
Brian Tinsley
Department of Mechanical and

Industrial Engineering,

University of Illinois at Chicago,

Chicago, IL 60607

e-mail: btinsle2@uic.edu

Ahmed A. Shabana
Department of Mechanical and

Industrial Engineering,

University of Illinois at Chicago,

Chicago, IL 60607

e-mail: shabana@uic.edu

Convergence Characteristics of
Geometrically Accurate Spatial
Finite Elements
The convergence characteristics of three geometrically accurate spatial finite elements
(FEs) are examined in this study using an eigenvalue analysis. The spatial beam, plate,
and solid elements considered in this investigation are suited for both structural and mul-
tibody system (MBS) applications. These spatial elements are based on geometry derived
from the kinematic description of the absolute nodal coordinate formulation (ANCF). In
order to allow for an accurate reference-configuration geometry description, the element
shape functions are formulated using constant geometry coefficients defined using the
position-vector gradients in the reference configuration. The change in the position-
vector gradients is used to define a velocity transformation matrix that leads to constant
element inertia and stiffness matrices in the case of infinitesimal rotations. In contrast to
conventional structural finite elements, the elements considered in this study can be used
to describe the initial geometry with the same degree of accuracy as B-spline and nonuni-
form rational B-spline (NURBS) representations, widely used in the computer-aided
design (CAD). An eigenvalue analysis is performed to evaluate the element convergence
characteristics in the case of different geometries, including straight, tapered, and curved
configurations. The frequencies obtained are compared with those obtained using a com-
mercial FE software and analytical solutions. The stiffness matrix is obtained using both
the general continuum mechanics (GCM) approach and the newly proposed strain split
method (SSM) in order to investigate its effectiveness as a locking alleviation technique.
[DOI: 10.1115/1.4048731]

Keywords: absolute nodal coordinate formulation, floating frame of reference formula-
tion, spatial beam elements, spatial plate element, spatial solid element, infinitesimal-
rotation finite elements, multibody systems, structural systems

1 Introduction

Use of computer-aided engineering (CAE) in industry durabil-
ity investigations has grown significantly over the last several dec-
ades. The application of CAE techniques in the design, analysis,
and performance evaluation is necessary for efficient and eco-
nomic product development as well as accurate and reliable
strength calculations. More reliance on credible virtual prototyp-
ing techniques will eventually lead to less reliance on the costly,
time-consuming, and error-prone physical prototyping and experi-
mentation. Nonetheless, the CAE procedures currently used by
the automotive, aerospace, and machine industries are based on
computer-aided design (CAD)/finite element (FE) technology that
suffers from serious limitations, particularly, when converting the
CAD solid models to FE analysis meshes. This, in turn, makes
industry durability investigations less credible because of the
inconsistency between the descriptions used to create the solid
models and analysis meshes.

In durability investigations, reduced-order models are often
developed for flexible components that have infinite number of
degrees-of-freedom [1–7]. Commercial FE software, widely used
by the industry, however, often employ elements that cannot cor-
rectly represent complex geometries. These elements have dis-
placement fields that are not related by a linear mapping to the

computational geometry methods, making the conversion of CAD
solid models to FE analysis meshes an iterative process [8]. In
the FE literature, both straight and curved elements as well as
plate and shell elements are based on different kinematic descrip-
tions and are treated differently in the conventional FE analysis
[9–17]. Because of such geometric limitations, the conversion of
solid models to FE meshes used for developing the reduced-order
models is a costly, error-prone, and time consuming process as
evident by the cost of $600m/year to the U.S. automotive industry
alone [18].

The development of reduced-order models is necessary for the
analysis of both structural and multibody system (MBS) applica-
tions. In the case of structural analysis, the system components do
not experience finite rigid body displacements, and the inertia
matrix in this case remains constant. In MBS applications, on the
other hand, the system components undergo large rigid-body dis-
placements including finite rotations. In the case of small defor-
mations, the floating frame of reference (FFR) approach is often
used to create a local linear problem that allows for systematically
reducing the number of coordinates by using component-mode
synthesis techniques. Using the consistent rotation-based formula-
tion, new geometrically accurate absolute nodal coordinate formu-
lation (ANCF)/FFR finite elements that can be used for both
structural and MBS applications can be developed [19,20]. While
these ANCF/FFR elements have a much smaller number of
degrees of degrees-of-freedom, they preserve many of the impor-
tant features of ANCF elements, including accurate description of
the geometry in the reference configuration, no distinction made
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between the shape functions of plates and shells or straight and
curved structures, and consistency with computational geometry
methods. The main goal of this study is to evaluate the conver-
gence characteristics of spatial ANCF/FFR beam, plate, and solid
elements [21]. To this end, an eigenvalue analysis is performed
and the results obtained are compared with the results obtained
using a commercial FE software.

2 Scope and Contributions

Developing geometrically accurate and efficient reduced-order
models is necessary for increasing reliance on virtual prototyping
and testing, regardless of the area of application [22–34]. The goal
of this study is to address this challenge by evaluating the conver-
gence characteristics of new spatial ANCF/FFR beam, plate, and
solid elements that can be used to develop geometrically accurate
reduced-order models in a wide class of engineering applications
[21]. The specific contributions of this investigation can be sum-
marized as follows:

(1) Details of the formulation of new infinitesimal-rotation
spatial ANCF/FFR beam, plate, and solid elements, that
can be used in a wide range of engineering applications, are
reviewed.

(2) The formulations of the stiffness matrices using the general
continuum mechanics (GCM) approach and the newly pro-
posed strain split method (SSM) is presented. The SSM
effectiveness in the locking alleviation when spatial ANCF/
FFR elements are used is evaluated.

(3) It is shown that, unlike conventional finite elements, the
ANCF/FFR formulation makes no distinction between
plates and shells, or initially straight or curved geometries
because the same shape functions are used for both
straight and curved elements. This is achieved by defining
the displacement field in terms of constant geometric
coefficients obtained using the ANCF position-vector
gradients that describe the reference-configuration
geometry.

(4) In the numerical investigation performed in this study, three
mesh structures are considered; a straight beam with constant
cross-section, a straight beam with tapered cross-section, and
a curved quarter-circle beam with constant cross-section. It is
shown that the geometry can be accurately captured using
few elements, whereas a large number of conventional
elements is required to approximate the same geometry.

(5) An eigenvalue analysis is performed to evaluate the con-
vergence characteristics of the three spatial ANCF/FFR
elements. The frequencies obtained are compared with the
analytical solutions when applicable, and with the frequen-
cies predicted by a commercial FE software. The effect
of the locking on the convergence rates and the SSM effec-
tiveness in the locking alleviation are discussed.

When using infinitesimal-rotation finite elements, it is impor-
tant to distinguish between the FFR and the corotational formula-
tions. In the corotational formulation, a frame is introduced for
each element and the frame kinematics is defined by the element
nodal coordinates. If infinitesimal rotations are used as element
coordinates, the kinematic equations are automatically linearized,
a rigid-body motion does not produce zero strains, and the rigid-
body inertia cannot be modeled exactly [35,36]. In the FFR for-
mulation, on the other hand, a frame is introduced for the entire
body and not for each element separately. The large displacement
of this frame is described using Cartesian coordinates and finite
rotation parameters. Therefore, the rigid-body kinematics is not
linearized regardless of the type of coordinates used for the finite
elements, a rigid-body motion leads to zero strains, and exact
modeling of the rigid-body inertia can be obtained. Furthermore,
the concept of the reference conditions, which is fundamental in
the body-based FFR formulation, is not used with the element-
based corotational formulation.

The organization of the paper is as follows: in Sec. 3, the geom-
etry configurations of an ANCF mesh are described, and the iner-
tia forces, stress forces, and velocity transformation matrix that
defines the ANCF position-vector gradients in terms of consistent
rotation-based formulation finite rotations are developed. The
MBS equations of motion are also presented. Section 3 also dis-
cusses the infinitesimal-rotation assumption of FFR elements and
the transformation from finite rotation coordinates to infinitesimal
rotations. The three finite elements used in this investigation—the
spatial ANCF/FFR beam, plate, and solid elements—are
described in Sec. 4. Section 5 describes two methods for obtaining
the tangent stiffness matrix; the GCM approach and the newly
proposed SSM approach which can be used for locking allevia-
tion. Section 6 describes the three mesh types considered in this
investigation. The results of the eigenvalue analysis are presented
in Sec. 7, and a summary and conclusions are provided in Sec. 8.

3 ANCF/FFR Element Geometry

In this section, the general procedure used to develop the small-
deformation ANCF/FFR finite elements using the ANCF displace-
ment fields is reviewed in order to understand the details of the
shape function matrices and to highlight the main assumptions
employed in developing these small-deformation elements. The
ANCF position-vector gradients play three fundamental roles in
developing the new ANCF/FFR elements; (1) to accurately define
the geometry in the reference configuration; (2) to define a velocity
transformation that allows writing the gradient coordinates in
terms of the infinitesimal rotation coordinates; and (3) to define
constant geometric coefficients that define a new class of element
displacement shape function matrices capable of capturing com-
plex geometries and describing correctly rigid body displacements.

3.1 Reference-Configuration Geometry. Three different
configurations are used in order to account for the effect of the ini-
tially curved geometry [36]. The straight configuration, defined
by the parameters x ¼ ½ x1 x2 x3 �T , is used for the convenience
of performing the integrations to determine the element inertia
and elastic forces. The curved stress-free reference configuration,
defined by the parameters X ¼ ½X1 X2 X3 �T , is used to define
the actual initial geometry of the element before the load
application. If the element is not curved, the straight configuration
is the same as the reference configuration. The current or
deformed configuration, defined by the vector r ¼ ½ r1 r2 r3 �T .
This global position vector r can be written as r ¼ Xþ u, where
u ¼ ½ u1 u2 u3 �T is the displacement vector. These three con-
figurations can be used to define constant geometric coefficients
that allow capturing accurately the reference-configuration geom-
etry. To this end, the matrix of position-vector gradients J is
written as J ¼ @r=@X ¼ ð@r=@xÞð@x=@XÞ ¼ JeJ

�1
o , where Je

¼ @r=@x, Jo ¼ @X=@x, and the matrix Jo is used as a mapping
between the initial stress-free curved geometry and the straight
configuration.

3.2 Position Gradients and Finite-Rotation Parameters. In
the FFR formulation, the large reference (rigid-body) rotation is
described using finite-rotation parameters. Therefore, the infinites-
imal rotations are not used in the definition of the large displace-
ments. For an FE node i, the columns of the matrix of position-
vector gradients Jie ¼ ½ rix riy riz � are not in general orthogonal
or unit vectors, where ri is the position vector of node i, and ria
¼ @ri=@a; a ¼ x; y; z are the position-gradient vectors. The matrix
Jie can be written as an orthogonal matrix as ½ rix riy riz � ¼
AiðhiÞ if the stretch and shear deformations are neglected at the
nodes [19,20,37], where AiðhiÞ is an orthogonal matrix that
defines the orientation of a nodal coordinate system in terms of
the rotation parameters hi [35,38–40]. The initially curved geome-
try in the reference configuration can be systematically captured
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by writing the nodal gradients as ½ rix riy riz � ¼ AiðhiÞJio. Differ-
entiating with respect to time yields [19–21]

½ _rix _riy _riz � ¼ ~xi½ rix riy riz � ¼ ½ ~xirix ~xiriy ~xiriz � (1)

where ~xi ¼ _A
i
AiT . Using this equation, the angular velocity vec-

tor xi is defined as xi ¼ Gi _h
i
, where Gi is a matrix function of

the orientation parameters [35]. Therefore, Eq. (1) can be rewrit-
ten as

½ _rix _riy _riz � ¼ �½ ~rixxi ~riyx
i ~rizx

i �

¼ �½ ~rixGi _h
i

~riyG
i _h

i
~rizG

i _h
i � (2)

Using this equation, one can write the following velocity
transformation:

_ri

_rix

_riy

_riz

2
66666664

3
77777775
¼

I 0

0 �~rixG

0 �~riyG

0 �~rizG

2
6666664

3
7777775

_ri

_h
i

2
4

3
5 (3)

where I and 0 are 3� 3 identity and null matrices, respectively.
Equation (3) can be used to write the time derivatives of the ele-
ment nodal coordinates e in terms of the time derivatives of the
orientation parameters as _e ¼ B _p, where B is an element velocity
transformation matrix formed by the nodal coefficient matrix on

the right-hand side of Eq. (3), p ¼ ½ p1T p2
T � � � pn

T
n �T , nn is

the total number of element nodes, and _pi ¼ ½ _riT _h
iT �T ,

i ¼ 1; 2;…; nn, is the time derivative of the nodal coordinates
which consists of position and rotation parameters. The number of
nodes nn depends on the type of element used; in this study, nn ¼
2 in the case of a beam element, nn ¼ 4 for a plate element, and
nn ¼ 8 for a solid element. The form of the matrix B and the nodal
coordinates for the spatial beam, plate, and solid elements are
defined in Sec. 4 of this paper.

3.3 Inertia and Stress Forces. The position vector of an
arbitrary point on an ANCF element can be written as rðx; tÞ
¼ SðxÞeðtÞ, where S is the element shape function matrix, e is the
vector of element nodal coordinates, and t is time [36]. The vector
of nodal coordinates at node i of a fully parameterized ANCF ele-

ment includes position and gradient vectors ri; rix; r
i
y, and riz. The

reference configuration is described by X ¼ rðx; 0Þ ¼ SðxÞeo,
where eo ¼ eðt ¼ 0Þ is the vector of initial nodal coordinates in
the curved stress-free configuration and can be chosen to ensure
that the initially curved geometry is defined accurately. The dis-
placement vector of an arbitrary point can be written as
u ¼ r� X ¼ SðxÞðe� eoÞ ¼ Sed , where ed ¼ e� eo is the vector
of element nodal displacements. The velocity and acceleration
vectors can be written, respectively, as _r ¼ S _e and €r ¼ S€e. The
virtual change in the position vector can be written as dr ¼ Sde.
Using this equation, the virtual work of the ANCF element inertia

forces can be written as dWi ¼
Ð
Vq€r

TdrdV ¼ ðM€eÞTde, where q
and V are, respectively, the mass density and volume in the
straight configuration. The constant symmetric ANCF element

mass matrix can then be defined asM ¼
Ð
VqS

TSdV.
The elastic forces can be formulated for fully parameterized

ANCF elements using a GCM approach and the virtual work of

the stress forces dWs ¼ �
Ð
Vr : dejJojdV ¼ QT

s de, where jJoj is
the determinant of Jo, Qs ¼ �

Ð
Vðr : ð@e=@eÞÞT jJojdV is the vec-

tor of the element generalized elastic forces, e ¼ ð1=2ÞðJTJ� IÞ
is the Green–Lagrange strain tensor which can be written as e ¼
ð1=2ÞðJ�1T

o ðJTe JeÞJ�1
o � IÞ upon using the identity J ¼ JeJ

�1
o , and

r is the second Piola–Kirchhoff stress tensor. The use of this elas-
tic force formulation leads to zero strain in the initial stress-free
curved configuration [36,41].

3.4 ANCF/FFR Nonlinear Equations. The equations of
motion of an ANCF element can be written as M€e ¼ Q, where M
is the element mass matrix and Q is the vector of nodal forces.
Taking the second time derivative of the velocity transformation
_e ¼ B _p, one has €e ¼ B€p þ _B _p. Substituting this equation into the
element equations and premultiplying by the transpose of the
matrix B, the FE equations can be written in terms of the finite
rotation parameters as �M€p ¼ �Q, where �M ¼ BTMB and �Q ¼
BTðQ�M _B _pÞ [19–21]. Because the infinitesimal rotation
assumption has not been made, the element equations are highly
nonlinear and are not suited for developing reduced-order models.

3.5 FFR Formulation and Infinitesimal Rotations. In the
case of small deformations, infinitesimal rotations can be used as
nodal coordinates to create a local linear problem that allows for
systematically reducing the model dimensionality. For this reason,
the FFR formulation is used to create such a local linear problem
which is suited for applying component-mode synthesis techni-
ques. Using the FFR approach, the global position vector of a
point on a body can be written as r ¼ Rþ Ab�rf , where Ab is the
orthogonal matrix that defines the orientation of the body coordi-
nate system, �rf is the local position vector of the point, and R is
the global position vector of the body reference point. Using the
ANCF displacement field, the local position vector �rf can be writ-
ten as

�rf ðx; tÞ ¼ SðxÞeðtÞ ¼ SðxÞeo þ SðxÞedðtÞ ¼ �uoðxÞ þ �uf ðx; tÞ (4)

where �uoðxÞ ¼ SðxÞeo defines the location of the point before
deformation, and �u f ðx; tÞ ¼ SðxÞedðtÞ is the deformation vector.

The position-vector gradients at node i can be defined in the

case of the FFR formulation as Jie ¼ ½ �rif ;x �rif ;y �rif ;z �
¼ JiJio ¼ AiðhiÞJio, where �rif ;a ¼ @�rif =@a; a ¼ x; y; z. If the small

rotation assumption is made, the rotation matrix AiðhiÞ can be

written as AiðhiÞ ¼ Iþ ~h
i
, where ~h

i
is the skew symmetric matrix

associated with the vector hi. It follows that Jie ¼ AiðhiÞJio
¼ Jio þ ~h

i
Jio. Differentiating this equation with respect to time,

one obtains

_J
i

e ¼ ½ _�rif ;x _�rif ;y _�r
i
f ;z� ¼

~_h
i
Jio ¼

~_h
i

½ Jio1 Jio2 Jio3 �

¼ �½ ~Jio1 _h
i ~J

i

o2
_h
i ~J

i

o3
_h
i �

(5)

where Jio1; J
i
o2, and Jio3 are the columns of Jio. Therefore, for node

i, one can write

_ri

_rix

_riy

_riz

2
66666664

3
77777775
¼

I 0

0 �~J
i

o1

0 �~J
i

o2

0 �~J
i

o3

2
66666664

3
77777775

_ri

_h
i

2
4

3
5 (6)

This equation can be used to define the velocity transformation
_e ¼ B _p, where the different forms of the velocity transformation
matrix B are defined in Sec. 4 for each element type considered in
this study. Equation (6), which shows that the velocity transforma-
tion matrix B is constant in the case of using the infinitesimal rota-
tions and defines €e ¼ B€p, reduces the number of nodal
coordinates in the case of fully parameterized ANCF elements
from 12 coordinates (three translations and nine gradients) to six
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coordinates (three translations and three infinitesimal rotations).
Using this velocity transformation, the displacement vector ed can
be written as ed ¼ Berd , where erd is the element displacement
vector, which includes the infinitesimal nodal rotations. Substitut-
ing this equation into the equation for �uf ðx; tÞ, one can write
�u f ðx; tÞ ¼ SðxÞedðtÞ ¼ SðxÞBerdðtÞ ¼ SdðxÞerdðtÞ, where SdðxÞ ¼
SðxÞB is the ANCF/FFR displacement shape function matrix,
which depends on the elements of the position-gradient matrix Jio
that captures accurately the initially curved geometry. These ele-
ments, which represent constant geometric coefficients that enter
into the definition of SdðxÞ, assume the values of zeros and ones
for structures with straight geometry.

4 Characterization of Spatial ANCF/FFR Finite

Elements

The spatial ANCF/FFR beam, plate, and solid elements can be
developed using the displacement field of the fully parameterized
ANCF elements [42–44]. Each parent ANCF element is assumed
to have 12 degrees-of-freedom per node, including one position
and three gradient vectors. The vector of coordinates at node i of
the ANCF beam, plate, or solid element can be written as

ei ¼ ½ riT rix
T riy

T riz
T �T , where ri is the global position vector

of node i and rix ¼ @ri=@x, riy ¼ @ri=@y, and riz ¼ @ri=@z are the

position-vector gradients at the node. The matrix of position-

vector gradients Jio that defines the geometry in the initial configu-

ration and the skew-symmetric rotation matrix ~h
i
at node i, can be

written, respectively, as

Jio ¼

ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33

2
6664

3
7775; ~h

i ¼

0 �hi3 hi2

hi3 0 �hi1

�hi2 hi1 0

2
6664

3
7775;

i ¼ 1; 2;…nn

(7)

where nn is the number of element nodes, hi1, h
i
2, h

i
3 are the three

Euler angles at node i, and aikl; k; l ¼ 1; 2; 3, are constant geomet-
ric coefficients that enter into the definition of the ANCF/FFR ele-
ment displacement field. The matrix of position-vector gradient Jio
is the identity matrix in the special case of an initially straight
structure. Using the procedure developed in Sec. 3.5, the nodal
displacement-coordinates of the ANCF element can be written in
terms of the nodal displacement-coordinates of the ANCF/FFR
element as ed ¼ Berd , where

B ¼

B1 0 � � � 0

0 B2 � � � 0

� � . .
.

�

0 0 � � � Bnn

2
6666664

3
7777775
; Bi ¼

I 0

0 �~J
i

o1

0 �~J
i

o2

0 �~J
i

o3

2
6666664

3
7777775
;

i ¼ 1; 2;…nn

(8)

The velocity transformation matrix B is also used to define the dis-
placement shape function matrix Sd ¼ SB in terms of the constant

geometric coefficients aikl; k; l ¼ 1; 2; 3. The shape function matrix
Sd can correctly capture the rigid bodymodes at the velocity level [37]
and can be used to define the element mass matrix as

M ¼
Ð
VqS

T
dSddV. The specific forms of the displacement shape

function matrix Sd and the velocity transformation matrix B for the
three ANCF/FFR elements are provided in the remainder of this
section.

4.1 ANCF/FFR Beam Element. The ANCF/FFR beam ele-
ment shape functions are developed from those of the spatial
ANCF fully parameterized beam element [42]. The ANCF/FFR
beam element displacement field is defined in terms of constant

geometric coefficients, which allow for an accurate representation
of initially curved geometries. The ANCF shape function matrix

can be written as Sb ¼ sb1I sb2I …sb8I
� �

, where superscript b

refers to beam, the shape functions sbk ; k ¼ 1; 2;…8, are defined as

sb1 ¼ 1� 3n2 þ 2n3; sb2 ¼ lbðn� 2n2 þ n3Þ;

sb3 ¼ lbðg� ngÞ; sb4 ¼ lbðf� nfÞ; sb5 ¼ 3n2 � 2n3

sb6 ¼ lbð�n2 þ n3Þ; sb7 ¼ lbng; sb8 ¼ lbnf

9>>>>=
>>>>; (9)

where n ¼ x=lb, g ¼ y=lb, f ¼ z=lb, and lb is the length of
the element. The vector of element nodal coordinates is

eb ¼ eb;1T eb;2T
� �T

, where eb;i is the vector of nodal coordinates

at node i, i ¼ 1; 2, which includes position and gradient vectors
as defined previously. The nodal displacement-coordinates of
the ANCF beam element can be written in terms of the ANCF/
FFR nodal displacement-coordinates using the transformation

ebd ¼ Bbebrd, where

Bb ¼
Bb;1 0

0 Bb;2

" #
; Bb;i ¼

I 0

0 �~J
b;i

o1

0 �~J
b;i

o2

0 �~J
b;i

o3

2
6666664

3
7777775
; i ¼ 1; 2 (10)

The displacement shape function matrix Sbd ¼ SbBb is defined in

terms of the constant geometric coefficients ab;ikl ; k; l ¼ 1; 2; 3, as

Sbd ¼ S
b;1
d S

b;2
d

h i
[21], where S

b;1
d and S

b;2
d are the shape function

submatrices associated, respectively, with the first and second

nodes, and are given as S
b;1
d ¼ sb1I �ðsb2J

b;1
o1 þ sb3J

b;1
o2 þ sb4J

b;1
o3 Þ

h i
and S

b;2
d ¼ sb5I �ðsb6J

b;2
o1 þ sb7J

b;2
o2 þ sb8J

b;2
o3 Þ

h i
. In the special case

of an initially straight beam where the gradient vectors are

J
b;i
o1 ¼ 1 0 0

� �T
, J

b;i
o2 ¼ 0 1 0

� �T
, and J

b;i
o3 ¼ 0 0 1

� �T
,

the displacement shape function matrix is

Sbd ¼ sb1I ~sbh1 sb5I ~sbh2

h i
, where ~sbh1 and ~sbh2 are the displace-

ment shape function matrices associated with the nodal rotations
in the straight configuration, and are defined as

~sbh1 ¼

0 sb4 �sb3

�sb4 0 sb2

sb3 �sb2 0

2
6664

3
7775; ~sbh2 ¼

0 sb8 �sb7

�sb8 0 sb6

sb7 �sb6 0

2
6664

3
7775 (11)

These skew-symmetric matrices are associated, respectively, with

the vectors sbh1 ¼ � sb2 sb3 sb4
� �T

and sbh2 ¼ � sb6 sb7 sb8
� �T

.

The kinematic equations developed for the ANCF/FFR beam ele-
ment show that the displacement shape function matrix of can be
used for both initially straight or curved geometries.

4.2 ANCF/FFR Plate Element. The spatial ANCF/FFR
plate element is developed using the displacement field of the
fully parameterized spatial ANCF plate element, which has the
following shape function matrix and the vector of nodal coordi-
nates [43]:

Sp ¼ sp1I sp2I … sp16I
� �

ep ¼ ep;1T ep;2T ep;3T ep;4T
� �T

)
(12)

In this equation, superscript p refers to plate, and the shape func-
tions spi ; i ¼ 1; 2;…; 16 are
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sp1 ¼ ð2nþ 1Þðn� 1Þ2ð2gþ 1Þðg� 1Þ2; sp2 ¼ apnðn� 1Þ2ð2gþ 1Þðg� 1Þ2

sp3 ¼ bpgðn� 1Þ2ð2nþ 1Þðg� 1Þ2; sp4 ¼ tpfðn� 1Þðg� 1Þ;
sp5 ¼ �n2ð2n� 3Þð2gþ 1Þðg� 1Þ2; sp6 ¼ apn2ðn� 1Þð2gþ 1Þðg� 1Þ2; sp7 ¼ �bpgn2ð2n� 3Þðg� 1Þ2;
sp8 ¼ �tpnfðg� 1Þ; sp9 ¼ n2g2ð2n� 3Þð2g� 3Þ; sp10 ¼ �apn2g2ðn� 1Þð2g� 3Þ;
sp11 ¼ �bpn2g2ðg� 1Þð2n� 3Þ; sp12 ¼ tpngf; sp13 ¼ �g2ð2nþ 1Þðn� 1Þ2ð2g� 3Þ;
sp14 ¼ �apng2ðn� 1Þ2ð2g� 3Þ; sp15 ¼ bpg2ðn� 1Þ2ð2nþ 1Þðg� 1Þ; s16 ¼ �tpgfðn� 1Þ

9>>>>>>>>>>>=
>>>>>>>>>>>;

(13)

where n ¼ x=ap, g ¼ y=bp, f ¼ z=tp, ap, bp, and tp are the length,
width, and thickness of the element, respectively, and ep;i is the
vector of nodal coordinates, which include position and gradient
vectors at node i, i ¼ 1; 2; 3; 4. The nodal coordinates of the
ANCF plate element can be written in terms of the nodal coordi-
nates of the ANCF/FFR plate element as e

p
d ¼ Bpe

p
rd, where

Bp ¼
Bp;1 0 0 0

0 Bp;2 0 0

0 0 Bp;3 0

0 0 0 Bp;4

2
6664

3
7775; Bp;i ¼

I 0

0 �~J
p;i

o1

0 �~J
p;i

o2

0 �~J
p;i

o3

2
6664

3
7775;

i ¼ 1; 2; 3; 4

(14)

The displacement shape function matrix S
p
d ¼ SpBp is defined in

terms of the constant geometric coefficients ap;ikl ; k; l ¼ 1; 2; 3, as

S
p
d ¼ S

p;1
d S

p;2
d S

p;3
d S

p;4
d

h i
[21], where S

p;1
d , S

p;2
d , S

p;3
d , and

S
p;4
d are the shape function matrices associated with the element

nodes and are given as

S
p;1
d ¼ sp1I �ðsp2J

p;1
o1 þ sp3J

p;1
o2 þ sp4J

p;1
o3 Þ

h i
;

S
p;2
d ¼ sp5I �ðsp6J

p;2
o1 þ sp7J

p;2
o2 þ sp8J

p;2
o3 Þ

h i
S
p;3
d ¼ sp9I �ðsp10J

p;3
o1 þ sp11J

p;3
o2 þ sp12J

p;3
o3 Þ

h i
;

S
p;4
d ¼ sp13I �ðsp14J

p;4
o1 þ sp15J

p;4
o2 þ sp16J

p;4
o3 Þ

h i

9>>>>>>>>>=
>>>>>>>>>;

(15)

In the special case of an initially straight plate, the gradient

vectors are J
p;i
o1 ¼ 1 0 0

� �T
, J

p;i
o2 ¼ 0 1 0

� �T
, and

J
p;i
o3 ¼ 0 0 1

� �T
, and the displacement shape function matrix

for this plate element can be defined as

S
p
d ¼ sp1I ~sph1 sp5I ~sph2 sp9I ~sph3 sp13I ~sph4

� �
, where ~sph1, ~s

p
h2,

~sph3, and ~s
p
h4 are, respectively, the skew-symmetric matrices associ-

ated with the vectors

s
p
h1 ¼ � sp2 sp3 sp4

� �T
; s

p
h2 ¼ � sp6 sp7 sp8

� �T
s
p
h3 ¼ � sp10 sp11 sp12

� �T
; s

p
h4 ¼ � sp14 sp15 sp16

� �T
9=
; (16)

Therefore, the matrix S
p
d can be used for both initially curved and

straight geometries, and there is no need to have a special formu-
lation for shell elements. That is, the geometries of plates and
shells can be described using the same displacement field, pro-
vided that the constant geometric coefficients ap;ikl ; k; l ¼ 1; 2; 3,
are properly defined.

4.3 ANCF/FFR Solid Element. The shape functions of the
three-dimensional ANCF solid element are used as the starting
point to define the ANCF/FFR solid element displacement field in
terms of constant geometric coefficients [44]. The shape function

matrix and the vector of nodal coordinates of the parent
ANCF solid element used in this investigation are defined, respec-
tively, as

Ss ¼ ss;1I ss;2I ss;3I ss;4I � � � ss;29I ss;30I ss;31I ss;32I½ �

es ¼ es;1T es;2T es;3T es;4T es;5T es;6T es;7T es;8T½ �T

9>=
>; (17)

where superscript s refers to solid and the vector of nodal coordi-
nates at node i is es;i, i ¼ 1;…; 8, which includes position and gra-
dient vectors, as defined previously. The shape functions Ss at
node i are defined as

Ss;1 ¼ ð�1Þ1þniþgiþfiðnþ ni � 1Þðgþ gi � 1Þðfþ fi � 1Þ�
ð1þ ðn� niÞð1� 2nÞ þ ðg� giÞð1� 2gÞ þ ðf� fiÞð1� 2fÞÞ
Ss;2 ¼ ð�1Þgiþfi asnniþ1ðn� 1Þ2�niggiðg� 1Þ1�giffiðf� 1Þ1�fi

Ss;3 ¼ ð�1Þniþfi bsnniðn� 1Þ1�niggiþ1ðg� 1Þ2�giffiðf� 1Þ1�fi

Ss;4 ¼ ð�1Þniþgi csnniðn� 1Þ1�niggiðg� 1Þ1�giffiþ1ðf� 1Þ2�fi

9>>>>>>>=
>>>>>>>;

i ¼ 1; 2;…; 8

(18)

where as; bs, and cs are the dimensions of the element along the
axes x; y, and z directions, respectively, n ¼ x=as; g ¼ y=bs;
f ¼ z=cs, n; g; f 2 0; 1½ �, and ni; gi; fi are the dimensionless nodal
coordinates of node i. The nodal displacement-coordinates of the
ANCF solid element can be written in terms of the nodal
displacement-coordinates of the ANCF/FFR solid element as
esd ¼ Bsesrd, where

Bs ¼

Bs;1 0 � � � 0

0 Bs;2 � � � 0

� � . .
.

�

0 0 � � � Bs;8

2
666664

3
777775; Bs;i ¼

I 0

0 �~J
s;i

o1

0 �~J
s;i

o2

0 �~J
s;i

o3

2
666664

3
777775; i¼ 1;2;…8

(19)

The displacement shape function matrix Ssd ¼ SsBs is defined in

terms of the constant geometric coefficients as;ikl ; k; l ¼ 1; 2; 3, as

Ssd ¼ S
s;1
d S

s;2
d … S

s;8
d

h i
[21], where S

s;1
d ;Ss;2d ;…;Ss;8d are the

shape functions associated with the element nodes and are given
as

S
s;k
d ¼ ss4k�3I �ðss4k�2J

s;k
o1 þ ss4k�1J

s;k
o2 þ ss4kJ

s;k
o3 Þ

h i
;

k ¼ 1; 2;…; 8
(20)

where S
s;k
d are the displacement shape function matrix of the kth

node in the element. In the special case of an initially straight

solid structure where the gradient vectors are J
s;i
o1 ¼ 1 0 0

� �T
,
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J
s;i
o2 ¼ 0 1 0

� �T
, and J

s;i
o3 ¼ 0 0 1

� �T
, the displacement

shape function matrix is Ssd ¼ ss1I ~ssh1 ss5I ~ssh2 ss9I ~ssh3 ss13I
�

~ssh4 ss17I ~ssh5 ss21I ~ssh6 ss25I ~ssh7 ss29I ~ssh8�, where ~ssh1;~s
s
h2;…;~ssh8

are the displacement shape functions associated with the nodal
rotations in the straight configuration and are defined as

~sshk ¼
0 ss4k �ss4k�1

�ssk 0 ss4k�2

ss4k�1 �ss4k�2 0

2
664

3
775; k ¼ 1; 2;…; 8 (21)

where ~sshk is the displacement shape function matrix associated
with the rotations of the kth node in the case of the initially
straight configuration. Therefore, the matrix Ssd can be used for
both initially curved and straight geometries.

5 Stiffness Matrix

While there are different methods for formulating the stiffness
matrix of the ANCF/FFR elements, the GCM approach is consid-
ered in this investigation. Because this approach leads to locking
problems in the case of beams and plates, the SSM is used to alle-
viate the beam and plate Poisson locking [45].

5.1 General Continuum Mechanics Approach. When the
stiffness matrix is determined using the GCM approach, the line-
arized stiffness matrix associated with the ANCF nodal coordi-
nates is first determined using numerical differentiation with
respect to the parent ANCF element coordinates. The velocity
transformation matrix is then used to obtain the stiffness matrix
associated with the ANCF/FFR nodal displacement-coordinates as

Kd ¼ BTKB, where K is the tangential stiffness matrix of the
ANCF element, obtained by differentiating the ANCF elastic
force vector with respect to the nodal coordinates as K ¼ @Qs=@e.
The vector of elastic forces Qs is determined using the second
Piola–Kirchhoff stress tensor r and the Green–Lagrangian strain
tensor e as explained in Sec. 3.3. The stress and strain tensors r
and e can be written, respectively, in Voigt form as rv¼ r11

�
r22

r33 r23 r13 r12�T and ev¼ e11 e22 e33 2e23 2e13 2e12
� �T

. Using

the stress and strain vectors, the constitutive relation can be writ-
ten as rv¼Eev, where E is the matrix of elastic coefficients. The
vector of element elastic forces can then be written as

Qs¼
Ð
Vð@ev=@eÞ

T
EevjJojdV. The kth column of the tangent stiff-

ness matrix is obtained as Kk¼ðQsðekÞ�QsðeoÞÞ=Dek, where eo
is the vector of the ANCF element coordinates in the reference
configuration, Dek is a perturbation in the kth coordinate,
ek¼ eoþbkðDekÞ, and bk is a vector with all entries are equal to
zero except component bk which is equal to one. Using the proce-
dure outlined above to determine the stiffness matrix, the initial
geometry is correctly captured when calculating the strain tensor

because of using J�1
o .

5.2 Locking Alleviation—The Strain Split Method. As in
the case of conventional finite elements, in some simulation sce-
narios, higher order fully parameterized ANCF elements can suf-
fer from locking, including Poisson, shear, volumetric, and
curvature locking. The FE locking phenomenon has been an
important research topic in the broader FE literature for more than
four decades [45]. Several locking-alleviation techniques have
been proposed specifically for ANCF elements [46–49]. Because
the proposed ANCF/FFR spatial beam and plate elements are
based on parent ANCF beam and plate elements, the effect of
locking must be considered when developing reduced-order mod-
els. For this reason, the newly proposed locking alleviation tech-
nique, the SSM is considered in this investigation [45]. This new
locking alleviation technique can be applied to both beam and
plate elements.

It is important to recognize that there is a fundamental differ-
ence between the SSM used in this investigation and the approach
used to develop the mixed interpolation of tensorial components
(MITC) elements [50,51]. The MITC approach is more related to
the mixed variational approaches used in the enhanced assumed
strain procedures. In the MITC shell element, the strain fields,
derived from the displacement fields of these elements, lead to
significant locking, and therefore, modified versions of the strain
components are adopted by selecting their interpolation at certain
material points on the element; that is, the strain component eval-
uation is changed. In the SSM approach, on the other hand, the
definition of the strain components is not modified; instead, the
strain components are simply decomposed and used with a modi-
fied constitutive model to define the elastic forces, leading to the
locking alleviation. The SSM decomposition of the strain is not
dependent on whether small or large deformation problems are
considered because the general definition of the Green–Lagrange
strain tensor is used in the SSM decomposition, and no compo-
nents of the infinitesimal strain tensor are used.

6 Geometry Examples Used in This Investigation

Tapered and curved structures are examples of geometries that
become distorted and cannot be captured using the kinematic
description of conventional structural finite elements, which do
not employ position gradients as nodal coordinates from the out-
set. In this investigation, numerical examples are used to demon-
strate use of ANCF/FFR elements for accurate geometry
representation. An eigenvalue analysis is performed to evaluate
the convergence characteristics of each of the three elements
discussed in this paper using three different geometric
configurations—a straight uniform thickness structure, a straight
structure that is tapered in one direction, and a quarter-circular
structure with uniform cross section. The three elements were
used to create meshes of the three different geometric configura-
tions for the eigenvalue analysis, resulting in total of nine models.
Two elastic force formulations are used to develop the tangential
stiffness matrix. For all three elements, the GCM approach is used
without locking alleviation technique. The SSM locking-
alleviation technique is used to formulate the elastic forces of the
beam and plate element meshes only; such a technique is not used
with the solid element due to the lack of an element centerline or
midsurface. The results obtained are compared with analytical sol-
utions when applicable, as well as the commercial FE software
ANSYS [52]. It is important to point out, however, that the ANCF/
FFR elements have new shape functions that are fundamentally
different from those used for the analytical models and commer-
cial FE software. The ANCF/FFR displacement field defines posi-
tions and displacements in a Cartesian coordinate system, while in
the analytical approaches, the assumed displacement field is
designed using the axial and bending displacements, which are
assumed in most models to be uncoupled. Because of the many
simplifying assumptions used in developing the analytical models,
such models should not always be viewed as the most accurate
models; more numerical studies are needed to evaluate their accu-
racy using new and more general computational techniques that
account for the coupling between different displacement modes.
This mode coupling may lead to higher stiffness, and therefore,
the results obtained using the new elements, if they differ from the
results obtained using conventional elements, may require differ-
ent interpretations and future investigations.

6.1 Straight Beam With Uniform Cross Section. For the
straight beam example with uniform cross section, the ANCF/FFR
beam, plate, and solid elements are used to construct a mesh with
a straight rectangular cross section and simply supported end con-
ditions. Each of the ANCF/FFR meshes are modeled as simply
supported with a constant cross-sectional area with height
h ¼ 0:1m, width w ¼ 0:1m, and length l ¼ 2:0m. The modulus
of elasticity, Poisson ratio, and density of the material chosen are
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given, respectively, as E ¼ 109 Pa, � ¼ 0:3, and q ¼ 7850 kg=m3.
The material properties are the same for all three structures con-
sidered. The eigenvalues obtained using the ANCF/FFR elements
are compared with the results obtained using the commercial FE
software ANSYS using the BEAM188, SHELL181, and SOLID185
elements, as well as the analytical solution obtained using Timo-
shenko and Euler–Bernoulli beam theory. For the shell and solid
elements, to ensure that the reference conditions are consistent
with the reference conditions of the beam element mesh; the plate
and solid element meshes have been supported in the middle of
the two ends. A two-element wide mesh is used for the shell ele-
ments, and a two-by-two cross section mesh is used for the solid
elements.

6.2 Straight Beam With Tapered Cross Section. The kine-
matic description of some conventional FE beam and plate ele-
ments can only represent a uniform cross section that cannot be
varied along the length of the structure by changing the element
nodal coordinates. This leads to the problem of stepped geometry
in the event that a tapered structure is being considered. The spa-
tial ANCF/FFR beam and plate elements developed in this investi-
gation are capable of representing linear variation in the
thickness, and the plate elements can vary nonlinearly in the
width. For this example, a cantilever structure with a tapered cross
section thickness, shown in Fig. 1, was developed using the spatial
ANCF/FFR beam, plate, and solid elements. The length of the
structure is l ¼ 2:0m, and the cross section height varies from
h1 ¼ 0:2m at the left end to h2 ¼ 0:1m at the right end. The
width is assumed constant at w ¼ 0:1m. An eigenvalue analysis
was performed on each mesh and the convergence of the first in-
plane and out-of-plane bending frequencies of each mesh is com-
pared to the ANSYS BEAM188, SHELL181, and SOLID185 ele-
ments. A 1000-element BEAM188 mesh is taken as the
converged solution and is used as the reference for comparison.

6.3 Curved Beam With Uniform Cross Section. A quarter-
circle cantilever beam structure with a uniform cross section and
radius R ¼ 2m, shown in Fig. 2, is used as the third numerical
example. The curved geometry was chosen to demonstrate the
rate of eigenvalue convergence in a geometry that varies nonli-
nearly. Conventional hexahedral elements use only position coor-
dinates, and do not ensure continuity of the rotations at the nodes.
The ANCF/FFR solid element has six degrees-of-freedom per
node, including three rotations in addition to the three position
coordinates, and therefore, such an element is capable of repre-
senting nonlinear variations in surface geometry. Furthermore, the
initial geometry of the structure is accurately represented because,
as explained in this paper, the ANCF/FFR elements preserve the
ANCF reference-configuration geometry, which is related by a
linear mapping to the B-spline and NURBS geometries. As with
the previous examples, the spatial ANCF/FFR beam, plate, and
solid elements are used to model the curved geometry of this
example. The results obtained using these elements for the first in-
plane and out-of-plane bending frequencies are compared with the
results obtained using ANSYS BEAM188, SHELL181, and
SOLID185 elements. A 1000-element BEAM188 mesh is taken as
the converged reference solution.

7 Numerical Results

In this section, the results of the frequency analysis obtained
using the meshes and elements described in the preceding section
are discussed.

7.1 Straight Beam With Uniform Cross Section. Table 1
presents a comparison of the results of the first bending frequen-
cies for the straight beam with uniform cross section. The table
includes the results of the ANCF/FFR beam, plate, and solid
elements for varying mesh refinements, ANSYS BEAM188,
SHELL181, and SOLID185 elements for varying mesh refine-
ments, and the analytical solution obtained using Timoshenko and

Fig. 2 Curved beam example

Fig. 3 Error in the first bending frequency of the straight beam

( ANCF/FFR GCM 3D beam, ANCF/FFR SSM

3D beam, ANCF/FFR GCM plate, ANCF/FFR

SSM plate, ANCF/FFR GCM solid, ANSYS

BEAM188, ANSYS SHELL181, ANSYS SOLID185)Fig. 1 Tapered beam example
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Euler–Bernoulli beam theory. In Table 1 as well as the following
tables and figures, N is the number of elements used in the longi-
tudinal direction of the structure. The ANCF/FFR stiffness matrix
is evaluated using both the GCM approach and SSM. Figure 3
shows the percentage relative error ep in the frequencies with
respect to Euler–Bernoulli beam theory. In this figure and the fol-
lowing figures discussed in this section, the percentage relative
error is calculated using the equation ep ¼ ðsm � srÞ � 100=sr ,
where sm is the solution obtained using different models, and sr is

the reference solution. Because the ANSYS BEAM188 1000-
element solution is in good agreement with Euler–Bernoulli and
Timoshenko beam theories, it is used as the converged reference
solution for models in which there are no analytical solutions
available. Table 2 presents the results of the second bending fre-
quencies for the same meshes, and Fig. 4 shows the percentage
relative errors in the frequencies. It can be seen that the GCM
meshes converge to a frequency higher than the analytical solu-
tion due to the Poisson locking that arises because a higher order
polynomial is used in the longitudinal direction compared to the
transverse directions [49]. However, the frequencies for the
ANCF/FFR SSM beam and plate element models are in good
agreement with the analytical solution, demonstrating SSM effec-
tiveness as a locking alleviation technique for beam and plate ele-
ments. It is clear that the ANCF/FFR beam and plate SSM models
converge faster than the ANSYS BEAM188 and SHELL181 ele-
ments. While the ANSYS SOLID185 element does not converge as
well as the ANSYS beam and plate elements, it can be noted that the
ANSYS SOLID185 mesh with an element aspect ratio closest to one
(N¼ 50) results in the closest frequency to the analytical solution.
This example demonstrates that the ANCF/FFR elements with the
SSM elastic force formulation converge to the correct solution at
a faster rate compared to the finite elements implemented in com-
mercial FE software.

7.2 Straight Beam With Tapered Cross Section. Because
rotation-based displacement fields of conventional beam and plate
finite elements cannot have varying cross section thickness by
changing the nodal coordinates, a large number of elements are
required to approximate a tapered-structure geometry, leading to a
stepped geometry. ANCF/FFR elements, on the other hand, can
be used to accurately model a structure with linearly varying
thickness, using only a single element, as shown in Fig. 1. Tables 3
and 4 show the first in-plane and out-of-plane bending frequencies
for the tapered meshes considered. Figures 5 and 6 show the first

Table 2 Second bending frequency (rad/s) of the straight structure using different formulations

Formulation/number of elements N 1 2 5 10 20 50 100

ANCF/FFR GCM 3D beam 191.6942 130.4098 124.0558 118.0531 116.6132 116.2144 116.1576
ANCF/FFR SSM 3D beam 191.6942 112.3991 107.2571 102.0559 100.8083 100.4627 100.4135
ANCF/FFR GCM plate N � 2 341.9628 121.3376 113.5994 107.2422 105.6727 105.2252 105.1564
ANCF/FFR SSM plate N � 2 341.9629 112.3894 107.2429 102.0397 100.7876 100.4335 100.3791
ANCF/FFR GCM solid N � 2� 2 176.6529 138.5419 130.1758 119.6960 116.7695 115.6741 115.4545
ANSYS BEAM188 618.1954 (axial) 164.9812 (torsion) 120.7506 104.7094 101.1722 100.2127 100.0767
ANSYS SHELL181 N � 2 182.7274 (torsion) 122.4986 (shear) 122.8065 105.0510 101.2182 100.1696 100.0143
ANSYS SOLID185 N � 2� 2 307.1132 (axial) 284.9385 (axial) 302.6457 162.3752 115.4367 99.4000 96.9092
Euler–Bernoulli 101.689
Timoshenko 99.966
1000 element BEAM188 100.0319

Fig. 4 Error in the second bending frequency of the straight

beam ( ANCF/FFR GCM 3D beam, ANCF/FFR

SSM 3D beam, ANCF/FFR GCM plate, ANCF/

FFR SSM plate, ANCF/FFR GCM solid, ANSYS

BEAM188, ANSYS SHELL181, ANSYS SOLID185)

Table 1 First bending frequency (rad/s) of the straight structure using different formulations

Formulation/number of elements N 1 2 5 10 20 50 100

ANCF/FFR GCM 3D beam 32.7039 32.5999 29.8656 29.4988 29.4081 29.3828 29.3792
ANCF/FFR SSM 3D beam 28.1872 28.1205 25.7609 25.4443 25.3660 25.3441 25.3410
ANCF/FFR GCM plate N � 2 29.5974 29.5003 27.0754 26.6889 26.5905 26.5622 26.5578
ANCF/FFR SSM plate N � 2 28.1869 28.1199 25.7601 25.4433 25.3647 25.3422 25.3388
ANCF/FFR GCM solid N � 2� 2 52.8882 45.3150 32.8058 30.2468 29.5383 29.3178 29.2821
ANSYS BEAM188 177.3321 (torsion) 34.3805 26.5193 25.6094 25.3891 25.3279 25.3192
ANSYS SHELL181 N � 2 94.1361 (axial) 35.4760 26.6151 25.6300 25.3921 25.3251 25.3151
ANSYS SOLID185 N � 2� 2 191.6296 (torsion) 193.0538 69.6048 40.0467 28.9948 25.1043 24.4991
Euler–Bernoulli 25.422
Timoshenko 25.315
1000 element BEAM188 25.3163
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in-plane and out-of-plane bending mode shapes of the ANCF/FFR
beam model, respectively. The percentage relative frequency
errors for the two modes are shown in Figs. 7 and 8. There are
fewer data points for the ANSYS BEAM188 curve because the rela-
tive error is 0, which cannot be plotted on a log–log plot. The
results obtained for the tapered geometry show similar trends
compared to the straight-geometry results previously reported; the
GCM frequencies converge to a higher value due to the increased
stiffness caused by the Poisson locking, and the SSM frequencies
converge to the correct solution. Furthermore, the solid element
model, which cannot utilize the SSM locking alleviation, con-
verges to a higher natural frequency for both the in-plane and out-
of-plane mode shapes. Also as in the case of the straight mesh, the
ANSYS SHELL181 and SOLID185 elements converge to a fre-
quency below the correct solution.

It is important to note that the out-of-plane frequencies for the
ANCF/FFR plate element are not affected by SSM locking

alleviation. This is because the plate midsurface is defined in the
lateral plane with respect to the plate, and therefore, vibration
must occur across this plane. For the cases of out-of-plane fre-
quencies, the vibration occurs in the same plane as the plate mid-
surface; therefore, the decomposed strain terms are not properly
defined away from the midsurface. However, it is evident that the
in-plane plate frequencies for the SSM case converge to the cor-
rect solution. Furthermore, both in-plane and out-out-plane fre-
quencies for the ANCF/FFR beam element SSM model converge
to the correct value, because the beam centerline is symmetric
with respect to both directions of vibration.

7.3 Curved Beam With Uniform Cross Section. As in the
case of tapered structures, a relatively large number of conven-
tional finite elements is required to approximate the curved struc-
ture geometry as compared to the ANCF/FFR elements. In the

Fig. 5 Multiview of the first in-plane bending mode shape of the tapered beam

Table 3 First in-plane bending frequency (rad/s) of the tapered structure using different formulations

Formulation/number of elements N 1 2 5 10 20 50 100

ANCF/FFR GCM 3D beam 31.6704 23.7657 22.8707 22.7545 22.7256 22.7175 22.7175
ANCF/FFR SSM 3D beam 27.6221 20.5424 19.7674 19.6667 19.6417 19.6347 19.6337
ANCF/FFR GCM plate N � 2 29.5201 22.3989 21.0271 20.7542 20.6478 20.6004 20.5910
ANCF/FFR SSM plate N � 2 27.6221 20.5424 19.7674 19.6667 19.6417 19.6347 19.6337
ANCF/FFR GCM solid N � 2� 2 40.6038 28.0982 23.8727 23.0720 22.8168 22.7137 22.6922
ANSYS BEAM188 14.1649 18.3714 19.4210 19.5370 19.5642 19.5717 19.5727
ANSYS SHELL181 N � 2 18.1454 18.0638 17.3248 17.1712 17.1241 17.1071 17.1041
ANSYS SOLID185 N � 2� 2 130.1173 71.4767 33.5133 23.4403 20.0917 19.0314 18.8739
1000 element BEAM188 19.5731

Table 4 First out-of-plane bending frequency (rad/s) of the tapered structure using different formulations

Formulation/number of elements N 1 2 5 10 20 50 100

ANCF/FFR GCM 3D beam 15.1093 13.3050 12.9364 12.8850 12.8722 12.8686 12.8681
ANCF/FFR SSM 3D beam 13.0301 11.4724 11.1544 11.1101 11.0991 11.0960 11.0955
ANCF/FFR GCM plate N � 2 36.2924 21.0132 15.0312 13.8731 13.5437 13.4346 13.4137
ANCF/FFR SSM plate N � 2 36.2927 21.0131 15.0311 13.8731 13.5438 13.4347 13.4134
ANCF/FFR GCM solid N � 2� 2 35.7582 20.6194 14.5825 13.3747 13.0204 12.8989 12.8763
ANSYS BEAM188 9.4597 10.9236 11.0813 11.0884 11.0894 11.0897 11.0897
ANSYS SHELL181 N � 2 8.9538 10.7804 11.0967 11.1179 11.1214 11.1220 11.1220
ANSYS SOLID185 N � 2� 2 113.0915 67.3278 29.4375 17.4380 12.7290 11.0473 10.7845
1000 element BEAM188 11.0897
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case of the ANCF/FFR elements, the use of the parent ANCF ele-
ment, which has position-vector gradients as nodal coordinates,
allows modeling the curved-structure geometry shown in Fig. 2
using only two ANCF/FFR elements. Tables 5 and 6 present the

first in-plane and out-of-plane bending frequencies for the curved
geometry considered, while Figs. 9 and 10 show the first in-plane
and out-of-plane bending mode shapes of the ANCF/FFR beam
model, respectively. The percentage relative errors in the

Fig. 6 Multiview of the first out-of-plane bending mode shape of the tapered beam

Fig. 7 Error in the first in-plane bending frequency of the
tapered beam ( ANCF/FFR GCM 3D beam,

ANCF/FFR SSM 3D beam, ANCF/FFR GCM
plate, ANCF/FFR SSM plate, ANCF/FFR
GCM solid, ANSYS BEAM188, ANSYS SHELL181,

ANSYS SOLID185)

Fig. 8 Error in the first out-of-plane bending frequency of the
tapered beam ( ANCF/FFR GCM 3D beam,

ANCF/FFR SSM 3D beam, ANCF/FFR GCM
plate, ANCF/FFR SSM plate, ANCF/FFR
GCM solid, ANSYS BEAM188, ANSYS SHELL181,

ANSYS SOLID185)

Table 5 First in-plane bending frequency (rad/s) of the curved structure using different formulations

Formulation/number of elements N 1 2 5 10 20 50 100

ANCF/FFR GCM 3D beam 109.2084 33.9920 6.7518 4.6318 4.4805 4.4736 4.4738
ANCF/FFR SSM 3D beam 73.3045 29.8266 6.3383 4.0607 3.8690 3.8552 3.8547
ANCF/FFR GCM plate N � 2 108.5198 33.1387 6.4425 4.2558 4.0747 4.0547 4.0519
ANCF/FFR SSM plate N � 2 72.5980 29.0768 6.2307 4.0479 3.8676 3.8550 3.8545
ANCF/FFR GCM solid N � 2� 2 76.6774 22.4410 6.6824 4.9141 4.5787 4.4885 4.4731
ANSYS BEAM188 4.3211 4.1789 3.9140 3.8706 3.8595 3.8564 3.8560
ANSYS SHELL181 N � 2 4.4720 4.2349 3.9312 3.8796 3.8653 3.8605 3.8596
ANSYS SOLID185 N � 2� 2 101.8209 47.2564 16.0330 8.4449 5.2879 3.9992 3.7797
1000 element BEAM188 3.8558
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frequencies are shown in Figs. 11 and 12. The results are similar
to the previous two cases in that SSM meshes converge to the cor-
rect values, except for the out-of-plane modes for the reasons pre-
viously explained, and the GCM frequencies are too high due to
the Poisson locking effect. The fact that the very coarse ANSYS

meshes agree more closely with the correct solution as compared
to the ANCF/FFR meshes is a coincidence because the geometry

of this model is not accurately described using conventional ele-
ment kinematics. This example demonstrates that the ANCF/FFR
elements can be used to model initially curved structures without
geometry distortion, and demonstrates effectiveness of the SSM
locking alleviation technique.

Because locking can lead to deterioration in the computational
efficiency and in the element convergence characteristics, the

Table 6 First out-of-plane bending frequency (rad/s) of the curved structure using different formulations

Formulation/number of elements N 1 2 5 10 20 50 100

ANCF/FFR GCM 3D beam 25.2684 8.1925 4.7255 4.1991 4.1548 4.1502 4.1499
ANCF/FFR SSM 3D beam 21.0215 7.8382 4.4274 3.7946 3.7419 3.7373 3.7371
ANCF/FFR GCM plate N � 2 32.7246 11.2278 5.6383 4.6904 4.4257 4.3443 4.3314
ANCF/FFR SSM plate N � 2 28.2453 10.9113 5.6282 4.6879 4.4242 4.3430 4.3302
ANCF/FFR GCM solid N � 2� 2 26.8680 8.2285 5.1307 4.4407 4.2236 4.1245 4.1017
ANSYS BEAM188 4.3211 4.0611 3.7252 3.6731 3.6599 3.6563 3.6557
ANSYS SHELL181 N � 2 5.1998 4.1273 3.4804 3.3757 3.3458 3.3349 3.3325
ANSYS SOLID185 N � 2� 2 95.8833 9.1914 6.9048 5.7906 4.6157 3.8374 3.6819
1000 element BEAM188 3.6556

Fig. 9 Multiview of the first in-plane bending mode shape of the curved beam

Fig. 10 Multiview of the first out-of-plane bending mode shape of the curved beam
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SSM locking alleviation technique has proven to be very effective
in addressing the locking problem, improving the convergence
characteristics, and enhancing the computational efficiency of
fully parameterized ANCF elements. Because this paper is
focused on the eigenvalue analysis which does not require per-
forming time-dependent dynamic-analysis simulations, the effi-
ciency is not an issue in this study. Nonetheless, the effectiveness
of the SSM method in solving the locking problem has been
already demonstrated in the literature [45,53].

8 Conclusions

In the classical FE literature, different displacement fields are
used for straight and curved elements, and for plate and shell ele-
ments. Furthermore, the kinematics of these elements is not line-
arly related to B-splines and NURBS. Nonetheless, these elements
are widely used in industry to create reduced-order models for

virtual prototyping and design. Because incompatible methods are
currently used in the CAE process for creating the geometry and
defining the FE analysis mesh, converting CAD solid models to
analysis meshes lacks a scientific foundation, and consequently, is
an error-prone process. This paper addresses this fundamental
CAE problem by evaluating the convergence characteristics of
new geometrically accurate three-dimensional beam, plate, and
solid infinitesimal-rotation elements based on the ANCF kine-
matic description [21]. These elements allow developing geomet-
rically accurate reduced-order models that can be used for both
structural and MBS applications. Arbitrary large displacements
can be described by using the FFR kinematic description. The ini-
tial geometry is described using the ANCF position-vector gra-
dients, which allow modeling complex geometries. The gradients
are written in terms of infinitesimal rotations by using a constant
velocity transformation matrix. Component-mode synthesis tech-
niques can then be used to reduce the problem dimension. In this
investigation, the stiffness matrix is formulated using the general
continuum mechanics approach and the strain split method is
used in order to alleviate the locking problem in the case of
beam and plate elements. The frequencies and mode shapes pre-
dicted using the spatial ANCF/FFR elements are compared to
those obtained using a commercial FE code and analytical solu-
tions. It is shown that the strain split method is a viable locking
alleviation technique, and when it is used to formulate the stiff-
ness matrix, the resulting frequencies agree well with the analyti-
cal and the FE-code reference solutions. The new ANCF/FFR
elements have the same number of nodal coordinates as their
counterpart conventional finite elements. Furthermore, when
using the ANCF/FFR elements, no distinction is made between
plate and shell elements.

While the recently introduced spatial elements considered in
this study can be used to develop geometrically accurate reduced-
order models for structural and MBS applications, more research
is needed in order to understand their behavior and improve their
performance and convergence characteristics. To this end, differ-
ent formulations of the elastic forces can be attempted as well as
different new locking-alleviation techniques more suited for these
elements can be developed. In MBS applications, these elements
can be used with the nonlinear FFR formulation to create a local
linear problem that allows utilizing coordinate reduction techni-
ques. In MBS applications, only the shape of deformations is
important since the frequencies of the linear problem does not
have an effect on the solution of the nonlinear problem [54].
Therefore, the frequency convergence can be more important in
structural system applications as compared to MBS applications.
Furthermore, use of linearization or perturbation techniques to
study stability of MBS applications based on the constant mass
and stiffness matrices of these elements or other conventional ele-
ments is not recommended because of the problems associated
with such linearization and perturbation techniques when applied
to the highly nonlinear MBS applications [55,56].
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