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ABSTRACT

The standard pipeline for many vision tasks uses a conven-
tional camera to capture an image that is then passed to a
digital processor for information extraction. In some deploy-
ments, such as private locations, the captured digital imagery
contains sensitive information exposed to digital vulnerabili-
ties such as spyware, Trojans, etc. However, in many appli-
cations, the full imagery is unnecessary for the vision task at
hand. In this paper we propose an optical and analog system
that preprocesses the light from the scene before it reaches
the digital imager to destroy sensitive information. We ex-
plore analog and optical encodings consisting of easily imple-
mentable operations such as convolution, pooling, and quan-
tization. We perform a case study to evaluate how such en-
codings can destroy face identity information while preserv-
ing enough information for face detection. The encoding pa-
rameters are learned via an alternating optimization scheme
based on adversarial learning with deep neural networks. We
name our system CAnOPIC (Camera with Analog and Op-
tical Privacy-Integrating Computations) and show that it has
better performance in terms of both privacy and utility than
conventional optical privacy-enhancing methods such as blur-
ring and pixelation.

Index Terms— Privacy-preserving, computational imag-
ing, face de-identification

1. INTRODUCTION

Recent years have seen a flurry of activity in computer vision
that has resulted in a large suite of algorithms for the auto-
matic extraction of information from the real world. Such
algorithms take in an image captured by a standard camera
system and extract from it the number of faces contained (face
detection), the identity of the person in it (face recognition),
the gestures a person is making (gesture recognition), and
other types of beneficial information, leading to an increased
integration of cameras in numerous applications. Smart se-
curity cameras are equipped with algorithms to detect when
a person enters the room. Cameras in mobile phones per-
form face recognition to authenticate users. Video game con-
soles employ cameras with gesture recognition for new types
of user interaction. One can expect cameras to be integrated
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Fig. 1. In a conventional vision system, the optical and analog
front-end passes an image of the scene to the digital sensor
that is as faithful as possible, leaving the image vulnerable
to digital attacks. We propose leveraging analog and optical
elements to perform privacy-enhancing computations before
the image is formed on the digital sensor.

into more devices in the coming years, devices such as wear-
able systems and smart clothing.

However, today’s cameras are digital devices: images are
captured digitally and used as inputs to digital computational
tools such as computer vision algorithms, leaving image data
vulnerable to various digital attacks. For example, there have
been numerous cases of adversaries gaining digital access to
laptop cameras and baby monitors either by malware or wire-
less attacks [1], giving adversaries access to the digital data
captured by these cameras.

Digital hacks add risks to the incorporation of computer
vision for information extraction in sensitive areas, such as
personal spaces and hospitals. However, for most applica-
tions, the information one wishes to extract is not in itself
sensitive. The problem lies in images containing more infor-
mation (including sensitive ones) than what is needed. Con-
sider performing face detection in hospitals to track the num-
ber of people in each room. Knowing that a room contains a
person may not in itself be sensitive, but knowing the person’s
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identity may be. The issue is that both pieces of information
are present in the standard camera image.

As an alternative, can one build a sensing device that only
captures the information necessary for the desired task? Such
sensors must be both private, in that they do not capture sensi-
tive information, and useful, in that they do capture necessary
information. Importantly, it is insufficient to simply perform
privacy-enhancing computations digitally since these require
the full digital image to begin with, allowing anyone who ma-
liciously obtains access to the device’s digital components to
conceivably eavesdrop on the initial digital image.

Camera systems do naturally perform a suite of optical
and analog operations before digitizing the image. Optically,
lenses and other elements bend and direct incoming light rays.
In the analog domain, various components operate on the
voltages and currents arising from the sensor measurements.
We then ask: can one leverage optical and analog elements to
perform privacy-enhancing operations on the incoming light
from the scene such that when the data is converted to the dig-
ital domain (for further processing), it no longer contains sen-
sitive information but still contains information required for
a vision task of interest? Such a device would be safe from
all digital vulnerabilities since there is no point in the pipeline
when sensitive information is encoded and stored digitally.

We refer to such systems as CAnOPICs (Cameras with
Analog and Optical Privacy-Integrating Computations; Fig.
1). Fundamentally, this approach is different from most pri-
vacy frameworks in that it should not use any digital copy of
the image. We begin the exploration of this broad field by
studying a particular use case: destroying face identities in
images while preserving information necessary for face de-
tection. This is important for obtaining crowd statistics, such
as foot traffic and occupancy, without compromising the iden-
tity (and thus, location) of any specific individual especially
in sensitive areas such as military bases or medical settings.
However, our ideas may be extended to other types of sensi-
tive information and utility tasks. Note that in these settings,
we are no longer interested in the original image but instead
in the high-level information (e.g. face detection) contained in
it. Multiple types of CAnOPICs can be built by using differ-
ent optical technologies and analog circuitry. In this work, we
propose one such CAnOPIC: 2D convolutions, max-pooling,
and quantization performed in series, and we evaluate such a
camera via digital simulations. While not done here, each op-
eration can be implemented optically or in analog (discussed
in Section 3 and in the Supplementary Material).

The CAnOPIC’s parameters are learned via a data-driven
alternating optimization method (Section 3.2). Other works
have explored this method to build privacy-preserving deep
neural networks (DNN), which have no straightforward im-
plementation in the analog or optical domains. To the best of
our knowledge, ours is the first work to employ this method
for analog and optical operations, which pose an additional
challenge as they have much smaller capacity than DNNs.

Altogether, Section 4 shows that our system can greatly de-
crease the performance of a DNN for face identity classifi-
cation while still allowing a DNN to detect whether an im-
age contains a face or not. Just as canopic jars were used in
ancient Egypt to protect their owners from the forces of na-
ture, we propose CAnOPICs to protect sensitive data from the
forces of digital attacks.

2. RELATED WORK

There exist multiple frameworks approaching privacy from
different perspectives. Cryptography focuses on being able to
achieve perfect reconstruction from the encrypted message,
whereas we destroy sensitive information such that they in-
definitely cannot be reconstructed. In this work, we explore
privacy empirically, while some other works take a more the-
oretical approach. In [2], the authors propose a framework
wherein the source distribution of a data point is kept private,
which is similar to preventing classification. In [3], the au-
thors investigate privacy of correlated data points using the
Pufferfish framework, a study that may be applicable to im-
age data due to the correlation of image pixel values.

Recently, multiple works have explored enhancing pri-
vacy via adversarial training with DNNs, a method that trains
an encoder function to privatize an image against an adver-
sarial DNN that is trained to perform the privacy-destroying
task [4, 5, 6, 7, 8, 9]. These works all model the encoder as
a DNN and thus require that the privacy-preserving operation
be performed digitally, as there have yet to arise non-digital
implementations of large-scale neural networks. We employ
adversarial training to instead learn the parameters of func-
tions that can be implemented in the analog and optical do-
mains, giving rise to non-digital privacy-enhancers.

There are other works on imaging systems performing
privacy-enhancement via optical operations. In [10], the au-
thors design camera systems that perform blurring and k-same
face de-identification in hardware. The same work also ex-
plores enhancing privacy using thermal sensors. In [11, 12],
authors use coded aperture masks to enhance privacy.

3. METHOD

We present here our CAnOPIC design, consisting of a series
of computations easily implementable in either the optical or
analog domains. We then discuss an alternating optimization
procedure to select better parameters for these computations.

3.1. CAnOPIC Design

There exist multiple optical and analog technologies that per-
form computations on the scene. For this work, we design our
CAnOPIC to be a series of three local operations: 2D convo-
lution, max-pooling, and quantization (illustrated in Fig. 2).
Optically, 2D convolutions can be performed via diffractive
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Fig. 2. We propose a combination of analog and optical components to enhance privacy in a computer vision system. It performs
the following computations on an image: 2D convolution, max pooling, and quantization. The parameters of the convolution
and quantization are learned in an alternating optimization procedure.

masks [13]. Max-pooling can be performed via analog com-
parators [14], and quantization is naturally performed by the
analog-digital converter. We further discuss optical/analog
implementation in the Supplementary Material.

In this work, we operate on 64 x 64 images. For the 2D
convolution, we try two different schemes: (a) one 63 x 63
filter (single-filter) and (b) four 11 x 11 filters in parallel (the
output being 4 RGB images). For both cases, we pad the input
image by replicating the values of the edge pixels such that the
image dimensions are left unchanged by the convolution. For
each of the filters, the same kernel is applied to each color
channel separately, which represents how diffractive masks
optically perform 2D convolutions. For the max-pooling, we
perform 8 x 8 max-pooling with no overlapping of patches,
effectively downsizing the image by a factor of 8 in each di-
mension. Quantization maps real values into a finite set of
possible values. While, conventionally, equally sized inter-
vals are mapped into uniformly-spaced values, in this work,
we explore intervals that need not be equally sized and output
values that may not be uniformly-spaced.

3.2. Alternating Optimization to Learn Parameters

The CAnOPIC computations contain numerous parameters,
such as the convolutional kernels and the quantization inter-
vals. While these parameters can be set heuristically, one gets
better performance by learning them in a data-driven fashion.
Thus, we learn the convolutional kernel and quantization pa-
rameters with the following alternating optimization scheme.

The goal is to learn parameters of our CAnOPIC such
that (a) face recognition cannot be performed on its outputs
and (b) face detection can be performed on its outputs. We
design a framework consisting of three components: (1) the
CAnOPIC: 2D convolution, max-pooling, and quantization,
(2) Recognition NN: a neural network (NN) trained to clas-
sify face identities, (3) Detection NN: a NN trained for the
binary classification of whether an image contains a face or
not. For (2) and (3), we use the 18-layer deep Residual Net-
work (ResNet) from [15]. We use 100 identities from the
VGGFace?2 dataset [16] for face images and images from the
ILSVRC2012 dataset [17] for the no-face class (details in
Supplementary Material).
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Fig. 3. Parameters learned from alternating optimization for
different privacy weights « with the single-filter CAnOPIC.
Notice that increasing « leads to heavier quantization.

The training is performed using two steps. In step 1, we
fix the CAnOPIC and train the Recognition NN and the De-
tection NN to perform their classification tasks using the stan-
dard cross-entropy loss. These two networks’ training are in-
dependent of each other. For step 2, we fix the Recognition
NN and the Detection NN, and we then train the CAnOPIC
to destroy identity information while preserving detection in-
formation using a loss function that is the sum of a pri-
vacy term and a utility term. The privacy term is set to be
the negative entropy of the Recognition NN’s output vec-
tor (as done in [4, 5]), which represents its predicted likeli-
hoods/probabilities that the image belongs to each class (face
identity). This term is minimized when the likelihoods are all
equal, which indeed represents maximum privacy. The util-
ity is set to the standard cross-entropy loss of the Detection
NN. We also apply a multiplicative weight « on the privacy
term, with higher o values emphasizing privacy over utility,
to allow tweaking of the CAnOPIC’s privacy-utility tradeoff.
Ultimately, the encoder’s loss for a clean input image  is:

L(z,0c) = CrossEntropy(D(C(x)),T;0¢)

—aEntropy(R(C(x)); 6¢), W

where C, R and D are the CAnOPIC, Recognition NN, and
Detection NN, respectively, 0 refers to the CAnOPIC’s pa-
rameters, and 7" refers to the target detection label.

After step 2, the encoder has learned a new set of param-
eters that causes the Recognition NN to fail while ensuring
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Fig. 4. Different CAnOPIC measurements for a face image (top) and a non-face image (bottom).

it does not destroy the images to the point that the Detection
NN fails. However, by repeating step 1, the Recognition NN
can once again learn to classify the face identities. The two
steps are thus cycled through until the Recognition NN can
no longer learn to classify the faces even after many training
epochs. If the Recognition NN represents a strong face recog-
nition algorithm, then this implies that the learned CAnOPIC
has sufficiently destroyed face identity information.

For the single 63 x 63 convolutional filter case, the filter
is initialized with a Gaussian kernel with a standard deviation
of 8 pixels. For the case of four 11 x 11 convolutional filters,
they are initialized with kernels where the upper half, left half,
lower half, and right half are all 1’s, respectively, with the re-
maining values being 0. Conventionally, quantization is de-
fined by y = Zi::ll U(xz—b;), where y is the discrete output,
x is the continuous input, b; = {0.5,1.5,2.5,..., N — 1.5},
N = 2%k is the number of bits, and I/ is the Heaviside func-
tion. However, such formulation is not smooth and thus not
suitable for backpropagation. Following [18], we approxi-
mate quantization with a differentiable version by replacing
the Heaviside function with the sigmoid (), resulting in:
Yy = 22:11 o(T(x — b;)), where T is a scalar hardness term
gradually increased during training. The parameters learned
are the b; values. We fix the number of b; values to be 15 and
initialize them to be 0.5, 1.5, ..., 14.5. The input to quantiza-
tion is normalized to have values from 0 to 15. Learned pa-
rameters for the single-filter CAnOPIC are visualized in Fig.
3, and sample CAnOPIC measurements are shown in Fig. 4.
Recall in this regime that we are not ultimately interested in
the image itself but in the information we can extract from it.

4. EXPERIMENTS

In this section, we test the efficacy of our CAnOPICs in
destroying face identities (privacy) while maintaining rele-
vant information for face detection (utility) with three ex-
periments: face identity (ID) classification, face vs. no-face
classification, and detection with Faster RCNN. In these ex-
periments, we evaluate both the single-filter and four-filter
CAnOPICs (see Section 3.1) and study the effect of the pri-
vacy weight « (see Section 3.2). We also evaluate CAnOPICs
both before (unlearned) and after (learned) its parameters are
trained via alternating optimization, and we test different con-

figurations of the analog/optical operations. We compare our
CAnOPICs with two conventional optical privacy-enhancing
methods: blurring (convolution with a Gaussian kernel with a
standard deviation of 8 pixels) and pixelation (replacing each
non-overlapping 8 x 8 patch with its mean).

Experiment 1: Face ID Classification (Privacy). We
evaluate the performance of a neural network (NN) on closed-
set face identity classification. The lower the performance of
the NN, the higher the level of privacy of the CAnOPIC. We
use the 100 identities of the VGGFace2 validation set with
the largest number of images, none of which were used in the
alternating optimization learning of the CAnOPIC’s parame-
ters. For each identity, 30 images are placed in the test set, 30
images are placed in a validation set, and the remaining are
used for training. We pass the images through our CAnOPIC
and then train the NN on the encoded measurements to mini-
mize the standard cross-entropy loss for classification. While
training our CAnOPIC via alternating optimization, we use
the ResNet18 architecture for the Recognition NN. To ensure
that the learned CAnOPIC is not only private for the ResNet,
we use the GoogleNet architecture for this experiment.

Experiment 2: Face vs. No-Face Classification (Util-
ity). Face detection typically consists of two components:
face vs. no-face classification on different patches and refine-
ment of bounding box coordinates. We show CAnOPIC mea-
surements still contain sufficient information for face detec-
tion by focusing on the first component. We train a GoogleNet
to classify whether an image contains a face or not. For
training data, we use 100,000 images from VGGFace2 and
100,000 faceless images from the ILSVRC2012 training set
for the face and no-face classes, respectively. For testing,
we use the same test set from the ID classification experi-
ment for the face class and 3,000 faceless images from the
ILSVRC2012 validation set for the no-face class.

Results for experiments 1 and 2 are shown in Table 1 and
Fig. 5, which reveal some noteworthy insights. First, the re-
sult for the 4-filter CAnOPIC with o = 1 shows that we have
designed a system universally better than the standard blur-
ring and pixelation methods: it is both more private (lower ID
classification score) and more useful (higher face vs. no-face
score). Second, both CAnOPICs for the o« = 1 case show the
success of our alternating optimization procedure in training
the CAnOPICs’ parameters to yield both a more private and
more useful system. Third, the results for the different privacy
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Table 1. Results for the ID classification and face vs. no-face classification tasks for different configurations. Conv(1) refers to
a single 63 x 63 convolutional filter while Conv(4) refers to four 11 x 11 convolutional filters. MP refers to max-pooling.

Unlearned Learned
ID Classification  Face vs. No-Face | ID Classification = Face vs. No-Face
Clean (no encoding) 97.60% 99.81% X X
Gaussian Blur 73.50% 96.61% X X
Pixelate (average pool) 75.73% 97.73% X X
Conv(1) + MP + Quantize (o = 1) 36.70% 93.51% 33.73% 94.66 %
Conv(1) + MP + Quantize (o« = 50) 36.70% 93.51% 19.13% 91.87%
Conv(1) + MP + Quantize (o« = 300) 36.70% 93.51% 5.2% 74.81%
Conv(4) + MP + Quantize (o = 1) 72.13% 96.94% 66.50% 98.44%
Conv(4) + MP + Quantize (o« = 50) 72.13% 96.94% 17.87% 87.75%
Conv(1) (o« = 300) 73.50% 96.61% 56.17% 97.03%
MP 60.40% 96.88% X X
Quantize (o« = 300) 97.13% 99.81% 8.63% 78.03%
Conv(1) + MP (o = 300) 54.40% 94.49% 24.17% 92.50%
Conv(1) + Quantize (o« = 300) 59.43% 95.36% 12.07% 84.47%
MP + Quantize (o« = 300) 51.57% 96.01% 6.73% 74.56%
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Fig. 5. ID classification and face vs. no-face results. Green:
conventional methods; blue: unlearned CAnOPICs; red:
learned CAnOPICs. Learned CAnOPICs bring us closer to
the ideal privacy-enhancing encoder.

weights o show how one can tweak « to obtain CAnOPICs at
different points of the privacy-utiltiy tradeoff, allowing one to
choose from a continuum of possible encoders depending on
the privacy requirements of the application.

Experiment 3: Detection with Faster RCNN (Utility).
We also test CAnOPICs for the full task of face detection
(i.e. providing bounding box coordinates) using a standard
Faster R-CNN detection network [20] trained on the WIDER
face dataset [21] passed through the CAnOPIC and tested
on the FDDB face detection benchmark [19] passed through
the CAnOPIC. The CAnOPIC’s privacy-enhancing effect de-
pends on the size of the face since the convolutional and
max-pooling kernels have fixed sizes. In the ID classifica-
tion experiments, the size of a face is roughly 40 pixels in
its larger dimension. Larger faces would be less private since
the CAnOPIC’s effect is weaker on them. For fairness, we
downsample each FDDB image such that its smallest face
has a major axis diameter of at most 40 pixels (FDDB face
annotations are ellipses). Images with faces smaller than 40

False Positives

(a) FDDB ROC curves.

==

(b) Sample encoder predicted bounding boxes.

Fig. 6. (a) FDDB discrete ROC results [19] for clean, blurred,
pixelated, and CAnOPIC images. (b) Predicted bounding
boxes for the Conv(l) + Max-pool + Quantize (o« = 1)
CAnOPIC overlaid on both the encoded and original images.

pixels are left at the same size. We test our two o = 1
CAnOPICs (single-filter and 4-filters), blurring, and pixela-
tion and present the results in Fig. 6. The CAnOPICs detect
a reasonably large number of faces, but their performances
are slightly poorer than those of blurring and pixelation. This
may be because the CAnOPICs were not optimized for the
full task of face detection, and we may not be accounting for
functional differences between face vs. no-face classification
(wherein our CAnOPIC performs better) and detection. Re-
fining our method to design CAnOPICs more suited for full
face detection is a potential future direction of this work.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 17,2021 at 23:35:34 UTC from IEEE Xplore. Restrictions apply.



5. CONCLUSIONS

In this work, we introduce the problem of preserving privacy
on images by performing operations before any digital con-
versions. To this end, we propose CAnOPICs: cameras with
analog and optical privacy-integrated computations. We pro-
pose one specific system of performing 2D convolution, max
pooling, and quantization in series, each of which can be eas-
ily implemented in either the optical or analog domains. We
also present an alternating optimization scheme to learn the
various parameters of the CAnOPIC. Our results show that
our system causes neural networks to fail in performing tasks
related to identifying the human faces (even if they can train
on CAnOPIC measurements) while still allowing face detec-
tion to be performed with reasonable accuracy. It is our hope
that our framework of destroying sensitive information takes
us one step closer towards applicable privacy-preserving com-
puter vision sensors safe from digital vulnerabilities.
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