF only for better initialization and learns to
converge to a better inverse after training. We also provide
the runtime for the methods compared. For Wiener and TV-
based ADMM, we report the speed on CPU while for others
we report the speed for a forward pass in GPU.

Assuming the true measurement is of dimension 1280 x
1408, we additionally compare FlatNet-gen’s trainable in-
version stage with the unrolled ADMM block of Le-ADMM
(without the U-Net) in terms of memory and computa-
tion in Table 3. We provide the memory consumption (in
Megabytes, computed on Nvidia GTX 1080 Ti GPU) and
computations (in FLOPs, computed theoretically) required
to process one image using the two methods. We unroll the
ADMM for 5 iterations. In the table, Le-ADMM-Full refers
to the unrolled ADMM without any downsampling while
Le-ADMM-Downsampled refers to the case where the PSF
and the scene were downsampled by a factor of 4. It can
be observed that a full resolution Le-ADMM requires sig-
nificant amount of memory which would have negative im-
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TABLE 3
Memory and FLOP comparison. Comparison of memory
consumption and FLOPs for five unrolled iterations of the ADMM block
in Le-ADMM (full and 4X downsampled versions) and the trainable
inversion stage of our proposed FlatNet-gen.

Memory | Computation
Method (in MB) | (in MFLOP)
Le-ADMM-Full 6300 1290
Le-ADMM-
Downsampled 1000 65
FlatNet-gen 990 53

plications if deployment is considered. Moreover, appended
with dense CNNs like U-Net, Le-ADMM-Full is difficult to
implement on a conventional GPU, thereby necessitating the
downsampling of the measurements which in turn leads to
the degradation of the reconstruction quality. One should
also note the amount of computations performed in the
unrolled ADMM block for the particular dimensions of
PSF and scene. Due to a series of intermediate estimates
that depend on Fourier and Inverse Fourier transforms,
this computation blows up for Le-ADMM-Full. FlatNet-gen
provides a better trade-off for resolution, and memory and
computational requirements which is essential for lensless
systems which, by design, suffer from poor reconstruction
resolution.

4.4 Further analysis

4.4.1 Effect of learning the inversion stage

In this section, we highlight the importance of the end-
to-end learning strategy of FlatNet. We compare FlatNet
with a network with just the perceptual enhancement block.
We train this network with Tikhonov regularized recon-
structions. For training this network, we use the same loss
as defined in Equation 10. We call this method Tikh+U-
Net. We implement this approach for both separable and
non-separable lensless models. Top row of Figure 8 com-
pares the reconstruction quality of FlatNet-sep with Tikh+U-
Net. We can easily observe the improved quality of recon-
struction obtained from FlatNet-sep compared to Tikh+U-
Net. Tikh+U-Net suffers from blurrier reconstructions with
amplified artifacts. We also compare the performance of
FlatNet-gen with its corresponding Tikh+U-Net in the bot-
tom row of Figure 8. FlatNet-gen provides sharper recon-
structions over Tikh+U-Net.

Table 4 provides a quantitative flavor to the above anal-
ysis. We can see that FlatNet outperforms Tikh+U-Net for
both separable and non-separable models in terms of PSNR
and LPIPS.

One may notice that the difference between FlatNet-gen
and Tikh+U-Net is not as significant as between FlatNet-sep
and its corresponding Tikh+U-Net. This is due to the higher
quality of Tikhonov reconstruction in the case of PhlatCam
compared to FlatCam [2]. However, one should note that
Tikh+U-Net is strictly based on convolutional assumption
for the forward model, and performs poorly when this
assumption is violated as will be verified in Section 4.4.2.

4.4.2 Performance on cropped measurements

As we have already seen in Section 2, the forward operation
in a mask-based lensless camera is no longer convolutional
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Separable

Non-separable

(a) Tikhonov (b) Tikh+U-Net (c) FlatNet

Fig. 8. Comparison of FlatNet with Tikh+U-Net. Top row shows
the comparison of FlatNet-sep with Tikh+U-Net while the bottom row
shows the comparison of FlatNet-gen with Tikh+U-Net. FlatNet provides
sharper and more photorealistic reconstructions compared to Tikh+U-
Net for both separable and non-separable models.

TABLE 4
Comparison of FlatNet with Tikh+U-Net. The top half compares
FlatNet-sep with Tikh+U-Net for separable lensless model while the
bottom half compares FlatNet-gen with the corresponding Tikh+U-Net.
FlatNet outperforms Tikh+U-Net for both separable and non-separable
models because it learns an end-to-end mapping.

Methods PSNR (in dB) LPIPS
Separable Model
Tikh+U-Net 18.90 0.322
FlatNet 19.62 0.256
Non-separable Model
Tikh+U-Net 20.60 0.298
FlatNet 20.94 0.296

if the size of the sensor is small compared to the true mea-
surement size i.e. the forward model is given by Equation 4.
This coupled with large PSFs, makes lensless reconstruction
challenging for traditional reconstruction approaches which
rely on the circulant or convolutional assumptions (e.g.
Wiener deconvolution). This naturally leads to a question:
Will the proposed trainable inversion layer of FlatNet-gen,
which is based on learned Fourier domain inversion, be
robust against cases where the deviation from the circulant
assumption is significant? In other words, will FlatNet-gen
be able to deal with measurements from which a significant
amount of pixels have been thrown away due to the finite
sensor size and fully open aperture? In this section, we show
that we can deal with the small sensor size case without
losing much in terms of reconstruction quality and perform
better than Le-ADMM which explicitly tries to deal with
the cropped out pixels. For our experiments, we take a
central crop of size 608 x 864 from our 7MP full sensor
measurement. Effectively, this can be thought as using a
2MP sensor instead of the 7MP sensor.
2

Following the observation in [30], we replicate pad our
cropped measurements as a pre-processing step. To smooth
the discontinuities due to padding, we multiply this padded
measurement with a gaussian filtered box. The effectiveness
of our method of padding can be observed in Figure 9.
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(a) Full

(b) zP (c) RP (d)RP+Smooth

Fig. 9. Effect of padding on Wiener deconvolution for cropped
measurement. Top row shows the measurement while the bottom row
shows the corresponding Wiener reconstruction. (a) Full measurement.
Red box indicates the cropped out region. (b) Zero padded measure-
ment and the corresponding reconstruction. (c) Replicate padded mea-
surement and the corresponding reconstruction. (d) Smoothened repli-
cate padded measurement along with the corresponding reconstruction.
Line artifacts are significantly reduced in (d) which is used in this work.

Mathematically, the trainable inversion stage changes to,

Xinterm = F~H(F(W) © F(pad(Y))). (13)

This is a modification to Equation 6 to account for the
cropped measurement. pad(.) refers to the padding and
smoothing operation described above. The same padding
and smoothing procedure is also followed for Tikh+U-Net
applied on the cropped measurements. Figure 10 shows
the reconstruction quality for the display captured cropped
measurement compared with full measurement for Tikh+U-
Net, Le-ADMM and FlatNet. Even after padding the mea-
surements, there are artifacts in the Wiener restored im-
ages that cannot be effectively removed using Tikh+U-Net.
Le-ADMM performs slightly better than Tikh+U-Net due
to its intermediate stage that approximately estimates the
uncropped measurement. However, it is not as robust to
crop as FlatNet-gen is. Similarly, in Figure 11, we show the
reconstructions for direct captured cropped measurement.
It can be clearly seen that Tikh+U-Net and Le-ADMM suffer
from significant color artifacts. These artifacts are however
not significant in the FlatNet-gen reconstructions. Table 5
gives the comparison of average scores for each model on
the display captured dataset.

It should be noted that for the model used to obtain
Figures 10 and 11 and Table 5, the PSF size (608 x 870)
exceeds the assumed sensor size (606 x 864). In such a case,
estimation of the true PSF is a tedious process and one can
use the uncalibrated FlatNet-gen-UC. From Table 5, we can
see that FlatNet-gen outperforms all other learned methods.
FlatNet-gen-UC has a comparable performance to FlatNet-
gen, while Tikh+U-Net-UC and Le-ADMM-UC breakdown:
indicating that accurate PSF calibration is required for these
methods. The visual results for FlatNet-gen-UC for cropped
measurements are provided in the supplementary material.

Apart from the crop size mentioned above, we also
show the performance of the learning based approaches for
various different crop sizes in Figure 12. Here, we normalize
the size of the cropped measurements with respect to the full
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Cropped Measurement

16.54/0.35

22.61/0.25
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18.06/0.30 17.86/0.32 18.46/0.29

24.68/0.20
(e) Tikh+U-Net

24.76/0.21
(f) Le-ADMM
Full Measurement

25.52/0.19
(g) FlatNet-gen

Fig. 10. Display Captured Reconstructions for cropped PhlatCam measurements. The difference observed in the performance of FlatNet for
cropped and full measurements is small. This difference is, however, large for both Le-ADMM and Tikh+U-Net.

(a) Tikh+U-Net

(b) Le-ADMM

Cropped Measurement

(d) Tikh+U-Net

(e) Le-ADMM (f) FlatNet-gen

Full Measurement

Fig. 11. Direct Captured Reconstructions for cropped PhlatCam
measurements. We can see FlatNet-gen performs reasonably well
while both Le-ADMM and Tikh+U-Net breakdown. This can be observed
through the colour of the letters and hazy appearance especially around
the borders in Tikh+U-Net and Le-ADMM.

measurements. It can be seen that FlatNet-gen consistently
outperforms Le-ADMM and Tikh+U-Net for all crop sizes.

It should also be noted that FlatNet-sep is, by design,
robust to non-circulant scenarios as it involves learned in-
version in the spatial domain.

4.5 Performance on unconstrained indoor scenes

In the previous sections, we performed all our experi-
ments using FlatNets trained on display captured dataset.
However, real measurements captured in the wild differs
from the dispay captured measurements for the following

PSNR vs Measurement Size LPIPS vs Measurement Size
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Fig. 12. Performance of learning based techniques for various
amount of crops. We plot the PSNR and LPIPS of FlatNet-gen,
LeADMM and Tikh+U-Net under various measurement sizes normalized
with respect to full measurement size. We can see FlatNet-gen consis-
tently outperforms other learning based methods for all crop sizes.

TABLE 5
Average Metrics on cropped Display Captured PhlatCam
measurements. FlatNet-gen performs consistently better than other
learned approaches for both real (FlatNet-gen-C) and simulated PSF
case(FlatNet-gen-UC). It should be noted that FlatNet-gen-UC
performs as good as Le-ADMM based on real PSF.

Method PSNR(in dB) | SSIM | LPIPS
Tikh+U-Net-UC 17.53 0.45 0.438
Tikh+U-Net-C 18.34 0.48 0.376
Le-ADMM-UC 17.94 0.45 0.410
Le-ADMM-C 18.72 0.48 0.371
FlatNet-gen-UC 18.72 0.48 0.375
FlatNet-gen-C 19.29 0.50 0.365

reasons: a) real world captures have significantly higher
amount of noise compared to display captured measure-
ments, b) in an unconstrained setup, bright scene points
beyond the FoV described by the Chief Ray Angle (CRA)
can also influence the captured measurement which is not
the case with display captured measurements captured with
monitors filling the whole of CRA defined FoV. To take
these differences into account and make our FlatNet robust
to real world scenarios, we finetune FlatNet using a real
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(a) Camera setup

(b) Tikhonov (c) Without finetuning (d) With finetuning (e) Webcam capture

Fig. 13. Photorealistic reconstruction for unconstrained indoor scenes. (a) The PhlatCam-Webcam setup to capture the dataset for finetuning
FlatNet-gen. (b) Tikhonov reconstruction. (¢) Reconstructions from FlatNet-gen trained just on display captured data. (d) Reconstructions using
FlatNet-gen finetuned on unconstrained indoor captures. (e) Webcam image for reference. Finetuning makes the reconstructions more realistic.
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world dataset we captured called the Unconstrained Indoor
Dataset. This dataset consists of unaligned webcam and
PhlatCam captures collected using the setup described in
Figure 13. We collected 500 pairs of such data, keeping 475
pairs for training and 25 for testing. We finetune the entire
network with a small learning rate (10~'2 for the trainable
inversion stage and 107° for the perceptual enhancement
stage). To account for misalignment between PhlatCam and
webcam captures, we only use Contextual Loss [39] which
was previously proposed for unaligned data. Figure 13
shows some of our reconstruction results with and without
finetuning along with webcam captures for reference. It can
be observed that finetuning results in more photorealistic
reconstructions. In the supplementary material, we show
reconstructions from cropped unconstrained indoor mea-
surements.

5 DiIScUSSION AND CONCLUSION

In this paper, we propose an end-to-end trainable deep
network called FlatNet for photorealistic scene reconstruc-
tion from lensless measurements. Despite the numerous
promises that lensless imaging provides, it is somewhat
restricted by the quality of the reconstructed image. In this
paper, we have attempted to bridge this gap between the
promise of lensless imaging and its performance. FlatNet
leverages the physics of the forward model (through the
trainable camera inversion) and the success of data-driven
approaches to learn a photorealistic mapping from the
highly multiplexed lensless captures to the estimated scene.
Unlike unrolling based networks [28], it has the advantage
of low memory and computational requirements which are
desirable criteria for stand-alone devices. We also show that
by finetuning FlatNet trained on display captured measure-
ments, using unaligned Webcam-PhlatCam indoor scenes,
we can recover photorealistic images in the wild using these
ultra-thin sensors.

It should also be noted that like most GAN based ap-
proaches, FlatNet reconstructions suffer from hallucination
artifacts that favor photorealism over high-fidelity. There-
fore, FlatNet should be used with caution when the task at
hand is critical to these hallucination artifacts (for example
medical imaging). Nevertheless, in such critical systems, one
can still use the trainable camera inversion of FlatNet and
make modifications to the perceptual enhancement and the
losses appropriately.

In future, it would be interesting to look into the co-
design of mask or PSF and reconstruction algorithm for
mask-based lensless cameras.
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