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Abstract: Leaf area index (LAI) is an important biophysical indicator of forest health that is linearly 
related to productivity, serving as a key criterion for potential nutrient management. A single 
equation was produced to model surface reflectance values captured from the Sentinel-2 
Multispectral Instrument (MSI) with a robust dataset of field observations of loblolly pine (Pinus 
taeda L.) LAI collected with a LAI-2200C plant canopy analyzer. Support vector machine (SVM)-
supervised classification was used to improve the model fit by removing plots saturated with 
aberrant radiometric signatures that would not be captured in the association between Sentinel-2 
and LAI-2200C. The resulting equation, LAI = 0.310SR – 0.098 (where SR = the simple ratio between 
near-infrared (NIR) and red bands), displayed good performance (𝑅ଶ  = 0.81, RMSE = 0.36) at 
estimating the LAI for loblolly pine within the analyzed region at a 10-m spatial resolution. Our 
model incorporated a high number of validation plots (n = 292) spanning from southern Virginia to 
northern Florida across a range of soil textures (sandy to clayey), drainage classes (well drained to 
very poorly drained), and site characteristics common to pine forest plantations in the southeastern 
United States. The training dataset included plot-level treatment metrics—silviculture intensity, 
genetics, and density—on which sensitivity analysis was performed to inform model fit behavior. 
Plot density, particularly when there were < 618 trees per hectare, was shown to impact model 
performance, causing LAI estimates to be overpredicted (to a maximum of 𝑋௜ + 0.16). Silviculture 
intensity (competition control and fertilization rates) and genetics did not markedly impact the 
relationship between SR and LAI. Results indicate that Sentinel-2’s improved spatial resolution and 
temporal revisit interval provide new opportunities for managers to detect within-stand variance 
and improve accuracy for LAI estimation over current industry standard models. 

Keywords: leaf area index; loblolly pine; forestry; site variability; forest site productivity; remote 
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1. Introduction 

Loblolly pine is the most commercially important tree species in the southeastern United States 
[1]. Within this region, inherent soil nutrient deficiencies of nitrogen (N) and phosphorous (P) are 
very common [2]. As a result, the addition of fertilizer is often a necessary silvicultural practice both 
at the time of planting and also at mid-rotation. Fertilization—particularly with N—has a positive 
correlation with leaf area index (LAI), a dimensionless ratio quantifying projected leaf surface area 
per unit ground area. For intensively managed loblolly pine, LAI serves as an indicator of nutrient 
status and potential future volume growth [3]. Higher LAIs correspond with a greater capacity to 
intercept light, photosynthesize and fix carbon [4]. 
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Because LAI is laborious to directly measure in the field, many forest management companies 
utilize satellite-derived image products to assess the LAI of their stands throughout a rotation. 
Commonly sourced satellites today are Landsat 7 or Landsat 8, which are operated by NASA and 
launched in 1999 and 2013, respectively [5]. With reliable imagery produced at a spatial resolution of 
30 m with the Landsat 4 satellite since the early 1980s, the Landsat program continues to provide 
valuable observations of forest vegetation across the globe [6]. However, experimental forest 
management plots, the source of critical ground observations of quantities like LAI, are often smaller 
than the 30-m spatial resolution of Landsat image products (Figure A1). Forest inventory plot size 
widths used in this study ranged from 15 to 35 m, for instance. This discrepancy causes overlap 
between plot-level measurements and can lead to inaccurate and imprecise predictions [7]. 
Technological advances in geospatial analytics and the launch of satellites capable of retrieving data 
at finer resolutions with better targeted wavelength spectrums and shorter return intervals have 
provided the opportunity for improved LAI mapping and monitoring in forested sites. 

Operated by the European Space Agency (ESA), Sentinel-2 refers specifically to two satellites—
Sentinel-2A and Sentinel-2B—which have both been operationally in-orbit since the launch of 
Sentinel-2B in early 2017. In satellite remote sensing, leaf area index is most commonly calculated as 
a function of a spectral vegetation index (SVI), which is a combination of multiple spectral bands to 
calculate a single value [8]. Specifically, bottom-of-atmosphere reflectance values—sensor data 
processed to account for atmospheric distortion between the satellite sensor and at the ground—are 
used to analyze vegetation data such as forest canopy characteristics. Most recently, the LAI of 
loblolly pine was calculated via Landsat 8 satellites using the simple ratio (SR) index [9]. Compared 
to Landsat 8, an advantage Sentinel-2 provides for forest management is its four 10-m spatial 
resolution bands, which are sensitive to near-infrared (NIR), red, green, and blue electromagnetic 
radiation [10]. Furthermore, the five-day revisit time of Sentinel-2 creates a higher probability of 
producing cloudless imagery in the winter compared to the 16-day return rate for Landsat 8. This 
comparison between Landsat 8 and Sentinel-2 for estimating LAI has been directly explored in 
temperate, natural, deciduous broadleaf forests [11]. However, 20-m spatial resolution bands and 
many fewer field plots were used. 

The LAI-2200C is a plant canopy analyzer that works by measuring diffuse radiation 
transmissions that reach the instrument’s sensory eye, collected within five concentric rings at a 
scanning angle set by the operator. The LAI-2200C is known to reliably measure the LAI when leaf 
angle and leaf spatial distributions are unknown or random [12]. However, it will underestimate the 
LAI when foliage is clumped [13,14], as is the case in loblolly pine. These shortcomings can be 
corrected for post-acquisition via digital transformation and implementation of clumping index and 
scattering correction algorithms. Still, the LAI-2200C and other canopy gap fraction based approaches 
do not distinguish between photosynthetically active leaf tissue and other plant materials such as 
branches and stems [15]. 

Empirical relationships modeled between remotely sensed LAI and spectral vegetation indices 
(LAI-SVI) do not typically generalize well across varying geography [13]. One reason for this 
geographic variation is variations in chlorophyll content in foliage, which could be a result of 
improved nutrient content from the soil, leading to less stress-related foliar variation as N becomes 
more readily available [13,16]. Background changes, such as moss in the summer or snow in the 
winter, also create spatial and temporal variations in LAI-SVI relationships [17–19]. Because visible 
background is a known issue for the retrieval of LAI and similar biophysical variables, classification 
may allow for the discrimination of sites saturated by undesired background content. 

Support vector machine (SVM)-supervised classification works by designating a linear binary 
separation between designated distributions of feature inputs. Multidimensional hyperplanes are 
constructed as decision boundaries that minimize classification error [20]. In the case of this analysis, 
the feature inputs are represented as a set of radiometric signatures corresponding with each of the 
four bands in the composite raster image formed from the Sentinel-2 Level-2A product. The use of 
machine learning (ML) techniques such as SVM are becoming increasingly utilized in forested 
contexts to improve image classification in remote sensing [21,22]. Use-cases range from more broad 
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remote sensing tasks of land use and land cover classification, object detection, and scene recognition, 
to very specific implementations such as detecting and classifying bark beetle-induced tree mortality 
[23,24]. The use of SVM classification has also been used extensively in the agriculture domain [25] 
(e.g., for identifying and separating soil pixels in the context of corn fields [26]). 

No published equation currently exists that correlates in situ LAI values of loblolly pine with 
reflectance values produced by the various sensor bands of Sentinel-2. Further, most prior work has 
focused on natural forests rather than those managed. As a result, no publication has quantified plot-
level treatment effects commonly used in forest management research, such as density management 
and genetic selection, with the resulting influence on a LAI-SVI model. Therefore, the objectives of 
this study were to: 
1. identify and model surface reflectance values captured from Sentinel-2 with field observations of 

loblolly pine LAI collected with a LAI-2200C; 
2. conduct sensitivity analysis to quantify model variance incurred from silviculture intensity, 

density, and genetics. 

2. Materials and Methods 

2.1. Research Sites and Field Data 

2.1.1. Research Sites 

Three research sites were included in this analysis (Figure 1). 

. 

Figure 1. Location map of the three sites used for field validation in this study. Latitude and longitude 
coordinates indicate the approximate center location(s) for each site. 

Two of the sites—Regionwide 20 in Bladen Lakes, North Carolina (RW20-NC), and Reynold’s 
Homestead, Virginia (RW20-VA)—were part of an ongoing trial established in 2009 to quantify the 
impact of silviculture intensity, stand density, and genetics on loblolly pine productivity (Table 1) 
[27]. Silviculture intensity in the context of the study was defined as being either “low” or “high”. 
Low silviculture intensity represents operational southeastern plantation forest management for the 
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site location, and high silviculture intensity consisted of complete competing vegetation control and 
ameliorating all nutrient limitations. There were six genotypes, primarily separated by variance in 
crown ideotype: four clonal varieties, one mass-control pollinated, and one open pollinated. The soil 
for RW20-NC was a poorly drained sand to loam derived from alluvium and loess; soil for RW20-
VA was a well-drained clay derived from schist and phyllite (Table 2). Both RW20-NC and RW20-
VA were installed with a split-split-plot design with three or four replications per site, totaling 252 
plots (Table 3). Each measurement plot size varied according to initial density, but included 25 trees 
(5 × 5), with the distance between rows at both sites equaling 3.66 m (with 6.8, 3.4, and 2.2 m between 
individual trees along the rows). 

Table 1. Silvicultural and generalized management history of datasets used in analysis. 

Dataset ID. Year Planted 
(Tree Age) 

Planting 
Density 

(Trees per 
Hectare) 

Silvicultural 
Activities 

Genetics 

RW19-FL 2000 (18) 
250, 500, 750, 
1235, 1235+ 

Thinning; 
Fertilization 

Open Pollinated 

RW20-VA 2009 (9) 618, 1235, 1835 Competition Control; 
Fertilization 

Mass-control 
Pollinated; 

Open Pollinated; 
4 Clones 

RW20-NC 2009 (9) 618, 1235, 1835 Competition Control; 
Fertilization 

Mass-control 
Pollinated; 

Open Pollinated; 
4 Clones 

The third site, RW19-FL, was planted in 2000 as part of a separate ongoing study seeking to 
quantify the impact of thinning and fertilization on productivity [28]. Specifically to be explored in 
this context was the relationship between individual stem growth, stand volume growth, and stand 
density in nutrient rich environments. RW19-FL was established as a randomized complete block 
study design totaling 40 plots (Table 3). The soil was a somewhat-to-very-poorly drained spodic 
sandy loam of the Atlantic Flatwoods derived from beach sand and mud (Table 2). Similar to RW20-
NC and RW20-VA, measurement plots varied according to density, though in the case of RW19-FL 
this metric was post-thin density and resulted in four measurement plot size widths: 20, 25, 30, and 
35 m. 

Table 2. Soil and geological characteristics of sites used in this study. 

Dataset ID Soil Texture Soil Drainage 
USDA 

Soil Series 
Underlying Geology  

(Parent Material) 

RW19-FL Sand; sandy 
loam (spodic) 

Somewhat to Very 
Poorly Drained 

Chaires; 
Goldhead; 

Albany 

Atlantic Flatwoods, upper 
terrace (beach sand; clay; mud) 

RW20-VA Fine loamy; 
Clayey Well Drained Fairview; 

Braddock Schist; Phyllite 

RW20-NC Fine loamy Poorly Drained Rains Alluvium; loess; sand 

2.1.2. LAI-2200C Data Collection and Processing 

Indirect field measurements of LAI made with instruments like the LAI-2200C rely on 
measurements of canopy gap-fraction. As such, the measurements might be more accurately termed 
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“effective plant area index” rather than “LAI” [29]. However, for consistency with other literature, 
and LI-COR‘s documentation [30], hereafter we use “LAI” to refer to the field measurements made 
with the LAI-2200C instrument, and subsequent modeled measurements. 

A total of 292 in situ LAI observations were collected with the LI-COR LAI-2200C between 
January and March of 2018 (Table 3). A 10-degree view cap was equipped to a single sensing wand 
attached to a data logger to collect below-canopy measurements, while a separate sensing wand, also 
equipped with a 10-degree view cap, was set up in a nearby open field automatically logging above 
canopy light levels. Measurements were collected during the off-peak winter season to limit data 
confounded by non-target deciduous competition. Leaf area measured in the off-peak, winter season, 
would likely be lower than peak growing season values measured during the summer [31]. A 
minimum of 10 individual sensor retrievals were collected per plot as transects, following 
recommended best practices established by LI-COR [30]. Individual trees at RW20-NC and RW20-
VA had GPS data collected at their bases, with accuracy errors under 5 cm. RW19-FL had individual 
plot corner GPS data collected with similar accuracy. These GPS points were subsequently used as 
registration points for georectification of all geospatial data analyzed in this study. Field-collected 
LAI data were processed using LI-COR’s FV2200 software (v2.1). This included synthesis of time with 
light levels via sensor wand correlation, scattering correction and clumping indices set according to 
the forest type, and sensor ring obfuscation based on plot size. 

Table 3. General location and collection overview of datasets used in analysis. 

Dataset ID 
(County) 

Date of Field 
Observation 

Date of Sentinel-
2 Acquisition 

Days 
Variance 

LAI2200C 
Range 

Number 
of Plots 

RW19-FL 
(Nassau) 

5 Mar 2018 15 Mar 2018 +10 0.81–2.36 40 

RW20-VA 
(Patrick) 31 Jan 2018 8 Feb 2018 +9 0.89–5.09 144 

RW20-NC 
(Bladen) 24 Jan 2018 24 Jan 2018 0 0.92–5.64 108 

2.2. Sentinel-2 Data 

2.2.1. Pre-Processing 

Three Level-1C image granules were downloaded from the Copernicus Open Access Hub online 
repository. Cloud cover (including shadows), snow and ice, and other potentially image-degrading 
features were quantified via metadata filtering and spectral profiling of individual plots. Cloud 
coverage percentages were 0.00% for RW20-NC and RW19-FL. At RW20-VA, cloud coverage was 
1.68% across the entire granule, with 0% of cloud coverage shrouding any plot. Snow and ice 
percentages were 0.00% across all sites. No data were reported degraded. 

All images used in this analysis were acquired by the Sentinel-2 constellation within 10 days of 
LAI-2200C observation (Table 3). Because no Level-2A products had been made available by ESA at 
the time of writing, atmospheric correction was conducted manually across all bands via the Sentinel 
Application Platform (SNAP, v6.0.4) using the Sen2Cor plug-in (v255). The resulting Level-2A 
products were analyzed for quality and algorithm performance by cross-checking with Level-2A 
products released by the European Space Agency’s ground team for the same geographic region, but 
at later time periods. 

2.2.2. Spectral Indices and Exploratory Analysis 

Only four of Sentinel-2’s Multispectral Instrument (MSI)’s 13 bands had a 10-m spatial resolution 
(Bands 2, 3, 4, and 8) and were used in this analysis (Table 4). The relative variance of surface 
reflectance for these four bands was explored between all plots for all 292 sites (Figure 2). Five 
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common spectral indices were evaluated for performance in correlation with in situ observations of 
leaf area index measured with the LI-COR LAI-2200C instrument. 

Table 4. Wavelength specifications and bandwidths for Sentinel-2A Multispectral Instrument (MSI) 
bands that had a spatial resolution of 10 m. 

Band 
Number Description 

Central 
Wavelength (μm) 

Wavelength 
(Min–Max) Bandwidth  

2 Blue 0.494 0.439–0.535 0.096  
3 Green 0.560 0.537–0.582 0.045  
4 Red 0.665 0.646–0.685 0.039  
8 NIR 0.834 0.767–0.908 0.141  

The implemented indices were: simple ratio (SR) index, normalized difference vegetation index 
(NDVI), soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), and a two-band 
enhanced vegetation index (EVI2). 

Weighted and normalized means for each subsequent vegetation index were then extracted for 
all 292 field plots using the “extract” function from the R package raster. A simple linear regression 
was performed to select the best-performing vegetation index in linear correlation with the LAI-
2200C field observations. The performance of each resulting model based on the spectral index was 
then tested by performing k-fold (n = 10) cross-validation using the caret package in R. This validation 
method evaluates model performance by randomly splitting the dataset into k-subsets (here, k = 10), 
reserving one subset and training the model against all the other subsets, then finally testing the 
model on the reserved subset. This process is repeated k-times, with the prediction error measured 
for each instance and averaged to ultimately serve as a performance metric [32]. 

Algorithm implementation, including but not limited to statistical analyses, radiometric 
conversion and spectral arithmetic, took place via the R programming language (R v.3.5.3) within the 
RStudio integrated development environment (v1.2.1335, Build 1379). See Table B1 for a complete list 
of R packages used. 

 
Figure 2. Boxplots of Sentinel-2 band reflectance values showing the relative variance of surface 
reflectance observed between all plots for all sites used in this analysis. Number of total plots included 
= 292. Only those Sentinel-2 MSI bands with a spatial resolution of 10 m were used. B2 = Blue; B3 = 
Green; B4 = Red; B8 = NIR. 

2.3. Support Vector Machine Classification and Plot Segmentation 
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SVM classification was implemented using ArcGIS Pro (v2.4.2), and the following process was 
repeated independently for each of the three research sites. First, a classification schema was 
configured to subdivide training data classes according to categories of expectedly similar spectral 
categories: Loblolly Canopy; Loblolly w/ Soil; Bare Soil; and Other. A spectral profile analysis was 
conducted across the entire Sentinel-2 scene prior to manually selecting training samples to fall into 
one of those four classes. Loblolly Canopy was defined as those grid cells most occupied by pure and 
unsaturated loblolly pine canopy. Loblolly w/ Soil were regions within the loblolly plantation that 
certainly had their grid cell values gathered from loblolly pine canopy, but were also likely influenced 
by underlying soil reflectance and/or leaf litter. Bare Soil was attributed to samples collected where 
only dirt roads were found within the 10-m grid cell window. Other was composed of water, urban, 
and similarly undesired non-vegetative spectral attributes. Spectral profiles were used to guide each 
selection (Figure 3a). A minimum of 20 training sample polygons were established per class. 

 
Figure 3. Shown here are (a) reflectance spectra for individual training samples, displaying the 
relative range in reflectance for each training sample class, and (b) the RW20-VA raster output using 
the support vector machine (SVM)-supervised classification based on the four classes. 

After the training dataset was delineated, the SVM classifier was run and the output images 
were analyzed and segmented (Figure 4). Plots whose boundaries covered the resulting SVM-
determined class of Loblolly Canopy were always kept. Plots with the other three designated classes 
falling within their boundaries were systematically filtered, with Bare Soil and Other-occupied plot 
boundaries always being removed. Whether a plot occupied by the Loblolly w/ Soil class was removed 
depended on the relative percentage (> 50%) of the plot boundary covered by undesired spectra 
(Figure 4). Relative percentages of raster cell values within vector polygons can be retrieved using 
the “extract” function in the raster R package, specifically based on settings to the “weights” 
argument. For each polygon, a matrix with the cell values and the approximate fraction of each cell 
covered by the polygon is returned. 

The resulting SVM-filtered dataset was then subjected to outlier detection based on boxplots of 
LAI-2200C values, whereby values were removed that fell above or below the 1.5 * interquartile 
range. After both of these processes were conducted, the completed dataset consisted of 218 plots 
(RW20-NC = 76; RW20-VA = 106; RW19-FL = 36). Distribution of LAI remained normal, with a range 
of 0.81 to 4.91. Weighted and normalized means were extracted for 218 plots based on five spectral 
indices. A linear regression model was fit such that in situ LAI was the dependent variable and the 
extracted spectral index mean was the independent variable. 
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Figure 4. RW20-NC delineated using support vector machine-supervised classification, then having 
plots filtered (shown with red boundary) where soil or leaf litter reflectance saturation occurred. 

2.4. Comparison to Industry Standard Models 

Two industry standard models were compared with the best-fitting model produced in this 
analysis (Table 5). Landsat 7 and Landsat 8 imagery was obtained from the United States Geologic 
Survey EarthExplorer as analysis-ready datasets (ARDs). Datasets were filtered with cloud cover, 
cloud shadow cover, and snow and ice thresholds set to ≤ 6%. Imagery acquisition dates were 16 
March 2018, 5 February 2018, and 20 January 2018 for RW19-FL, RW20-VA, and RW20-NC, 
respectively. The R package FPCLandsat was used to derive image products. 

Table 5. Industry standard models used for comparison against the Sentinel-2 model. LAI = leaf area 
index. 

Model Equation 
Landsat 7 Model [7]  LAI =  0.56𝑆𝑅 –  0.83  
Landsat 8 Model [9]  LAI =  0.333𝑆𝑅 –  0.002  

3. Results 

3.1. LAI Model Formulation and Statistical Analysis 

The best-performing spectral index prior to SVM and outlier removal was the simple ratio (SR) 
index (R2 = 0.56, RMSE = 0.63, coefficient estimate: 0.304, intercept: − 0.025). See Table 6 for these 
results. 

Post-SVM, the performance of each resulting spectral index model displayed the same ranking 
order as before SVM supervised classification and outlier removal, with SR performing best (Figure 
5), followed by NDVI, SAVI, EVI, and EVI2. R2 and RMSE values improved throughout all index 
relationships. 

SR and NDVI exhibited the strongest response (relative increase in R2 and decrease in RMSE) to 
SVM-supervised classification (Table 7). Akaike’s Information Criterion (AIC) values were reported, 
enabling comparison of model performance across multiple parameters.  
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Table 6. Results of initial exploratory linear regression for five spectral indices across all 292 plots 
(prior to support vector machine supervised classification and outlier removal). Terms represent 
spectral indices: simple ratio (SR) index, normalized difference vegetation index (NDVI), soil adjusted 
vegetation index (SAVI), enhanced vegetation index (EVI), and a two-band enhanced vegetation 
index (EVI2). 

Term MSI Equation R2  RMSE 
SR [33]  B8 / B4  0.56 0.63 

NDVI [34]  B8 –  B4 / B8 +  B4  0.49 0.67 

SAVI [35]  (B8 –  B4) / (B8 +  B4 +  0.428) ∗ (1.0 +  0.428)  0.15 0.87 

EVI [36] ( B8 –  B4) / ((B8 +  6.0 ∗  B4 –  7.5 ∗ B2)  +  1.0)  0.10 0.89 

EVI2 [37]  2.4 ∗ (B8 –  B4) / (B8 +  B4 + 1.0)  0.10 0.89 

Table 7. Post-SVM and outlier removal results of k-fold (n = 10) cross-validation for the five spectral 
vegetation indices utilized in simple linear regression equations. Bold indicates best-fitting 
interaction. AIC = Akaike’s Information Criterion. 

Term  𝑹𝟐  Root Mean Square 
Error (RMSE) 

Mean Absolute 
Error (MAE) 

AIC 

SR  0.81 0.36 0.30 187 
NDVI  0.72 0.43 0.35 262 
SAVI  0.27 0.72 0.60 481 
EVI  0.19 0.76 0.63 505 
EVI2  0.19 0.76 0.63 504 

 
Figure 5. Simple Ratio model performance, post-SVM and outlier removal. Model-estimated LAI 
values are on the x-axis and field-observed LAI-2200C values are on the y-axis. Residuals are 
visualized by lines drawn from the primary linear regression line. A 95% confidence interval envelops 
the regression line in gray. 
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The following equation was determined to be a generally applicable base model for loblolly pine 
plantations in the southeastern United States: 𝐋𝐀𝐈 = 0.310𝑺𝑹 − 0.098 (1) 

where SR is the simple ratio of near-infrared (NIR) and red bands (Band 8 and Band 4, respectively) 
calculated using Sentinel-2 Level-2A surface reflectance images. 

3.2. Model Sensitivity Analysis to Imposed Treatments 

A multiple linear regression model was used to evaluate changes in measured in situ LAIs due 
to imposed treatments (i.e., silviculture intensity, genetics, and planting density), with SR and plot-
level treatments used as predictor variables as measured during the same season where the Sentinel-
2 acquisition occurred (Table 8). SR and plot-level stand density at the time of the last field 
measurement were found to be significant. A linear relationship between predictor variables and in 
situ LAI was confirmed by plotting residuals (y-axis) against fitted values (x-axis). Residuals were 
normally distributed (confirmed by a standard Q-Q plot) and displayed homogeneity in variance 
(confirmed by a scale-location plot). Multicollinearity was assessed via a Pearson correlation matrix, 
with no high correlations (> 0.7) between predictor variables being reported. 

Other models, such as a multivariate regression model and a generalized linear mixed model 
(with varying matrices of fixed and random effects) were tried but discarded during the exploratory 
phase in favor of the multiple linear regression model. 

Table 8. A multiple linear regression model evaluated in situ LAI, with SR and plot-level factors used 
as predictor variables. Adj. 𝑅2 = 0.827. RMSE = 0.347. AIC = 169. Bold indicates significance based on 
an alpha level of 0.005. 

Table Estimate Std. Error T-value p-value 

SR 0.3075 0.0122 25.152 < 0.0001 
Silv. Intensity1 0.0534 0.0507 1.054 0.2932 

Density 0.0005 0.0001 4.084 < 0.0001 
Genetics 0.0226 0.01447 1.564 0.1192 

1 For RW19-FL, silviculture intensity implies fertilized vs unfertilized after thinning. In RW20-NC and 
RW20-FL, silvicultural intensity denotes operational silviculture vs intensive silviculture. 

Only the main effect of stand density improved model performance (R2 = 0.83 and RMSE = 0.35) 
over Equation (1). The relative effect of field-measured plot density was incorporated as a random 
effect in a linear mixed model using the lmer function of the lme4 package in R, and these results are 
displayed in Table 9. Ultimately, such a minor improvement (𝑅ଶ  + 0.02, RMSE–0.01, AIC-18) did not 
warrant amending the recommended equation where only the linear relationship between the in situ 
LAI and the Sentinel-2 simple ratio was used. 

Table 9. Statistical summary of change in slope relative to field-measured plot density (trees per 
hectare), as a random effect, incorporated into a linear mixed model (response variable = in situ LAI; 
fixed effect = SR) at the time of Sentinel-2 image acquisition. 

Density. 
(Trees per hectare) Intercept 

Simple Ratio 
Coefficient 

< 250 -0.139 0.310 
251–618 -0.164 0.310 
619–750 -0.070 0.310 

751–1000 -0.053 0.310 
1001–1250 -0.006 0.310 
1251–1500 -0.050 0.310 
1501–1750 -0.023 0.310 
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1751–2225 -0.047 0.310 

3.3. Comparison to Industry Standard Models 

The best-fitting model produced in this analysis (LAI =  0.310𝑺𝑹 –  0.098) proved similar to 
what Blinn et al 2019, observed in their model (LAI =  0.333𝑺𝑹 –  0.002), correlating Landsat 8s 
Operational Land Imager and Thermal Infrared Sensor (OLI-TIRS) with LAI-2200C values [9]. 
Comparing the Landsat 8 model to our Sentinel-2 model showed that the Landsat 8 model generally 
over-predicted field LAI (Figure 6). This over-prediction was probably most closely associated with 
the 30-m spatial resolution restrictions of the Landsat 8 OLI-TIRS, thereby permitting estimates based 
on fewer raster cells per measurement plot boundary than the Sentinel-2 MSI. A previous industry 
standard model (𝐿𝐴𝐼 =  0.56𝑺𝑹 –  0.83)  based off of the simple ratio between near-infrared/red 
bands and top-of-atmosphere reflectance derived from Landsat 7s Enhanced Thematic Mapper 
(ETM) was also included in this direct comparison [7]. The Landsat 7 model underpredicted at all 
intervals except the very lowest end of the LAI spectrum. This underprediction is likely because the 
Landsat 7 model was based on top-of-atmosphere reflectance, thereby not accounting for 
atmospheric interference by clouds, aerosols, and other potential contributions. Also, the Landsat 7 
data were simultaneously based off fewer in situ LAI values (n = 12) at a single site in the Sandhills 
of North Carolina. 

 
Figure 6. Comparing the model produced in this article (Sentinel-2) against two prior industry 
standard models (using Landsat 7 and Landsat 8) [7,9]. Null data for the Landsat 7 model results from 
Enhanced Thematic Mapper (ETM) scan line corrector failure. 

4. Discussion 

4.1. Model Performance and Interpretations 

Our model performed well across three sites under multiple conditions typical of managed 
loblolly pine, but performance has yet to be gauged across even broader geographic ranges, under 
different site and management conditions. Robustness of the training dataset was determined by the 
range of variability at site-, stand-, and individual-tree-level perspectives. Loblolly pine displays 
variance in its structural development—specifically the formation of its crown and related foliar 
density—associated with intrinsic site attributes largely tied to the underlying soil [38]. For instance, 
soil drainage class and subsoil texture have been demonstrated to have a marked effect on growth 
efficiency, which is a metric gauging the relationship between volume production and leaf area index 
[39]. Growth efficiency (the efficiency with which an individual tree makes use of site resources to 
produce stem biomass) as well as LAI have been considered across sites with variability such as these 
before, with responses to silviculture being most apparent on nutrient-deficient, poorly drained sites 
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like RW20-NC [40]. Albaugh et al. (2019) specifically explored the growth efficiency and crown 
dynamics of RW20 sites, concluding that unexplored site variables are causing the large degree of 
variance in crown architecture, crown leaf area distribution, and individual tree growth efficiency 
between individual sites [41]. The ideal training dataset would cover as broad of a geographic range 
as possible to account for variety in loblolly pine’s native range. This is because a change in one’s 
geographic location results in a shift in site resource availability, which is a function of several 
things—nutrient supplying power, amount of rainfall, temperature, and so on. While the training 
dataset used in our analysis did not stretch across loblolly pine’s entire native range, to our 
knowledge no similar published work has incorporated a dataset as geographically extensive or 
measuring a greater number of in situ plots than the dataset applied here. 

As with any model, minor deviations can be expected in sites that are dissimilar (in terms of 
geographic region, soil, stand composition, etc.) from those used for this analysis. Likewise, when 
making inferences for values outside of those measured during model construction, one should 
expect a loss of model accuracy. For instance, the model recommended here did not perform well at 
LAI values below 1, because very few in situ LAI values were measured below 1. Lower density plots 
(< 618 trees per hectare), which had a lower stand-level LAI, were marginally overpredicted (Table 
9) at a scale of approximately 0.2 LAI. All other predicted LAI-by-density ranges displayed 
homoscedasticity, implying that the model was relatively stable across the remaining density 
spectrum (~ 621–2225 trees per hectare). 

The use of SVM-supervised classification to improve the relationship between Sentinel-2 and 
LAI-2200C proved useful in removing undesired spectral values, but the resulting model did not 
differ greatly from the relationship modeled prior to SVM and outlier removal. Supervised 
classification in this situation was only used to attempt to improve the prediction accuracy of the 
model itself. The aerial, top-down perspective, combined with the electromagnetic sensitivity of a 
satellite instrument sensor such as the MSI from Sentinel-2, is likely a more consistent metric of stand 
variance across time and space than the LAI-2200C instrument alone. Supervised classifiers are 
inherently subject to user error (the supervised element), though this common bias was sought to be 
removed through single-pixel selection paired alongside spectra profiles to best select those classes 
exhibiting reflectance characteristics of their delineation. 

Based on our analysis, a reasonable range of accuracy in estimating LAI at a 10-m spatial 
resolution is + 0.4 (Table 7). A positive trait about the simple ratio is that it is just as its name implies, 
a simple relationship between the NIR and red wavelengths. It becomes possible to explain some of 
the variance one picks up from such a minimalized band relationship, but one is still likely to see 
variance in estimated LAI that may or may not be explainable. Lower density stands will have more 
openings in their canopy, thus exposing the resulting analysis based on reflectance spectra to 
confounding variables such as soil, leaf litter, moisture and snow reflectance, and more. 

4.2. Future Research Directions 

SVM classification proved successful in improving the linear model developed between SR and 
LAI-2200C, but the relative improvement over the raw relationship between the two was low (based 
solely on changes in coefficient and intercept estimates). Indicators of fit (𝑅ଶ  and RMSE) were 
improved when examining management use cases, but whether one would observe these levels of 
accuracy from a standard operational perspective is still unknown. Improvements to the machine 
learning aspect of this analysis could certainly be made, such as further incorporating more data 
points, and using recently introduced algorithms have been beneficial to specific-use cases such as 
scene filtering among site heterogeneity [42]. Inclusion of datasets with individual tree metrics and 
underlying soil characteristics may lead to a better estimation of leaf area trends across space and 
time. Datasets of higher spatial resolutions would also likely lead to advances in projecting growth 
efficiency and similar metrics across sites, such as with LiDAR datasets. 

Consideration of other bands available in the Sentinel-2 MSI becomes more appealing when 
datasets are robust like those used in this analysis, though they exhibit coarser spatial resolutions 
than those considered in this work. It is logical to consider plot-level interactions from a perspective 
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of increased hyperspectral range, specifically in the red-edge spectrum afforded by Sentinel-2 bands 
4, 5, and 6. Following this now well-researched trend that approximately a third of the simple ratio 
between near-infrared and red bands is equal to in situ loblolly pine LAI, additional variances in LAI 
may be captured through a more detailed, finer-scaled inspection of remote sensing imagery paired 
with detailed site metrics. Few researchers have considered the use of machine learning and newer 
computer vision technology to improve correlations between dependent variables (e.g., nitrogen or 
chlorophyll content) and their reflectance observed on red-edge wavelengths [43]. Especially since it 
has been observed that Sentinel-2 red edge bands can improve predictions of chlorophyll and 
nitrogen content [44,45], it appears worthwhile to consider these other bands for future use in similar 
applications. Incorporation of these spectral bands into an operational forest management 
application have yet to be explored. 

5. Conclusions 

The resulting equation (LAI = 0.310SR – 0.098) displayed good performance at estimating LAI 
at a 10-m spatial resolution for loblolly pine. We reported a statistically significant interaction 
between stand density (< 618 trees per hectare) and model performance, though the implications of a 
density interaction was deemed operationally insignificant to warrant adjusting the model. Support 
vector machine-supervised classification was successfully used to distinguish plots whose weighted 
mean leaf area index value was primarily derived by the association between LAI-2200C plant 
canopy analyzer and Sentinel-2 MSI, removing plots whose spectral range saturated beyond training 
classes established for this relationship. The SVM-aided model exhibited relatively negligible 
variance from the model based on the same spectral index—simple ratio of near-infrared and red 
bands—prior to SVM classification and outlier removal. The 10-m spatial resolution afforded by 
Sentinel-2 provides for spatially robust biophysical site metrics like LAI to be generated and used for 
high-fidelity forest management. As site variability across the landscape becomes more precisely 
gauged, an opportunity to base remote sensing models on strategically placed field locations exists 
that could better model dynamic and complex ecological processes across a broader landscape. The 
relationship between remote sensing systems and biophysical indicators of forest ecosystem status, 
such as leaf area index, should continue to be explored so long as improvements in modeling these 
relationships exist. 
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Appendix A 

 
Figure A1. Comparison between the minimum spatial resolutions of Sentinel-2 and Landsat 8. Shown 
in the same selected subset of field plots from RW20-NC with the 10-m grid cells of Sentinel-2 on the 
top and the 30-m grid cells of Landsat 8 on the bottom. 

Appendix B 

Table B1. Summary of primary R packages used throughout this work. 

Package. Version Author(s) CRAN URL 

tidyverse 1.3.0 
Hadley 

Wickham 

https://cran.r-
project.org/web/packages/

tidyverse/index.html 

caret 6.0 
Max Kuhn et. 

al. 

https://cran.r-
project.org/web/packages/

caret/index.html 

ggplot2 3.2.1 
Hadley 

Wickham et. 
al. 

https://cran.r-
project.org/web/packages/

ggplot2/index.html 

lme4 1.1-21 Douglas Bates 
et. al. 

https://cran.r-
project.org/web/packages/

lme4/index.html 

rgdal 1.4-8 Roger Bivand 
et. al. 

https://cran.r-
project.org/web/packages/

rgdal/index.html 

raster 3.0-7 Robert J. 
Hijmans et. al. 

https://cran.r-
project.org/web/packages/

raster/index.html 

sf 0.8-0 Edzer 
Pebesma et. al. 

https://cran.r-
project.org/web/packages/

sf/index.html 
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