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Geographic distribution of microsatellite alleles in geladas
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1 | INTRODUCTION

The gelada (Theropithecus gelada Riippell, 1835) is a cer-
copithecine primate that is endemic to the Ethiopian high-
lands. The gelada is the only extant member of a once diverse
genus that was widely distributed in Africa and Eurasia
during the late Pliocene to middle Pleistocene (Alba et al.,
2014; Beaudet et al., 2015; Belmaker, 2010; Delson, 1993;
Geraads & de Bonis, 2020; Hughes, Elton, & O'Regan, 2008;
Jolly, 1972). The extant species probably consists of three
subspecies (Bergman & Beehner, 2013), (a) Theropithecus
gelada gelada Riippell, 1835 from northern Ethiopia, mainly
the Simien Mountains (hereafter, ‘northern population’), (b)
Theropithecus gelada obscurus Heuglin, 1863 from central
Ethiopia (hereafter, ‘central population’), and (c) a pop-
ulation from the Arsi area, south of the Rift Valley, which
Shotake, Saijuntha, Agatsuma, and Kawamoto (2016) tenta-
tively named Theropithecus gelada arsi (hereafter, ‘southern
population’; Figure 1).

Although phenotypic differences among the three popula-
tions have been reported (De Beaux, 1925; Hill, 1970; Mori
& Belay, 1990), the subspecific distinction is still debated
(Crook, 1966; Gippoliti, 2010; Hill, 1970; Zinner et al., 2018).
Similarly, while the small southern population is clearly iso-
lated from the central and northern populations by the Rift
Valley (Mori & Belay, 1990, 1991), there is no obvious geo-
graphic barrier separating the central and northern populations
(Gippoliti, 2010). Yalden et al. (1977) proposed that the deep
gorges of the Beleghas (Balagas) and upper Tacazze (Tekeze)
rivers correspond to the boundary between the northern
(T g. gelada) and central (T. g. obscurus) populations, but we
still know little about how phenotypic, geographic and genetic
variations correspond across these three populations.

their taxonomic ranking.

structure corresponding to the mitochondrial population structure. Therefore, our
analyses provide additional support for three evolutionary units in geladas, corre-
sponding to (a) a northern (north of Lake Tana, primarily in the Simien Mountains,
previously classified as Theropithecus gelada gelada Riippell, 1835), (b) a central
(between Addis Ababa and the highlands east of Lake Tana, previously classified as
Theropithecus gelada obscurus Heuglin, 1863) and (c) a southern (south of the Rift
Valley, previously tentatively classified as Theropithecus gelada arsi Shotake et al.,
2016, Anthropological Science, 124, 157) population. These results pave the way for
future conservation decisions and highlight that the gelada population boundaries

need more fine-grained genetic sampling and phenotypic analyses, in particular for

distribution, Ethiopia, nuclear markers, population genetics, taxonomy, Theropithecus gelada

Molecular studies comparing blood proteins and mi-
tochondrial DNA (mtDNA; restriction fragment length
polymorphism [RFLP] of the control region) of southern
geladas from Arsi and central geladas from Shoa Province
supported the subspecific rank for the Arsi population
(Belay & Mori, 2006; Belay & Shotake, 1998). Further
analyses of mtDNA sequence data which also included
samples of the northern population confirmed these results
but did not find clear evidence for a subspecific differen-
tiation of the northern and central populations (Shotake
et al., 2016; Zinner et al., 2018). Phylogenetic recon-
structions revealed a monophyletic clade of the southern
haplotypes, two clades among the central population and
another two clades among the northern population (see
also Figure S1). The distributions of the respective two
northern and central clades do not show clear geographic
partitioning, and one individual collected in the Simien
Mountains (northern population) carried a haplotype from
the central population (Zinner et al., 2018).

The phylogeny of gelada mtDNA lineages was recently
resolved (Shotake et al., 2016; Zinner et al., 2018). However,
because mtDNA is inherited in the matriline, the full evolution-
ary history of the species remains incomplete. Furthermore,
mtDNA can differ substantially from phenotypic and nuclear
genetic variation in its geographic distribution, particularly
in taxa with a history of hybridization and introgression (e.g.
baboons Rogers et al., 2019; Zinner, Groeneveld, Keller, &
Roos, 2009). Therefore, to expand our understanding of ge-
lada phylogeography, we test whether nuclear DNA markers
confirm the three evolutionary unit differentiation indicated
by the mtDNA markers. Specifically, we explore whether the
distribution of microsatellite alleles corresponds to the geo-
graphic pattern of the three populations.
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FIGURE 1
of gelada sampling sites in the Ethiopian

Geographic distribution

highlands. Inset map indicates the position LO)
of the area of interest within Africa

and Ethiopia. Dashed line = proposed e
border between the northern population |

(Theropithecus gelada gelada to the ;

north-west of the border) and the central

population (Theropithecus gelada Debre
obscurus, according to Yalden, Largen,

and Kock (1977)). Coloured circles = our
sampling sites; colours indicate
mitochondrial haplogroup affiliation: black
(green) = northern; grey (yellow) = central;
white (orange) = southern haplogroup
(coloured version available online). Arrow
indicates geographical provenance of
sample TG049. Digital elevation model
(DEM) base map (Jarvis, Reuter, Nelson,

& Guevara, 2008) [Colour figure can be
viewed at wileyonlinelibrary.com]

2 | METHODS

2.1 | Ethical statement

Sample collection was exclusively non-invasive and com-
plied with the laws of Ethiopia and Germany and with the
guidelines of the International Primatological Society.
During sampling of faecal material, no animals were harmed
or disturbed.

2.2 | Sample collection and DNA extraction

Samples for this study were collected during nationwide
gelada surveys between 2014 and 2016 (Nguyen, Fashing,
& Burke, 2016). All samples analysed here have been used
previously in a study of gelada mtDNA phylogeny (Zinner
et al., 2018). Further information on sampling and DNA
extraction can be found in Zinner et al. (2018). Of the 162
samples included in the previous study, we selected those 61
that contained the highest DNA concentrations (>150 ng/ul)
in our previous study (Zinner et al., 2018). Of these, only
49 contained DNA of high enough quality for microsatellite
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analysis. The three geographic populations (northern, central
and southern) are represented by 11, 23 and 15 individu-
als, respectively (Figure 1). Since sample TG049 from the
northern deme carried a mtDNA haplotype of the central
population (Zinner et al., 2018) and since the northern and
central populations contain two mitochondrial clades each
(Zinner et al., 2018), the respective numbers of samples per
clade were as follows: northern clade 1:7, northern clade 2:3,
central clade 1:22, central clade 2:2 and southern clade 15.
Further information on the geographic provenance, deme
and haplogroup affiliations of the samples can be found in
Table S1 and Figure S1.

23 | Genotyping

Genotyping was performed via analysis of microsatellite
fragment length polymorphisms. Therefore, we amplified of
20 microsatellite loci in five different multiplex PCRs using
the Multiplex PCR Kit (Qiagen) and fluorescent-labelled
primers (Table S2). Cycling conditions for all reactions
contained an initial polymerase activation step at 95°C for
15 min, followed by 40 cycles of 94°C for 30 s, 57°C for
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40 s and 72°C for 40 s, and a final extension step at 72°C for
30 min. Negative (no-template) controls were carried along
for all reactions. Each PCR multiplex reaction was repeated
a minimum of four times. The amplification success was
checked on 2% agarose gels. Allele determination was done
using fragment length analysis on an ABI 3130XL Genetic
Analyzer (Applied Biosystems®), and subsequent analyses
of the data were conducted in GeneMapper™ 5 (Applied
Biosystems®).

2.4 | Population genetic analysis/
data analysis

We first checked our data set for identical genotypes as a
result of accidental repeated sampling of the same individ-
ual with the ‘Identity Analysis’ function in Cervus v.3.0.7
(Kalinowski, Taper, & Marshall, 2007). We tested for
Hardy—Weinberg equilibrium (HWE) and calculated de-
scriptive statistics, including F-statistics, using the R package
PopGenReport v.3.0.0 (Adamack & Gruber, 2014). Further,
we tested for the occurrence of null alleles using MICRO-
CHECKER v.2.2.3 (Van Oosterhout, Hutchinson, Wills, &
Shipley, 2004).

The population structure analysis was performed with
STRUCTURE v.2.3.4 (Falush, Stephens, & Pritchard, 2003,
2007; Pritchard, Stephens, & Donnelly, 2000) using 1 million
MCMC runs, based on the admixture and correlated allele
frequencies model, a burn-in of 100,000 and 10 replicates
of each possible number of clusters K from 1 to 6. To iden-
tify the optimal number of clusters K for our data set, we
applied the delta K method (Evanno, Regnaut, & Goudet,

(@
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2005) implemented in STRUCTURE HARVESTER (Earl &
vonHoldt, 2012). STRUCTURE runs for the chosen K were
combined and the results visualized using the R packages
‘pophelper’ v.2.3.0 and ‘pophelperShiny’ v.2.1.0 (Francis,
2017). Further, we performed a hierarchical analysis of mo-
lecular variance (AMOVA) and calculated pairwise Fgy val-
ues using Arlequin v.3.5.2.2 (Excoffier & Lischer, 2010). To
visualize the pattern of genetic distance between individuals
of the three populations, we performed a principal coordi-
nate analysis (PCoA) based on pairwise Euclidean distance
using the R packages ‘adegenet” (Jombart, 2008) and ‘ade4’
(Bougeard & Dray, 2018; Chessel, Dufour, & Thioulouse,
2004; Dray & Dufour, 2007; Dray, Dufour, & Chessel, 2007).
All calculations were done using RStudio v.1.1.453 and R
v.3.6.2.

3 | RESULTS
After removing identical genotypes (N = 6), 43 unique geno-
types (northern: 10; central: 21; southern: 12) remained for
the population genetic analysis. The number of alleles per
locus ranged from 3 to 15 (mean: 7.8). Expected (Hg) and
observed heterozygosity (H) ranged from 0.29 to 0.91 and
from 0.23 to 0.79, respectively. All loci were in HWE, but
seven loci showed signs of null alleles (Table 1). To be con-
servative, we excluded these loci from the subsequent analy-
ses. Results of the analyses including all loci are provided as
supplementary material (Figures S2 and S3).

The population genetic analysis revealed that K = 3
(AK = 560.47) is the optimal number of clusters for our
data set (Figure 2a). These three clusters correspond to

A4
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0.50+

0.254

0.00

TG004+
Ngon106-
TG1054

A T L L P L g . S 7 51 A 7 K7, g, 2 5 L 7, 9

FIGURE 2 Population genetic structure of Theropithecus gelada, based on 13 loci with no signs of null alleles. (a) Optimal number of
K clusters calculated by the Evanno method (Evanno et al., 2005). A three-cluster structure is indicated. (b) STRUCTURE results for K = 3
and K = 2 clusters. Colours correspond to mitochondrial haplogroup affiliation: black (green) = northern; light grey (yellow) = central; white

(orange) = southern haplogroup; dark grey (brownish) = combined northern and central (coloured version available online). The arrows indicate

sample TG049 [Colour figure can be viewed at wileyonlinelibrary.com]
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the geographic sampling locations, that is to the respective
demes, except for sample TG049, which was sampled in
the north, but clusters with samples from the central deme
(Figure 2b).

Pairwise Fgy values (Table 2) and the STRUCTURE anal-
ysis with K =2 (Figure 2b) indicated a closer genetic relation-
ship of northern and central samples to the exclusion of the
southern samples. This was further supported by the results
of the PCoA, where the southern samples were found to be
separated from both other demes along the first coordinate of
the PCoA. The second coordinate further separates the north-
ern and central demes (with the exception of sample TG049;
Figure 3). The first two principal coordinates of the PCoA,
that is the ones with the highest eigenvalues, explained 22.2%
and 10.1% of the variance, respectively. All following coor-
dinates explained <7.0% of the variance. Individual scores
on the first two principal coordinates for all individuals are
provided in Table S3. A five-cluster pattern, as expected due
to the five mitochondrial clades found in a previous study
(Zinner et al., 2018), was not supported (Figures S2 and
S4). STRUCTURE analyses of both the northern and central

TABLE 2 Nei's pairwise Fgp between all pairs of sampling areas

populations alone also did not reveal any further genetic dif-
ferentiation (Figure S5).

The AMOVA revealed that most of the nuclear variance
was attributed to the differences within populations (77.7%),
but 22.3% could be attributed to differences among the
three demes indicating overall strong genetic differentiation
(Table 3).

4 | DISCUSSION

Despite recent mtDNA studies on geladas, their taxonomy
and genetic population structure remain unclear (Gippoliti,
2010; Zinner et al., 2018). By assessing allele length poly-
morphisms of 20 nuclear microsatellite markers, we investi-
gated the genetic structure among gelada populations across
the Ethiopian highlands to further clarify the taxonomic sta-
tus of the gelada evolutionary units.

The microsatellite data revealed a three-deme structure
of the global gelada population. The three populations are
geographically structured and broadly correspond to the dis-
tribution pattern of mitochondrial haplotypes (Shotake et al.,
2016; Zinner et al., 2018). In our previous mtDNA study
(Zinner et al., 2018; see also Figure S1), additional genetic
structure became apparent: the northern and central demes

North Central South contained two mtDNA clades each, dividing the global ge-
North 0.000 lada populgtion into five clades. Howev.er, we did not find a
Central 0.103 0.000 co.rrespondlng K'= 5 cluster [.)at'tern with the' nucle'ar DNA
(Figure 2a and Figure S3). This is not surprising, given that
South 0.364 0.255 0.000 . . U
there are no obvious geographical distribution patterns or
Note: All Fer values were significant (p < .001; 1,000 permutations) barriers between the two respective northern and central
®
fo?
north
£ south
<
< Q O
8 @ @ .
e (@)
© G
) O
O tral
- "y 0 Qo centa TG049
oo o —
o % o
:z ®—o
PCoA Axis 1

FIGURE 3 Principal coordinate analysis (PCoA) of pairwise genetic distances between individuals of the three sampling areas of

Theropithecus gelada. Included are only loci without null alleles. Colours correspond to geographic origin of samples: black (green) = northern;

grey (yellow) = central; white (orange) = southern deme and minimum convex polygons unite samples of the same geographic origin (coloured

version available online). Inset: Eigenvalues of the principal coordinates indicating their corresponding variance explained by the PCoA. Black bars

show the two axes represented in the main plot [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 AMOVA results for a
3-deme structure based on 13 microsatellite

. Source of variation
loci

Among populations
Within populations
Total

Note: Fixation Index Fgr

mtDNA sub-clades (both are geographically mixed within
their respective populations). Therefore, both the current nu-
clear DNA-based results and the earlier mtDNA data support
three evolutionary units in gelada.

As indicated by the pairwise Fgp values, the PCoA and
by the K = 2 cluster analysis, the most distinct subpopula-
tion is the southern population from Arsi, south of the Rift
Valley. Using genetic analyses of blood proteins, Belay and
Shotake (1998) inferred that the southern and central popula-
tions must have been separated for several hundred thousand
years with highly restricted gene flow. In addition, the diver-
gence ages among the main mtDNA clades were estimated
between 0.5 and 0.7 million years (Zinner et al., 2018). But,
Belay and Shotake (1998) did not include any samples from
the northern population in their study. In our previous study
using mtDNA sequence data, we found weak support for the
hypothesis that the northern population was a sister clade to
the southern population (Zinner et al., 2018), but our micro-
satellite data did not support this hypothesis. By contrast, our
analyses suggest a closer relationship between the northern
and the central populations, resurrecting the distinctiveness
of the southern population, a scenario which biogeographi-
cally is more likely. Our microsatellite data also did not sug-
gest any further genetic structuring of both, the northern and
central populations, as suggested by the occurrence of two
mitochondrial clades in each of the two populations (northern
1, northern 2, central 1, central 2, see Fig. S1; Zinner et al.,
2018).

Geographic provenance, haplogroup affiliations and mi-
crosatellite clusters correspond well for all gelada samples,
with the exception of the single sample TG049. This sample
was collected in the range of the northern deme, but contains
a mtDNA haplotype identical to some found further south
in the central deme (Zinner et al., 2018). According to mi-
crosatellite alleles, TG049 clusters perfectly with samples of
the central deme. Therefore, both mitochondrial and nuclear
data suggest that TG049 belongs genetically to the central
deme. The available genetic information also does not indi-
cate that individual TG049 is a hybrid between the northern
and central populations. This could be expected if the ranges
of the northern and central demes would overlap, thus pro-
viding opportunities for interbreeding. Alternatively, geladas
from the central population may have been transferred to
the northern population by humans. Infant geladas are often
kept as pets, and when they become adult and are unable to

Sum of Variance %
DF squares components variation
2 70.193 1.14864 22.29
83 332.283 4.00341 77.71
85 402.477 5.15205

:0.22295 (p < .001; 10,000 permutations).

be managed, they are in many cases released into the wild
(Bergman & Beehner, 2013). For instance, one author (DZ)
observed a tame gelada female in a group of hamadryas ba-
boons in the vicinity of Asmara, the capital of Eritrea, far
outside the current range of Theropithecus. Finally, it is also
possible that the sample was wrongly labelled at some point
during processing. However, until we find more individuals
in the northern deme with a genetic make-up similar to that of
the central deme, we regard TG049 as an artificial exception
that does not contradict the three-deme population structure
of geladas.

4.1 | Taxonomic and conservation
considerations

Based on the correspondence of the mitochondrial and mi-
crosatellite analyses and the allopatric ranges of the three
populations, we clearly show that there are three evolution-
ary units of geladas and, thus, solve the first major problem
of a taxonomic classification, namely the grouping problem.
However, a solution for the second problem, the ranking
problem, largely depends on the applied species concept.
Under a phylogenetic species concept (Cracraft, 1983), the
three evolutionary units would probably be ranked as spe-
cies, under a biological species concept (Mayr, 1942) they
would most likely be classified as subspecies—the northern
(T. g. gelada), the central (T. g. obscura) and the southern
(tentatively T. g. arsi) subspecies. Nevertheless, for a thor-
ough taxonomic decision, a comparative phenotypical de-
scription, particular of the southern population, is necessary.

Importantly, and irrespective of the taxonomic classifi-
cation, all three populations need protection and should be
treated as conservation units. According to I[UCN, the global
population of geladas is suspected to be decreasing, but in
the absence of more detailed data regarding current geo-
graphic range and demographic trends, geladas are listed as
‘Least Concern’ (Gippoliti, Mekonnen, Burke, Nguyen, &
Fashing, 2019). Similarly, 7. g. obscurus is listed as ‘Least
Concern’ (Fashing, Nguyen, Burke, Mekonnen, & Gippoliti,
2019a). In contrast, the conservation status of 7. g. gelada
is “Vulnerable’ owing to its more restricted range centred
around the Simien Mountains (Fashing, Nguyen, Burke,
Mekonnen, & Gippoliti, 2019b). The Arsi population has
not yet been assessed for its conservation status. However,
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due to its restricted range, small population size and a sizable
human pressure (Abu, 2011), it is likely to be assessed as
a ‘Critically Endangered’ subspecies (Bergman & Beehner,
2013). Thus, conservation measures appear most urgent for
the small southern population in the Arsi Mountains.
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