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ARTICLE INFO ABSTRACT

JEL classification: Tracking human activity in real time and at fine spatial scale is particularly valuable during episodes such as the
c8 COVID-19 pandemic. In this paper, we discuss the suitability of smartphone data for quantifying movement and
;1‘ social contact. These data cover broad sections of the US population and exhibit pre-pandemic patterns similar

to conventional survey data. We develop and make publicly available a location exposure index that summarizes

county-to-county movements and a device exposure index that quantifies social contact within venues. We also
investigate the reliability of smartphone movement data during the pandemic.

1. Introduction

Personal digital devices now generate streams of data that describe
human behavior in great detail. The temporal frequency, geographic
precision, and novel content of the “digital exhaust” generated by users
of online platforms and digital devices offer social scientists opportuni-
ties to investigate new dimensions of economic activity. The COVID-19
pandemic has demonstrated the potential for real-time, high-frequency
data to inform economic analysis and policymaking when traditional
data sources deliver statistics less frequently and with some delay.

In this paper, we discuss the suitability of smartphone data for quan-
tifying movement and social contact. We show that these data cover
a significant fraction of the US population and are broadly represen-
tative of the general population in terms of residential characteristics
and movement patterns. We use these data to produce a location ex-
posure index (“LEX”) that describes county-to-county movements and
a device exposure index (“DEX”) that quantifies the exposure of de-
vices to each other within venues. These indices track the evolution
of inter-county travel and social contact from their sudden collapse in
spring 2020 through their gradual, heterogeneous rises over the follow-

ing months. Where possible, we compare these smartphone movement
data to measures of population changes, expenditure, and travel during
the pandemic. We do not find evidence that the dramatic pandemic-
induced changes in behavior sharply altered the reliability of smart-
phone data.

We publish these indices each weekday in a public repository avail-
able to non-commercial users for research purposes.! Our aim is to
reduce entry costs for those using smartphone movement data for
pandemic-related research. By creating publicly available indices de-
fined by documented sample-selection criteria, we hope to ease the com-
parison and interpretation of results across studies.? More broadly, this

! The indices and related documentation can be downloaded from https://
github.com/COVIDExposurelndices.

2 Examples of research using our indices thus far include Akovali and
Yilmaz (2020), Althoff et al. (2020), Brinkman and Mangum (2020),
Gupta et al. (2020), Monte (2020), Rodriguez et al. (2020), Wilson (2020), and
Yilmazkuday (2020a,b).
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paper provides guidance on potential benefits and relevant caveats when
using smartphone movement data for economic research.

Researchers in economics and other fields are turning to smart-
phone movement data to investigate a great variety of social sci-
ence questions. Chen and Pope (2020) use similar smartphone data
covering almost 2 million users in 2016 to document cross-sectional
variation in geographic movement across cities and income groups.
Athey et al. (2020) use smartphone data covering more than 17 million
devices spanning January to April 2017 to document experienced segre-
gation. We focus on the distinctive advantages of the data frequency and
immediacy. A growing body of both theoretical and empirical research
investigates human movement, social contact, and economic activity in
the context of the COVID-19 pandemic.® Our indices provide empirical
measures of these phenomena, complementing private-sector real-time
measures of social distancing and movement.* We describe properties
of smartphone data, compare the residential distribution and movement
patterns of devices to those in traditional data sources, produce pub-
licly available indices that can be used to easily compare results across
studies, and investigate potential measurement issues that arise in the
context of the ongoing pandemic.

2. Data

Our smartphone movement data come from PlacelQ, a location data
and analytics firm. In this section, we describe how PlacelQ processes
devices’ movements to define visits to venues, and how we select the
devices, venues, and visits included when we compute our exposure in-
dices. We then compare these devices and their movements to residen-
tial populations and movements reported in traditional data sources.

2.1. Device visit data

PlacelQ aggregates GPS location data from different smartphone ap-
plications using each device’s unique advertising identifier. The raw GPS
data come as pings that register whenever the application requests lo-
cation data from the device.® These pings are joined with a map of two-
dimensional polygons, corresponding to buildings or outdoor features
such as public parks, which we denote “venues.” A timestamped set of
pings within or in the close vicinity of a polygon constitutes a “visit.”®
Since a device’s location is measured with varying precision, PlacelQ
assigns each visit an attribution score based on ping characteristics and
geographic features. We retain all visits with an attribution score greater
than a minimum threshold. See Appendix A.1 for details.

2.2. Sample selection

2.2.1. Devices covered
For the typical smartphone in the PlacelQ data, we observe about six
months of movements, but there is considerable heterogeneity across de-

3 In addition to the research using our indices, see Greenstone and
Nigam (2020) on the value of social distancing, Maloney and Taskin (2020) on
private social distancing, Brzezinski et al. (2020) on the effect of government-
ordered lockdowns, Engle et al. (2020) on correlates of observed social distanc-
ing, Farboodi et al. (2020) on optimal policy, Glaeser et al. (2020) on cases and
mobility, Almagro et al. (2020) on racial disparities in cases and commuting,
and Xiao (2020) on the value of contact-tracing apps.

4 For example, Unacast reports distance traveled; Google’s community mobil-
ity reports capture visits to different venue types; and SafeGraph reports time
spent at and away from home. Relative to these measures, our indices are de-
signed to summarize travel and overlapping visits relevant for COVID-19 cir-
cumstances in an IRB-approved public release.

5 The set of applications is not revealed to us. Some applications collect loca-
tion data only when in active use, while others collect location data at regular
intervals.

6 If a device pings multiple times during a visit, then we have information
about visit duration.
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vices. Each Android and iOS smartphone has an identifier that uniquely
identifies the device at any given time, and the device’s unique advertis-
ing identifier can be refreshed by the user and may be refreshed by some
system updates. Thus, the average lifespan of an advertising identifier
is less than that of a physical phone. Even devices observed over a long
time period may not ping regularly. Ping frequency reflects a device’s
applications, settings, and movements.

To focus on devices whose movements can be reliably characterized,
we restrict the set of devices included in the computation of our indices
to those that pinged on at least 11 days over any 14-day period from
November 1, 2019 through the reporting date.” The earliest date for
which we report our indices is January 20, 2020, so this criterion selects
a set of devices based on a window of at least 80 days of prior potential
activity. Later reporting dates have longer windows. Given the reduced
movement associated with the COVID-19 pandemic, a criterion using a
fixed window of prior potential activity would exclude devices that tem-
porarily reduced their movements. As of December 31, 2020, 75 million
devices met this device selection criterion. On any given day, about 20
million of these devices ping at least once, as depicted in Fig. B.6.

For a subset of devices, we can assign a residential location with
reasonable confidence based on the duration of their residential visits
since November 1, 2019. Appendix A.2 describes our home assignment
algorithm. In short, we assign home locations based on where devices
repeatedly spend time at night. We use Census-reported demographic
characteristics for block groups, which contain about 600 to 3,000 peo-
ple, as proxies for device demographics. Since many people temporarily
moved to other residential locations during the pandemic, we assign a
device to a block group of residence based on the block group of its first
home location after November 1, 2019. As of December 31, 2020, 64
million devices have an assigned block group of residence.

In the context of the COVID-19 pandemic, a potential concern is that
devices may not generate pings when sheltering in place, due to their
lack of movement. Indeed, there was a general decline in the number of
devices generating pings in March 2020, presumably due to pandemic-
induced declines in movement.® When defining our exposure indices in
the next section, we discuss how they are impacted by devices sheltering
in place and suggest potential adjustments.

Even absent a pandemic, the number of devices appearing in the data
varies meaningfully over time. This may reflect changes in smartphone
ownership patterns, smartphone device settings, app usage, PlacelQ app
coverage, seasonal variation in behavioral patterns, or an Android or
iOS operating system update. These are unlikely explanations for the
sharp decline starting in March 2020, as that decline coincides with
the COVID-19 outbreak in the United States and there has not been a
major OS update or major shift in PlacelQ app coverage since the begin-
ning of 2020. When publishing our indices, we also publish the number
of devices underlying these values so that researchers can assess when
changes in the exposure indices may not reflect true changes in behav-
ior.?

2.2.2. Venues covered

Venues include commercial establishments, public parks, residential
locations, and polygons lacking an identified business category. When
assigning devices’ homes, only residential locations are relevant. When

7 During pre-pandemic months, using lower thresholds would only modestly
increase the number of devices included.

8 Devices are less likely to ping when users shelter in place because users are
less likely to open movement-related apps that use location services and the
phone’s operating system may pause location services to save battery life. For
example, the i0S “significant-change location service” only updates the user’s
position when it changes by at least 500 m (Apple, 2020).

° For example, the number of devices drops about 10 percent during April
14-18, 2020, which presumably reflects a change in smartphone data provision
rather than a common change in behavior. Such variation will be absorbed by
day fixed effects in difference-in-differences research designs.
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tracking devices’ movements across geographic units in the LEX, visits
to all such venues are informative.

When measuring potential social contact by the DEX defined in
Section 3, we restrict attention to venue categories in which most venues
are sufficiently small that visiting devices would be exposed to each
other. In particular, we omit the categories “Residential”, “Nature and
Outdoor”, “Theme Parks”, “Airports”, “Universities”, as well as venues
without a category identified by PlacelQ.!° Finally, note that PlacelQ
excludes certain venue categories for privacy reasons, such as hospitals,
schools, and places of worship.

There are 750,000 venues with identified commercial categories in-
cluded in our DEX calculations. Since a venue corresponds to a build-
ing, certain types of buildings can belong to multiple categories, e.g., a
restaurant inside a shopping mall. Our LEX calculations include venues
in unidentified categories and residential locations, for a total of 149
million venues.

The identified venues in each commercial category are not necessar-
ily representative of all such businesses. In most categories, the coverage
of chains is high, but a much smaller share of independent businesses
are identified.!! Table A.2 reports the number of venues within each
venue category in the DEX. The largest category is restaurants, which
has about 200,000 distinct venues.'2 There is little variation in the num-
ber of venues from January to December 2020.

2.2.3. Locations covered

We report our indices for all US states and most US counties. Many
US counties have few residents and therefore few devices in the PlacelQ
data. The indices we report are restricted to counties with reasonably
large device samples. To implement this restriction, we assign each de-
vice to a unique daily “residential county”, where that device had the
highest (cumulative) duration of time at residential locations on that
date. We report our indices only for the 2,018 counties that were the
residential county of at least 1,000 devices on every day from January
6, to 12, 2020. These counties account for more than 96 percent of the
US residential population.

2.3. Representativeness

Smartphone data cover a significant fraction of the US population.
However, differences in smartphone ownership and app use, sample se-
lection rules specific to research applications, and the use of small ge-
ographic units may produce unrepresentative samples.!®> For example,
older adults are less likely to own smartphones, making smartphone-
derived samples unbalanced across age groups.'*

In this section, we compare the residential distribution and move-
ment patterns of devices in our sample to those in traditional data
sources. This analysis requires restricting our sample to devices assigned
a residential block group, which constitute about 80 percent of the de-
vices in our sample.!®

10 Appendix C.1 presents DEX values for two alternative sets of venues. The first
includes all identified commercial establishments, weighting them by inverse
area. The second measures overlapping visits to residences.

11 See Appendix C of Couture et al. (2020) for details.

12 Note that many of these venues, such as shopping malls, contain multiple
restaurant establishments. US County Business Patterns reports there were about
570,000 establishments in NAICS 7225 in 2017.

13 SafeGraph, another location data provider, found that about 10 percent of
block groups contain 30 to 40 percent of the devices in their data, leading to
“disproportionately and sometimes impossibly high” numbers of devices relative
to the Census-reported residential population (Squire, 2019).

14 The Pew Research Center estimates that 81 percent of US adults own a
smartphone. That rate varies from 96 percent for ages 18-29 to only 53 per-
cent for those over 65 years. See https://www.pewresearch.org/internet/fact-
sheet/mobile/.

15 This restricted sample is the same that we will later use to compute our
indices broken down by demographic group.
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Panel A of Fig. 1 shows that geographic units with larger residential
population have more devices in our sample residing in them. Regress-
ing the log number of devices on the US Census Bureau’s 2019 estimate
of log residential population yields an R?> of 0.96 for states and 0.95
for counties. On average, the number of devices in our sample is about
one-tenth of the total population.

Panel B of Fig. 1 investigates the distribution of devices across resi-
dential block groups within each county. The panel shows the share of
devices living in block groups in ten population deciles ranked by in-
come, share white, education, and population density. For instance, the
top-right chart shows that about 10 percent of devices live in each decile
of a county’s block group median household income distribution. Simi-
larly, about 10 percent of devices live in each decile when we rank block
groups within their county by the share of their residents who are white
or college graduates. When looking at deciles ranked by population den-
sity, denser block groups are somewhat underrepresented: only about 7
percent of devices live in block groups in the highest population-density
decile.

In Appendix Figure B.1, we reproduce Panel B of Fig. 1 using national
population deciles instead of within-county population deciles. We find
greater overrepresentation of block groups with low population densi-
ties and large shares of white residents.'® Given that our sample is more
representative within counties than across counties, we suggest that re-
searchers focus on applications of our indices that exploit intertemporal
variation within counties or make cross-county comparisons of changes
over time. Applications relying on cross-county differences in levels may
be prone to sample-selection biases.

Panel C of Fig. 1 depicts residential migration patterns. We com-
pare state-to-state residential migration in 2019 in our smartphone data
to state-to-state flows in the 2017-2018 Internal Revenue Service (IRS)
Migration Data. To make this comparison, we restrict attention to the
5.5 million devices in the PlacelQ data with non-missing home assign-
ments in both the first and last week of 2019. At the state level, the two
migration measures are highly correlated: regressing the PlacelQ share
on the IRS share yields an R? exceeding 0.8. At the county level, the
correlation is weaker, with an R? of 0.47.17

Panel D of Fig. 1 examines travel from home to commercial venues
by depicting the distributions of trip lengths in our smartphone data
and the 2017 National Household Transportation Survey (NHTS). For
the PlacelQ data, we show trips to venues included in the DEX com-
putation.'® For the NHTS, we show trips within the trip-purpose cat-
egories that most closely match DEX venues.'® The figure depicts two
trip-length distributions for each data source, one for people or devices
living in block groups within the top quartile of the population density
distribution, and one for people or devices living in the bottom quartile.
The smartphone and NHTS trip-length distributions are remarkably sim-
ilar, and both show a greater propensity to make shorter trips in more
densely populated areas.

Overall, the patterns documented in Fig. 1 suggest the potential of
broadly representative smartphone data for use in economic research.
That said, we encourage researchers using these data to evaluate the pre-
cision and representativeness of their sample in their particular context.
To help researchers assess whether our indices are suitably precise for

16 When examining SafeGraph data, Squire (2019) reports the opposite pat-
tern: SafeGraph data have fewer devices in block groups with more white res-
idents. This suggests that representativeness may vary across smartphone data
providers or sample-selection criteria.

17 We exclude the 98% of county pairs that have no migration in both the IRS
and smartphone data.

18 A trip is from home if the device’s previous visit was its home within the pre-
vious hour. We estimate driving distance (trip length) as 1.5 times the straight-
line distance between the home and venue.

19 These NHTS categories are “buy goods”, “buy services”, “buy meals”, “other
general errands”, “recreational activities”, and “exercise”. We thank Gilles Du-
ranton for computing the NHTS values in Fig. 1.
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(b) Share of devices by block-group demographic decile
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Fig. 1. Spatial and Demographic Balance of Device Populations. Notes: Panel A compares the number of devices residing in a geographic unit as of March 1, 2020
(vertical axis) to the Census’s estimated 2019 residential population (horizontal axis) for all states, and for the 2,018 counties in the DEX and LEX. Panel B depicts the
share of devices residing in block groups as of March 1, 2020 in each within-county decile of population density, median household income, share of white residents,
and share of residents over 25 years with a bachelor’s degree or higher. These block group characteristics are from the 2014-2018 American Community Survey.
Panel C compares state-to-state residential changes in 2017-2018 IRS Migration Data to 2019 PlacelQ data. The horizontal axis is the share of tax filers in state j
who filed in state i the previous year. The vertical axis is the share of devices residing in state j in the last week of 2019 that resided in state i in the first week of
2019. Non-movers (j = i) are excluded. Panel D depicts a kernel density plot of trip length in kilometers, for trips from home to a commercial venue in the PlacelQ
data from November 2, 2019 through February 1, 2020 and in the 2017 NHTS, for residents of block groups in the top and bottom quartile of the population-density

distribution.

their research application, we publish the underlying number of devices
for each index, day, and geographic unit.

3. Exposure indices

In this section, we describe the location exposure index, which mea-
sures movement between counties or states, and the device exposure in-
dex, which measures average exposure of devices to each other within
commercial venues.

3.1. Notation and preliminaries

We use the following notation when defining the LEX and DEX. Let
i index devices, j index venues, g index geographic units (counties or
states), and ¢ and d index dates. Let p;;, € {0,1} and p;,, € {0, 1} equal
one if device i pinged in venue j or geography g, respectively, on date 7.
Define p;, = max, p;,, as an indicator that equals one if device i pinged in
any geographic unit on date . Let r;,, € {0, 1} equal one when device i
resided in g at date t, where we assign residence based on the geographic
unit in which the device spent the most time in residential venues on
that date.?’

20 In the event of a tie, the geographic unit of residence is assigned based on
visits to non-residential locations.

Next, we define sets of devices and venues based on these indica-
tors. Let I; , = {i : pjy =1} and T, ; = {i : p,,y = 1} denote the sets of
devices that pinged in venue j or geographic unit g, respectively, on
date d. Let G, ; = {i : r;,y = 1} denote the set of devices that reside in
geographic unit g on date d. Let J,, = {j : p;;; = 1} denote the set of
venues where device i pinged on date d.

3.2. Location exposure index (LEX)

The LEX is a matrix that answers the following query: Among smart-
phones that pinged in geographic unit g’ on date d, what share of those
devices pinged in geographic unit g at least once during the previous
14 days? We report the LEX as a daily G x G matrix, in which each cell
reports, among devices that pinged on day d in the column location g’,
the share of devices that pinged in the row location g at least once dur-
ing the previous 14 days (conditional on pinging anywhere during the
previous 14 days). Thus, each element of this matrix is

Yiet,, 1{ Y14 P > 0}
Ziet,, 1{ 14 Pi > 0}
it (pa=18& T 4 >0) }
o 1{i : (Pig’d =1& Z;tdl_mp,-, > 0)} .

LEXg1g
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Fig. 2. Smartphone visits and Affinity expenditures NOTES: This figure depicts total smartphone visits to grocery stores, restaurants, and arts, entertainment, and
recreation (A&E). A&E includes visits to movie theaters, museums, nightclubs, bars, theme parks, and theatres. Credit card data for the same categories comes from
Affinity Solutions (Chetty et al., 2020). Both series depict 2020 values relative to 2019 values normalized to the January 4-31 average and smoothed using a 7-day

moving average.

We define the LEX to summarize people’s movements with
pandemic-related applications in mind. The index describes the share
of people in a given location who have been in other locations during
the prior two weeks. Thus, if COVID-19 cases surge in county g,

LEX,,/, describes the potential exposure of county g’ to the infectious
disease via prior human movement from county g to g’ (conditional on
pinging anywhere in the US in the last 14 days). We chose the 14-day
period of exposure based on the incubation period commonly cited by
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Panel A: February 29, 2020

Panel C: August 29, 2020
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Panel B: May 30, 2020

Panel D: November 28, 2020
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Fig. 3. County-Level Exposure to New York County (Manhattan). NOTES: Each panel of this figure depicts, for each of 2,018 counties, the share of devices pinging
in that county that had pinged in New York, New York during the previous 14 days. The four panels depicts this for four Saturdays in 2020. Using the notation of
Section 3, the four panels depict LE X344, . 4 for d equal to February 29, May 30, August 29, and November 28, of 2020, where 36061 is the FIPS code for New

York County.
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Fig. 4. State-level LEX values by distance between states. NOTEs: This figure depicts average LEX values for pairs of states grouped by the distance between their
population-weighted centroids. Each series depicts a 7-day moving average relative to its value on March 7, 2020. The Transportation Security Administration (TSA)
throughput series reports the number of travelers passing through TSA checkpoints on each day. Monthly seasonally adjusted vehicle miles traveled comes from the

Federal Highway Administration (series TRFVOLUSM227SFWA).

public-health authorities during the ongoing pandemic.?! We chose
to focus on all devices pinging in a given location rather than only
residents because all human movement is relevant for potential disease
exposure. Because a device can visit multiple locations both on a given
day and during the preceding 14 days, LEX, is not a transition matrix,
its columns do not sum to one, and it is not amenable to aggregation.
The temporal frequency and geographic units were selected to protect
device user privacy in the context of a public data release. To comple-

21 The CDC’s COVID-19 FAQ page : “Based on existing literature, the incubation
period (the time from exposure to development of symptoms) of SARS-CoV-2
and other coronaviruses (e.g. MERS-CoV, SARS-CoV) ranges from 2 to 14 days.”

ment the LEX, we also report a more aggregated statistic: the fraction
of devices in geographic unit g’ that in the last two weeks were in any
geographic unit g # g’'.

Starting in March 2020, there was a general decline in the number
of devices generating pings, presumably due to individuals restricting
their movements in response to the pandemic. Both the numerator and
denominator of LEX,, restrict attention to devices that ping in g’ on
day d (i € Ly 4), SO the LEX captures the locational histories of devices
that are “out and about” in geographic unit g’ on date d and does not
capture the locational histories of devices sheltering in place and not
generating any pings. This is relevant in the context of the ongoing pan-
demic: the index captures non-local exposure associated with “active”
devices that are moving around within location g’. For applications that


https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html
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Fig. 5. DEX and DEX-A over time. NOTES: This figure shows the population-weighted mean unadjusted and adjusted device exposure indices (DEX and DEX-A) over

time. The series are smoothed using a 7-day moving average and normalized relative to their value of March 7, 2020.

require measuring exposure for the entire population of devices, includ-
ing those that do not generate pings, we have published the daily num-
ber of devices that ping in each county, so that researchers can adjust
their computations.

3.3. Device exposure index (DEX)

The DEX is a county- or state-level scalar that answers the following
query: How many distinct devices does the average device living in g
encounter via overlapping visits to commercial venues on each day? To
compute the DEX, we first calculate the daily exposure set of device i
as the number of distinct other devices that visit any commercial venue
that i visits on date 7

Exp, = | 1,4
J€Jia

The DEX is then defined as the average size of the exposure set for de-
vices that reside in geographic unit g on date d:

DEX, 4 1 Y [EXP, 4.
|gg al i€Gqy g4

As an average, the DEX can be aggregated to larger spatial units.>?> Note
that the DEX values are necessarily only a fraction of the number of dis-
tinct individuals that also visited any of the commercial venues visited
by a device, since only a fraction of individuals, venues, and visits are
in the device sample.

We have defined the DEX to summarize social contact with
pandemic-related applications in mind. The index captures overlapping
visits to venues on the same day, which is relevant for potential virus
exposure. We chose to define overlapping visits as visits to a venue on
the same day rather than during the same hour based on both sample
size and the concern that SARS-CoV-2 can persist in circulating air and
on surfaces for multiple hours.

Note that devices sheltering in place would drop out of the sample
used to compute the DEX if they did not generate any pings. As a result,
the DEX may underestimate the reduction in exposure following the
COVID-19 outbreak. We therefore implement a simple adjustment of
the DEX, , denominator as one means of addressing the potential sample
selection problem associated with devices sheltering in place. Define a
counterfactual set of pinging devices g; ;4 such that any device in o
but not in the observed G, , is sheltering in place with |EXP, ;| = 0. The

22 For example, metropolitan and micropolitan areas are defined as collections
of counties.

adjusted DEX is
g
DEXadJ“Sted :gi d: DEX, ;.

We assign the counterfactual set ¥ , to be the largest number of devices
observed on any day from January 20, 2020 to February 14, 2020 in
geographic unit g, so that

G| = 1Ge.al-

max
d€[20 Jan 2020,14 Feb 2020]

Given that |g* | is an upper bound, DEXadjllSted likely overestimates the

drop in exposure following the COVID- 19 outbreak. On the other hand,
as noted above, the unadjusted DEX,, ; likely underestimates the drop in
exposure.?® Together, these series should offer useful bounds. As men-
tioned before, even absent a pandemic there is meaningful variation in
the number of devices in the sample that affect the DEX.

For devices that have a home assigned, we compute DEX values by
the demographic characteristics of their residential block group. We
only report these demographic DEX values at the state level, due to sam-
ple size and privacy considerations.

DEX by income Within each state g, we partition all census block
groups into four median income quartiles with an equal number of block
groups. We index these quartiles by g € {1,2,3,4}. Within each state g
on each day d, we denote by Cyqd the set of devices i that have a home
in a block group within quartile ¢.%* The DEX by income is

EXP, ,
1Ge.qal

DEX-income, , , = Z

i€Gg.q.d

DEX by education The DEX by education is the same as the DEX by
income, except that the four quartiles are based on the college share
within each block group.?®

DEX by race/ethnicity We report DEX values by racial/ethnic
categories available in the Census of Population. For each re

23 In practice, while the average absolute difference between the state-level
unadjusted and adjusted DEX values is 7 percent, the two indices have a corre-
lation coefficient of 0.996 in levels and 0.992 in first differences. Fig. 5 shows
that the population-weighted mean values of the unadjusted and adjusted DEX
track each other closely over time. The adjusted DEX should not be used when
[Cgal > |g; 41> which will occur as social contact resumes and devices stop shel-
tering in place.

24 Note that the residential block group is not necessarily within geographic-
unit-of-residence g. This allows for cases where a device leaves their assigned
home to shelter in place somewhere else. That is, a device can relocate, but it
maintains its originally assigned demographics.

25 The college share is the share of adults 25-65 years old with at least a four-
year college degree.
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{Asian, Black, Hispanic, White}, we report a weighted average of device-
level exposure:
w; .EXP;
DEX-race, ; , = 2 M—"d,
. w;
:egg‘qu X Lr
:egg,qu
where w;, is the residential share of race/ethnicity r in device i’s block
group.2°

4. Tracking activity during the 2020 pandemic

We present movement patterns captured by our smartphone data
indices during the pandemic. These patterns generally align well with
those found in other data sources when such comparisons are possible.

4.1. Comparisons to population and expenditure data

Given researchers’ widespread use of smartphone data to study
movement during the pandemic, it is important to assess whether the
pandemic has altered the reliability of smartphone data. However,
within one year of the virus spreading, there have been few opportu-
nities to benchmark smartphone data to traditional data sources that
are published less frequently and with a substantial lag. Even when tra-
ditional data are available, pandemic-induced changes in behavior may
have caused smartphone movement data to diverge from the bench-
mark. As discussed in Section 2, sheltering in place reduces the ratio of
active devices to residential population. Similarly, a shift to online shop-
ping would alter the relationships between movement and expenditure.
Nonetheless, in this section we compare the distribution of smartphone
residences and visits during the pandemic to population and expendi-
ture data.

First, we compare Census state-level population estimates for July
2018, July 2019, and July 2020 to state-level numbers of smartphones
at those times.?” Regressing the log smartphone population on the log
Census population estimate for each state yields an R? of 0.97 for 2018
and 2019 and 0.94 for 2020.28 Looking at the residential distribution of
devices across block groups by their 2014-2018 demographic charac-
teristics, Figure B.7 shows that the pre-pandemic tendency for devices
to disproportionately reside in block groups with lower population den-
sities and higher shares of white residents became slightly more pro-
nounced during the pandemic. In sum, smartphone and Census residen-
tial counts diverged slightly more during the pandemic. This gap may
reflect real movements not captured by Census methods rather than a
decline in the reliability of smartphone data.

Second, we compare smartphone visits to expenditure data during
the pandemic. Fig. 2 depicts a comparison of smartphone visits to credit
card expenditure from Affinity Solutions (Chetty et al., 2020). We show
data from January to December 2020 across three business categories:
grocery, restaurant, and arts, entertainment, and recreation (A&E). For

26 To be precise, the categories “Asian,” “Black,” “Hispanic,” and “White” are
shorthand for non-Hispanic Asian, non-Hispanic black, all Hispanic, and non-
Hispanic white residents. These four categories are sufficiently large to be re-
ported for many geographic units. We only report the DEX-race for a given
racial/ethnic group in states where the weighted number of devices for that
group is at least 1000 devices every day from January 6, to 12, 2020.

27 The US Census Bureau released state-level population estimates for July 1,
2020 on December 22, 2020. Population estimates for July 1, 2020 for smaller
geographic units are scheduled to be published in the following six months. The
Census estimates annual population changes based on births and deaths reported
in vital statistics and migration evident in administrative data such as IRS tax
returns and Medicare enrollments. Thus, the July 1, estimates reflect residential
patterns across the various dates that households filed their tax returns.

28 Looking at state-level population changes from July 2018 to July 2019 and
from July 2019 to July 2020, we find an R? of 0.3 in both cases. The smartphone-
data changes exhibit much greater variance than Census-data changes.
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A&E trips and, to a lesser extent, restaurants, expenditure and smart-
phone visits show similar patterns of a sharp drop in late March and
a slow recovery from April onward. Most at-home substitutes for A&E
services belong to different expenditure categories, so the close relation-
ship between movement and expenditure in this category is reassuring.
For groceries however, changes in average grocery expenditure are un-
related to changes in smartphone visits to grocery stores. We conjec-
ture that this divergence reflects changes in behavior, such as increased
purchases of delivered groceries and greater expenditure per in-person
visits. >

4.2. Movement between US states and counties

To illustrate the movement detail captured by the county-to-county
LEX, we examine links to Manhattan (New York County), one of the
early US epicenters of the pandemic. The maps in Fig. 3 depict the share
of active devices in each US county that had pinged in Manhattan during
the previous two weeks on the last Saturday of February, May, August
and November 2020. The February panel shows a clear role for physical
distance, as counties closer to Manhattan typically have a larger share of
devices that have been in Manhattan during the previous two weeks, but
it also makes clear that physical distance and county-to-county move-
ments are distinct.

The LEX suggests a swift decline in travel between New York County
and other counties at the pandemic’s onset. From February to May 2020,
Fig. 3 shows a broad decline in the share of active devices that had been
in New York County during the previous two weeks. The decline was
relatively greater in counties farther from New York City, making move-
ments connected to New York County more spatially concentrated in the
spring. These connections later rose, without returning to pre-pandemic
levels. As noted previously, the LEX captures inter-county movement by
active devices. Total inter-county movement also declined to the extent
that fewer devices pinged due to not moving.

To assess the reliability of LEX values more systematically, we com-
pare changes in state-level LEX values to measures of highway and air-
port traffic. We group pairs of states based on the distance between
their population-weighted centroids and compute the daily mean value
of LEX ., for each group. Fig. 4 depicts the mean daily LEX value
using a 7-day moving average for each distance-defined group of state
pairs relative to its value on March 7, 2020.

Fig. 4 shows differential declines in smartphone movements by dis-
tance that align well with the differential declines in vehicular and
airport travel measures. Although the average LEX value declines for
all state pairs through late April, pairs of states that are farther apart
tended to exhibit larger relative declines. By mid-April, state-level LEX
values at all distances were down 40 percent relative to their earlier
levels. For comparison, monthly total vehicle-miles traveled, a measure
that reflects both intrastate and interstate travel, fell by about 40 per-
cent from February to April.>* The steepest decline observed is for state
pairs that include Alaska or Hawaii where across-state movements de-
pend heavily on air travel even during the pandemic. The Alaska and
Hawaii line closely tracks the decline in daily checkpoint totals at US
airports reported by the Transportation Security Administration (TSA)
two weeks earlier, as the LEX captures inter-state movements using a
fourteen-day window. Inter-state travel at all distances began to rise in
late April 2020, with short-distance travel peaking over the summer.
Long-distance travel has continued to climb.

2% Kim Severson, “7 Ways the Pandemic Has Changed How We Shop for Food,”
New York Times, 8 Sep 2020.

30 We computed this figure using monthly seasonally adjusted vehicle-miles-
traveled estimates from the Federal Highway Administration (series TRFVO-
LUSM227SFWA at https://fred.stlouisfed.org).
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4.3. Visits to commercial venues

Fig. 5 traces the evolution of social contact over the course of the pan-
demic by plotting the population-weighted average of the county-level
DEX values over 2020, relative to its level on March 7. Visits to commer-
cial venues rose during February 2020, similar to behavior observed in
February 2019. There is a sharp rapid decline in activity in March at the
onset of the pandemic in the United States. The DEX reached a minimum
in mid-April at about 25 percent of its early March level, then rose to
just over 60 percent by mid-June. It remained around this level through
most of the summer and autumn before rising rapidly in the final weeks
of 2020.%!

Some of this DEX variation is consistent with policy differences
across jurisdictions. Appendix Figure B.5 depicts the evolution of the
county-level DEX around policy events, controlling for county and time
fixed effects. As in Brzezinski et al. (2020), we find that some of the DEX
decline coincided with the timing of shelter-in-place orders, after which
the DEX dropped by approximately 20 percent. Given the large number
of potential confounding forces, these regressions are only suggestive.

The geographic and demographic detail of smartphone movement
data should allow researchers to investigate important questions lever-
aging information not available in other data sources. For example, Fig.
B.8 depicts DEX changes by educational attainment and race. This re-
veals limited differences in visits to commercial venues along these de-
mographic dimensions. That may suggest a limited role for heteroge-
neous exposure rates within commercial venues in explaining differ-
ences across demographic groups infection and mortality rates during
the pandemic.

5. Conclusion

These initial applications of our indices demonstrate the potential of
smartphone movement data to quantify movement and social contact
with high frequency and spatial precision. We have also articulated a
number of caveats relevant for researchers using such data. We hope
that our publicly available indices will support deeper and varied inves-
tigation of human movement during the ongoing pandemic.

Author statement
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Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.jue.2021.103328.

31 Figure B.3 maps county-level DEX values on the last Saturday of February,
May, August, and November 2020. Fig. B.4 plots the interquartile range of the
DEX over time.
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