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a b s t r a c t 

This paper proposes a new hybrid actuation system for near-elimination of the small oscil- 

lations of articulated flexible-robot systems (AFRS). The hybrid actuation control forces are 

obtained by solving a fully-constrained inverse-dynamics (FCID) problem of relatively stiff

robots experiencing small deformations, which lead to deterioration of their performance 

and precision. The FCID procedure is based on the floating frame of reference (FFR) for- 

mulation that allows for systematically determining the actuation forces associated with 

deformation modes. By using the resulting FCID algebraic equations, numerical integration 

of the equations of motion to determine the AFRS actuation forces can be avoided. This 

paper summarizes the new motion/shape control strategy to be used and defines problems 

to be addressed in more detailed future investigations. 

© 2021 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

High precision is required for all manufacturing robots to ensure safety as well as high-quality and low-cost products. 

Recognizing the significant economic impact of manufacturing robots, the European Union launched an important initia- 

tive, the multi-organization COMET ( Co mponents and Met hods for Adaptive Control of Industrial Robots) project with the 

goal of exploring new manufacturing robot designs to replace the more-costly and less-versatile traditional machine tools. 

While robots, in general, are much cheaper than machine tools, the main challenge is the robot accuracy which is in the

1 mm range, while milling machines, for example, have 0.001 mm accuracy range. The COMET researchers were successful in 

making improvement in the robot accuracy (0.05 mm) without using sophisticated virtual prototyping techniques that allow 

experimenting with and optimizing different design configurations to achieve a precision superior to the 0.001 mm accuracy 

of the conventional machine tools. 

Undesired oscillations of flexible robot systems can be broadly classified under two main categories: inverse-dynamics- 

actuation oscillations (IDAO) and disturbance-produced oscillations (DPO). The IDAO type is the result of using incomplete or 

improper definitions of the actuation control forces and moments, which are the basis for the open-loop control system. 

Based on the specified motion trajectories with no disturbance, the actuation forces and moments can be determined using 

an inverse dynamics procedure. If there are no disturbances, the actuation forces and moments predicted using the inverse 
∗ Corresponding author. 

E-mail addresses: shabana@uic.edu (A .A . Shabana), aeldee2@uic.edu (A.E. Eldeeb). 

https://doi.org/10.1016/j.jsv.2021.116015 

0022-460X/© 2021 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.jsv.2021.116015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jsv
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2021.116015&domain=pdf
mailto:shabana@uic.edu
mailto:aeldee2@uic.edu
https://doi.org/10.1016/j.jsv.2021.116015


A .A . Shabana, A.E. Eldeeb and Z. Bai Journal of Sound and Vibration 500 (2021) 116015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dynamics problem are assumed sufficient to achieve the desired motion trajectories. The DPA type, on the other hand, is the

result of unexpected disturbances which are not taken into consideration in the design of the actuation system based solely 

on the specified motion trajectories and the solution of the inverse dynamics problem. For the elimination of this type of

oscillations, a feedback control system is required. 

The lack of virtual prototyping approaches, applicable to constrained flexible multibody systems (MBS), represents a se- 

rious challenge in achieving a higher degree of precision, which cannot be achieved by more reliance on costly physical

prototyping and experimentation. This paper addresses this challenge by proposing a new hybrid-actuation approach for the 

near-elimination of small oscillations of relatively stiff articulated flexible robot systems (AFRS) as those used in manufactur- 

ing applications. The paper is concerned with the IDAO type and presents preliminary numerical results that demonstrate 

the significance of accounting for the deformation degrees of freedom when determining the actuation forces and moments 

based on the solution of the inverse problem. In the proposed new motion/shape control approach, the FFR formulation is 

used to define the driving control forces associated with the joint coordinates and deformation modes. Two different actua- 

tion types are used; the first is conventional motors and/or actuators placed at the robot articulated joints, while the second

is a deformation actuation system designed to control the fundamental vibration modes that can contribute to deterioration 

in the robot overall performance and precision. The deformation actuation can be achieved using, for example, piezoelectric 

actuators whose number is equal to the number of deformation modes to be controlled [1–5] . The FCID procedure proposed

in this paper leads to a system of algebraic equations that can be efficiently solved for the driving control forces associated

with the articulated joint and deformation degrees of freedom. 

2. Equipollent systems of forces 

In the FFR formulation for flexible bodies, the global position vector of an arbitrary point on a flexible body i can be

written as r i = R 
i + A 

i ( ̄u i o + ū i 
f 
) = R 

i + A 
i ( ̄u i o + S i q i 

f 
) , where R 

i is the global position of the body reference point, A 
i is the

transformation matrix of the body coordinate system, ū i o = x = [ x 1 x 2 x 3 ] 
T is the position of the point before deforma- 

tion, ū i 
f 

= S i q i 
f 
is the deformation vector, S i = S i (x ) is a shape function matrix, and q i 

f 
is the vector of elastic coordinates

that define the body deformations. A virtual change in r i leads to δr i = δR 
i − A 

i ̃  ū 
i 
Ḡ 
i δθi + A 

i S i δq i 
f 

= L i δq i , where ˜ ū 
i 
is a skew 

symmetric matrix associated with vector ū i = ū i o + ū i 
f 
, Ḡ 

i is the matrix that relates the angular velocity vector ω̄ 
i , defined in 

the body coordinate system, to the time derivatives of the orientation parameters θi 
, that is ω̄ 

i = Ḡ 
i ̇ θ

i 
, L i = [ I − A 

i ̃  ū 
i 
Ḡ 
i A 

i S i ] ,

and q i = [ R 
i T θi T 

q i 
T 

f 
] T [6] . 

In the case of flexible bodies, a force acting at a point is equipollent to a system of forces at another point that con-

sists of the same force, a deformation-dependent moment, and a set of generalized forces associated with the deforma- 

tion degrees of freedom [7–8] . For example, using the virtual displacement δr i , the virtual work of a force vector F i act-

ing at a point can be written as δW 
i 
e = F i 

T 
δr i = F i 

T 
δR 

i − F i 
T 
A 
i ̃  ū 

i 
Ḡ 
i δθi + F i 

T 
A 
i S i δq i 

f 
, which can be written as δW 

i 
e = Q 

i T 

R 
δR 

i +
Q 
i T 

θ
δθi + Q 

i T 

f 
δq i 

f 
, where Q 

i 
R 

= F i , Q 
i 
θ

= Ḡ 
i T ˜ ū 

i T 

A 
i T F i , and Q 

i 
f 

= S i 
T 
A 
i T F i . This concept of equipollent systems of forces in flexible-

body dynamics is fundamental in defining the hybrid actuation for the near-elimination of small oscillations of stiff robot 

manipulators. 

3. FCID procedure 

The new hybrid-actuation procedure proposed in this study is based on using a flexible-body inverse-dynamics formula- 

tion in which the number of specified motion-trajectory constraints is equal to the number of the system coordinates. This 

procedure is referred to as the fully-constrained inverse-dynamics (FCID) procedure to distinguish it from the inverse problem 

in which the number of constraint equations is less than the number of coordinates. The FCID procedure can be used for

both motion and shape controls . 

By enforcing trajectory constraints that ensure that the amplitudes of the fundamental modes remain equal to zero in the 

FCID algorithm, one obtains a set of algebraic equations that can be solved for the driving joint forces as well as the driv-

ing actuation forces that ensure that the deformation-mode amplitudes remain equal to zero. These joint and deformation 

actuation forces can be used to define the articulated joint motors and actuators as well as the piezoelectric deformation 

actuators, required to achieve a high accuracy by producing the desired motion trajectories and near-elimination of the 

small oscillations. The uncontrolled high-frequency modes have high stiffness and complex shapes that make encountering 

spill-over problems is unlikely. However, this important issue, among others, will be addressed in future investigations. The 

FFR equations of motion, subjected to the constraint equations C ( q , t ) = 0 , can be written as M ̈q = Q e + Q c , where M is the

system mass matrix, Q e is the vector of applied and quadratic-velocity inertia forces, and Q c is the vector of constraint forces

written in terms of Lagrange multipliers as Q c = −C T q λ. In this equation, C q = ∂C / ∂q is the constraint Jacobian matrix; and

λ is the vector of Lagrange multipliers. By specifying the motion trajectories, including the deformation amplitudes, one 

obtains a system of algebraic equations that can be solved for the driving actuation forces associated with the articulated 
2 
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joints and deformation modes. This algebraic system of equations can be written as [
M C T q 
C q 0 

][
q̈ 
λ

]
= 

[
Q e 

Q d 

]
(1) 

In this equation, Q d is the vector that appears in the second time derivatives of the constraint functions, that is, C q ̈q = Q d .

Unlike, the partially-constrained inverse-dynamics (PCID) problem [9] , in the preceding sparse-matrix equations, the number 

of constraint equations is equal to the number of coordinates, and therefore, the FCID problem does not require numerical 

integration of differential equations in order to determine the driving forces. 

4. Hybrid actuation 

The constraint-function vector C can be partitioned into 2 different sets of constraint types as C = [ C T m 
C T s ] 

T , where

C m and C s are, respectively, the constraints associated with the MBS articulated mechanical joints and the constraints 

associated with the specified motion trajectories. The vector of Lagrange multipliers can be partitioned accordingly as 

λ = [ λT 
m 

λT 
s ] 

T . Using this partitioning, the actuation constraint forces associated with the coordinate vector q can be 

written as −( ∂ C s / ∂q ) T λs . The virtual work of these driving control forces can be written as δW a = −[ ( ∂ C s / ∂q ) 
T λs ] 

T δq . The
virtual change in the coordinate vector q can be written in terms of the virtual change in the independent coordinates

q i , which include the joint variables and deformation degrees of freedom, as δq = B di δq i , where B di is a velocity transfor-

mation matrix [6] . Using this velocity transformation, the virtual work of the driving-constraint forces can be written as 

δW a = −[ ( ∂ C s / ∂q ) 
T λs ] 

T B di δq i = Q 
T 
i j 
δq i j + Q 

T 
i f 
δq i f , where Q i j and Q i f , are, respectively, the generalized articulated-joint and 

deformation-piezoelectric actuation forces. The piezoelectric voltage can be selected to produce the forces Q i f required to 

suppress the robot small oscillations. 

Because the coordinates in the equation δW a = −[ ( ∂ C s / ∂q ) 
T λs ] 

T B di δq i = Q 
T 
i j 
δq i j + Q 

T 
i f 
δq i f are independent, one has 

[
Q 

T 
i j 

Q 
T 
i f 

]
= −

[
( ∂ C s / ∂q ) 

T λs 

]T 
B di (2) 

The vectors of generalized forces Q i j and Q i f can be expressed in terms of a number of actual actuation forces and moments

equal to the number of joint and deformation degrees of freedom as [9] [
Q i j 

Q i f 

]
= B ia F ia = −B 

T 
di 

[
( ∂ C s / ∂q ) 

T λs 

]
(3) 

In this equation, B ia is the square matrix that relates the generalized actuation forces to the actual actuation forces; 

this is with the assumption that each mode of vibration is controlled by one actuator such as piezoelectric actuators. 

Use of number of deformation actuators equal to number of deformation modes in the FCID problem ensures that all 

the degrees of freedom are controlled. The vector B T 
di 
[ ( ∂ C s / ∂q ) 

T λs ] is known from the solution of the FCID problem.

Therefore, Eq. (3) can be solved for the actual joint and deformation actuation forces. The actual deformation actuation 
Fig. 1. Flexible robot manipulator. 
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forces in the vector F ia can be, for example, used to determine the piezoelectric voltage required to achieve the desired 

motion [9] . 

5. Numerical example 

In this section, the planar two-link robot example, shown in Fig. 1 , is used to demonstrate the significance of the de-

formation actuation. To this end, the FCID problem is used to define the joint and deformation actuations, which are then

applied to two forward-dynamics models; in the first model, both joint and deformation actuations are applied, while in 

the second model only the articulated joint actuation is applied. The robot example consists of two flexible links; Links 

1 and 2; with Link 1 connected to the base by a revolute joint at point O and to Link 2 by a revolute joint at point

A . Each link has a length 1 m and 0.025 ×0.015 m 
2 cross section. The two links are made of steel with elastic modulus

2 . 068427 × 10 11 N / m 
2 and the material density 7850 kg/m 

3 . The initial configuration of the two links is assumed to be

θ1 = 0 and θ2 = π/ 3 . The effect of gravity is considered in this example. Twenty Euler-Bernoulli planar beam elements are 

used in the FE discretization of the two links. Simply supported reference conditions are selected for Link 1, while Link 2

has cantilever reference conditions. Four modes are used for each link in both the inverse- and forward-dynamics problem. 

The specified motion trajectory of the end effector is assumed x d (t) = x 0 cos ( πt / 4 ) and y d (t) = y 0 cos ( πt / 4 ) , where x o and

y o are the coordinates of the end effector in the reference configuration. The modal coordinates in the FCID problem are 

constrained to zero; and the two forward-dynamic problems, with and without deformation actuations, are solved. Fig. 2 

shows comparison between the end-effector transverse deformations in the two cases. The results presented in this figure 

clearly demonstrates a high precision achieved by considering the deformation actuations in the case of articulated flexible 
robots. 
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Fig. 2. End-effector forward-dynamics transverse deformation ( −−� −− With deformation actuation, Without deformation actuation). 
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6. Summary and future investigations 

This paper proposes a new hybrid actuation method for articulated flexible robot systems (AFRS) that can be used to 

achieve a near-elimination of the AFRS small oscillations. Motion and shape constraints, whose number equal to the number 

of the system degrees of freedom, are enforced. This leads to a sparse system of algebraic equations that can be efficiently

solved for the driving constraint forces. These driving constraint forces can be used to define the articulated joint actuations 

as well as deformation actuations required to achieve the near-elimination of the AFRS small oscillations. The preliminary 

results obtained in this paper demonstrate the high precision achieved by considering the hybrid actuation method which 

controls the flexible link deformations. 

Important issues that will be discussed in future investigations are the control spill-over, the number and locations of 

deformation-piezoelectric actuators, the power consumption required for the near-elimination of the small oscillations, the 

response of the system to disturbance and the need for feedback control system use of under-actuation [10] , and the preci-

sion that can be achieved in comparison with what was achieved by the COMET project. 
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