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Abstract

Background: Adaptive shifts in gut microbiome composition are one route by which animals adapt to seasonal
changes in food availability and diet. However, outside of dietary shifts, other potential environmental drivers of gut
microbial composition have rarely been investigated, particularly in organisms living in their natural environments.

Results: Here, we generated the largest wild nonhuman primate gut microbiome dataset to date to identify the
environmental drivers of gut microbial diversity and function in 758 samples collected from wild Ethiopian geladas
(Theropithecus gelada). Because geladas live in a cold, high-altitude environment and have a low-quality grass-based
diet, they face extreme thermoregulatory and energetic constraints. We tested how proxies of food availability
(rainfall) and thermoregulatory stress (temperature) predicted gut microbiome composition of geladas. The gelada
gut microbiome composition covaried with rainfall and temperature in a pattern that suggests distinct responses to
dietary and thermoregulatory challenges. Microbial changes were driven by differences in the main components of
the diet across seasons: in rainier periods, the gut was dominated by cellulolytic/fermentative bacteria that
specialized in digesting grass, while during dry periods the gut was dominated by bacteria that break down
starches found in underground plant parts. Temperature had a comparatively smaller, but detectable, effect on the
gut microbiome. During cold and dry periods, bacterial genes involved in energy, amino acid, and lipid metabolism
increased, suggesting a stimulation of fermentation activity in the gut when thermoregulatory and nutritional stress
co-occurred, and potentially helping geladas to maintain energy balance during challenging periods.

Conclusion: Together, these results shed light on the extent to which gut microbiota plasticity provides dietary
and metabolic flexibility to the host, and might be a key factor to thriving in changing environments. On a longer
evolutionary timescale, such metabolic flexibility provided by the gut microbiome may have also allowed members
of Theropithecus to adopt a specialized diet, and colonize new high-altitude grassland habitats in East Africa.
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Background
Obtaining sufficient nutrients is a fundamental challenge
for most animals. Yet, the availability and nutritional
content of food can vary temporally and spatially in re-
sponse to changes in climate and geography. Nutritional
demands further vary in response to thermoregulatory
needs and life history processes, such as growth and
reproduction [1, 2]. Animals have evolved a variety of
behavioral and physiological strategies to cope with
these shifting demands, including altered feeding and ac-
tivity patterns and increased mobilization of stored fat to
fuel energetic demands [3–6]. Recently, the gut micro-
biome has been proposed as an additional avenue by
which animals can cope with changing dietary land-
scapes and energetic challenges [7–9]. The gastrointes-
tinal tract of animals harbors a dense microbial
community that helps to break down and ferment plant
structural carbohydrates, producing short-chain fatty
acids (SCFAs) that can be used as an energy source by
hosts [10–12]. The absorption of SCFAs in the gut may
be particularly important for herbivorous species, such
as foregut and hindgut fermenters, which obtain as
much as 40-90% of their energy requirements from bac-
terial degradation of complex plant polysaccharides [13–
16]. Additionally, variation in gut microbiome compos-
ition affects the efficiency of caloric harvest and the
metabolic programming of the host [11, 17–20]. For in-
stance, in mice (Mus musculus) and humans, obese and
lean individuals have strikingly different gut microbiota
composition, with obese phenotypes being associated
with higher energy extraction from diet and increased
lipogenesis [21–23].
In wild mammals, the gut microbiome responds rapidly

to seasonal and dietary changes [7, 24–29], presumably to
buffer seasonal energetic challenges [7, 26]. For example, a
simultaneous increase in bacterial taxa involved in fiber
fermentation and in SCFA concentrations during the dry
season may allow Mexican black howler monkeys
(Alouatta pigra) to maintain energy balance during ener-
getic shortfalls without changes in activity or ranging pat-
terns [7]. Moreover, gut bacteria increase intestinal
absorptive capacity, energy homeostasis, and fat burning
during cold periods in mice [30], and improve digestive ef-
ficiency and SCFA production in energetically challenged
ruminants living in cold environments and at high-
altitude [31, 32]. These microbial shifts likely come at
some cost. For instance, increases in microbes that im-
prove host metabolism under certain conditions may re-
duce the abundance of microbes that support host
immune function [33, 34]. However, in seasonal and nutri-
tionally challenging environments, enduring these trade-
offs may be necessary for host survival and reproduction.
Geladas (Theropithecus gelada) represent an excellent

system to investigate the relationship between gut

microbiota composition and seasonal variation in host
diet and energy needs. Despite being the only graminiv-
orous primate with up to 90% of their diet comprised of
grass [35, 36], their gastrointestinal tract appears poorly
adapted to this specialization (but see [37, 38] for dental,
manual, and locomotor adaptations), closely resembling
their closest phylogenetic relatives, baboons (Papio
spp.)—a taxon that is omnivorous [39]. To compensate,
geladas may rely heavily on their gut microbiota to
maximize nutrient extraction from grasses, likely
through hindgut fermentation [39, 40]. Moreover, gela-
das live in a high-altitude, energetically demanding en-
vironment that exhibits marked inter- and intra-annual
fluctuation in rainfall and temperature [35, 41]. During
rainier months, when grass is abundant, they forage al-
most exclusively on aboveground graminoid leaves and
seeds, and during drier months, when grass availability
decreases, they shift heavily to underground foods (rhi-
zomes, roots, corms, bulbs) [35, 42]. This diet provides
distinct challenges. Underground foods are considered a
fallback food for geladas since they take additional time
and effort to harvest, are harder to process, and are re-
lied upon only when grasses are less abundant [35, 38].
Despite being considered a fallback food, these under-
ground foods are rich in starches and carbohydrates,
suggesting that they contain more nutritional energy
than grass [43]. This high amount of energy, however,
comes at some cost: roots and rhizomes are generally
higher in fibers and lignin—and thus harder to digest
than grasses. In addition to these nutritional challenges,
ambient temperatures frequently drop to near freezing,
and the metabolic costs of thermoregulation are known
to strongly influence gelada physiology [44] and the tim-
ing of reproduction [41, 45]. Thus, seasonal dietary shifts
and temperature variation may lead to distinct digestive
and thermoregulatory challenges.
One previous study on geladas from Guassa, Ethiopia,

found that gut microbial communities of adult females
shifted across seasons [40], supporting the hypothesis
that the gut microbiome may help hosts confront envir-
onmental challenges. This study focused on adult fe-
males and assessed seasonal variation by separating the
samples into two categorical seasons (i.e., rainy, dry).
Our study expands on this study by including adult
males, incorporating continuous climatic data across
several years, and examining proxies of thermoregulatory
stress (in addition to diet) as factors that can influence
the composition and function of the gelada gut micro-
biome. Indeed, rainfall and temperature vary independ-
ently of each other and represent distinct ecological
challenges in gelada ecosystems. Therefore, we were
interested in further testing which aspect of gelada
ecology more strongly determines seasonal microbiome
shifts.
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We analyzed the gut microbiome composition and
predicted microbiome function in 758 fecal samples
across 5 years from 48 adult male and 86 adult female
geladas living in the Ethiopian highlands in the Simien
Mountains National Park. The Simien Mountains
Gelada Research Project (SMGRP) has been collecting
detailed climatologic, demographic, and behavioral data
from this study population since 2006, allowing us to
examine how ecological (rainfall and temperature) and
individual (group membership, sex, reproductive status,
and age) factors influence gelada gut microbiome com-
position. We hypothesized that ecological factors would
be more strongly associated with variation in the gelada
microbiome than individual factors, and that rainfall and
temperature would have independent effects. In particu-
lar, we expected that rainfall, which is a good proxy for
grass availability [35], would have the strongest effect on
the gelada gut microbiome. We predicted that the taxo-
nomic changes associated with rainfall would mainly re-
flect a shift to grass-based versus underground food-
based diet, in order to allow individuals to maximize en-
ergy extraction from those seasonal foods. We found
that the gelada microbiome exhibited drastic shifts re-
lated to climatological variables; but individual variables,
like age and sex, had minimal effects. Rainfall and
temperature exerted independent effects on the micro-
bial composition and predicted function—with rainfall

having a stronger effect on the gelada gut microbiome.
High rainfall, which is correlated with grass availability
[35], was associated with more cellulolytic and fibrolytic
bacterial taxa, when graminoid leaves were the main
food source. Dry periods, when geladas consume more
underground foods [35], were associated with more am-
ylolytic and methanogenic taxa. Cold periods were fur-
ther characterized by more amylolytic taxa, and hot
periods by more methanogenic taxa. In both drier and
colder periods, the gut microbiome shifted to predicted
functions that suggested increased digestive efficiency,
including energy, amino acid, and lipid metabolism.
Overall, gelada gut microbial composition covaried with
diet and temperature in a pattern that suggests plastic but
distinct responses to dietary and metabolic challenges.

Results
The gelada gut microbiome
We identified 3295 amplicon sequence variants (ASVs)
in 758 fecal samples (mean ± SD = 813 ± 243 ASVs per
sample, range = 92-1730) using deep 16S rRNA gene
amplicon sequencing. Most ASVs could be taxonomic-
ally assigned to the phylum (100%), class (99%), and
order level (99%), but assignments decreased substan-
tially at the family (85%) and genus (61%) levels. These
3295 ASVs came from 16 different phyla, 65 families,
and 200 genera (Table S1, Fig. 1, Figures S1-S2). Of the

Fig. 1 Taxonomic composition of the gelada gut at the phylum and family levels. Relative abundance (a) of all bacterial phyla and (b) of the 24
most abundant families (relative abundance> 0.02%) in the gelada feces. The median and median absolute deviation (error limit) are represented
in orange.

Baniel et al. Microbiome            (2021) 9:26 Page 3 of 20



3295 ASVs, 170 (5%) were present in at least 90% of
samples and form what can be considered the “core
microbiota” of geladas (Table S2). The four most abun-
dant bacterial phyla were Firmicutes (32%), Kiritimatiel-
laeota (formerly called Verrucomicrobiota subdivision 5;
26%), Bacteroidetes (23%), and Spirochaetes (5%) (Table
S1, Fig. 1a). All microbes assigned to Kiritimatiellaeota
were part of the RFP12 family and represent almost one
quarter of the gelada gut microbiome (mean 26%, range
0.02-70%, Fig. 1b). Despite the abundance of RFP12, the
78 ASVs belonging to this group could not be assigned
below the family level. We therefore queried these se-
quences against the NCBI database using BLAST [46, 47].
These RFP12 sequences were most similar (~ 97%) to bac-
terial sequences previously found in the feces of hindgut
herbivorous species (Asiatic elephant, domesticated horse,
Somali wild ass, zebra, and black rhinoceros) [48] and, to
a lesser extent, the rumen of several foregut fermenters
(cattle, yak, red kangaroo; Table S3). Taken together, this
indicates that the RFP12 family is a key microbe for herb-
ivorous species, particularly hindgut fermenters, and likely
plays an important fermentative role in plant digestion in
geladas. Other taxa found at high frequency in the guts of
ruminants and herbivorous hindgut fermenters were also
prevalent in the gelada gut, including many cellulolytic/
fibrolytic (13% Ruminococcaceae, 6% Lachnospiraceae, 4%
Clostridiales vadinBB60 group, 1.5% Fibrobacteraceae)
and fermentative families (5.3% Rikenellaceae, 5% Prevo-
tellaceae, 4.1% Bacteroidales F082) (Table S1, Fig. 1b and
S1). The Spirochaetes phylum was mostly composed of
Treponema (3.5%), a genus involved in lignocellulose deg-
radation [49].

Dietary changes
To examine how seasonal variation in rainfall and
temperature was associated with changes in the gelada gut
microbiome, we used measures of true climatic condi-
tions, including monthly cumulative rainfall (an appropri-
ate proxy of grass availability in the Simiens: [35]) and
average monthly minimum temperature (a proxy of
thermoregulatory constraint: [41, 44]). At the level of
within-sample community diversity (“alpha diversity”), we
found that cumulative rainfall was positively associated

with Shannon evenness (Table 1, Fig. 2a, c) but had no ef-
fect on bacterial richness or Faith’s phylogenetic diversity
(Table S4, Figure S3). Thus, rainfall was associated with
the relative abundance of ASVs within a sample but not
the absolute number of ASVs or their phylogenetic
diversity.
Cumulative rainfall significantly explained 3.3% of the

overall compositional dissimilarity—or beta diversity—
between samples (as measured by Aitchison distance)
(Table 2), which was less than that explained by two
demographic variables: individual identity and unit (so-
cial group) membership (20% and 6%, respectively; Table
2). The first principal component of beta diversity, which
explained 15% of variation, was strongly associated with
rainfall (r = 0.43, t = 12.93, df = 756, p < 0.001, Fig. 2b).
The ASVs that loaded positively on PC1 (i.e., correlated
with higher rainfall, Fig. 2d) were primarily from the
families Prevotellaceae, Ruminococcaceae, and Lachnos-
piraceae (Table S5 and S6). By contrast, the ASVs that
loaded negatively on PC1 (i.e., more abundant in low
rainfall, Fig. 2d) belonged to the family RFP12 and a dif-
ferent subset of Ruminococcaceae that were not abun-
dant during the wet season (Table S5 and S6).
Cumulative rainfall predicted the relative abundance

of gut microbes at all taxonomic levels and was signifi-
cantly associated with the relative abundance of 63% of
bacterial families tested (59-81% of taxa at other taxo-
nomic levels, Fig. 3, Benjamini-Hochberg corrected p
values: pBH < 0.05). Thus, across most taxa, there was a
clear contrast in the relative abundance of gut bacteria
between the wet and dry periods (Table S7, Fig. 4). In
wetter periods, there was an increase in several import-
ant fermentative families from the Bacteroides order (in-
cluding Prevotellaceae and Bacteroidaceae), as well as in
several cellulolytic/fibrolytic taxa (Lachnospiraceae,
Fibrobacteraceae, Spirochaetaceae, and several genera
from the Ruminococcaceae; Figs. 4 and 5a), suggesting
improved digestive efficiency of plant cell wall polysac-
charides at a time when the gelada diet consists mainly
of grasses. In particular, nine Prevotella genera as well as
the Bacteroides genus were at higher abundance during
wetter periods than drier periods (Table S7, Fig. 4b).
There was also an increase in several proficient

Table 1 Determinants of alpha diversity, as measured by the Shannon index
Fixed factor Estimate SE 95% confidence interval LRT p value

Sex (male) −0.12 0.04 [−0.20; −0.05] 9.27 0.002

Age 0.01 0.02 [−0.02; 0.04] 0.49 0.484

Cumulative rainfall 0.05 0.02 [0.02; 0.08] 12.13 < 0.001

Minimum temperature 0.00 0.01 [−0.03; 0.03] 0.04 0.848

Sequencing depth 0.07 0.01 [0.04; 0.10] 24.24 < 0.001

Parameters and tests are based on linear mixed models of 758 samples and 131 individuals, controlling for individual identity and unit membership. Factors with
p values less than 0.05 are highlighted in bold
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cellulolytic genera (e.g., Senegalimassilia, Butyrivibrio,
Saccharofermentans, Cellulosilyticum, Marvinbryantia)
(Table S7, Fig. 4b). By contrast, the dry season was char-
acterized by an increase in amylolytic genera (Succinivi-
brio; Streptococcus and Pirellulaceae p-1088-a5 gut
group), in several efficient sugar-fermenting families
(Victivallales vadinBE97, Christensenellaceae), and in
the methane-producer Methanobrevibacter, a genus
known to increase the rate of fermentation and digestive
efficiency (Table S7, and Figs. 4 and 5b). Consistent with
our beta diversity analyses, we also found an increase in
the relative abundance of the RFP12 family during the
dry season (Table S7, Fig. 5b).
The taxonomic changes associated with rainfall also

corresponded to changes in the predicted function of
the gelada gut microbiome (as assessed by PICRUSt2:
[50]). During wetter periods, functional changes tended
to reflect the activity of the cellulolytic and fermentative

bacterial taxa. Microbial pathways involved in the trans-
port of molecules through bacterial membranes (e.g.,
ions, sugars, lipids, peptides), DNA replication and re-
pair, and cell motility (Tables S8-S9, Figs. 6, S4 and
S5A) increased. We also found an increase in the metab-
olism of sugars (e.g., starch and sucrose metabolism,
fructose, mannose, and galactose) (Figure S4 and S5A).
Such activity probably reflects the exportation of sugar-
cleaving enzymes and cellulosome complex across the
outer membrane [12, 51] of fibrolytic bacteria (complex
polysaccharides are too big to penetrate directly inside
bacteria and have to be cleaved first) and the absorption
of the soluble oligosaccharides back across the bacterial
membrane [12, 51].
During drier periods, the gelada gut harbored a greater

abundance of bacterial genes involved in energy, amino
acid, and lipid metabolism (Tables S8-S9 and Fig. 6a, c).
In particular, cellular energy production and cellular

Fig. 2 Rainfall structures the gelada gut microbiome. a Partial residual plot of Shannon alpha diversity index according to cumulative rainfall (in mm). Black
dots represent the partial residuals from the LMM (i.e., showing the association between cumulative rainfall and alpha diversity, while controlling for all other
predictors). The blue line and confidence intervals come from a linear regression (for representation only). Seven outlier samples (with a particularly low
Shannon index) were omitted for clarity of representation. b Visualization of between-sample dissimilarity (based on Aitchison distance) on the first principal
component (PC1) according to cumulative rainfall. c Compositional barplot of the five most abundant phyla in the dry (< 100mm of rain in the past month, N
= 362) and wet (> 200mm of rain in the past month, N = 282) samples (cumulative rainfall was converted to a categorical variable for representation purposes).
d Loading scores of each amplicon sequence variant (ASV) on the first principal component. ASVs with a loading score > 0.4 (characteristics of the wet season)
and < −0.4 (characteristic of the dry season) are colored.
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activity were enhanced during this period, as evidenced
by increases in pathways involved in the citric acid cycle,
oxidative phosphorylation, and fatty acid synthesis and
metabolism (Figure S4 and S5B). Other energy metabol-
ism pathways also increased during drier periods, includ-
ing the methane pathway and the carbon fixation
pathways, which are important for generating energy in

anaerobic bacteria (Figure S4 and S5B). Finally, drier
periods were associated with an increase in functions re-
lated to the synthesis of proteinogenic amino acids (e.g.,
tryptophan), the translation and synthesis of proteins
(Figure S4), and the synthesis of lipopolysaccharide.
Note, however, that the average weighted Nearest

Sequence Taxon Index (NSTI) value across all samples
(a measure of how similar bacteria from a sample are to
reference genome sequences) was relatively high in our
sample (mean ± SD = 0.60 ± 0.13) compared to other
mammals [50]. Our results should therefore be inter-
preted with caution, in that they provide a general idea
of the predicted gene family profiles based on bacteria
that were functional characterized in previous studies.

Temperature
Compared to rainfall, minimum temperature had a
much smaller impact on the gut microbiome. Average
minimum temperature did not influence any metric of
alpha diversity (Table 1 and S4, Figure S6A), and ex-
plained only 0.33% of the variation in beta diversity
(Table 2, Figure S6B). Changes in temperature were sig-
nificantly associated with the relative abundance of 5%
of the families (5-22% at other taxonomic levels; Fig. 3;
pBH < 0.05). More specifically, colder temperatures were
characterized by a greater abundance of two amylolytic
genera (Lactobacillus and Streptococcus); in several

Table 2 Determinants of beta diversity. Results of PERMANOVA
testing for the predictors that significantly structure the gut
microbiome of geladas, using 10,000 permutations and the
Aitchison dissimilarity distance between samples. The R-squared
values indicate the amount of between-sample variation
explained by each variable.
Factor R2 (%) p value

Individuala 20.25 < 0.001

Sequencing depthb 3.77 < 0.001

Unitb 5.84 < 0.001

Cumulative rainfallb 3.30 < 0.001

Minimum temperatureb 0.33 < 0.001

Sexb 0.23 0.012

Ageb 0.19 0.045
aWe first fit a model with individual identity as the only predictor in a PERM
ANOVA to estimate the sole effect of individual identity at explaining the
overall gut composition of samples
bWe then fit a second PERMANOVA model where all other predictors were fit,
stratifying on individual identity to control for pseudoreplication of samples
from the same individual

Fig. 3 Rainfall exerts the strongest effect on bacterial relative abundance. Percent of taxa that are significantly associated (Benjamini-Hochberg
corrected p values: pBH < 0.05) with rainfall (purple bars), temperature (orange bars), or sex (green bars), across five taxonomic levels. For a given
bacterial taxon, the significance of each predictor was assessed using a negative binomial GLMM of the count of this taxon per sample
(controlling for sequencing depth as an offset factor, and including individual and unit membership as random effects). Only taxa with pBH < 0.05
were considered significant. The numbers above the bars depict the number of taxa significantly differentially abundant, while the numbers
below indicate the total taxa measured per level. Age was not significantly associated with relative abundance of any taxa at any level
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sugar-fermenting (Hydrogenoanaerobacterium, Clostrid-
ium sensu stricto 1, Coprococcus 1) and cellulose-
degrading bacteria (Marvinbryantia and two genera
from the Ruminococcaceae family) (Table S7, Figure S7).
By contrast, hotter temperatures were associated with an
increase in Verrucomicrobia, in the methane-producer
Methanobrevibacter, and in several cellulolytic/fibrolytic
genera from the Ruminococcaceae and Lachnospiraceae
families (Table S7, Figure S7).
Similar to our taxonomic analysis, we found that

temperature had a much smaller effect on the predicted
function of the gelada gut microbiome (Tables S8-S9,
Figure S8). During colder periods, we found a predicted
increase in bacterial pathways involved in lipid metabol-
ism and energy production (notably in oxidative phos-
phorylation pathway; Figure S8). Other pathways that
increased during colder periods involved DNA repair and
recombination and the bacterial secretion system. During
hotter weather, pathways were more poorly characterized
and less specific, with predicted increases in methane me-
tabolism and ABC transport (a membrane transporter).

Sex, reproductive state, and age
The gut microbiome of females exhibited higher alpha
diversity compared to males, regardless of the metric
(richness, evenness, and Shannon index) (Table 1 and

S4, Figure S9A). Across samples, however, sex explained
little between-sample variation (i.e., < 1%) (Table 2, Fig-
ure S9B). We detected only a handful of bacterial taxa
that were differentially abundant according to sex (Table
S7, Fig. 3). At the phylum level, females harbored more
Verrucomicrobia and Proteobacteria (particularly from
class Gammaproteobacteria, Deltaproteobacteria, and
Alphaproteobacteria). At the family and genus levels, fe-
males had more taxa involved in lactic acid metabolism
(Lactobacillaceae, Anaerovibrio), cellulolysis (Saccharo-
fermentans), and regulation of glucose and fat transport
(Erysipelatoclostridium). Males, on the other hand, only
harbored more Pirellulales. No predicted metabolic
pathway differed in abundance between males and
females (Tables S8-S9).
Female reproductive state did not influence any alpha

diversity metric (Table S10, Figure S10A) and was not a
significant factor influencing beta diversity between sam-
ples (Table S11, Figure S10B). Very few taxa were differ-
entially abundant according to female reproductive state
(Table S12 and S13). Pregnant females harbored more
Verrucomicrobiota (class Verrucomicrobiae) and Epsilon-
bacteraeota than cycling and lactating females (Table
S13). In particular, the genus Helicobacter (within the
family Epsiolonbacteroaeto)—a presumed pathogen—was
highly prevalent in pregnant females (Table S13). No

Fig. 4 Rainfall predicts the relative abundance of many bacterial taxa. a Families and b Genera that are found differentially abundant according
to cumulative rainfall. The estimate of the cumulative rainfall effect for each taxon comes from a negative binomial GLMM modeled separately
for the counts of each taxon across samples (controlling for sequencing depth as an offset factor, and including individual and unit membership
as random effects). Taxa starting with “*” were fit with a binomial model instead. Only taxa with pBH < 0.05 were considered significant. For ease
of representation on panel B, only genera with effect sizes > |0.2| are represented. The full list of differentially abundant genera can be found in
Table S7. Assignment of the “broad function” of a family or genus is for representation only, and is a simplification of the various functions
subsumed within each taxonomic group.
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Fig. 5 Relative abundance in six bacterial taxa (family or genus) that are significantly associated with rainfall. a Families more abundant during
the wet season and b Families more abundant during the dry season. Note that the tick marks on the y-axis are spaced on a log10 scale (except
for RFP12 which is plotted on a raw scale because of its high abundance). The blue line and confidence intervals come from a linear regression
(for representation only). The significance of those effects has been estimated using negative binomial GLMMs including individual and unit
membership as random effects

Fig. 6 Rainfall predicts the functional profile of the gut microbiome. a Bacterial pathways at level 2 of KEGG Orthology (KO) that are differentially
abundant according to cumulative rainfall (in mm). The estimate of the “rainfall” effect for each pathway comes from a LMM fitted on the relative
abundance of each pathway per sample. Only pathways with pBH < 0.05 are reported. Relative abundance of the three most enhanced functional
pathways during b the wet season and c the dry season according to monthly cumulative rainfall. Note that the tick marks on the y-axis are
spaced on a log10 scale. The blue line and confidence intervals come from a linear regression (for representation only). The significance of the
rainfall effect effects per pathway was estimated using LMMs including individual and unit membership as random effects
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predicted metabolic pathways were found to differ based
on reproductive state (Table S14-S15). Age did not influ-
ence any metric of alpha diversity (Table 1 and S4, Fig-
ure S11A) or beta diversity (Table 2, Figure S11B), and
no bacterial taxa (Table S7) or predicted metabolic path-
ways (Table S8-S9) were differentially abundant between
young and old adults.

Discussion
Our findings are consistent with the hypothesis that
changes in the gelada gut microbiome may help animals
cope with seasonal changes in food availability and
thermoregulatory demands. First, the gelada gut micro-
biome was highly plastic and responded rapidly to sea-
sonal fluctuations in climate—particularly rainfall (a
proxy for available foods). Second, an increase in pre-
dicted bacterial functions involved in energy, amino acid,
and lipid metabolism during both drier and colder pe-
riods suggested increased production of SCFAs, and
more efficient digestion during energetically and
thermoregulatory challenging periods. We further found
that individual identity and social group explained nearly
a third of the variation of the gelada microbiome, while
other individual traits such as sex, reproductive state,
and age had little effect on gut microbiome composition
and function.
Rainfall was the strongest ecological factor influencing

changes in the gelada gut microbiome, explaining ~ 3.3%
of overall microbiome composition. In particular, cellu-
lolytic/fibrolytic and fermentative bacterial taxa in-
creased during wetter periods when grass, which is
mostly composed of cellulose, was the primary food
source, while amylolytic and methanogenic bacterial taxa
increased during drier periods, when geladas incorpo-
rated more starch (i.e., amylose) and lignified food into
their diet. This effect of rainfall on the gut microbiome
was strong, despite the fact that geladas exhibit only
moderate dietary changes across season (i.e., from only
grass to less grass and more underground organs—but
from the same plant species) compared to other mam-
mals living in more seasonal environments, e.g., that
switch from ripe fruits to more folivorous diets [7, 52,
53]. This pattern highlights the importance of the gut
microbiome for geladas in processing their unique diet
across seasons.
The efficiency of grass digestion in wet periods seems

to rely on a syntropy between the first cellulolytic de-
graders (Ruminococcaceae, Lachnospiraceae, Fibrobac-
teraceae, Spirochaetes) and a high diversity of secondary
fermenters (Prevotellaceae and Bacteroidales), which all
increase in abundance during the wet season. The first
degraders attach to the plant cell walls and hydrolyze
cellulose, hemicellulose, and xylan into smaller polysac-
charides and oligosaccharides [12, 51], while secondary

fermenters ferment those soluble polysaccharides into
more simple sugars [10, 54]. Ruminococcaceae and Lach-
nospiraceae are the two main cellulolytic taxa in the
mammalian gut and commonly increase in prevalence
when animals eat more leaves and plants [7, 29]. In
terms of secondary fermenters, Prevotella are widely
known for their role in breaking down non-cellulosic
polysaccharides and pectin [10, 12]. They are the major
constituent (~ 70%) of rumen bacteria [55], and com-
monly increase in high fiber or fruit diets [29, 53, 56,
57]. Members of Bacteroidales—and particularly from
the Bacteroides genus—have some of the largest reper-
toires of carbohydrate degrading activities and are able
to ferment a broad range of plant polysaccharides [10,
58–60]. The increase in these cellulolytic/fibrolytic taxa
and the high versatility of the secondary fermenters
likely allow geladas to optimally extract nutrients from
grasses eaten during wet periods.
In contrast, during drier periods, when geladas relied

more on underground storage organs, we found a corre-
sponding increase in microbial families involved in amy-
lolytic and saccharolytic activities (Succinivibrionaceae,
Streptococcaceae, Christensenellaceae). Interestingly, Suc-
cinivibrionaceae also increased during periods of ener-
getic stress in Tibetan macaques (Macaca thibetana)
[26] and during the dry season in the Hazda hunter
gatherers of Tanzania [61], suggesting that it might help
hosts cope with diet-related energy shortfalls. The gelada
microbiome during the dry season was also character-
ized by an increase in Methanobrevibacter, a genus
containing hydrogenotrophic archaea that converts
hydrogen and formate into methane [62]. The simultan-
eous enrichment of efficient hydrogen-producers (e.g.,
Christensenellaceae [63], Hydrogenoanaerobacterium:
[64]) and formate-producers (Succinivibrionaceae: [65]),
combined with methanogens during the dry season sug-
gest that these taxa work together in syntropy to im-
prove the efficiency of polysaccharide fermentation from
starch in the gut in dry periods [66, 67]. In mice and
humans, a higher abundance of methanogenic archaea
increases calorie harvest from diet, facilitates SCFA pro-
duction by other fermentative bacteria, and stimulates
lipogenesis [66–69].
Finally, drier periods were also characterized by a large

increase in the RFP12 family (i.e., ~ 30% versus ~ 18% in
wetter periods) from the Kiritimatiellaeota phylum. The
RFP12 family remains poorly characterized but is in-
creasingly recognized as being a keystone bacterial group
in the hindgut of horses (Equus ferus caballus) [70–72],
and a common inhabitant of the rumen of sheep (Ovis
aries) or cattle [73–75]. The bacterial sequences belong-
ing to the RFP12 family found in the gelada feces were,
on average, 97% similar to bacterial sequences found in
the feces of various hindgut herbivorous fermenters [48]
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and, to a lesser extent, in the rumen of foregut fermen-
ters (Table S3). This suggests that the RFP12 family
plays a particularly important, but thus far uncharacter-
ized, digestive role for herbivorous species. In the case of
geladas, it further suggests that it might be a keystone
bacterial group for the digestion of some underground
food components commonly eaten by the geladas during
dry periods.
Overall, the gut microbes present in geladas are poorly

represented by reference bacterial genomes in the two
most common microbial databases: SILVA (updated
2017) [76] and Greengenes 13_8 (updated 2013) [77].
Taxonomic assignment of bacteria beyond the family
level is relatively low (only 65% of our reads were
assigned to genus level) compared to assignment of se-
quences found in captive animals and humans. This
poor taxonomic characterization limits our ability to
understand the metabolic activities of gut microbiome
communities, and highlights the need to generate more
molecular microbial data from a wider range of non-
model and wild organisms. The Kiritimatiellaeota
phylum (and in particular the RFP12 family) would be a
good candidate to focus on.
At the functional level, bacterial genes involved in en-

ergy, amino acid, and lipid metabolism increased in
prevalence during the dry season. In particular, meta-
bolic pathways linked to cellular respiration, methano-
genesis, and carbon fixation pathways of prokaryotes
became more common, strongly suggesting that both
bacterial energy production and cellular activity were
stimulated during this time. One interpretation of this
data is that the increase in cellular activity simply re-
flects a dietary switch to starch, which is easier to
hydrolyze than cellulose, and thus might more readily
provoke a stimulation of bacterial activity and carbohy-
drate fermentation. Alternatively, the stimulation of bac-
terial energy metabolism and cellular activity could
reflect a higher production of SCFAs by gut bacteria,
supplying the host with additional energy in periods of
nutrient restriction (when relying on fallback foods) [31,
78]. Similar increases in predicted bacterial energy me-
tabolism have been found in energetically challenging
environments (e.g., high altitude) in several other mam-
malian species and were correlated with higher SCFA
production [31, 32]. Analysis of fecal SCFA profiles in
geladas would help to identify if this is also the case in
this high-altitude species. One caveat to our analysis is
that the accuracy of the PICRUSt2 functional predictions
may be lower than in other studies, especially when
compared to published NSTI values in other mammals
[50]. Previous studies of mammalian gut microbiomes
conducted PICRUSt analyses on bacterial sequences
grouped by OTUs, instead of ASVs. Because OTUs
group sequences with 97% of similarity together, it

removes 3% of genetic variation; and thus by definition
OTUs will be closer to samples from reference genomes,
potentially leading to lower NSTI values. Thus, although
our analyses are reflecting only a limited portion of the
bacterial community of geladas, it is not necessarily a
worse representation than found in previous studies
clustering bacteria by OTUs. Overall, while our pre-
dicted functions might give us a broad profile of the
differences in metabolic activities of gut bacteria in
the dry and wet seasons, they are not as precise as
functional characterization from metagenomic or
metabolomic data.
While it is clear that the gelada diet shifts during drier

periods, it remains unknown if (and to what extent)
geladas are nutritionally or energetically constrained
during this time. Grass availability declines and geladas
spend more time foraging and digging for underground
plant parts during the dry season [35, 42]. Such under-
ground foods are usually considered fallback foods be-
cause individuals rely on them only when grass is less
available and because they require long processing times
[35, 38]. However, one study [42] found that geladas
obtain just as much, or even more, calories from under-
ground storage organs as they do from grass. Whether
this increased caloric intake is offset by increased for-
aging costs is currently unknown. However, even if in-
creased foraging costs were demonstrated, our data
suggests that the gut microbiota may increase digestive
efficiency from starchy food and thereby help geladas
maintain or improve energetic status during the dry
season. Future studies on seasonal changes in energy
balance will help resolve this issue.
In contrast to the effect of rainfall, we found mixed

evidence for the effect of temperature on the gut micro-
biome. Temperature only explained ~ 0.33% of variation
in the gelada gut microbiome composition. Furthermore,
few taxa shifted in abundance between the coldest and
hottest months, and most taxa affected by temperature
were also affected by rainfall. This might be explained by
the fact that rainfall (and thus diet) covaries with
temperature to some extent (Pearson’s correlation coeffi-
cient = 0.20): geladas rely the most on underground
foods in the hot-dry season (Feb. to May) and the most
on grass on the cold-wet season (Jun. to Sep.) [35]. The
cold-dry season (Oct. to Jan.), however, displays a mixed
pattern of diet and temperature: grass availability is still
high in Oct.-Nov. (following the rainy season) but de-
creases markedly in Dec.-Jan. [35, 41]. These 2 months
are thus characterized by the introduction of under-
ground foods in the diet and are also the coldest months
of the year, making them likely the most challenging
times for geladas (compounding nutritional and thermo-
regulatory challenges). Accordingly, cold periods were
characterized by an increase in two amylolytic and
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lactate-producing taxa (Streptococcus, Lactobacillus),
presumably to more efficiently extract starch from the
underground foods. At the functional level, the energy
and lipid metabolism of bacteria were also stimulated in
the cold months, further suggesting some role of gut
bacteria in stimulating host digestive efficiency and en-
ergy metabolism during thermoregulatory-demanding
times.
These seasonal changes that increase energy pro-

duction during colder periods may come at some
cost. Such trade-offs have been proposed where shifts
that benefit one aspect of host physiology conse-
quently lead to a decrease in other microbes that may
also be necessary for the host. For example, microbes
that promote host digestive efficiency and energy me-
tabolism may also promote inflammation or even sup-
press immune function [33, 79]. We did not detect
any obvious evidence of these tradeoffs in geladas,
but future work that incorporates detailed host im-
munological and functional microbial data is needed
to help determine if such trade-offs exist.
Finally, the present study found that the gelada gut

microbiome was largely explained by individual identity
(20%), a pattern consistent with data from a range of
vertebrates [40, 80–82], including humans [83, 84].
However, the effect of social group was lower in geladas
than reported for other social mammals (geladas: 6.0%
vs., e.g., yellow baboon, Papio cynocephalus: 18.6% of
variation explained [85], black howler monkey: 14% [86],
ring-tailed lemurs, Lemur catta: 21% [87], Welsh Moun-
tain ponies: 14%: [82]). The combination of large indi-
vidual effects with weak social group effects closely
resembles data reported for the Guassa gelada popula-
tion [40], suggesting a general, but consistent pattern.
The weak unit-level effects may result from the unique
social system of geladas: Because social units often ag-
gregate into large bands whose composition changes
regularly, geladas may have a higher rate of inter-unit
microbial transmission compared with other primates.
Future studies should explore in more detail the intra-
individual fluctuation in gut microbiome composition,
and whether group differences in ranging patterns may
explain these differences.
Other individual predictors, namely, age, sex, and female

reproductive state, had a very limited effect on the gut
microbiome, mirroring results in other mammals (yellow
baboons: [28, 85], ring-tailed lemurs: [87], Verreaux’s si-
fakas, Propithecus verreauxi: [29], chimpanzees, Pan trog-
lodytes schweinfurthii: [88], rhesus monkeys, Macaca
mulatta: [89], Welsh Mountain ponies [82], domestic dog,
Canis lupus familiaris: [90], but see black howler mon-
keys: [34] or Egyptian fruit bats, Rousettus aegyptiacus:
[80]). Although female geladas harbored higher microbial
richness than males, this resulted in minimal differences

in gut microbial composition and predicted function.
Compared to males, females had higher abundance of Pro-
teobacteria and Lactobacillus. These two bacterial taxa
were previously reported to increase during pregnancy
and lactation in humans and non-human primates [27,
91], and act as early colonizers of the infant gut [92–94].
Additionally, pregnant female geladas harbored more
Helicobacter, a potentially pathogenic genus [95, 96]. An
increase in potentially pathogenic microbes in pregnant
females was also observed in black howler monkeys [34]
and was hypothesized to be the consequence of a trade-off
between reproduction and immunity. These dynamics
warrant further investigation.
Overall, the gut microbiome of geladas seems to be

highly plastic and can respond rapidly to changes in host
diet and thermoregulatory demands. Stimulation of bac-
teria cellular activity could allow geladas to maintain ad-
equate or even improved energetic balance during dry
and cold periods. Our study adds to an increasing body
of literature suggesting that the gut microbiota is an im-
portant system providing dietary and metabolic flexibil-
ity for the host and might be a key factor influencing the
acclimatization to changing environments [8, 48, 97, 98].
In addition to fostering phenotypic plasticity, the gut
microbiome is increasingly hypothesized to contribute to
host evolution and speciation [97–99] given the strong
host phylogenetic signal in mammalian microbiome
composition and function [100, 101] and evidence of
microbiome heritability [102–104]. To the extent that
microbiomes affect host phenotypes under selection,
they will also affect host evolutionary trajectories. In the
case of geladas, a shift in gut microbiome composition
was probably an important adaptive mechanism that
allowed members of the Theropithecus genus to adopt a
specialized dietary niche and diversify rapidly from Papio
~ 5 million years ago [105]. Contrary to host adaptive
genetic mutations, which occur over the course of many
generations, the gut microbiota can shift in response to
changes in host diet in a matter of days [9]. Given that
the common ancestor of Theropithecus and Papio was
omnivorous [106, 107], dietary flexibility provided by the
gut microbiome may have been an important first step
allowing members of Theropithecus to exploit new grass-
land habitats in East Africa, leading to the evolution of a
specialized diet and, ultimately, further genetic and
phenotypic adaptation.

Conclusion
The gut microbiome of geladas is plastic and responds
rapidly to changes in host diet and thermoregulatory de-
mands. These shifts appear to help geladas cope with
seasonal fluctuations in nutrient intake and energy
homeostasis, potentially allowing them to maintain en-
ergy balance in challenging seasonal environments. Our
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study adds to an increasing body of literature suggesting
that the gut microbiota is an important system that pro-
vides metabolic flexibility for the host, and is key to
helping hosts adapt and shift to fluctuating environ-
ments. Future research in geladas and other animals will
further uncover how the gut microbiota allows hosts to
occupy unique dietary niches, potentially allowing host
lineages to expand into new habitats, and facilitating
speciation.

Material and methods
Study population and fecal sample collection
We collected fecal samples from a wild population of
geladas living in the Simien Mountains National Park, in
northern Ethiopia (13° 15′ N, 38° 00′ E). Samples were
collected over a 4-year period between Jan. 2015 and
Feb. 2019. Geladas live in multi-level societies, where re-
productive units (comprising a leader male, several adult
females, their offspring, and occasionally 1–2 follower
males) and bachelor groups (comprising between 1 and
10 adult males) form the smallest levels of the society
that forage and sleep together in a “band” sharing the
same home range [108]. Since Jan. 2006, the Simien
Mountains Gelada Research Project (SMGRP) has col-
lected demographic and behavioral data on over 200 in-
dividuals from two bands. All individuals are habituated
to human observers on foot and are individually
recognizable. Dates of birth of individuals were estab-
lished using a combination of known (N = 42) and esti-
mated (N = 89) birth dates. Estimated birth dates were
calculated by using the mean individual age at major
life-history milestones in our population (e.g., sexual
maturation or first birth for females and canine eruption
for males) [109, 110]. Birth dates of unknown immigrant
males were estimated using an established protocol
based on body size and other age-related morphological
characteristics [110]. Here, we focused only on samples
from adult males and females. Adult males were
included when they reached 7 years of age. At this age,
males have reached adult body size in stature but not in
weight [110, 111], and most males have dispersed into a
non-natal group (i.e., 96% of our male samples, males
could thus be leaders, followers, bachelors, or natals).
Adult females were included after they had experienced
their first sex skin swelling, a marker of reproductive
maturation (which is around 4.65 years old in our
population [109]).
Fecal samples of known adult and subadult male and

female subjects were collected regularly and opportunis-
tically during the study period. Immediately upon
defecation, approximately 1.5 g of feces was collected in 3
ml of RNA later [112, 113], stored at room temperature
for up to 2months, and subsequently shipped to the Uni-
versity of Washington (UW). At UW, samples were stored

at −80 °C until the sequencing libraries were prepared. A
total of 758 samples (620 female samples, 138 male sam-
ples) were collected from 131 individuals (83 females, 48
males) (mean ± SD = 5.79 ± 6.14 samples per individual,
range = 1-21) from 28 reproductive units and 4 bachelors
groups (mean ± SD = 4.69 ± 2.97 number of individuals
sampled per unit, range = 1-11).
The reproductive state of females at the date of sample

collection was assigned based on daily monitoring of in-
dividuals for the status of sex skin swellings and the
birth of infants. We assigned the three reproductive
states as follows: (1) Cycling began at the first sign of
postpartum sex skin swelling and ended when a female
conceived—with conception defined as 183 days (mean
gestation length) before the birth of a subsequent infant
[109]. (2) Pregnancy started on the date of conception
and ended the day before parturition. (3) Finally, lacta-
tion started on the day of parturition and ended the day
before the female’s first postpartum swelling. Lactating
females were further categorized as being in early lacta-
tion (infant < 1 year old) or late lactation (infant > 1 year
old). When testing the effect of reproductive state, late
lactating females were removed from the lactating cat-
egory to include only females that were still nursing at
the time of sample collection (females resume cycling
when infants are ~ 1.5 years old in our population, which
is presumably accompanied by infant weaning around
the same time [109]). Furthermore, because pregnant fe-
males can abort their fetus during male takeover of their
reproductive unit [114], some pregnancies might have
been misidentified as cycling based on our method of
back-calculating from the date of birth. We therefore re-
moved cycling females that experienced a takeover in
the previous 6 months before the date of sample collec-
tion (N = 55 samples) to avoid any misclassification of
reproductive state in our analyses.

Study site and climatic data
The study area is located at 3200m above sea level and
is characterized as an Afroalpine grassland ecosystem,
consisting of grassland plateaus, scrublands, and Erica-
ceous forests [115]. Fecal samples were collected across
the year, with roughly equal coverage across seasons
(244 in cold-dry, 298 in cold-wet, and 216 in hot-dry
season as defined above). As part of the long-term moni-
toring of the SMGRP, daily cumulative rainfall and mini-
mum and maximum temperature are recorded on a
near-daily basis. We used the total cumulative rainfall
over the 30 days prior to the date of fecal sample collec-
tion as a proxy for grass availability at the time of sample
collection [35]. In addition, we used the average mini-
mum daily temperatures in the 30 days preceding the
date of sample collection as a proxy of thermoregulatory
constraints. The average minimum temperature is less
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correlated with cumulative monthly rainfall than the
average maximum temperature in the previous 30 days
(correlation coefficient: 0.25 versus −0.56) and, more im-
portantly, is more likely to reflect the physiological effect
of thermoregulation on the body [41, 44].

DNA extraction, sequencing, and data processing
We prepared 16S sequencing libraries using the proto-
cols developed and optimized by the Earth Microbiome
Project and the University of Minnesota Genomics Core
(UMGC [116];). We extracted microbial DNA from the
fecal samples using Qiagen’s PowerLyzer PowerSoil
DNA Isolation kit (Qiagen #12855) following the stand-
ard protocol. We amplified the hypervariable V4 region
of the 16S rRNA gene using PCR primer set 515F
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG
GTGYCAGCMGCCGCGGTAA) and 806R (GTCTCG
TGGGCTCGGAGATGTGTATAAGAGACAGGGAC
TACNVGGGTWTCTAA
T) from The Human Microbiome Project and a dual-

indexing approach [116]. Details of the amplification
protocol can be accessed at https://smack-lab.com/
protocols/. The first PCR round aimed at amplifying the
V4 region. Each 25 μl PCR reaction well consisted of
12.5 μl of Nebnext Ultra II Q5 mastermix, 1.0 μl of each
primer, and 25 ng of total DNA in 10.5 μl of nuclease-
free water. PCR was performed in an Eppendorf thermo-
cycler with a 100 °C heated lid using the following cyc-
ling steps: an initial denaturing for 5 min at 95 °C;
followed by 15 cycles of 20 s at 98 °C, 15 s at 62 °C, 60 s
at 72 °C, and a final hold at 4 °C. We cleaned up the
PCR reaction with a 2:1 ratio of SPRI beads to PCR
amplified DNA. The second PCR round aimed at adding
a unique index primer combination to molecularly bar-
code each sample. We took 4 μl of product from the first
PCR and added 6 μl of Nebnext Ultra II Q5 mastermix
and 1 μl of n5 and n7 indexing primers, with each sam-
ple being assigned a unique n5/n7 index primer combin-
ation. This 12 μl reaction was placed in an Eppendorf
thermocycler with a 100 °C heated lid, denatured for 5
min at 95 °C, and amplified with 10 cycles of 20 s at
98 °C, 15 s at 55 °C, and 60 s at 72 °C with a final hold at
4 °C. After a 2:1 SPRI bead clean-up, amplification of the
V4 region was confirmed in a few samples using an
AATI fragment analyzer, and all libraries were quantified
using a qubit fluorometer. The libraries were then
pooled in roughly equimolar amounts (each with their
own unique indexing primer combination), spiked with
10% PhiX to increase library complexity, and sequenced
together on a single Illumina NovaSeq 6000 SP 250 bp
paired-end sequence flowcell.
We analyzed the resulting data using the Quantitative

Insights Into Microbial Ecology 2 (QIIME2) platform
[117, 118]. After trimming low-quality bases from the

de-multiplexed reads, we merged overlapping paired-end
reads, and denoised the sequencing data by filtering and
correcting Illumina amplicon sequencing errors using
the Divisive Amplicon Denoising Algorithm 2 (DADA2:
[119]) plugin incorporated in QIIME2. DADA2 infers se-
quences exactly resulting in amplicon sequence variants
(ASVs). Forward and reverse reads were trimmed to 220
and 180 bases, respectively, to remove the low-quality
portion of the sequences. The forward and reverse reads
were then merged together and chimeric sequences were
removed. Only samples with more than 20,000 reads
were retained for analyses (following observation of rar-
efaction curves, Figure S12). After filtering, trimming,
merging, and chimera removal, we retained a total of
348,390,395 reads across the 758 fecal samples (459,618
± 815,020 reads per sample, range = 20,109-10,735,588).
ASVs were taxonomically assigned using the q2-feature
classifier in QIIME2 against version 132 of the SILVA
database (updated December 2017) [76] based on 100%
similarity. Uninformative taxonomic assignments of
ASVs found in SILVA (e.g., “wallaby metagenome,” “un-
assigned bacteria,” etc.) were converted to “NA” to sim-
plify analyses at higher taxonomic levels. All ASVs
belonging to the order WCHB1-41 (phylum Kiritimatiel-
laeota) were not assigned at the family level in the
SILVA classification. However, in the Greengene classifi-
cation (version 13_8) [77], all ASVs from this order in
the gelada gut were assigned to the RFP12 family. Thus,
we attribute the family RFP12 to all ASVs from the
order WCHB1-41 in SILVA classification. The 78 ASVs
from the RFP12 family were found in particular high
proportion in the gelada feces, but we did not have taxo-
nomic information about those bacterial sequences
below the family level. We thus mined previously pub-
lished data to identify bacterial sequences most similar
to the 78 RPF12 ASVs in geladas by using the NCBI
BLAST search engine [46, 47]. For each of those 78
ASV, we searched for the most similar nucleotide se-
quences previously published, extracted its top five hits
(i.e., most similar sequences based on the E value), and
summarized the distribution of those top hits per ASV
across the 78 ASVs (including in which animal species
those hits were found, see Table S3). The five top hits
had an average of 97% nucleotide similarity (range, 93-
100%) with their respective similar gelada ASVs.

Statistical analyses
The count and taxonomy files generated by QIIME2 were
imported into R version 3.5.2 [120] using the qiime2R
package [121] and analyzed using the phyloseq package
[122]. The majority of the 19,606 ASVs in our dataset
were found at very low frequency or only in one sample
(71% of ASVs were found in only one sample and 6.2% of
ASVs were not assigned at the phylum level). Thus, we
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further filtered the count table to retain only ASVs that
had at least 500 reads in total in the dataset (i.e., 0.00014%
relative abundance) to eliminate potentially artifactual se-
quences. With this filtering criteria, only 3295 ASVs
remained, with all of them assigned at the phylum level
and most (97%) observed in at least two samples (Figure
S13). The use of rarefaction (i.e., subsampling of the read
count in each sample to a common sequencing depth) has
been discouraged due to the loss of information and preci-
sion [123], as well as the use of count normalization
methods from the RNA-seq field (e.g., DESeq2 or edgeR).
However, microbiome datasets are more sparse (zero-in-
flated) and more asymmetrical than genetic expression
datasets [124, 125]. Thus, we used a compositional
approach when possible (e.g., centered-log-ratio
normalization of the counts and Aitchison distance for
beta diversity analysis) [125, 126], controlling for sample
sequencing depth in multivariate analyses to account for
repeated samples from the same individual.
We replicated alpha- and beta-diversity analyses using

traditional rarefaction methods to facilitate comparisons
with other studies. To generate the rarefied dataset, we
randomly sampled 20,000 reads from the raw fastq files
of each sample and processed this new rarefied dataset
into the DADA2 pipeline. This dataset was further fil-
tered to remove the low-frequency ASVs (i.e., ASVs not
included in the pool of 3295 ASVs retained in the full
dataset). This resulted in a dataset containing the same
758 samples, with 2853 ASVs and with relatively
homogenous sequencing depth (18205 ± 1415 reads per
sample, range = 7460-19444). We rarefied reads from
the raw fastq files prior to DADA2 processing instead of
the traditional approach of rarefying after DADA2 using
the rarefy_even_depth function of the phyloseq package
[122] because the traditional approach did not eliminate
the effect of sequencing depth (post-DADA2) on the
alpha diversity metrics in the rarefied dataset. Sub-
sampling the raw fastq files allowed us to better gen-
erate indices of alpha diversity per sample that did
not depend on the total number of reads obtained
initially for the sample.
All mixed models described below were run using

either the lmer (for linear mixed models, LMMs) or
glmer (for binomial and negative binomial generalized
linear mixed models, GLMMs) functions of the lme4
package [127]. All quantitative variables (i.e., cumulative
rainfall, averaged temperature, and age) were z-
transformed to have a mean of zero and a standard devi-
ation of one to facilitate model convergence. The signifi-
cance of the fixed factors was tested using a likelihood
ratio test, LRT (assuming an asymptotic chi-square dis-
tribution of the test statistic) via the drop1 function. To
test for significant pairwise differences between levels of
multilevel categorical variables (i.e., reproductive state),

post hoc Tukey’s Honest Significant Difference tests
were carried out using the multcomp package in R
[128].

Alpha-diversity analyses
We calculated three measures of alpha diversity: observed
richness (the total number of different ASVs in a sample),
Shannon diversity index (accounts for both richness and
evenness of ASVs in a sample), and Faith’s phylogenetic
diversity (accounts for phylogenetic distance between bac-
terial species, using the picante package [129]). We mod-
eled each alpha diversity metric using linear mixed
models: (i) as a function of age, sex, cumulative monthly
rainfall, average monthly minimum temperature, and se-
quencing depth of the sample (N = 758 samples), and (ii)
as a function of reproductive state (cycling, early lactating,
and pregnant), age, cumulative monthly rainfall, and aver-
age monthly minimum temperature in samples collected
from females (N = 439). Individual identity and unit mem-
bership were included as random effects to control for in-
dividual and unit repetition across samples. We also ran
the same models on the rarefied dataset (Table S16).

Beta-diversity analyses
We then assessed how the same predictors were associ-
ated with between-sample community dissimilarity. To
account for differences in sequencing depth between
samples, the counts were normalized using the centered-
log-ratio (CLR) method (and using a pseudo count of
0.65 for zero counts) from the “compositions” package
[130]. We then calculated the Aitchison distance be-
tween samples (i.e., simply the Euclidean distance
between samples after clr transformation of the counts)
[131] and conducted a Principal Component Analysis
(PCA) (function “prcomp”) to visually represent
between-samples dissimilarity according to the predic-
tors. This approach has been recommended for micro-
biome datasets [125] and allows for the projection of
each sample onto individual principal components (PCS)
and the variable loadings of ASVs onto each PC. While
the first axis of variation correlated mostly with rainfall
(Fig. 2b), the second PCA axis was correlated with se-
quencing depth and explained 11% of the variation (Fig-
ure S14). We used Permutational Multivariate Analysis
of Variance (PERMANOVA) tests to assess the effect of
the predictors on the Aitchison distance between sam-
ples (using 10,000 permutations and the “adonis2” func-
tion from the “vegan” package [132]). We ran three
different models: (1) including all samples where we
tested only the effect of individual identity and sequen-
cing depth, (2) including all samples where we tested the
effect of unit, age, sex, cumulative monthly rainfall, aver-
age monthly minimum temperature, and sequencing
depth of the sample, and (3) including only female
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samples where we tested the effect of unit, reproductive
state, age, cumulative monthly rainfall, and average
monthly minimum temperature. In models 2 and 3, indi-
vidual identity was included as a blocking factor
(“strata”) to control for repeated sampling. We also rep-
licated beta diversity analysis on the rarefied dataset. We
ran PERMANOVA tests using three complementary
pairwise dissimilarity metrics (Bray-Curtis distance, un-
weighted and weighted UniFrac distances) to assess
between-sample variation according to the same predic-
tors (the same three models). Beta diversity results
remained qualitatively similar (Table S17).

Differential abundance testing
We examined how our predictors were associated with
differential abundance of bacteria (at the phylum, class,
order, family, and genus levels) using negative binomial
GLMMs. Compared to LMMs, negative binomial mixed
models are better equipped to handle over-dispersed
and zero-inflated distributions that often characterize
microbiome datasets [133]. They also facilitate tests of
several independent predictors while taking into account
longitudinal designs including random effects. We first
aggregated the counts (i.e., the number of reads per taxa
and per sample) at the taxonomic level of interest. Only
taxa that had an average relative abundance across sam-
ples ≥ 0.01% were tested. Then, for a given taxa, the
count per sample was modeled as a function of (1) age,
sex, cumulative monthly rainfall and averaged monthly
minimum temperature (all samples), or (2) female repro-
ductive state, age, cumulative monthly rainfall, and aver-
aged monthly minimum temperature (female samples
only). The log-transformed number of reads per sample
was included as an offset term to control for variation in
sequencing depth across samples. Individual identity and
unit membership were included as random effects in all
models. When negative binomial models failed to con-
verge in some taxa, we converted the counts in pres-
ence/absence and modeled them with binomial GLMMs.
Benjamini-Hochberg corrected p-values < 0.05 were
considered statistically significant.

Functional profiling of microbiota
We estimated the bacterial and archaeal genes present
in the metagenomes of each sample using Phylogenetic
Investigation of Communities by Reconstruction of
Unobserved States version 2 (PICRUSt2) [50]. In brief,
ASVs were aligned to reference sequences using HMME
R [134] and placed into a reference tree using EPA-NG
[135] and Gappa [136]. PICRUSt2 normalizes for mul-
tiple 16S gene copies in bacteria using castor, a hidden
state prediction tool [137]. The normalized data were
used to predict gene family profiles, and mapped onto
gene pathways using MinPath [138]. We followed the

default protocols outlined on the PICRUSt2 GitHub
page (https://github.com/picrust/picrust2/wiki). We in-
vestigated the predicted gene families using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Orthology
(KO) database. The accuracy of the PICRUSt2 predic-
tions for each sample was assessed by calculating the
weighted Nearest Sequence Taxon Index (NSTI) score, a
measure of how similar the bacteria from the sample are
to reference genome sequences. Five ASVs (out of 3295)
had a NSTI score > 2 and were removed from our final
predictions. The association between the relative abun-
dance of functional categories as estimated by PICRUSt2
and the predictors (on all samples or female samples
only) were examined using LMMs. Only functional path-
ways that had ≥ 0.1% relative abundance across samples
were tested. Individual identity and unit membership
were included as random effects in all models.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40168-020-00977-9.

Additional file 1: Table S1. Taxonomic composition of the gelada gut
at the phylum, class, order, family and genus levels. The mean relative
abundance and prevalence (% of the samples with each taxon) of
bacterial taxa are indicated. Table S2. Taxonomic composition of the
core ASVs (i.e. present in at least 90% of samples) in the gelada gut at
the order level. Table S3. Summary of the most similar bacterial
sequences to the 78 ASVs belonging to the RFP12 family found in
geladas feces. For each gelada RFP12 ASV, we searched the most similar
nucleotide sequences found previously on NCBI BLAST, extracted its top
five hits (i.e. most similar sequences based on Evalue) and summarized
the distribution of those top hits across the 78 ASVs (identifying those
animals in which similar sequences were found). Table S4. Predictors of
observed richness and Faith’s phylogenetic diversity (PD). Estimates with
p-values <0.05 are highlighted in bold. Table S5. Loading scores of ASVs
on the first principal component. Positive loadings correspond to wetter
periods, while negative loadings correspond to drier periods. Table S6.
Taxonomic distribution of seasonally differentially abundant taxa. Only
taxa with a PC loading scores > 0.4 and <-0.4 are included. Table S7. Dif-
ferential abundance results for all taxa. Results were obtained by fitting
negative binomial GLMMs for each taxa, controlling for individual identity
and unit membership. The estimate and p-values of fixed effects are re-
ported. Due to some negative binomial models that did not converge,
taxa preceded by a “*” were modeled with a binomial GLMM, with pres-
ence/absence as the outcome variable. Table S8. Differential abundance
results for KEGG pathways level 2. Model results were obtained by fitting
LMMs on each pathway, while controlling for individual identity and unit
membership. The estimate and p-value of the fixed effects are reported.
Table S9. Differential abundance results for KEGG pathways level 3.
Model results were obtained by fitting LMMs on each pathway, control-
ling for individual identity and unit membership. The estimate and p-
value of the fixed effects are reported. Table S10. Predictors of Shannon
index, observed richness and Faith’s phylogenetic diversity (PD) in fe-
males only. Estimates with p-values <0.05 are highlighted in bold. Table
S11. Predictors of the structure of the female gelada gut microbiome.
We carried out a PERMANOVA using 10,000 permutations and the Aitchi-
son dissimilarity distance between samples. Table S12. Number of differ-
entially abundant taxa for each predictor in the female samples. Table
S13. Differential abundance results for female samples at five taxonomic
levels. Table S14. Differential abundance results for KEGG pathways level
2 for female samples. Model results were obtained by fitting LMMs on
each pathway, while controlling for individual identity and unit member-
ship. The estimate and p-value of the fixed effects are reported. Table
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S15. Differential abundance results for KEGG pathways level 2 for female
samples. Model results were obtained by fitting LMMs on each pathway,
while controlling for individual identity and unit membership. The esti-
mate and p-value of the fixed effects are reported. Table S16. Predictors
of Shannon index, observed richness, and Faith’s phylogenetic diversity
(PD) on (1) all samples and (2) female samples on a rarefied dataset. Pa-
rameters and tests are based on 758/439 samples and 131/70 individuals
in all models. The LMMs were performed controlling for individual iden-
tity and unit membership. The 95% confidence intervals that do not cross
zero and p-values of statistically significant results are highlighted in bold.
Table S17. Results of PERMANOVA testing for the effects that signifi-
cantly structure the gut microbiome of geladas on a rarefied dataset for
(1) all samples or (2) female samples only. We used Bray Curtis, un-
weighted Unifrac or weighted Unifrac distances to assess between-
sample dissimilarity. 10000 permutations were carried out and individual
identity was added as a strata in the model. The R-squared values indi-
cate the amount of between-sample variation explained by each variable.

Additional file 2: Supplemental Figure 1. Taxonomic composition of
the gelada gut microbiome at the phylum and family levels. Relative
abundance (A) of all bacterial phyla and (B) of the 24 most abundant
families (mean relative abundance>0.02%) in the gelada feces. The y-axis
is on a log10 scale to better represent the variation across samples. The
median and median absolute deviation (error limit) are represented in or-
ange. Supplemental Figure 2. Genus composition of the gelada gut.
Relative abundance of the 38 most abundant genera (mean relative
abundance>0.01%) in the gelada feces. The tick marks on the y-axis are
spaced on a log10 scale. The median and median absolute deviation
(error limit) are represented in orange. Supplemental Figure 3. Rainfall
is not associated with Observed richness and Faith’s phylogenetic diver-
sity. Partial residual plot of (A) Observed richness and (B) Faith’s phylogen-
etic diversity (PD) according to cumulative rainfall (in mm). Black dots
represent the partial residuals from the LMM (i.e. showing the association
between cumulative rainfall and alpha diversity, while controlling for all
other predictors). The blue line and confidence intervals come from a lin-
ear regression (for representation only). One and 5 outlier samples (with
a particularly low diversity) were omitted for panel A and B respectively
for clarity of representation. Supplemental Figure 4. Bacterial functional
pathways that significantly associated with cumulative rainfall at KO level
3. The estimate of the cumulative rainfall effect comes from a LMM fitted
on the relative abundance of each pathway per sample. Only pathways
with pBH < 0.05 were considered significant. For ease of representation,
only pathways with effect sizes > |0.006| are represented. The full list can
be found in Table S9. Classification of KO level 3 pathways in broader cat-
egories were based on their KO level 2 assignment, with a few changes
made for clarity of representation. Level 3 pathways from Metabolism of
Other Amino Acids (level 2) were reclassified in the “Amino Acid Metabol-
ism”, Translation proteins and Replication, recombination and repair proteins
(both level 3 and initially in Genetic Information Processing at level 2)
were reclassified in “Transcription & Translation" and "Replication and Re-
pair" respectively. The category “Membrane Transport & Cellular Signal-
ling" regroups pathways from “Membrane Transport” and the other
pathways from “Cellular Processes and Signaling”. Supplemental Figure
5. Rainfall predicts the functional profile of the gut microbiome. Relative
abundance of ten functional pathways (at KO level 3) that are enhanced
(A) during the wet season and (B) during the dry season. Note that the
tick marks on the y-axis are spaced on a log10 scale. The blue line and
confidence intervals come from a linear regression (for representation
only). The significance of the rainfall effect effects per pathway have been
estimated using LMMs including individual and unit membership as ran-
dom effects. Supplemental Figure 6. Small effect of ambient
temperature on the gelada gut microbiome. (A) Partial residual plots of
the three alpha diversity indices (Shannon index, Observed richness and
Faith’s phylogenetic diversity) according to the average minimum
temperature in the previous month of sample collection (in oC). Black
dots represent the partial residuals from the LMM (i.e. showing the associ-
ation between temperature and alpha diversity, while controlling for all
other predictors). The blue line and confidence intervals come from a lin-
ear regression (for representation only). For clarity of representation, 9, 1,
and 5 outlier samples (with a particularly low diversity) were omitted for
Shannon, richness and Faith’s PD, respectively. (B) Visualization of

between-sample dissimilarity (based on Aitchison distance) on the first
and second principal component according to minimum temperature.
(C) Compositional barplot of the five most abundant phyla in the cold
(i.e. <8oC in the past month, N=191) and hot (>8oC in the past month,
N=567) samples (minimum temperature was converted to a categorical
variable for representation purposes). Supplemental Figure 7. Genera
that significantly associated with average minimum temperature. The esti-
mate for the effect of temperature for each taxa comes from a negative
binomial GLMM controlling for sample sequencing depth as an offset fac-
tor, and including individual and unit membership as random effects.
Only taxa with pBH < 0.05 were considered significant. The full list can be
found in Table S7. Supplemental Figure 8. Bacterial pathways that are
differentially abundant according to average minimum temperature at
KO (A) level 2 and (B) level 3. The estimate comes from a LMM fitted on
the relative abundance of each pathway per sample. Only pathways with
pBH < 0.05 were considered significant. For ease of representation on
panel B, only pathways with effect size > |0.002| were represented. The
full list can be found in Table S8. Supplemental Figure 9. Effect of sex
on the gelada gut microbiome. (A) Partial residual plots of the three
alpha diversity indices (Shannon index, Observed richness and Faith’s
phylogenetic diversity) according to the sex of the sampled individual.
Black dots represent partial residuals of the LMM. The median and me-
dian absolute deviation (error limit) of the distribution are represented in
orange. Ten, 1 and 5 outlier samples (with a particularly low diversity)
were omitted for Shannon, richness and Faith’s PD respectively for clarity
of representation. (B) Visualization of between-sample dissimilarity (based
on Aitchison distance) on the first and second principal component ac-
cording to sex. (C) Compositional barplot of the five most abundant
phyla in male (N=138) and female (N=620) samples. Supplemental Fig-
ure 10. Effect of female reproductive state on the gelada gut micro-
biome. (A) Partial residual plots of the three alpha diversity indices
(Shannon index, Observed richness and Faith’s phylogenetic diversity) ac-
cording to the reproductive state of the sampled female. Black dots rep-
resent partial residuals of the LMM. The median and median absolute
deviation (error limit) of the distribution are represented in orange. Ten, 1
and 5 outlier samples (with a particularly low diversity) were omitted re-
spectively for clarity of representation. (B) Visualization of between-
sample dissimilarity (based on Aitchison distance) on the first and second
principal component according to reproductive state. (C) Compositional
barplot of the five most abundant phyla in pregnant (N=61), lactating
(N=346) and cycling (N=158) female samples. Supplemental Figure 11.
Effect of age on the gelada gut microbiome. (A) Partial residual plots of
the three alpha diversity indices (Shannon index, Observed richness and
Faith’s phylogenetic diversity) according to the age of individuals at the
date of sample collection (in years). Black dots represent the partial resid-
uals from the GLMM (i.e. showing the association between age and alpha
diversity, while controlling for all other predictors). The blue line and con-
fidence intervals come from a linear regression (for representation only).
Nine, 1 and 5 outlier samples (with a particularly low diversity) were omit-
ted respectively for clarity of representation. (B) Visualization of between-
sample dissimilarity (based on Aitchison distance) on the first and second
principal component according to age. (C) Compositional barplot of the
five most abundant phyla between young (<10 years old, N=215 sam-
ples), middle-aged (10 to 17 years old, N=420 samples) and old (>17
years old, N=123 samples) individuals (age was converted to a categorical
variable for representation purposes only). Supplemental Figure 12.
Rarefaction curves of samples. Only samples that had at least 20000 reads
were included in this study. Supplemental Figure 13. 16S sequencing
and dataset characteristics. (A) Distribution of the total number of reads
per sample (the tick marks on the x-axis are spaced on a log10 scale). (B)
Distribution of the total number of ASVs per sample. Supplemental Fig-
ure 14. Visualization of differences in the gut microbiome composition
according to sequencing depth of the samples based on Aitchison dis-
tance dissimilarity matrix. Points represent individual samples.
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