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ABSTRACT

The standard pipeline for many vision tasks uses a conven-

tional camera to capture an image that is then passed to a

digital processor for information extraction. In some deploy-

ments, such as private locations, the captured digital imagery

contains sensitive information exposed to digital vulnerabili-

ties such as spyware, Trojans, etc. However, in many appli-

cations, the full imagery is unnecessary for the vision task at

hand. In this paper we propose an optical and analog system

that preprocesses the light from the scene before it reaches

the digital imager to destroy sensitive information. We ex-

plore analog and optical encodings consisting of easily imple-

mentable operations such as convolution, pooling, and quan-

tization. We perform a case study to evaluate how such en-

codings can destroy face identity information while preserv-

ing enough information for face detection. The encoding pa-

rameters are learned via an alternating optimization scheme

based on adversarial learning with deep neural networks. We

name our system CAnOPIC (Camera with Analog and Op-

tical Privacy-Integrating Computations) and show that it has

better performance in terms of both privacy and utility than

conventional optical privacy-enhancing methods such as blur-

ring and pixelation.

Index Terms— Privacy-preserving, computational imag-

ing, face de-identification

1. INTRODUCTION

Recent years have seen a flurry of activity in computer vision

that has resulted in a large suite of algorithms for the auto-

matic extraction of information from the real world. Such

algorithms take in an image captured by a standard camera

system and extract from it the number of faces contained (face
detection), the identity of the person in it (face recognition),

the gestures a person is making (gesture recognition), and

other types of beneficial information, leading to an increased

integration of cameras in numerous applications. Smart se-

curity cameras are equipped with algorithms to detect when

a person enters the room. Cameras in mobile phones per-

form face recognition to authenticate users. Video game con-

soles employ cameras with gesture recognition for new types

of user interaction. One can expect cameras to be integrated
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Fig. 1. In a conventional vision system, the optical and analog

front-end passes an image of the scene to the digital sensor

that is as faithful as possible, leaving the image vulnerable

to digital attacks. We propose leveraging analog and optical

elements to perform privacy-enhancing computations before

the image is formed on the digital sensor.

into more devices in the coming years, devices such as wear-

able systems and smart clothing.

However, today’s cameras are digital devices: images are

captured digitally and used as inputs to digital computational

tools such as computer vision algorithms, leaving image data

vulnerable to various digital attacks. For example, there have

been numerous cases of adversaries gaining digital access to

laptop cameras and baby monitors either by malware or wire-

less attacks [1], giving adversaries access to the digital data

captured by these cameras.

Digital hacks add risks to the incorporation of computer

vision for information extraction in sensitive areas, such as

personal spaces and hospitals. However, for most applica-

tions, the information one wishes to extract is not in itself

sensitive. The problem lies in images containing more infor-

mation (including sensitive ones) than what is needed. Con-

sider performing face detection in hospitals to track the num-

ber of people in each room. Knowing that a room contains a

person may not in itself be sensitive, but knowing the person’s
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identity may be. The issue is that both pieces of information

are present in the standard camera image.

As an alternative, can one build a sensing device that only

captures the information necessary for the desired task? Such

sensors must be both private, in that they do not capture sensi-

tive information, and useful, in that they do capture necessary

information. Importantly, it is insufficient to simply perform

privacy-enhancing computations digitally since these require

the full digital image to begin with, allowing anyone who ma-

liciously obtains access to the device’s digital components to

conceivably eavesdrop on the initial digital image.

Camera systems do naturally perform a suite of optical

and analog operations before digitizing the image. Optically,

lenses and other elements bend and direct incoming light rays.

In the analog domain, various components operate on the

voltages and currents arising from the sensor measurements.

We then ask: can one leverage optical and analog elements to

perform privacy-enhancing operations on the incoming light

from the scene such that when the data is converted to the dig-

ital domain (for further processing), it no longer contains sen-

sitive information but still contains information required for

a vision task of interest? Such a device would be safe from

all digital vulnerabilities since there is no point in the pipeline

when sensitive information is encoded and stored digitally.

We refer to such systems as CAnOPICs (Cameras with

Analog and Optical Privacy-Integrating Computations; Fig.

1). Fundamentally, this approach is different from most pri-

vacy frameworks in that it should not use any digital copy of

the image. We begin the exploration of this broad field by

studying a particular use case: destroying face identities in

images while preserving information necessary for face de-

tection. This is important for obtaining crowd statistics, such

as foot traffic and occupancy, without compromising the iden-

tity (and thus, location) of any specific individual especially

in sensitive areas such as military bases or medical settings.

However, our ideas may be extended to other types of sensi-

tive information and utility tasks. Note that in these settings,

we are no longer interested in the original image but instead

in the high-level information (e.g. face detection) contained in

it. Multiple types of CAnOPICs can be built by using differ-

ent optical technologies and analog circuitry. In this work, we

propose one such CAnOPIC: 2D convolutions, max-pooling,

and quantization performed in series, and we evaluate such a

camera via digital simulations. While not done here, each op-

eration can be implemented optically or in analog (discussed

in Section 3 and in the Supplementary Material).

The CAnOPIC’s parameters are learned via a data-driven

alternating optimization method (Section 3.2). Other works

have explored this method to build privacy-preserving deep

neural networks (DNN), which have no straightforward im-

plementation in the analog or optical domains. To the best of

our knowledge, ours is the first work to employ this method

for analog and optical operations, which pose an additional

challenge as they have much smaller capacity than DNNs.

Altogether, Section 4 shows that our system can greatly de-

crease the performance of a DNN for face identity classifi-

cation while still allowing a DNN to detect whether an im-

age contains a face or not. Just as canopic jars were used in

ancient Egypt to protect their owners from the forces of na-

ture, we propose CAnOPICs to protect sensitive data from the

forces of digital attacks.

2. RELATED WORK

There exist multiple frameworks approaching privacy from

different perspectives. Cryptography focuses on being able to

achieve perfect reconstruction from the encrypted message,

whereas we destroy sensitive information such that they in-

definitely cannot be reconstructed. In this work, we explore

privacy empirically, while some other works take a more the-

oretical approach. In [2], the authors propose a framework

wherein the source distribution of a data point is kept private,

which is similar to preventing classification. In [3], the au-

thors investigate privacy of correlated data points using the

Pufferfish framework, a study that may be applicable to im-

age data due to the correlation of image pixel values.

Recently, multiple works have explored enhancing pri-

vacy via adversarial training with DNNs, a method that trains

an encoder function to privatize an image against an adver-

sarial DNN that is trained to perform the privacy-destroying

task [4, 5, 6, 7, 8, 9]. These works all model the encoder as

a DNN and thus require that the privacy-preserving operation

be performed digitally, as there have yet to arise non-digital

implementations of large-scale neural networks. We employ

adversarial training to instead learn the parameters of func-

tions that can be implemented in the analog and optical do-

mains, giving rise to non-digital privacy-enhancers.

There are other works on imaging systems performing

privacy-enhancement via optical operations. In [10], the au-

thors design camera systems that perform blurring and k-same

face de-identification in hardware. The same work also ex-

plores enhancing privacy using thermal sensors. In [11, 12],

authors use coded aperture masks to enhance privacy.

3. METHOD

We present here our CAnOPIC design, consisting of a series

of computations easily implementable in either the optical or

analog domains. We then discuss an alternating optimization

procedure to select better parameters for these computations.

3.1. CAnOPIC Design

There exist multiple optical and analog technologies that per-

form computations on the scene. For this work, we design our

CAnOPIC to be a series of three local operations: 2D convo-

lution, max-pooling, and quantization (illustrated in Fig. 2).

Optically, 2D convolutions can be performed via diffractive
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Fig. 2. We propose a combination of analog and optical components to enhance privacy in a computer vision system. It performs

the following computations on an image: 2D convolution, max pooling, and quantization. The parameters of the convolution

and quantization are learned in an alternating optimization procedure.

masks [13]. Max-pooling can be performed via analog com-

parators [14], and quantization is naturally performed by the

analog-digital converter. We further discuss optical/analog

implementation in the Supplementary Material.

In this work, we operate on 64 × 64 images. For the 2D

convolution, we try two different schemes: (a) one 63 × 63
filter (single-filter) and (b) four 11× 11 filters in parallel (the

output being 4 RGB images). For both cases, we pad the input

image by replicating the values of the edge pixels such that the

image dimensions are left unchanged by the convolution. For

each of the filters, the same kernel is applied to each color

channel separately, which represents how diffractive masks

optically perform 2D convolutions. For the max-pooling, we

perform 8 × 8 max-pooling with no overlapping of patches,

effectively downsizing the image by a factor of 8 in each di-

mension. Quantization maps real values into a finite set of

possible values. While, conventionally, equally sized inter-

vals are mapped into uniformly-spaced values, in this work,

we explore intervals that need not be equally sized and output

values that may not be uniformly-spaced.

3.2. Alternating Optimization to Learn Parameters

The CAnOPIC computations contain numerous parameters,

such as the convolutional kernels and the quantization inter-

vals. While these parameters can be set heuristically, one gets

better performance by learning them in a data-driven fashion.

Thus, we learn the convolutional kernel and quantization pa-

rameters with the following alternating optimization scheme.

The goal is to learn parameters of our CAnOPIC such

that (a) face recognition cannot be performed on its outputs

and (b) face detection can be performed on its outputs. We

design a framework consisting of three components: (1) the

CAnOPIC: 2D convolution, max-pooling, and quantization,

(2) Recognition NN: a neural network (NN) trained to clas-

sify face identities, (3) Detection NN: a NN trained for the

binary classification of whether an image contains a face or

not. For (2) and (3), we use the 18-layer deep Residual Net-

work (ResNet) from [15]. We use 100 identities from the

VGGFace2 dataset [16] for face images and images from the

ILSVRC2012 dataset [17] for the no-face class (details in

Supplementary Material).

Fig. 3. Parameters learned from alternating optimization for

different privacy weights α with the single-filter CAnOPIC.

Notice that increasing α leads to heavier quantization.

The training is performed using two steps. In step 1, we

fix the CAnOPIC and train the Recognition NN and the De-

tection NN to perform their classification tasks using the stan-

dard cross-entropy loss. These two networks’ training are in-

dependent of each other. For step 2, we fix the Recognition

NN and the Detection NN, and we then train the CAnOPIC

to destroy identity information while preserving detection in-

formation using a loss function that is the sum of a pri-

vacy term and a utility term. The privacy term is set to be

the negative entropy of the Recognition NN’s output vec-

tor (as done in [4, 5]), which represents its predicted likeli-

hoods/probabilities that the image belongs to each class (face

identity). This term is minimized when the likelihoods are all

equal, which indeed represents maximum privacy. The util-

ity is set to the standard cross-entropy loss of the Detection

NN. We also apply a multiplicative weight α on the privacy

term, with higher α values emphasizing privacy over utility,

to allow tweaking of the CAnOPIC’s privacy-utility tradeoff.

Ultimately, the encoder’s loss for a clean input image x is:

L(x, θC) = CrossEntropy(D(C(x)), T ; θC)

−αEntropy(R(C(x)); θC),
(1)

where C, R and D are the CAnOPIC, Recognition NN, and

Detection NN, respectively, θC refers to the CAnOPIC’s pa-

rameters, and T refers to the target detection label.

After step 2, the encoder has learned a new set of param-

eters that causes the Recognition NN to fail while ensuring
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Fig. 4. Different CAnOPIC measurements for a face image (top) and a non-face image (bottom).

it does not destroy the images to the point that the Detection

NN fails. However, by repeating step 1, the Recognition NN

can once again learn to classify the face identities. The two

steps are thus cycled through until the Recognition NN can

no longer learn to classify the faces even after many training

epochs. If the Recognition NN represents a strong face recog-

nition algorithm, then this implies that the learned CAnOPIC

has sufficiently destroyed face identity information.

For the single 63 × 63 convolutional filter case, the filter

is initialized with a Gaussian kernel with a standard deviation

of 8 pixels. For the case of four 11× 11 convolutional filters,

they are initialized with kernels where the upper half, left half,

lower half, and right half are all 1’s, respectively, with the re-

maining values being 0. Conventionally, quantization is de-

fined by y =
∑N−1

n=1 U(x−bi), where y is the discrete output,

x is the continuous input, bi = {0.5, 1.5, 2.5, ..., N − 1.5},

N = 2k, k is the number of bits, and U is the Heaviside func-

tion. However, such formulation is not smooth and thus not

suitable for backpropagation. Following [18], we approxi-

mate quantization with a differentiable version by replacing

the Heaviside function with the sigmoid σ(), resulting in:

y =
∑N−1

n=1 σ(T (x − bi)), where T is a scalar hardness term

gradually increased during training. The parameters learned

are the bi values. We fix the number of bi values to be 15 and

initialize them to be 0.5, 1.5, ..., 14.5. The input to quantiza-

tion is normalized to have values from 0 to 15. Learned pa-

rameters for the single-filter CAnOPIC are visualized in Fig.

3, and sample CAnOPIC measurements are shown in Fig. 4.

Recall in this regime that we are not ultimately interested in

the image itself but in the information we can extract from it.

4. EXPERIMENTS

In this section, we test the efficacy of our CAnOPICs in

destroying face identities (privacy) while maintaining rele-

vant information for face detection (utility) with three ex-

periments: face identity (ID) classification, face vs. no-face

classification, and detection with Faster RCNN. In these ex-

periments, we evaluate both the single-filter and four-filter

CAnOPICs (see Section 3.1) and study the effect of the pri-

vacy weight α (see Section 3.2). We also evaluate CAnOPICs

both before (unlearned) and after (learned) its parameters are

trained via alternating optimization, and we test different con-

figurations of the analog/optical operations. We compare our

CAnOPICs with two conventional optical privacy-enhancing

methods: blurring (convolution with a Gaussian kernel with a

standard deviation of 8 pixels) and pixelation (replacing each

non-overlapping 8× 8 patch with its mean).

Experiment 1: Face ID Classification (Privacy). We

evaluate the performance of a neural network (NN) on closed-

set face identity classification. The lower the performance of

the NN, the higher the level of privacy of the CAnOPIC. We

use the 100 identities of the VGGFace2 validation set with

the largest number of images, none of which were used in the

alternating optimization learning of the CAnOPIC’s parame-

ters. For each identity, 30 images are placed in the test set, 30

images are placed in a validation set, and the remaining are

used for training. We pass the images through our CAnOPIC

and then train the NN on the encoded measurements to mini-

mize the standard cross-entropy loss for classification. While

training our CAnOPIC via alternating optimization, we use

the ResNet18 architecture for the Recognition NN. To ensure

that the learned CAnOPIC is not only private for the ResNet,

we use the GoogleNet architecture for this experiment.

Experiment 2: Face vs. No-Face Classification (Util-
ity). Face detection typically consists of two components:

face vs. no-face classification on different patches and refine-

ment of bounding box coordinates. We show CAnOPIC mea-

surements still contain sufficient information for face detec-

tion by focusing on the first component. We train a GoogleNet

to classify whether an image contains a face or not. For

training data, we use 100,000 images from VGGFace2 and

100,000 faceless images from the ILSVRC2012 training set

for the face and no-face classes, respectively. For testing,

we use the same test set from the ID classification experi-

ment for the face class and 3,000 faceless images from the

ILSVRC2012 validation set for the no-face class.

Results for experiments 1 and 2 are shown in Table 1 and

Fig. 5, which reveal some noteworthy insights. First, the re-

sult for the 4-filter CAnOPIC with α = 1 shows that we have

designed a system universally better than the standard blur-

ring and pixelation methods: it is both more private (lower ID

classification score) and more useful (higher face vs. no-face

score). Second, both CAnOPICs for the α = 1 case show the

success of our alternating optimization procedure in training

the CAnOPICs’ parameters to yield both a more private and

more useful system. Third, the results for the different privacy
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Table 1. Results for the ID classification and face vs. no-face classification tasks for different configurations. Conv(1) refers to

a single 63× 63 convolutional filter while Conv(4) refers to four 11× 11 convolutional filters. MP refers to max-pooling.
Unlearned Learned

ID Classification Face vs. No-Face ID Classification Face vs. No-Face
Clean (no encoding) 97.60% 99.81% X X

Gaussian Blur 73.50% 96.61% X X

Pixelate (average pool) 75.73% 97.73% X X

Conv(1) + MP + Quantize (α = 1) 36.70% 93.51% 33.73% 94.66%
Conv(1) + MP + Quantize (α = 50) 36.70% 93.51% 19.13% 91.87%

Conv(1) + MP + Quantize (α = 300) 36.70% 93.51% 5.2% 74.81%

Conv(4) + MP + Quantize (α = 1) 72.13% 96.94% 66.50% 98.44%
Conv(4) + MP + Quantize (α = 50) 72.13% 96.94% 17.87% 87.75%

Conv(1) (α = 300) 73.50% 96.61% 56.17% 97.03%

MP 60.40% 96.88% X X

Quantize (α = 300) 97.13% 99.81% 8.63% 78.03%

Conv(1) + MP (α = 300) 54.40% 94.49% 24.17% 92.50%

Conv(1) + Quantize (α = 300) 59.43% 95.36% 12.07% 84.47%

MP + Quantize (α = 300) 51.57% 96.01% 6.73% 74.56%

Ideal

Fig. 5. ID classification and face vs. no-face results. Green:

conventional methods; blue: unlearned CAnOPICs; red:

learned CAnOPICs. Learned CAnOPICs bring us closer to

the ideal privacy-enhancing encoder.

weights α show how one can tweak α to obtain CAnOPICs at

different points of the privacy-utiltiy tradeoff, allowing one to

choose from a continuum of possible encoders depending on

the privacy requirements of the application.

Experiment 3: Detection with Faster RCNN (Utility).
We also test CAnOPICs for the full task of face detection

(i.e. providing bounding box coordinates) using a standard

Faster R-CNN detection network [20] trained on the WIDER

face dataset [21] passed through the CAnOPIC and tested

on the FDDB face detection benchmark [19] passed through

the CAnOPIC. The CAnOPIC’s privacy-enhancing effect de-

pends on the size of the face since the convolutional and

max-pooling kernels have fixed sizes. In the ID classifica-

tion experiments, the size of a face is roughly 40 pixels in

its larger dimension. Larger faces would be less private since

the CAnOPIC’s effect is weaker on them. For fairness, we

downsample each FDDB image such that its smallest face

has a major axis diameter of at most 40 pixels (FDDB face

annotations are ellipses). Images with faces smaller than 40

(a) FDDB ROC curves.

(b) Sample encoder predicted bounding boxes.

Fig. 6. (a) FDDB discrete ROC results [19] for clean, blurred,

pixelated, and CAnOPIC images. (b) Predicted bounding

boxes for the Conv(1) + Max-pool + Quantize (α = 1)

CAnOPIC overlaid on both the encoded and original images.

pixels are left at the same size. We test our two α = 1
CAnOPICs (single-filter and 4-filters), blurring, and pixela-

tion and present the results in Fig. 6. The CAnOPICs detect

a reasonably large number of faces, but their performances

are slightly poorer than those of blurring and pixelation. This

may be because the CAnOPICs were not optimized for the

full task of face detection, and we may not be accounting for

functional differences between face vs. no-face classification

(wherein our CAnOPIC performs better) and detection. Re-

fining our method to design CAnOPICs more suited for full

face detection is a potential future direction of this work.
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5. CONCLUSIONS

In this work, we introduce the problem of preserving privacy

on images by performing operations before any digital con-

versions. To this end, we propose CAnOPICs: cameras with

analog and optical privacy-integrated computations. We pro-

pose one specific system of performing 2D convolution, max

pooling, and quantization in series, each of which can be eas-

ily implemented in either the optical or analog domains. We

also present an alternating optimization scheme to learn the

various parameters of the CAnOPIC. Our results show that

our system causes neural networks to fail in performing tasks

related to identifying the human faces (even if they can train

on CAnOPIC measurements) while still allowing face detec-

tion to be performed with reasonable accuracy. It is our hope

that our framework of destroying sensitive information takes

us one step closer towards applicable privacy-preserving com-

puter vision sensors safe from digital vulnerabilities.
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