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The snow cover is a key component of land surface hydrology, especially in mountain
areas where it governs the amount and timing of water availability in downstream areas.
It is involved in relevant climate feedbacks and natural hazards such as avalanches
and floods. Monitoring and forecasting snow cover characteristics is challenging. While
snow cover extent is relatively easy to retrieve from satellite data, remote sensing
retrievals of the snow water equivalent (SWE) is often inaccurate, particularly in complex
mountainous terrain. Model-based snow cover estimates, driven by meteorological data,
often bear significant uncertainties due to both input data and model errors. Data
assimilation can combine both approaches to improve SWE estimates. In this paper,
we review current state-of-the-art data assimilation methodologies used to optimally
combine measurements with snow cover models in order to reduce uncertainties. The
suitability of a given data assimilation method varies with the numerical complexity of
snow models as well as the availability and the type of observations. This review describes
the issues and challenges associated with data assimilation applied to the mountain snow
cover, providing recommendations for existing and upcoming monitoring and prediction
systems of snow hydrology in mountainous regions.

Keywords: snow hydrology, mountain, in-situ observations, remote sensing, snow water equivalent, data
assimilation, snow cover models

1. INTRODUCTION

Snow on the ground plays a major role in the hydrological cycle, especially in mountain areas.
The seasonal snow cover is the primary water source for human use and ecosystems in mountain
regions and represents up to 95% of the water supply in some mountain basins (Liniger et al., 1998).
In these regions, the runoff is heavily dependent on snowmelt amount and timing (Bowling et al.,
2003; Bales et al., 2006). Monitoring of snow mass, most often referred to snow water equivalent or
SWE, and more generally the state of the snow cover is particularly relevant for the management of
water resources and risks from natural hazards, such as avalanches and snowmelt-induced floods
(Sui and Koehler, 2001; Viviroli et al., 2011; Finger et al., 2012; Freudiger et al., 2014). Due to the
influence of the snow cover on the surface energy and water balance (Hansen and Nazarenko, 2004;
Flanner and Zender, 2006; Hall and Qu, 2006; Qu and Hall, 2014), its representation in land surface
models is essential for predicting the thermal state of the underlying soil, atmospheric interactions
and the hydrological cycle (Gouttevin et al., 2012).
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Snow is a complex medium that is highly variable both
in time and space. This variability is especially enhanced in
mountainous areas, where it is governed by both the variability
in the accumulation processes, i.e., amount of solid precipitation,
wind transportation, and in the ablation processes, e.g., incoming
shortwave and longwave radiation, wind speed and direction, air
temperature and humidity. In mountainous terrain, the complex
topography and the high spatial variability in land cover (e.g.,
forest, rocks, pasture) are responsible for a high spatial and
temporal variability in both accumulation and ablation processes,
resulting in a high variability in mountain snow cover properties
(Clark et al., 2011).

The spatial variability of the snow cover in mountains areas
prevails across all spatial scales from the hill-slope scale (1-
100 m, e.g., preferential deposition, topographic shading) to the
watershed scale (100-10,000 m, e.g., orographic precipitation,
temperature gradient with elevation) (Mott et al, 2018).
Accurately representing the spatial variability in snow cover
properties at the hill-slope scale is crucial to monitor the changes
in snow mass at the scale of a watershed since it controls the non-
uniform snow disappearance (Clark et al., 2011; Revuelto et al,,
2016). This is also essential for assessing the mechanical stability
of the snowpack (Schweizer et al., 2003). As a consequence,
observations or simulations useful to depict the spatial variability
of the snow cover in mountainous regions typically require a
spatial resolution better than a few hundred meters (Winstral
et al., 2014). For example, Baba et al. (2019) identified a 250 m
grid spacing to be the best compromise for the spatial resolution
of simulations in the High Atlas. Thus, snow cover monitoring is
facing unique challenges in mountain areas, compared to other
snow-covered landscapes, on the observational and modeling
sides (e.g., Bormann et al., 2018).

The monitoring of the evolution of the snow cover (e.g.,
snow depth) and its surface properties (e.g., albedo, surface
temperature) is possible through in situ (Essery et al., 2013;
Lejeune et al,, 2018; Ménard et al.,, 2019) and remotely-sensed
observations (Nolin, 2010; De Lannoy et al., 2012; Dietz et al.,
2012a; Gascoin et al., 2015; Du et al., 2019). In situ datasets
are essential for the understanding of snow physical processes,
and for the evaluation of snow cover model and remote-
sensing products (e.g., Vionnet et al, 2012; Krinner et al,
2018). However, point measurements inherently limit the spatial
extent of data thus not fully capturing information on the
spatial heterogeneity. Most snow cover properties, e.g., Snow
depth, exhibit a very high spatial variability and consequently,
most of these point measurements are also not applicable at
large scales. To monitor the evolution of snow cover over
large areas, the use of remote-sensing observations, either
ground-based, airborne or spaceborne are needed (Hiisler et al.,
2012; Painter et al., 2016; Arslan et al., 2017). Remote sensors

Abbreviations: SCA, Snow Cover Area; SCE Snow Cover Fraction; EnKF
Ensemble Kalman Filter; EnKS, Ensemble Kalman Smoother; ESB, European Snow
Booklet; IFS, Integrated Forecast System; LIDAR, LIght Detection And Ranging;
NDSI, Normalized Difference Snow Index; NWP, Numerical Weather Prediction;
PBS, Particle Batch Smoother; PDE, Probability Density Function; SAR, Synthetic
Aperture Radar; SnowMIP, Snow Model Intercomparison Project; SPICE, Solid
Precipitation Intercomparison Experiment; SWE, Snow Water Equivalent; UAV,
Unmanned Aerial Vehicle; WMO, World Meteorological Organization.

have different measurement wavelengths and employ various
operating principles (active or passive). For instance, multi-
spectral images from optical sensors provide information on the
visible and near infra-red wavelengths with a spatial resolution
ranging from tens of centimeters to hundred of meters from
space. Under cloud-free conditions, these images provide snow
cover extent information, but also information on albedo and
light absorbing particles, as well as information relevant to the
state of the snow microstructure (Hall et al., 1995; Hall and Riggs,
2007; Painter et al., 2009, 2012; Dietz et al., 2012b; Gascoin et al.,
2015). However, the retrieval of the snow mass from satellite data
only has remained problematic especially in mountainous areas
(Lettenmaier et al., 2015).

Snow cover properties can also be monitored and predicted
using numerical models of snow cover evolution. The snow cover
was first included in land surface models to obtain improved
time varying estimation of the surface energy balance over cold
regions (Loth et al., 1993; Lynch-Stieglitz, 1994; Douville et al.,
1995; Slater et al., 1998; Yang et al., 1998). The representation
of snow on the ground in land surface models is indeed crucial
in view of its role in energy exchanges on the climate system
and the hydrological cycle. More complex snow cover models,
that included a detailed representation of physical processes
occurring within the snowpack, were developed in the 1990s for
specific applications such as avalanche hazards forecasting (Brun
et al, 1992; Lehning et al., 1999). In order to better represent
and account for the interactions between snow on the ground
and the climate system, some of these detailed processes have
been progressively incorporated into land surface model (Boone
and Etchevers, 2001; Dutra et al., 2010; Vionnet et al., 2012;
Decharme et al., 2016), leading to the development of numerous
snow cover models.

Observations and numerical simulations represent two
sources of information that can be exploited simultaneously, but
inherently carry uncertainties (Dong, 2018). Data assimilation
aims to optimally combine observed and simulated snow
properties in order to provide improved estimates of the snow
cover state. A key advantage of data assimilation is that its output
can have lower uncertainty than either the observation or the
model. Data assimilation techniques can be used to improve
initial conditions of the snow cover for operational Numerical
Weather Prediction (NWP) or hydrological prediction (Brasnett,
1999; Lehning et al., 1999; Barret, 2003; Drusch et al., 2004)
and avalanche hazard forecasting (Morin et al., 2019). In data
assimilation, observations are used to correct a set of parameters
or a physical state given by a model in order to improve
the overall representation of a particular system (Andreadis
and Lettenmaier, 2006; Clark et al., 2006; Nagler et al., 2008;
Leisenring and Moradkhani, 2011; Liu et al., 2013). Various data
assimilation methods exist, each characterized by advantages
and drawbacks.

The utility of and interest in data assimilation approaches
has not gone unnoticed in the snow cover modeling community
and brought about an increasing number of publications
on application of data assimilation in very specific settings,
determined by previous model choices and/or data availability
(Girotto et al., 2020). In this paper, we aim to provide an
overview of data assimilation methods used for snow related
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applications in mountainous regions, in view of the unique
challenges associated with this complex environment. The study
discusses the strengths and weaknesses of these data assimilation
systems and provides recommendations for future snow cover
monitoring and prediction systems in mountainous areas. Note
that assimilation in atmosphere-surface coupled systems in view
of NWP applications is beyond the scope of this review.

This article firstly describes the different types of snow
cover observations and models along with their associated
uncertainties and limitations in mountainous environments. The
study then reviews existing data assimilation methodologies,
including a description of the limits of each method for snow
cover applications. The study also discusses the dependencies
of data assimilation methods on the characteristics of the
observations and snow cover models.

2. SNOW COVER OBSERVATIONS

This section describes the different observations commonly
used to determine the evolution of the snow cover, with an
emphasis on its water equivalent, because of its critical relevance
to mountain snow hydrology. This section only includes
observations that are relevant to data assimilation systems.

2.1. Ground-Based Observations

Site measurements describe the characteristics of the snow
cover at a given location at one point (fixed instruments)
or over an area using techniques such as terrestrial laser
scanning, webcam photography or airborne sensors. Ground-
based observations are performed manually or automatically
by fixed measuring instruments that provide nearly continuous
data. These observations are performed either at conventional
operational meteorological stations or at dedicated experimental
snow sites.

2.1.1. Meteorological Stations

Weather  stations provide continuous meteorological
information at a particular location, such as wind speed,
temperature, incoming radiation, specific humidity, and
precipitation rate. Such weather stations cover the whole globe
with widely variable spatial densities. These sites often provide all
data needed to run a simple snow cover model. Complementary
snow cover measurements from these sites, such as snow depth
and density, therefore form the basis for single-point data
assimilation experiments. Manual and automatic snow cover
measurements present in weather stations in Europe are listed in
detail in the European Snow Booklet (ESB) (Haberkorn, 2019).

2.1.2. Dedicated Snow Cover Monitoring Sites

The monitoring of the snow cover at conventional weather
stations is often insufficient to improve process understanding
and to perform a thorough snow cover model evaluation. To
overcome this lack of information, dedicated monitoring sites
have been installed and include observation systems relevant to
address key snow cover processes. These sites typically include
automatic instruments providing daily and hourly measurements
of meteorological and snow cover variables such as presence

of snow, snow depth, SWE, snow density, albedo, snow
temperatures, and runoff (Pirazzini et al., 2018). Discontinuous
measurements are often made seasonally, especially during
winter, such as snow stratigraphy profiles (Fierz et al., 2009;
Morin et al, 2012). Only a few sites measure most of the
meteorological and snow cover variables required to address
the snow surface energy balance. These experimental sites, such
as Col de Porte (Lejeune et al., 2018), Weissfluhjoch (Wever
et al,, 2015), Sodankyla (Essery et al., 2016), or Reynolds Creek
(Reba et al., 2011), are particularly relevant for studying the
detailed evolution of the snow cover (e.g., Dumont et al., 2017;
Wiirzer et al,, 2017). These sites have been used extensively
for snow model evaluation (Wang et al., 2013; Magnusson
et al, 2015; Decharme et al., 2016; Piazzi et al., 2018) and
model-intercomparison, such as SnowMIP (Etchevers et al.,
2004) and ESM-SnowMIP (Krinner et al., 2018). An overview
of the observation datasets at ten such sites is provided in
Meénard et al. (2019).

For some of these sites, distributed measurements of SWE
(see next section) or snow depth are also available. Such
distributed measurements can be obtained via manual snow
survey or via new remote sensing techniques. Snow depth are
now commonly obtained with sub-meter spatial resolution and
with high accuracy, i.e., a few cm, using terrestrial laser scanning
(e.g., Prokop et al., 2008; Griinewald et al., 2010; Deems et al.,
2013), Unmanned Aerial Vehicles (UAV), structure from motion
(e.g., Buihler et al., 2017) and airborne LIDAR (see section 2.3).
Note that mobile precipitation radar can also be used to monitor
the small-scale variability of snowfall (Scipion et al., 2013).

2.1.3. SWE Measurements: Methods and
Uncertainties

Various methods can be used to measure SWE, automatically
and manually, as reviewed in detail in the WMO guide
to meteorological instruments and methods of observations
(WMO, 2018). SWE manual measurements are based on bulk
density samples made with a snow sampling tube (e.g., Leppdnen
et al, 2016) or by integrating the SWE within each snow
layer from snow pits. The relatively sparse nature (in space
and time) of manual measurements has led to the use of
more automated measurements. The most commonly used
technique for continuous SWE measurements is the snow
pillow (Serreze et al., 1999; Smith et al., 2017), where pressure
sensors measure the hydrostatic pressure of the overlying snow
(Beaumont, 1965). Gamma-ray sensors can also be used to
measure SWE continuously using in situ sensors or from airborne
measurements (Cho et al, 2020). Originally, these sensors
used a radiation source (Harding, 1986). However, for safety
and environmental reasons, this instrument has been gradually
replaced by sensors sensitive to natural emitted radiation such as
cosmic-ray sensors and passive gamma radiation (Potassium and
Thallium) sensors (Choquette et al., 2008; Martin et al., 2008).
SWE measurements are also accessible through the attenuation
of the Global Navigation Satellite System signal (e.g., Koch
et al,, 2019) with reasonable accuracy (41-73 kg m~—2 depending
on snow wetness). Distributed measurements of SWE can
also be accessed via Ground Penetrating Radar measurements
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(GPR) (e.g., Marchand et al., 2001; Griessinger et al., 2018).
An assessment of the different SWE measurements methods
was performed during the WMO SPICE experiment (Smith
et al., 2017). Recent efforts have been made to provide detailed
descriptions of existing measurement methods (Pirazzini et al.,
2018; Haberkorn, 2019).

The uncertainties associated with in situ datasets are not only
due to the intrinsic uncertainty of snow cover measurements,
but also to the representativeness of the measurements with
respect to the model. In mountain environments, the large
spatial variability of snow depth around a given observation
point requires that this point scale data is used with great
caution (Griinewald et al., 2013). In the studies of Lafaysse et al.
(2017) and Lejeune et al. (2018) on snow depth measurements,
the instrumental error was determined to be low (about 1
cm) compared to the spatial variability of snow depth of
the surrounding environment (up to 20 cm). Conversely, the
instrumental uncertainty of SWE measurements can be of the
same order of magnitude as their spatial variability (Lafaysse
et al., 2017; Smith et al., 2017; Lejeune et al., 2018; Nitu et al.,
2018). SWE measurement uncertainties also vary as a function
of the type of instruments, methodologies and snow cover state
(e.g., Egli et al, 2009). Many early studies (e.g., Goodison,
1978) found that snow tubes over-estimated SWE (Johnson
et al.,, 2015) whereas Sturm et al. (2010) estimated an average
underestimation of 7.1%. Dixon and Boon (2012) also found
general underestimations of SWE. Hill et al. (2019) summarized
these findings suggesting that coring devices should be viewed as
having an accuracy of £10%. Snow pillow SWE measurements,
on the other hand, bear uncertainties which range from 6 to 12%
in optimal conditions. This method is particularly suitable in cold
climates. The uncertainty of snow pillow measurements increases
in case of snow bridging and with the presence of liquid water
in the snowpack, therefore they can be particularly unsuitable
during the snowmelt season (Engeset et al., 2000; Johnson and
Marks, 2004; Smith et al., 2017). SWE measurements obtained
by cosmic-ray sensors have an accuracy around 5-10% (Gottardi
et al., 2013). Passive gamma radiation method has shown RMSE
values from 18 to 59 kg m~2 compared to manual measurements
for Finnish and Canadian sites (Smith et al., 2017), where the
comparison between automated and manual observations were
carried out over a distance ranging from 5 to 25m. These
differences can partly be explained by the spatial variability of the
snow cover (Smith et al., 2017; Lejeune et al., 2018).

2.2. Satellite Remote Sensing Observations
Remote sensing observations are crucial for monitoring the
evolution of the snow cover over large areas. A wide variety
of satellite sensors exist with various spatial resolutions and
wavelengths. The choice of remote sensing techniques for
snow cover products varies with the desired temporal and
spatial resolution. This section describes the different types of
satellite sensors (optical and microwave satellite sensors) used
for monitoring snow hydrology and, indirectly, SWE. Examples
of space-borne instruments or satellites used in snow cover
studies with their general properties classified by type of satellites
sensors are summarized in Table 1. Note than an overview of

existing satellite snow products over Europe and the Northern
Hemisphere is available in Bartsch (2018).

2.2.1. Optical Sensors

Passive optical sensors use a multi-spectral imaging system in
the visible and infrared domain. By design, data is only available
during daytime and under cloud-free conditions. The spatial
resolution of optical satellites varies from 50 cm to 1 km. Optical
sensor measurements are useful for providing observations of the
surface area covered by snow. They are mainly used to monitor
the snow cover area (SCA) providing a binary information on
the presence or absence of snow per pixel, and the snow cover
fraction (SCF), which provides the percentage of snow coverage
per pixel. SCA and SCF retrievals are mostly based on two
different methods. The normalized difference snow index (NDSI)
(Dozier, 1989; Hall et al., 1995) uses reflectance data from both
visible (VIS) and short wave infrared (SWIR), thereby taking
advantage of the high contrast in reflectance between the two
wavelengths. SCA can be estimated by using a threshold on NDSI
to determine the presence of snow and SCF can be estimated
from a linear relationship to NDSI value (Salomonson and Appel,
2004). The spectral unmixing method recognizes that the total
reflectance in a pixel corresponds to the sum of the reflectances
due to snow, rock and vegetation and provides a decomposition
of their relative contributions (e.g., Rosenthal and Dozier, 1996;
Painter et al., 2009; Sirguey et al., 2009). In mountainous regions,
snow mapping by optical satellites is affected by errors induced
by the complex terrain, clouds and forest (Masson et al., 2018).

Snow reflectance varies significantly with wavelength and
the structure of the snowpack. Optical satellites in the visible
and infrared range are thus sensitive to snow impurities and
snow microstructure. Optically equivalent grain size (aka specific
surface area) and light absorbing impurities content at the snow
surface can be retrieved from the reflectance (Painter et al., 2012;
Mary et al., 2013; Kokhanovsky et al., 2019). However direct
SWE measurements are not possible solely based on optical data.
Optical satellite data are largely used to retrieve SCF and snow
albedo covering the entire Earth at a near daily frequency, for
example based on MODIS products (Hall et al., 2002; Klein and
Stroeve, 2002) distributed through the US National Snow and
Ice Data Center. It should be noted that the use of these images
remains challenging owing to difficulties in interpreting snow
properties in forest, complex terrain, shaded areas, and cloudy
conditions and frequently, inaccurate image geo-registration
(Rittger et al., 2013).

Stereoscopic satellites (e.g., Pleiades 1a/1b and SPOT5/6/7)
cover a specific region with different view angles with a very
high resolution (VHR, 50cm to 2m), and the acquisition of
such images is generally upon request only. These images can
be used for 3D mapping by photogrammetry, thereby providing
topographic information. Tri-stereoscopic satellites, such as
Pleiades, have been used to retrieve snow depth over open alpine
catchment by comparing snow-covered (i.e., winter) and snow-
free images (Marti et al., 2016). The snow depth measurement
uncertainty is estimated to be on the order of 50-80 cm at 3 m
spatial resolution (Marti et al., 2016; Deschamps-Berger et al.,
in press). The uncertainty decreases by a factor of 2 when the

Frontiers in Earth Science | www.frontiersin.org

September 2020 | Volume 8 | Article 325


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Largeron et al.

Snow, Mountains, and Data Assimilation

data are averaged over 20 m grid cells, demonstrating that satellite
photogrammetry is a promising tool to monitor snow depth
distribution in mountains areas (Deschamps-Berger et al, in
press).

The passive optical satellites most often used to detect snow
have varying spatial resolution (1 m to 1km) and revisit times
(daily to 16 days). In general, the higher spatial resolution
is paired with lower revisit times. The longevity of sensors
like MODIS or AVHRR makes them extremely useful and
unique since they provide decades-long time series enabling
climatological studies (e.g., Hiisler et al., 2014). High resolution
satellites used for snow cover mapping (SPOT 6/7, Sentinel 2,
Landsat 8, Pleiades 1A and 1B, see e.g., Gascoin et al., 2019 for
data access) are limited by the revisit time. In the case of SPOT
6/7 and Pleiades, the acquisition of satellite images is performed
on demand, and can be superseded by higher priority requests.
Monoscopic (i.e., one viewing angle) optical satellite data with
most frequent revisit times are currently MODIS, PROBA-V,
Sentinel 3 (S3) and VIIRS. Higher revisit times also increase the
probability of obtaining cloud-free images.

Active optical sensors, namely LIDAR (e.g., Ice Sat, Ice
Sat 2), can be used for regional-scale snow depth mapping
using differences in acquired data between snow-free and
snow-covered dates (Kwok and Cunningham, 2008; Treichler
and Kaab, 2017). Treichler and Kaab (2017) demonstrated a
RMSE of 0.15 to 0.6 m when comparing in situ and airborne
measurements, given the availability of an accurate DEM for the
study area. However, the revisit time for Ice Sat-2 can be as high
as 91 days. This long revisit time along with the necessity for
an high accuracy DEM strongly limit the use of such techniques
for mapping snow depth, especially in mid-latitude mountainous
areas where the number of overpasses is very limited.

2.2.2. Thermal Infrared Sensors

Thermal infrared satellites have also proven to be useful to
monitor the evolution of the surface temperature of snow and
ice covered surfaces (e.g., Dozier and Painter, 2004; Fréville et al.,
2014). They are not restricted to daylight periods but the spatial
resolution of the thermal bands combined with the revisit time
is often too coarse for mountain regions. However, recent work
from Lundquist et al. (2018) has demonstrated that MODIS
can be used to estimate both snow and forest temperature in
mixed pixels at 1 km resolution, with an accuracy of better than
1K during the night. During daylight, retrieval of snow surface
temperature is complicated by reflected sunlight. To overcome
the issue linked with the 1km spatial resolution (e.g., MODIS
or Sentinel-3), sensors like Landsat-8 (30 m spatial resolution)
can provide higher resolution snow temperature maps but with
a lower revisit time. This might be an issue since, as recently
demonstrated by Colombo et al. (2019) monitoring the daily
amplitude of snow surface temperature at high resolution from
space could be extremely informative for SWE prediction.

2.2.3. Passive Microwave

Passive microwave sensors (1073 to 1m wavelength) have the
advantage of providing data under all atmospheric conditions
and during day and night-time. The spectral luminance energy
measured by passive microwave sensors can be utilized to

calculate brightness temperature values which, in turn, can be
used to estimate snow depth (Chang et al, 1982) or SWE.
The response of each sensor band to snow cover properties
has been detailed by Rango (1993). The characteristics of
passive microwave satellites used in snow cover studies is
summarized by Konig et al. (2001). The estimation of SWE
from passive microwave data is either based on the brightness
temperature alone or on the brightness temperature combined
with measurements or model estimates of snow depth and snow
density (Chang et al., 1987; Boone et al., 2006; Davenport et al.,
2012; Cho et al,, 2017; Smith and Bookhagen, 2018).

Passive microwave satellites have proven to be useful for
monitoring snow cover at global and regional scales (Chang
et al, 1982; Armstrong and Brodzik, 1995). These satellites
can be used for wet snow mapping (Picard and Fily, 2006).
Studies during the GlobSnow project have used a combination
of passive microwave and meteorological stations to produce
daily SWE maps (Luojus et al., 2014; Pulliainen et al., 2020). The
highest uncertainties associated with passive microwave retrieval
occur during the melting period, when the microwave signal is
perturbed by liquid water contained in the snowpack. Strong
limitations also arise from the sensitivity of the signal to snow
layer properties (e.g., Helmert et al., 2018). The coarse spatial
resolution of passive microwave sensors (around 25 km) does not
permit the representation of fine scale processes, thus limiting the
applicability of these observations for mountainous areas.

2.2.4. Active Microwave

Active microwave radar (RAdio Detection And Ranging)
contains its own source of radiation. The detection of the
scattered signal emitted by the active radar provides information
on surface structure in terms of the snow cover roughness and
microstructure. Like passive microwave, radars are not disturbed
by cloud cover and can record during the day and night. Radar
frequencies relevant for snow cover monitoring typically vary
from 1 to 40 Ghz, namely L bands to Ka bands. The snow
properties to which the backscattered signal are sensitive change
with frequency and with the presence of liquid water in the
snowpack. Typically for bands L and C, bulk snow density or
snow depth could be retrieved (Shi and Dozier, 2000; Lievens
et al,, 2019). Higher frequencies such as X, Ku and Ka are more
sensitive to snow microstructure and stratigraphy Rott et al.
(2010). The radar signal is extremely sensitive to the presence of
liquid water, leading to lower backscatter for wet snow conditions
(Magagi and Bernier, 2003; Schmid et al., 2014). In case of
wet snow, the signal is then often saturated. A comparison of
the different characteristics of active imaging synthetic-aperture
radar sensors (SAR) is given by Konig et al. (2001).

Very high resolution imaging (up to 1 m) is obtained with
SAR. Several studies have used SAR imaging system for the
production of wet snow maps (Shi et al., 1994; Eckerstorfer et al.,
2016). Recent studies have attempted to use Sentinel-1 C-band
radar measurements to map snow depth at high spatial and
temporal resolution (Conde et al., 2019; Lievens et al., 2019). The
backscatter signal of the SAR sensors allows the estimation of the
snow depth, but some snow property information (such as liquid
water content) must be known beforehand. Spaceborne SAR
interferometry (inSAR) has shown great potential for retrieving
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TABLE 1 | List of satellite/sensor data used in snow cover studies and their related properties classified by satellite category.

Types of sensors

Mono. optical Stereo. optical Active optical Passive mw Active mw
Examples of space mission
MODIS SPOT-6/7 ICESat SSM/I ALOS 2
Landsat-8 Pleiades 1a/1b |ICESat-2 SMMR Sentinel 1
Sentinel-2/3 WorldView 1-4 AMSR-E RADARSAT-2
Meteosat 8-11 AMSU-A/B TerraSAR-X
GOES-16-17
VIIRS
Properties
Spatial Res. High (10-100 m) Very High (1 m) High (10-100 m) Coarse (km) Very High (1-20 m)
Temporal Res. High (daily to 5 days) On request Very low High (daily) High (daily)
Limits Day/no cloud Day/no cloud Revisit time Coarse res. Geometrical distortion
Retrieve data SCF/SCA/Albedo SD SD SD/SWE SD/Snow wetness
No direct SWE No direct SWE SWE with Tp No direct SWE
Only dry snow
Accuracy 10% for SCA/SCF 0.8 at3mres. 0.15-0.6 m Highly variable 0.31m
5-15% for albedo 0.4 at 20 mres. for aggregated data for SD

MODIS, Moderate-Resolution Imaging Spectroradiometer; GOES, Geostationary Operational Environmental Satellites; VIIRS, Visible Infrared Imaging Radiometer Suite; SPOT, Satellite
Pour I'Observation de la Terre; SSM/I, Special Sensor Microwave Imager; SMMR, Scanning Multichannel Microwave Radiometer; AMSR-E, Advanced Microwave Scanning Radiometer
for EOS; AMSU-A/B, Advanced Microwave Sounding Unit-A/B; ALOS, Advanced Land Observing Satellite-2;, SCF, Snow Cover Fraction; SCA, Snow Cover Extent; SD, Snow Depth.
Note that accuracy values given in the table are indicative and except for the first column are coming for one single study for each column.

snowdepth with high accuracy in Band C (Conde et al., 2019)
or Band Ka (Moller et al., 2017). The high spatial and temporal
resolution of SAR sensors makes their use potentially well-
adapted for snow hydrological applications (Bernier and Fortin,
1998; Nagler and Rott, 2000; Leinss et al., 2014; Rondeau-
Genesse et al., 2016). However, the oblique geometry viewing
of SAR systems enhance geometric distortions which makes
it particularly challenging to interpret in mountainous regions
(Small, 2011; Veyssiere et al., 2019).

2.3. Airborne Observations

Most of the satellite sensors used for snow cover monitoring
can be found on airborne payload. In the case of airborne
observations, the spatial resolution is usually increased compared
to satellite measurements. The drawbacks of such observations
with high spatial accuracy are their limited domain and revisit
time. Planes thus enable the use of sensors that are not relevant
when used from space, e.g., passive microwave such as in Kim
et al. (2019) or of sensors that are not available on satellite such
as gamma-ray sensors to monitor SWE (Cho et al., 2020).

The Airborne Snow Observatory (ASO) initiative has
demonstrated how relevant airborne observations can be for
snow cover monitoring in mountain areas (Painter et al., 2016).
ASO supports frequent flights over the same large domain
with LIDAR and hyperspectral airborne measurements. In this
case, hyperspectral measurements provide an estimation of snow

broadband albedo and LIDAR an estimation of snow depth with
a few cm accuracy at 50 m spatial resolution. The LIDAR snow
depth estimates are however still challenging below the canopy
(Deems et al., 2013).

3. SNOW COVER MODELING

The complexity of a snow cover model varies from the most
simple degree-day snow schemes (often used for hydrological
applications) to multi-layer snow cover evolution models, which
can even include explicit representations of snow microstructure
(e.g., for avalanche hazards forecasting). The physical processes
represented in the different snow cover models are shown in
Figure 1. This section gives a brief overview of the different
levels of complexity of snow cover models used in the
scientific community with their corresponding applications,
limits, and uncertainties.

3.1. Degree-Day Models

Snow degree-day models are the simplest category of snow
cover models, simulating snow mass evolution solely from
precipitation and temperature. Individual surface energy fluxes
are not explicitly represented, all fluxes are integrated and
parameterized as a function of air temperature, and internal
processes are rarely accounted for. This method is reliable
for computing snowmelt depth from daily to seasonal periods
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where and when temperature is a sufficient proxy of the surface
energy balance (Rango and Martinec, 1995; Ohmura, 2001).
This approach has been used for more than 80 years (Clyde,
1931; Collins, 1934) and is still used actively (Tobin et al,
2013; Riboust et al, 2019). It is mainly used for snowmelt
runoff forecast, especially for mountain basins and for studies of
glacier surface mass balance (Finsterwalder, 1887; Singh et al.,
2000; Braithwaite, 2008; Reveillet et al., 2017). Such models
however require calibration limiting direct transferability to
other sites and the ability to predict responses to future changes.
They are however computationally efficient and thus adapted to
applications requiring very large number of model runs (large
spans of points, time and also ensemble simulations). They
may be useful for testing new computationally demanding data
assimilation approaches.

3.2. Surface Energy Balance Models

Surface energy balance models incorporate a more detailed
representation of the exchange of mass and energy at the
snow cover interfaces by calculating radiative, turbulent, and
advective heat exchanges at the air/snow interface as well as
conductive exchanges at the snow/ground interface. Surface
energy balance models are able to estimate snow accumulation
and snowmelt, including the rate of snowmelt from minutes to
seasonal time scales, through full or partial surface energy balance
computation. In the following, they are referred to as surface
energy balance models or physically-based snow cover models.
These models include processes such as snow accumulation,
snowmelt, compaction, albedo variations, surface temperature
evolution, sublimation as well as liquid water retention and
refreezing processes (Tarboton and Luce, 1996; Mahat and
Tarboton, 2012). The internal physical processes of snow are
described according to a single or a multi-layer snow scheme in
a more or less simplified way, e.g., bucket approach vs. Richards
equation for liquid water percolation (Wever et al., 2015). These
two categories are detailed below.

3.2.1. Bulk/Single-Layer Models

Single-layer snow cover models were used in the first versions
of representations of the snow cover in land surface model,
and in some cases they are still being used, e.g., the operational
snow scheme of the European Centre for Medium range Weather
Forecasting (ECMWF) Integrated Forecast System (IFS) (Dutra
et al,, 2010). In such cases, the physical properties controlling
the energy balance such as albedo, roughness, and thermal
properties are represented. The snowpack itself was initially
represented as a composite snow-soil layer (Pitman et al., 1991;
Douville et al., 1995; Yang et al., 1997). The surface energy in a
composite snow-soil layer model combines the soil, vegetation,
and snow energy balances for representing vegetation-soil-
snow-atmosphere interactions. It must be emphasized that the
representation of these interactions bears high uncertainties,
whose evaluation is challenging, especially when the calculation
uses empirical fractional snow cover parameterizations. Slater
et al. (2001) compared snow cover representations in 21 land
surface model revealing several weaknesses in macroscale snow
cover modeling. In recent years, the increase in computer

performance has led to the incorporation of more physically-
based snow processes and a separate snow energy balance within
land surface model, the so-called explicit single-layer model,
which integrates a separate surface energy balance for snow
interactions with the atmosphere.

Explicit single layer models compute the snow surface
temperature, albedo, snow density, snow depth and SWE
evolution with time but internal processes are usually not
considered. Since the snow cover is represented by a single layer,
snow density is considered vertically constant for the whole
snowpack (Chalita and Le Treut, 1994; Gouttevin et al., 2012) and
usually increases with the age of the snowpack (Douville et al,,
1995). Single-layer snow cover schemes have been specifically
used in snow hydrology, NWP and climate applications (Dutra
et al, 2012) and are often used for operational and/or large
scale applications.

3.2.2. Multi-Layer Models of Intermediate Complexity
The continuous scientific progress and the increase of computer
performance has led to the development of snow cover models
representing the different layers of the snowpack. Multi-layer
snow cover models of intermediate complexity represent the
snowpack with a prescribed number of layers (typically 2 to tens)
(Anderson, 1968; Kondo and Yamazaki, 1990; Loth et al., 1993;
Marks et al., 1999; Sun et al., 1999; Yang and Niu, 2003; Wang
et al., 2013; Ekici et al., 2014). In order to obtain a satisfactory
representation of the heat fluxes between the atmosphere and the
snow, such models often impose a higher vertical resolution for
the layers near its interfaces (Lynch-Stieglitz, 1994; Boone and
Etchevers, 2001; Decharme et al., 2016). Each layer of snow is
characterized by state variables (snow density, snow thickness,
temperature, and liquid water content), allowing the calculation
of the vertical gradient of temperature and density. Some of
these models also explicitly account for wind-driven blowing
snow (Pomeroy et al., 1993; Liston et al.,, 2007). A list of the
physical processes and state variables used in multi-layer snow
cover models is given in Figure 1. Multi-layer snow cover models
account for heat conduction as well as more detailed physical
snow processes such as snow compaction and percolation of
liquid water.

3.2.3. Detailed Multi-Layer Models

The highest level of complexity is reached for detailed snow cover
models which are multi-layers and account for all the processes
described in the previous section. These detailed models include
additional internal snow processes (snow metamorphism) such
as in Crocus, SNTHERM and SNOWPACK (Brun et al., 1989;
Jordan, 1991; Lehning et al., 1999). In addition Crocus and
SNOWPACK uses a Lagrangian multi-layer framework in which
the layering evolves in time (Lehning et al., 1999; Vionnet et al,,
2012). In these detailed models, the microstructure of snow layers
and its time evolution are represented and expressed by state
variables such as specific surface area and sphericity (Lehning
et al.,, 2002; Carmagnola et al., 2014).
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FIGURE 1 | Description of snow physical processes (bold), state variables (regular) and input variables (italic) required per category of snow models complexity for
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3.3. Uncertainties and Limits Associated
With Snow Cover Models

Snow cover simulations are generally affected by several sources
of uncertainties. First, the reliability of model results depend, to
a large extent, on the quality of the driving data. Meteorological
forcing data from NWP model output contain errors impacting
the snow simulations. This can be partly mitigated through
data assimilation in atmospheric reanalysis at the global (Dee
et al., 2011) or local scale (Durand et al, 1993; Magnusson
etal., 2014). Meteorological input is often the dominating source
of uncertainties in snow cover models outputs (Fekete et al.,
2004; Bosilovich et al., 2008; Magnusson et al., 2015; Raleigh
et al., 2015). The second source of uncertainties comes from the
model itself i.e., the chosen parameters and simplifications in the
description of the physical processes (Essery et al., 2013; Lafaysse
et al., 2017; Giinther et al., 2019). The uncertainties of snow
cover simulations are also related to the sub-grid variability of
the study area, especially in complex mountainous terrain, with
features such as topography and slope as well as non-represented
processes such as lateral or gravitational redistribution of snow by
blowing snow and avalanches, respectively. Interactions between
vegetation and the snow cover are also a substantial source
of uncertainties (Rutter et al.,, 2009; Boone et al., 2017; Todt
et al, 2018). The additional parameterizations (e.g., canopy
model, snow interception, unloading, etc.) make up for missing
processes but also add uncertainties (Mahat and Tarboton, 2014).

Despite these additional uncertainties, they generally increase the
accuracy of estimates of the snow cover in forest areas compared
to estimated obtained with models not taking into account any
vegetation effects (Todt et al., 2018).

Model intercomparison projects include a large variety
of models suitable for a wide range of climate conditions
with varying levels of complexity. Physical snow processes in
snow cover models are represented by different equations and
parameterizations, and this leads to a spread in the predicted
evolution of the snow cover under similar vegetation, soil and
meteorological forcing conditions. In this most recent model
intercomparison project ESM-SnowMIP (Krinner et al., 2018),
the results show that for the 10 sites considered, the individual
models which performed best relative to observed SWE at
each site featured different complexities. This illustrates that
model complexity is not necessarily correlated with performance.
However, it is important to highlight that detailed snow models
with greater physical basis are more likely to be transferable in
space and time although some of their parameterizations still
suffer from these issues (e.g., optimal parameter values for albedo
and turbulent fluxes parameterizations often vary in time and
space). It is also known that snow cover model performance is
generally better at open sites than forested sites (Rutter et al,
2009). The performance of a snow cover model generally differs
during the accumulation and the ablation periods with often
larger discrepancies during the melt period (Etchevers et al,
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2004). This induces a greater spread in model performance
during warm winters and overall warm sites due to a higher
frequency of melt events (Etchevers et al., 2004).

Ensemble approaches are increasingly used to estimate
uncertainties pertaining to model output, helping to better
describe the best configuration options and the reasons
explaining differences in model performance. Ensemble
simulations can be used to quantify the various contributions to
the overall error distribution of the model. The latter is estimated
through a number of simulations where each member uses
slightly different initial conditions or physical options. Multiple
physics ensemble systems, such as JIM (JULES Investigation
Model) (Essery et al., 2013), FSM (Essery, 2015), or ESCROC
(Lafaysse et al., 2017), have increasingly been driven by ensemble
of NWP predictions (Molteni et al., 1996; Descamps et al.,
2015; Vernay et al, 2015) to represent uncertainties in both
the snow model and in the meteorological forcings. However,
ensemble models frequently remain under-dispersive leading
to underestimates of the actual errors (Vannitsem et al,
2018). Essery et al. (2013) demonstrated using JIM at Col de
Porte, based on several winter seasons, that there is no single
configuration of a model that provides the best simulation
in all years. An ensemble of configurations yielded the best
results, however, some configurations were systematically worse.
Models including prognostic albedo and snow density as well as
liquid water retention were shown to lead to better performance
(Boone et al., 2004; Essery et al., 2013).

3.4. From Modeling to Observation Spaces
When combining models and observations, it necessary to
estimate observed variables based on model variables. The model
used to bridge the observations and the model spaces is usually
called an observation operator. In some cases, for instance
snow depth, this operator is reduced to identity. However, for
some observations such as radar basckscattering coefficients,
brightness temperature and top-of-atmosphere radiance, more
complex models are required. For such observations, models
for radiative transfer (RT) in snow are used to link model and
observations. The SMRT model (Picard et al., 2018) includes
various RT models and can be used both for active and passive
microwaves over a wide range of frequencies. For the solar
spectrum, broadband albedo is most of the time directly available
from the snow models, but this is often not the case for spectrally
resolved reflectance. Furthermore, it is needed to account for
the interactions between the solar radiation and the complex
topography of mountainous terrain (Lamare et al., 2020, and
references therein). Besides the inherent uncertainties of these
RT models, it must be underlined that they generally require as
inputs snow state variables describing the snow microstructure
that are only available from detailed snow cover models.

4. COMBINING OBSERVATION AND
MODELING: DATA ASSIMILATION

Observations and numerical simulations represent two sources of
information, both affected by uncertainties, that can be exploited
simultaneously, thereby reducing the overall uncertainties of

the output products. Data assimilation is the statistical and
methodological approach used to achieve this goal. In other
words, data assimilation is the technique whereby observational
data are combined with output from a numerical model to
produce an optimal estimate of the evolving state of the system.
Data assimilation was firstly used in weather forecasting systems
to improve initial conditions of NWDP, later also used for
estimating model parameters. A set of parameters, a physical state
of the model or the input data can be corrected by a series of
observed quantities to obtain a more accurate representation of
the system under consideration.

4.1. Data Assimilation Methods Used for

the Mountain Snow Cover

A wide range of data assimilation methods exist which are
more or less adapted to different applications depending on the
limitations, the required level of complexity, the characteristics
of the system, the type of observations and their frequencies.
Sequential data assimilation methods assimilate observations
fixed in time whereas non-sequential methods assimilate all the
observations available during a given time window. This section
reviews existing data assimilation applications in mountain snow
cover studies and discusses the advantages and disadvantages of
each of these methods.

4.1.1. Ad-hoc and Interpolation Methods

Direct insertion consists of directly replacing model states by
observed values. The adjustment of other, non-observed variables
is then performed through the model integration. Another
approach, designed to better mitigate physical imbalance between
variables, is to apply ad-hoc adjustments based on physical
considerations to non-observed variables after insertion. But
at some point of sophistication in these adjustments, direct
insertion can turn into a more advanced method: the frontier
is not clearly established. Direct insertion has been and is still
widely used with snow observations (Liston et al., 1999; Rodell
and Houser, 2004; Malik et al., 2012; Hedrick et al., 2018; Lopez-
Moreno et al., 2020).

Cressman interpolation (Cressman, 1959; Drusch et al., 2004;
Dee et al,, 2011) and optimal interpolation (Gandin, 1965) are
simplified data assimilation methods widely used in the context
of snow cover simulations (Helmert et al., 2018), mostly for
NWP applications. Cressman interpolation is based on successive
corrections of the model state using the observations weighted
by their distance to the grid points. Optimal interpolation is
based on the Best Linear Unbiased Estimate (BLUE, Talagrand,
1997). Optimal interpolation is optimal only for nearly linear
systems with Gaussian error statistics, does not track error
changes, and performs poorly with complex, highly non-linear
snow cover models featuring error covariances that significantly
evolve in time.

Winstral et al. (2019) introduced the bias-detecting-ensemble
(BDE), a method to dynamically incorporate snow observations.
This technique used in situ snow depth observations from
a dense network across Switzerland to adjust model forcings
in a surface energy balance model to bring simulations into
better agreement with observations. The method corrects
for potential errors in both the meteorological forcings and
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snow cover model structures. In situ observations were used
to update only the model forcings rather than simulated
states making BDE suitable for snow cover models of any
complexity. BDE improved simulations at unobserved sites
as well, indicating its appropriateness for spatial propagation.
The technique as presented however, does not account for
observation uncertainties.

4.1.2. Filtering Methods

Filters provide an estimate of the state at a given time, with an
uncertainty estimate, based on past and present observations.
They implement a sequential process alternating forecast steps,
where the state and uncertainty estimates are advanced in
time, and analysis steps, where those are updated using
available observations.

A first class of filters is based on the Kalman filter,
where the uncertainty estimate is given by its covariance
matrix. The Kalman filter is optimal for linear systems with
Gaussian errors. Linearity actually drives the Kalman Filter
implementation. For non-linear systems, the Extended Kalman
Filter uses local linearizations of the operators around the
mean estimate (Jazwinski, 1970; Miller et al., 1994; Dong et al.,
2007). The propagation of the covariance matrix involves the
tangent linear and adjoint models, which make the extended
kalman filter unpractical if those are not readily available, and
inappropriate for strongly non-linear systems. A much more
convenient implementation of the Kalman Filter for non-linear
systems is the Ensemble Kalman Filter (EnKF; Evensen, 1994)
that represents the state estimate and its uncertainty with an
ensemble. The EnKF uses a Monte Carlo sampling to propagate
the error information (Burgers et al., 1998; Evensen and van
Leeuwen, 2000). This approach loses accuracy for highly non-
linear systems and increases in computation cost when larger
ensembles are needed. And because the correction of non-
observed variables are based only on statistical relationships with
observed variables, physical imbalances or inconsistencies can
sometimes be introduced by the analysis, and must be corrected
too. The EnKF technique has been however widely used in snow
hydrology studies (e.g., Andreadis and Lettenmaier, 2006; Clark
et al., 2006; Slater and Clark, 2006; Durand et al., 2008; Su et al.,
2008; De Lannoy et al., 2012; Magnusson et al., 2014; Huang et al.,
2017).

Another ensemble-based data assimilation method is the
particle filter with sequential importance resampling (PF-SIR;
Gordon et al., 1993; Thirel et al., 2013; Charrois et al., 2016).
It uses an ensemble of simulations to represent the probability
density function (PDF) of the system with no assumptions
on the nature of the PDF. When an observation is available,
each member of the ensemble, or particle, is weighted and
then selected according to its distance to the observations. This
method retains only the particles closest to the observations.
The retained particles are then resampled according to their
respective weights to refill the ensemble. This relatively simple
method is particularly suitable for non-linear systems where
the dynamics of the model are respected. However the spatial
propagation of the assimilated observation (e.g., to non-observed

pixels) is not trivial to ensure although localization methodology
are being developed (Farchi and Bocquet, 2018).

Variational assimilation solves the analysis problem through
the optimization of a given criterion (minimization of a cost-
function). It generally requires an adjoint model, which is
challenging to obtain for complex models and is of limited
efficiency for nonlinear systems. As a consequence, such methods
have been only rarely used in snow cover applications (Dumont
et al., 2012).

4.1.3. Retrospective Data Assimilation Methods

Data assimilation methods can also be applied using so-called
smoother approaches. In such methods, rather than updating the
states at a measurement time and predicting forward until the
next measurement, smoothers assimilate a batch of observations
over a pre-defined retrospective window. Contrary to filters,
smoothers include observations ulterior to the states to estimate.
The most common approach is the fixed-interval smoothing,
where the state trajectory over a time interval is estimated
through the assimilation of the observations available in that
same interval. Four-dimensional variational methods (i.e., 4D-
Var) is a batch smoother whereby measurements are assimilated
by minimizing a least squares cost function that incorporates
information about measurement errors, prior information and
the model constraint. While 4D-Var can handle non-linear
models, its application requires the derivation of an adjoint
model (as for 3D-Var), which can be difficult for complex non-
linear models such as many of the snow models described
above. As such, to our knowledge, 4D-Var has not been applied
in snow cover applications. Other smoother methods, namely
the Ensemble Kalman Smoother (EnKS) and the Particle Batch
Smoother (PBS), which are essentially smoother extensions of the
filtering approaches outlines above, have been applied in snow
hydrology recently with a variety of data assimilated including
passive/active microwave and SCA/SCF (e.g., Durand et al., 2009;
Bateni et al., 2013, 2015; Girotto et al., 2014; Margulis et al., 2015,
2016, 2019b; Cortés and Margulis, 2017; Li et al., 2017; Aalstad
et al., 2018; Baldo and Margulis, 2018). In the EnKS, a Kalman
update can be performed on all states over a given window,
while in the PBS, particle weights are updated by conditioning on
all measurements over the assimilation window. Because of the
retrospective nature of smoother data assimilation applications,
they are well-suited to deriving snow cover reanalysis datasets.

4.2. Advantages and Disadvantages of

Data Assimilation Methods
The suitability of a given data assimilation method relies on
several criteria:

e The characteristics of the observation to assimilate: is the
model state variable directly observed or is there a need for an
observation operator to convert observation to model state?
what is the spatial distribution of the observations (point
vs. distributed)?

The level of complexity of the snow model, e.g., models with
multiple, dynamic layers are challenging to update when only
bulk properties are observed; this is also the case for models
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with multiple state variables (e.g., snow temperature, liquid
water content), which are typically not observed and weakly
correlated with the observed states (e.g., snow depth).

e The foreseen application (e.g., avalanche hazards prediction,
runoff forecasting, SWE reanalysis) and the potential
necessity to propagate the analysis in space (e.g., to
non-observed pixels).

Data assimilation systems can be built for different purposes: (i)
update model parameters (e.g., Piazzi et al., 2018) (ii) update
model state variables (e.g., Charrois et al., 2016), (iii) update the
meteorological forcing (e.g., Magnusson et al., 2017; Winstral
et al,, 2019) or (iv) combinations thereof (e.g., Margulis et al.,
2016). Each option has advantages and drawbacks and is not
necessarily compatible with all the data assimilation methods
described above. Options (iii) and (iv) can ease the spatial
propagation of the assimilation benefit to non-observed pixels.

The comparison of the advantages and disadvantages of
each category of methods applied to snow cover observations
and models have been summarized in Table2. The data
assimilation scheme complexity increases when using smaller
spatial resolution of the model and for longer prediction time
horizons, as described in the Figure 9 of Carrassi et al. (2018). The
difficulties of optimal interpolation and extended kalman filter
in dealing with non-linearities make them generally not suited
for complex non-linear snow cover models. As for variational
methods, although they are able to deal with non-linearities,
the development of the adjoint model, which can be non-trivial
in presence of non-differentiable and non-linear models, can
be a barrier to their use with detailed snow cover models.
The capability of the EnKF to deal with large dimension error
covariance matrices could be suitable for explicit snow cover
models but this approach can also lead to issues related to its
linearity assumption. To avoid non-linearity issues, the particle
filter is one of the most adequate data assimilation method
for explicit detailed snow cover models. Contrary to the other
methods, particle filters are adequate to deal with ensemble
detailed snow cover simulations in which members may have
a variable number of layers, i.e., variable dimension problem.
However, in large dimension (numerous variables or large
domain), this method has limitations when the resampling leads
to very close particles which can lead to degeneracy. Because of its
easy implementation and its ability to process non-linear system,
this technique has been used for detailed multi-layer snow cover
models and has shown promising results (e.g., Charrois et al.,
2016; Magnusson et al., 2017).

In applications focused on seasonal snow processes, batch
smoothers can be an attractive option for deriving historical
reanalysis datasets (e.g., Margulis et al, 2016; Cortés and
Margulis, 2017). Smoother methods also have the ability
to extract more information than filters, especially where
instantaneous relationships between measurements and state
variables (i.e., fSCA and SWE) is relatively low, but the
seasonal correlations are strong (i.e., seasonal depletion of fSCA
and peak SWE). The application of batch EnKS methods is
straightforward, and has the same limitations as the EnKEF
but with the primary additional cost being the increase in

state vector size (i.e., across time). This can be mitigated,
for example, by updating model forcings rather than states
(e.g., Girotto et al, 2014) based on the fact that uncertainty
of the snow cover state is to a large extent determined by
input (precipitation) uncertainty. The PBS method, like the PE,
generalizes the problem to allow for both non-linearities and
non-Gaussianity, and is computationally feasible by focusing
on updating ensemble weights rather than state vectors (e.g.,
Margulis et al., 2015).

4.3. Benefit of Data Assimilation Systems
Used for Monitoring the Snow Cover in

Mountains

This section provides a brief history and overview of snow data
assimilation studies in mountain areas. For the sake of clarity, the
studies are sorted here by type of observations used.

4.3.1. In situ Observations

Due to increasingly available observations, data assimilation has
been progressively integrated into land surface, hydrological and
snow cover models during the last 20 years. Assimilation of snow
cover observations have proven to be an essential tool to reduce
the uncertainties for water resources. The first studies used simple
conceptual hydrological and snow models integrating direct
in situ measurements, such as snow depth and SWE (Carroll,
1978; Day, 1990). Their integration has led to an improvement
in the forecast of river flow (Day, 1990) and snow cover runoff
uncertainties were reduced by as much as 40% in a region where
snow cover represents up to 80% of the water resource (Carroll,
1978). Large-scale operational numerical weather prediction
have started to assimilate snow cover data but using only in situ
snow measurements (Brasnett, 1999). The assimilation of snow
cover observations in an operational system is usually made
with observations of snow depth rather than SWE measurements
due to the limited availability of the latter. Research on the
simultaneous assimilation of various snow variables has been
limited, and has been tested only on local and offline simulations
(Piazzi et al., 2018). The latter study has shown that multivariate
assimilation of snow surface temperature, surface albedo, snow
depth and SWE has potential but raise new degeneracy challenges
when using a particle filter. Detailed assimilation of in situ
observations of snow depth over all Switzerland at 1,000 m
spatial resolution has been set up in Magnusson et al. (2014)
and Winstral et al. (2019). Such systems are highly efficient but
rely of an extremely dense network of in situ observations (one
station every 100 km?) that enables proper spatial propagation
of the information through the input meteorological forcings
(Winstral et al., 2019). in situ snow depth assimilation has
been shown to improve both SWE and snow density estimates
(Smyth et al., 2019). Subsequent runoff simulations were shown
to greatly benefit from the assimilation of these in situ snow
depth observations (Griessinger et al., 2016, 2019). When
the in situ snow observation network is not dense enough,
their assimilation cannot recover the spatial heterogeneity of
the snow cover. For this reason, the combination of in situ
snow measurement with remotely-sensed observations is needed
especially in regions with complex topography (Magnusson
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TABLE 2 | Description of the different methods to combine observations and model.

DI BDE ol PF-SIR EKF EnKF 1,2,3D-Var EnKS PBS
Sequential v v v v v v v
Smoother v v v
Ensemble v v v v v
Easily implemented 1 1 1 1
Calculation cost 1 1 1 3 3
Non-linearity capacity 3 3 1 3
High dimension capacity 3 1 1 1 1
Spatial propagation 1 1 1 1 1 1
Update unobserved variables 3 1 1 1 1 1 1 1 1
Variable number of layers 1 1 1 1

With their corresponding advantages and disadvantages applied to snow studies. Number 1 indicates a good adequacy of the method, 2 a limited capacity and 3, strong limitations.
Note that the numbers are qualitative, especially for the calculation cost that highly varies with how exactly a method is implemented. direct insertion, direct inservation; BDE, Bias-
detecting-ensemble; optimal interpolation, optimal interpolation; PF-SIR, Particle filter with sequential importance resampling; extended kalman filter, extended Kalman Filter; EnKF,

Ensemble Kalman Filter; EnKS, Ensemble Kalman Smoother; PBS, Particle Batch Smoother.

et al., 2014). This issue also highlights the question of the
representativeness of point-scale measurements and how the
information of the point-scale measurements can be propagated
in space via the assimilation systems.

4.3.2. Airborne Data
Snow cover observations from airplanes, although only available
on limited domains, provides an alternative to satellite data,
overcoming some of the shortcomings of the latter, e.g., limited
spatial resolution. The Airborne Snow Observatory (Painter
et al., 2016) has provided a valuable framework for testing and
comparing different assimilation systems. Painter et al. (2016)
used snow albedo maps from airborne imagery as inputs for
a physically-based snow model and combined the simulated
snow density with snow depth maps from airborne observations
to obtain SWE maps at high resolution in mountain areas.
The approach is though restricted to the area covered by the
planes. Hedrick et al. (2018) tested the first integration of
LIDAR-derived distributed snow depth data into a physics-based
snowcover model using direct insertion and obtained largely
improved simulation of the snow depth spatial distribution at
high resolution (50 m). More recently, Margulis et al. (2019a)
demonstrated the benefit of even infrequent assimilation of
LIDAR snow depths, using PBS and a physically-based snow
cover model, at estimating SWE throughout the water year.
Recent studies have also been carried out by assimilating
airborne observations of high-resolution passive microwave
imagery for SWE estimations for deep mountainous snowpacks
(Li et al,, 2017; Kim et al., 2019). The latter study demonstrated
that accurate SWE simulations are obtained with the use of a
detailed snow cover model that includes snow microstructure
evolution, and a particle filter approach. Data assimilation of the

same observations with a three-layer snow model and a Kalman
filter lead to lower accuracy in the SWE estimates.

4.3.3. Satellite Data

The most commonly used satellite data for assimilation are
probably SCA/SCF products. The direct insertion method has
been used extentively with MODIS SCA/SCF products (Rodell
and Houser, 2004; Kumar et al., 2008; Hall et al., 2010; Fletcher
et al., 2012; Liu et al,, 2013). This approach has resulted in
an improvement of the simulated snow cover in comparison
to simulations without assimilation, especially in the lowest
elevation bands and during the melting period (Andreadis and
Lettenmaier, 2006; Arsenault et al., 2013). In contrast, the direct
insertion method has degraded performance compared to the
EnKF assimilation (Arsenault et al., 2013) and does not allow a
backward correction of the simulation. Assimilation of optical
SCA/SCE is also performed using particle filters approach (e.g.,
Thirel et al., 2013; Baba et al., 2018) leading to improved or
similar performance to EnKF approaches. Some studies combine
the assimilation of SCA from satellite and in situ snow depth
measurements leading to accurate snow maps over Scandinavia
(Saloranta, 2016). SWE reanalysis over long periods have been
produced using assimilation of SCA/SCF with different types
of batch smoothers (e.g., Girotto et al., 2014; Margulis et al.,
2015; Cortés and Margulis, 2017; Aalstad et al., 2018). SCA,
in contrast to SCE consists of only binary information on the
absence or presence of snow on the ground. Consequently, the
link between this observed variable and the model state variable,
a.k.a. observation operator, is complex without violating physics
especially for physically-based snowpack models. The sequential
assimilation of SCA/SCEF is also not very efficient during mid-
winter where most of the surface is covered by snow.
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Aside from SCA/SCE, optical satellite data can also be used to
retrieve albedo data which plays an important role in the melting
processes of the snowpack. Several studies have assimilated
albedo products by using the direct insertion method, which
shows improved estimations of snow depth, albedo and SWE
(Malik et al.,, 2012; Wang et al., 2015). Another approach is
the assimilation of optical MODIS albedo products by using
a 1D-Var method, which led to a 40% root-mean-square-error
reduction in the mass balance of an alpine glacier (Dumont
et al., 2012). Snow cover simulations can be improved by
combining different products such as an EnKF assimilation of
SCF products and a direct insertion of albedo (Xu et al., 2016).
In addition, the assimilation of reflectance (spectral albedo) has
been shown to further improve the simulated snowcover physical
properties (e.g., Charrois et al., 2016). The uncertainties related
to the conversion of raw optical satellite imagery into snow
products remain the main limitation of surface reflectance and
albedo assimilation (Zaitchik and Rodell, 2009; Hall et al., 2010;
De Lannoy et al.,, 2012; Cluzet et al., 2020). The calculation of
the observation errors is thus critical for the efficiency of the
system. Moreover, the assimilation of optical images is limited
by the presence of clouds (Hall and Riggs, 2007) which may
be problematic in some mountainous regions (Charrois et al.,
2016). Charrois et al. (2016) demonstrates that despite the
limited time resolution due to clouds, the assimilation of spectral
albedo is beneficial to the simulations systems and the most
useful observations are the one obtained after a long period
without precipitation. In contrast to EnKFE the use of particle
filter over large domain may trigger degeneracy issues and does
not provide a simple way forward to the spatial propagation
of the assimilation from one pixel to the other. Localization
methods may solve this issue (e.g., Farchi and Bocquet, 2018), but
their implementation, based on ensemble weighted averaging, is
challenging with multi-layer models due to the dynamic layering.

A recent effort was made to assimilate the synthetic
aperture radar (SAR) backscattered coefficients using for instance
variational approach with a detailed multi-layer snow model
(Phan et al., 2014). However, large uncertainties on the observed
backscattered signal make this approach difficult to use, and it
requires an unbiased estimate of the observed data (Veyssiere
et al, 2019). Moreover, the radiative transfer model used to
simulate the backscattered signal is more complex for radar data
than for optical data generally leading to larger uncertainties
(Helmert et al., 2018; Picard et al., 2018).

Several studies have combined the assimilation of SWE
products from passive microwave AMSR-E observations and
SCA/SCF products or reflectance from MODIS images, which
leads to better estimations of the snow cover at mid-latitude
(Durand and Margulis, 2007; Kumar et al., 2008; De Lannoy
et al., 2012; Fletcher et al., 2012; Liu et al., 2013). The extended
kalman filter and EnKF method have been often used for the
assimilation of SWE products from passive microwave satellites,
such as AMSR-E and SMMR (Andreadis and Lettenmaier, 2006;
Kumar et al,, 2008; De Lannoy et al., 2012; Liu et al., 2013).

A recent study has assimilated passive microwave AMSR-
2 satellite observations in a detailed snow cover model using
the particle filter, which was shown to reduce the bias

of SWE estimation by up to 71% over flat areas (Larue
et al., 2018). However, the coarse spatial resolution of passive
microwave satellites limits their usefulness for snow products
over mountain regions.

5. SUMMARY AND RECOMMENDATIONS

The monitoring of snow is essential to monitor, predict and
manage water resources and snow-related natural hazards. This
monitoring can be partially achieved by using in situ and
remotely-sensed observations from the ground, air or space.
In situ snow cover measurements at the point-scale provide
critical data for characterizing the snow cover at a given location,
however these measurements do not provide information on the
spatial heterogeneity of mountain snow. Limitations related to
the representativeness and scarcity of point-scale in situ data
makes the use of distributed observations from satellite, airplane
and terrestrial sensors, key for enabling the monitoring of snow
spatial variability.

The snow properties to which a remotely sensed observation
is sensitive vary with the sensor frequencies and type (optical,
thermal infrared and microwave). Monoscopic and stereoscopic
optical sensors are limited to daytime cloud-free measurements.
Monoscopic optical satellites provide multi-spectral images in
the visible and near infrared wavelengths with a relatively high
spatial resolution (20 - 500 m). They generally provide snow
cover area (SCA) and snow cover fraction (SCF) information,
surface properties such as albedo, and light absorbing particles
of the snow and snow microstructure, but they cannot directly
measure water equivalent of snow cover (SWE). Stereoscopic
optical satellites provide snow depth information at very
high spatial resolution (0.5-2m), but this technique contains
substantial uncertainties (50 cm), typically only operates on-
demand for a reduced set of observation dates, and is generally
restricted to small areas. The energy radiation from passive
microwave has the advantage to provide information under
all-weather conditions (clouds, rain and night), and is directly
sensitive to snow depth and/or SWE. However, the coarse
resolution of passive microwave satellites (20-40 km) is not
sufficient for mountain areas and its use is limited to non-
complex terrain, such as flat areas. In addition, the sensitivity
of the type of sensors is lower for deep and/or wet snowpacks.
For mountain applications, the complex topography requires the
use of high spatial resolution satellite data, such as optical and
SAR observations. Disentangling the contribution of the different
snowpack properties (density, microstructure, ...) to the SAR
signal remains challenging without a priori knowledge of the
structure and the physical properties of the snow cover. One
recent study has shown that Band C SAR signal is directly related
to snow depth, highlighting the necessity of further theoretical
investigations to support the physical understanding of this
direct link.

The use of numerical models is required to monitor the
evolution of the snow cover continuously in space and time
since observations generally lack one of the two aspects. The
physical characteristics and processes are represented in snow
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cover models with varying levels of complexity. The choice of
the model complexity is determined by applications as well
as the spatial and temporal extent of the application. It is
further constrained by computational cost and the availability
of meteorological forcings, where the number of meteorological
inputs is higher for the more complex schemes, such as Surface
Energy Balance models. The increase of computing performance
has fostered the use of detailed multi-layer snow cover models,
which represent snow cover properties with higher accuracy,
despite the necessary introduction of new sources of uncertainties
in the forcing data and model parameters. The most recent snow
cover model intercomparison studies have shown that the best
performance can be achieved by models with various levels of
complexity. Despite these advances in predicting SWE and snow
characteristics using numerial simulations, many uncertainties
persist. This leads to the need for the combined use of snow cover
models and snow observations.

The assimilation of in situ and remotely-sensed observations
of snow has been increasingly used in snow applications and
provides the potential for a reduction of the uncertainties
associated with unconstrained snow cover simulations.

e Data assimilation of in situ observations of snow depth or
SWE is an efficient method to provide SWE estimates when the
observation network is dense enough which is the case only for
some rare regions of the Earth. The main challenge remains
to extrapolate the information at measurement locations to
grid cells without observations. Some solutions exist, especially
when the data assimilation method is updating the distributed
meteorological forcings, but there is still significant room
for improvement.

Remotely-sensed data are thus the most natural source of
information to constrain snow cover simulations in regions
where in situ observations are too sparse. The satellite data
most commonly used in data assimilation for SWE estimation
in mountains are SCA/SCF from optical satellites. SCA/SCF
assimilation is well-established but still complex since it
mostly provides a binary information and the definition of
the observation operator for a physically-based snow model
cover without violating physics is challenging. In the case of
sequential data assimilation, the impact of the assimilation of
such products is low in periods where snow is covering most
of the surface. However, SWE reanalysis using SCA/SCF with
batch smoothers, where the relationship between accumulated
SWE, and the full depletion record is higher, has been very
successful.

Ensemble assimilation of raw or low level satellite products
such as radiances from optical sensors or SAR combined with
surface energy balance snow cover models is one of the most
powerful tools to improve SWE prediction at high resolution.
The use of raw or low level satellite data is likely to be
preferred to higher level satellite products in order to avoid the
propagation of existing biases in the satellite retrieval products
in the data assimilation system. Though promising results have
been shown, especially for optical data, several issues need to
be tackled to build highly efficient prediction systems. Firstly,
the assimilation of such data requires an a priori knowledge
of the vertical structure of the snowpack which fosters the

use of detailed snow cover models and accurate observation
operators that includes both the terrain effects in link with
the rugged topography and the electromagnectic interactions
within the snowpack. Second, such system are highly non-
linear which plays in favor of data assimilation methods such
as batch smoothers, particle filters and to a lesser extent EnKF.
Third, snow partial coverage and exposed vegetation are more
complex to treat and are still open research questions.
Assimilation of distributed SWE or snow depth observations
is more straighforward. However, distributed SWE
measurements are rare and SWE measurements cannot
be directly obtained via satellite data. Snow depth mapping
from satellite methods are currently improving and we can
expect more accurate data sources to become available,
and with that the development of suitable data assimilation
frameworks. In such a case, even infrequent snow depth maps
could be used to significantly improve SWE simulations at
longer time scales.

In all cases, the question of how to propagate the assimilation

benefit to non-observed pixels, especially in the case of

particle filters, is an ongoing research area, which requires
more investigation.

e Data assimilation methodologies capable of using multi-
variate observations are also an area of promise. New satellite
observations such as high resolution surface temperature (e.g.,
from the Franco-Indian mission Thermal infraRed Imaging
Satellite for High-resolution Natural resource Assessment -
TRISHNA) would most likely largely improve the reliability
of such prediction systems.

e Data assimilation of snow cover observations in forested
regions has almost never been investigated in detail and is still
an open question.

To conclude, prediction systems combining snow observations
and physically-based snow cover modeling would enable not
only accurate probabilistic SWE prediction, for instance for
runoff and flow predictions, but also a better knowledge of the
snowpack physical properties, that is a prerequisite for instance
for avalanche hazards forecasting. In the future, integrated
solutions with assimilation of both snow and meteorological
observations in a coupled atmosphere/snow model systems are
likely to provide the most robust estimates of snow conditions, in
particular SWE, at scales of practical and scientific interest.
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