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A topography in a Newtonian fluid occurs if there is a disturbance near the surface. But what if
there is no such disturbance? We show by optical profilometry that a thin nematic film resting
on a topological-defect-patterned substrate can exhibit a hill or divot at the opposing free (air)
interface in the absence of a topological disturbance at that interface. We propose a model that
incorporates several material properties and that predicts the major experimental features. This
work demonstrates the importance of, in particular, anisotropic surface interactions in the

creation of a free surface topography.
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Freely flowing Newtonian fluids are, in general, unable to support an equilibrium
topography at an interface with another fluid. Nevertheless, there has been an ongoing effort to
find counterexamples. Under certain conditions it is known that an orientable Newtonian fluid,
examples of which are nematic (but not smectic [ 1]) liquid crystals (LCs), certain polymers, and
aqueous mixtures of tobacco mosaic virus, can support a topography when there is a disturbance
near the interface. This can occur, for example, with small anisometric structures such as
vesicles and tactoids [2,3,4,5,6], inclusions or defects residing at the free surface [7,8,9,10], or
topological defects (TDs) that completely traverse the fluid film’s thickness and that have
reached the air interface. Such TDs can be pinned to the solid substrate as, observed by Virga
and Schadt [11,12], or associated with mismatched boundary conditions in a chiral nematic LC
[13,14]. But it is surprising that an orientable Newtonian fluid can possess an equilibrium free-
surface topography in the absence of a disturbance at or near that surface. Why should this be?
What sort of long range interactions could induce an “action-at-a-distance” [ 15] variation in the
free-surface topography?

In this Letter we show experimentally and theoretically that a topological defect of
strength m = +1 (a so-called “boojum”) localized at the underlying substrate in a nematic LC can
create a topography at the opposing nematic LC / air interface in the absence of any singularity
traversing the film. Our “hybrid” boundary conditions (nominally planar at the substrate and
vertical at the air interface) result in a topography at the fluid / air interface based on a tradeoff
among elasticity, the isotropic component of the surface energy (surface tension), and its
anisotropic part (anchoring), providing the first equilibrium topography of a Newtonian fluid in
the absence of a singularity at the perturbed free surface and that is based solely on the material

properties of the film and its interfaces.



Experimental details are described in Supplemental Material online [16,17]. A sample

was prepared by AFM scribing a TD pattern of strength m=+1, ¢=0° (radial) having a

“confinement radius” Zon a polymer-coated substrate [ 18]. A thin layer of liquid crystal 8CB

was then spin-coated on the substrate. The LC’s free-surface topography was measured by

optical profilometry.

Figure la shows a 3D reconstruction of the
surface profile of the LC / air interface for film
thickness d=610+£30 nm above an underlying m=+1,
»=0° (radially) patterned surface. Immediately visible is
a hill-like protrusion rising above a nearly flat nematic
surface. Reflecting the underlying pattern, the hill is
azimuthally symmetric, and its height /# above the
background increases monotonically toward »=0,
reaching a peak height ~=52+4 nm. This corresponds to
9% of the film’s total thickness. (Note that we have
observed //d as large as 0.21 in the nematic phase.)

The height distribution /(7) changes significantly
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Fig. 1 a) Experimental 3D scatter plot
of topography at the LC / air interface
induced by an underlying TD at the
substrate. b) Height profile change at
selected temperatures. c) Peak height /4
vs. temperature, showing transition
temperatures Tna and Tin.

with temperature (Fig. 1b). It is virtually flat above the I-N transition temperature Tni ~ 41°C,

with a tiny divot observed in Fig. 1b (in this sample only) due to a dust particle beyond » =¢€. A

small hill becomes visible at the core after cooling below Tni. This hill grows in height as we

cool further into the nematic, which is our focus. Figure 1c¢ shows the peak height / vs.

temperature, including the pretransitional behavior on approaching Tna. Although effects in the

SmA phase are beyond the scope of the current work and will be published elsewhere, we note




several features specific to the SmA phase and distinct from the nematic: formation of curved

oily streak defects [Error! Bookmark not defined.] transverse to the patterned easy axis;

significant transfer of LC to beyond the patterned region with a hill rising above the patterned

region, all of which is now depressed from the surrounding area; and an extremely sharp cone

whose apex height (66+5 nm) now reaches 10% of the film’s asymptotic thickness. These

smectic cones have been observed with absolute heights as large as /=200 nm (for d=1200nm)

and relative heights as large as 65% (A=50nm, d=75nm).

Returning to nematic films, the height, shape, and even the sign of the topography are

found to depend on the film
thickness d: Thinner films
exhibit taller hills as a fraction
of the film thickness, with &
generally decreasing with
increasing film thickness.
Additionally, for thinner films
(d~100 nm), we observe that
hills are more likely to have a
dome-like (rather than cusp-
like) shape (Fig. 2a), but

become more conical with a
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Fig. 2 a) Dome-like behavior for a film of thickness d=75 nm.
b) Cone-like topography for =660 nm film on the same
patterned substrate. c) Profiles of slices through the core of
the same physical sample at several different thicknesses. The
extent of the two inner vertical lines corresponds to the 2470
um radially patterned diameter; the two outer vertical lines to
the full 85 um patterned square. d) Image of a divot for
d=1030 nm film.

singularity at the peak for thicker films (~600 nm, Fig. 2b,c). For the dome-like topography, its

rounded shape in conjunction with the vertical boundary conditions at the air interface ensure

that variations in the director at the substrate smooth out rapidly with increasing z. Thus no




disclination line projects from the patterned surface defect through the LC to the top surface.
This behavior is due to an energy balance and is borne out by our modeling below. Thus, the
dome-like behavior indicates the presence of a boojum at the patterned surface, and that the
free-surface topography is not generated by a local surface defect or transmitted by a bulk
disclination line — this is unlike the case reported in Refs. 11,12,13,and 14. Instead the
topography is mediated through anchoring, as well as elastic forces from the patterned substrate
to the free surface. We also note that the height of the hill also depends on £ the distance out to
which the radial (m=+1, ¢p=0°) TD is patterned: % increases monotonically with pattern
diameter 2¢€ in the SmA phase (h=8, 10, and 1442 nm for &15, 25, and 35 um, respectively for
d=500+20 nm just below Ty4) , with similar but smaller (and thus noisy) results in the nematic
phase as well. Finally, Fig. 2d shows a divot.

We also compared our nematic results to a region of the same substrate that had been
patterned with an underlying m=+1, p=n/2 topological defect — this corresponds to an
alignment pattern of concentric circles. This pattern exhibits no significant topography,
suggesting that the source of the topography is not simply elastic relaxation near the core —
indeed, both the radial and concentric circle patterns have the same total 2D elastic energy

density (in the single elastic constant approximation) at the defect core.



We examine the three major
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geometries, surface tension at the free Fig. 3 Cartoon visualizing the resulting topography

from the energy contributions of a) surface tension
promotes flatness, b) elastic forces promote divots, ¢)
and d) underlying splay in the weak-anchoring regime
for both senses of director escape, the first promoting
(Fig. 3a). Next are elastic forces, with hills and the second divots, and e) underlying twist in
the weak-anchoring regime promoting neither hills nor
the director constrained (nearly) normal | divots.

surface tends to minimize curvature,

promoting a uniformly flat topography

to the free surface. Focusing on the radial easy axis pattern, very close to =0 the director must
melt; become biaxial [19,20,21] when tightly confined in specific geometries [22,23,24], a
condition that is not met in our experiments; or become vertically-aligned at the substrate. The
latter scenario is effectively the common escaped radial configuration [25,26] and is consistent
with our setup. For the latter case the far-field region beyond » > € finds its polar orientation €
undergoing a bend/splay distortion along the z-axis to meet the hybrid-alignment boundary
conditions. The total energy of this far-field region can be reduced by increasing the local film
thickness to spread the distortion over a larger z-distance. With a constant volume constraint,
material must be transported away from the core region near »=0, thus promoting a divot for both
configurations (Figs. 2d and 3b). We note that these nematic divots derive from very different
physics than those in the SmA phase [27,28].

The third term, anchoring, is the source of the hill-like behavior (Fig. 3¢) for the radial
pattern. Due to the hybrid boundary conditions, there is a director torque at the surfaces, and the

LC must be pretilted slightly, by angle 6,7), from the normal at the free surface (vanishing as



r — 0). This pretilt anchoring cost can be mitigated by a deformation of the free surface to form
a hill (Fig. 3c) or a divot (Fig. 3d), depending on the sense of pretilt at the substrate. Figure 3e
shows the case of a concentric circle easy axis pattern, with a twist distortion along an axis
passing through 7=0 at the substrate. Elastic energy relaxation requires that VA be azimuthal,
although owing to azimuthal symmetry VA =0. Thus free-surface anchoring promotes neither
hill nor divot, leaving elasticity as the main driving force for the topography. That the
topography is negligible for m=+1, ¢=m/2 (Fig. 3e) suggests that the elastic forces are weak.

The relative tradeoff among the three energy contributions determines the magnitude of /
and its sign. We observed the pretilt phenomenon experimentally, wherein heating and cooling
through 7 randomly nucleates the sense of pretilt — this is due to the bi-directional scribing —
thereby interchanging hill and divot. We note that scribing the patterns uni-directionally
predisposes one sense of substrate pretilt, with hills for radially-inward scribing and divots for
outward scribing. Thus, the shape of the topography depends on force balance, with anchoring
typically dominating. This, in turn, depends on the LC’s materials parameters, the scribing
pattern, the scribing radius ¢ and the film thickness d.

We now turn to an overview of the modeling with a patterned defect at the substrate; a
more extensive exposition will be published elsewhere. The free energy of the system consists of

the usual surface tension, elastic, and anchoring contributions,

F= 2[,fmvmav+, |o—=nn,)?|da, (1)
where o is the surface tension; the elastic contribution is f = K;;(V - n)? + K,,(n -V x n)? +
K33|n X V X n|?; K;; = K,, = K33 = K are the splay, twist and bend elastic constants in the equal
constant approximation; and W is the anchoring strength coefficient. The second integral is taken

over the free surface with the director n fixed at the lower substrate.



Two length scales, { = K /o and ¢ = K /W, characterize the relative influence of the
three terms. Far above the N — SmA transition, approximate values for these are { ~ 0.4 nm <
¢ < 100 nm; hence the upper surface remains flat and the director adopts the configuration in
Fig. 3a. Note that the director deviates slightly from vertical above the pattern due to the finite
anchoring strength. As the nematic approaches the N — SmA transition, two effects occur: First,
K, and K35 diverge [29]; second, the SmA phase grows inward from the substrate [30],
enhancing surface order and, importantly, increasing the surface anchoring W [31,32]. This
tends to enhance 4 for both hills and divots on nearing 7.

Now suppose the free interface can vary. The surface tension term in Eq. 1 resists
deformations (Fig. 3a). Elastic stresses tend to push the interface upwards to mitigate dd/dz: As
described above, this leaves a divot near =0 where d6/dz=0 (Fig. 3b). The anchoring term
requires careful consideration: It is typically thought to promote alignment of the director with
respect to a fixed easy axis n, defined relative to the surface normal. Here we reverse the
causality and investigate how a spatially changing n can induce variations in n, and hence the
topography of the surface.

To do so, the free surface is parameterized in dimensionless (scaled by d) cylindrical
coordinates (p,u,Z) as X = {p, u, H(p)} and hence the surface normal is § = {—H'(p),0,1}/
(14 H'(p)?).Here H=h/d, L =¢/d, and the prime denotes &/0R . Similarly, the director at
the surface is parametrized to lie at a constant azimuthal angle ¢ to the radial direction, n =
{n,,ny,n,} = {sinf(p)cose, sinf (p)sing, cosd (p)}. Hence, the anchoring term in Eq. 2

becomes

. L (cos@(p)—Hr(p)cos¢sind(p))?
Fy, = —nWd fo J1+HI(p)2 pdp, (2)



revealing a coupling between topography, H'(p), and orientation 8(p). Notice that the coupling
vanishes if 8 = 0, where the director is vertical, and similarly if ¢ = /2, where the director is
azimuthal; here a spatially varying director does not induce topography.

Experimentally, H<<1, suggesting a perturbative approach. We therefore series expand
about a solution where the director is nearly vertical at the free surface and fixed by elasticity,
6 = af,(p), and the interface is nearly flat, H(p) = aH,;, where « is an expansion parameter.

We include the surface tension,
L
E, = 27‘[0’dj V1+H'(p)?pdp
0

and a volume constraint 2Ad | OL H (p)pdp but neglect the elastic stress as this as this has

leading order a3 while the other terms are of order a?. With these considerations, the linearized
Euler-Lagrange equation is obtained,

(1 +w)(H,"+ pH{") + 2wcos¢p(8; + pb,") + 1p =0, 3)
where w = W /o. A suitable ansatz for 6, is 6; = gtanh(ﬂp/Z)/(l + ') where I' = Wd /K.

Inserting this into Eq. 3, we obtain a solution,

___Ap®>  2wcosglog[cosh(rp/2)] 4
2m(1+w) (1+w)(1+1) ) 4)

H(R) = H,
The constants A and H, are determined by imposing the boundary condition H'(L) = 0 and
volume constraint | OL H (p)pdp = 0. From the solution (Eq. 4), the magnitude of the

dimensionless topography AH = H(L) — H(0) may be estimated,

. wcosg[4log(cosh(rL/2)) — mLtanh(nL/2)]
B 21 +w)(1+ 1) ’

and solutions are plotted in Fig. 4a for different L. The profile becomes increasingly conical with

increasing L. Thus, we have the following takeaways: 1) our analytic model articulates the



mechanism(s) for the topographys, ii) it predicts that a topography is observed only for the case of

a radial surface pattern, consistent with experiment, and iii) it predicts that the topography scales

with confinement distance L, also consistent with observation.

We also perform numerical simulations relaxing the strong assumptions of the above

model. The full free energy (Eq. 1) with three
elastic constants is minimized subject to a
volume constraint both with respect to the
director and the shape of the domain using one
of the authors (TJA’s) morpho code [33]; an
initial 2D rectangular domain is used and all
quantities are represented using linear
interpolation on a triangular finite element
mesh. The height is fixed at p = L on the right
hand boundary. A typical height profile is
displayed in Fig. 4b and closely resembles
those from the analytical model despite the
much less restrictive assumptions of the
calculation. Additionally, we display the

normal component of the generalized force

% -§ on the ith boundary vertex due to the

respective terms (Fig. 4¢)
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Fig. 4 a) Cartoon of flat interface solution (inset)
and analytical height profile for different L; w =
0.1,I' =10, ¢ = 0. Asymptotic solution for L —
oo is shown in red for comparison. b) Numerically
minimized height profile with finite elements. c)
Generalized forces on the boundary vertices due to
different terms in the elastic energy.

To summarize, we have shown experimentally and theoretically that the topography of a

nematic LC, i.e., an orientable Newtonian fluid, at an air interface can be determined by the easy




axis pattern of the underlying substrate. The interplay of surface tension, elasticity, and
especially anchoring alone determines the shape of the free-surface topography, without the need

of a singular defect running from the substrate to the air interface.
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