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Introduction

Porous metals consist of a solid metal/alloy matrix with empty or fluid-filled voids or pores. If the voids
are connected, porous metals are said to be open-celled; otherwise they are referred to as close-celled.
Liquid metallurgy and powder-metallurgy are the most common manufacturing techniques for porous
metals, whose microstructure is thus determined by their foaming, solidification and sintering history, as
well as any subsequent thermo-mechanical treatments. Additive manufacturing of porous metallic
structures is also a rapidly growing area of research, and both routes (melting/solidification and sintering
of powders) are used'3. Most technical metals and their alloys have been created with porous structures,
including iron, aluminum, nickel, copper, magnesium, titanium, zinc, lead, silver, gold, platinum, tantalum
and tungsten. Capabilities for producing complex shapes and three-dimensional sandwich structures
employing porous metals are available. Interests in porous metals with varying length scales of pores
(macro-, micro-, nanoporous metals) as well as hierarchical and multiscale porous metals, as highlighted
in the cover image of this Focus Issue (from data presented in Ref. #), continue to create new opportunities
in novel research as well as advanced functional and structural applications.

Thirty Years of Research in Porous Metals

A wave of research and development on porous, foamed and cellular metals, which started in the 1990s,
has produced a growing number of publications documenting new scientific findings, both fundamentals
and applied, and many new industrial applications. Probably the most known textbooks covering the
field are Cellular Solids by Gibson and Ashby (1997), the Design Guide by Ashby et al. (2000), the Handbook
by Degischer and Kriszt (2002), and Dukhan’s Metal Foams, Fundamentals and Applications (2013). Many
extensive reviews, including those by Banhart and coworkers®® and Zhao et al.’, are comprehensive
literature sources on metal foams as well. Other reviews focus on particular metals and alloys, e.g.,
aluminum?®® 12, steels® and titanium'*'’. In particular, a recent review by Wan et al.®® concerning
fabrication, properties, and applications of open-cell aluminum foams, has just appeared. These works
summarize a great deal of insight, from fundamental physical phenomena (such as liquid foam stability,
solid sintering kinetics, or rapid solidification), to more applied engineering performance, applications,
and design. They contain virtually all the then-current state-of-the-art of porous metals and alloys, in
terms of production methods, properties, microstructure characterization and applications. In addition to
these valuable resources, two biannual conferences are partially or totally focused on metal foams:
CellMat and MetFoam. The last MetFoam conference took place in 2019 in Dearborn, Ml (USA), while the
upcoming edition will be held in 2021 in Dresden (Germany), where Cellmat 2022 will also take place.
International symposia on nanoporous metals by alloy corrosion also occur biennially, with the mostly
recent one in 2019 in Philadelphia, PA (USA).

Porous Metals and Alloys — Non-structural Applications

Historically, porous metals have focused on structural applications where specific stiffness and strength
were optimized, using conventional casting, sintering, cutting, machining and joining techniques to create
ductile and strong porous metallic structure. For such load-bearing applications, porous metals are
studied and used in many sectors, e.g., transportation, architecture, and medicine (for bone-replacement
implants). Non-structural applications are being increasingly studied in porous metals, because of their
many favorable properties as compared to porous ceramic and polymers. For example, porous metals
have high thermal and electrical conductivities, useful for heat-exchanger applications and
electromagnetic shielding, respectively. Other attributes include chemical, corrosion and oxidization
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resistance, high-temperature stability, recyclability, and high acoustic and vibration damping. Open-cell
porous metals are permeable and can show a wide range of surface area density useful for catalyst
substrates and heat-exchangers, for example.

In the human health field, a particularly timely example for the functional (non-structural) use of open-
porosity metals is covered in a July 2020 article describing an air disinfection system fabricated from
commercial nickel foams.?® When heated to 200 2C, these nickel-foam filters show a 99.8% reduction of
aerosolized SARS-CoV-2 viruses and 99.9% reduction of Anthrax spores (Bacillus anthracis) between pre-
and post-device levels. This low-cost approach to catching and killing aerosolized SARS-CoV-2 may
become a useful and rapidly-deployable tool for controlling the spread of this virus in enclosed spaces
where air is recirculated. The commercial nickel foam used is 95% porous, and despite pore sizes
(between 50 and 500 um) and strut diameters (~ 65 um) much larger than the virus, its large surface area
very effectively catches most of the virus-containing aerosol droplets suspended in the air passing through
the filter. The high electrical conductivity of pure nickel (a non-structural property) permits simple, direct
resistive heating of the foam, while the high ductility of pure nickel (a mechanical property) allows for
multiple folding of the foam, increasing its effective thickness.
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0% I M 150%
atomic shear strain

Figure 1. “Porous metals — from nano to macro”: figures reproduced from articles in this Focus Issue
illustrate the range of pore size in porous metals. (a) scanning transmission electron micrograph of a
nanoporous palladium - polymer composite membranes for separations and catalysis; the nanoporous
Pd was prepared by the dealloying method?’, (b) scanning electron microscope (SEM) micrograph of
nanoporous copper prepared by dealloying?, (c) molecular dynamics simulations of crystalline copper
nanoporous structures during tensile loading?? — scale is provided by individual atoms visible in enlarged
view in circles, (d) SEM micrograph of tensile section of a carbon nanotubes reinforced aluminum foam
prepared by powder metallurgy?® (e) three-dimensionally ordered porous tungsten (inverse opals
structure), prepared by a templating method?* (f) tomographic view of porous iron created by freeze
casting, ice template removal and sintering® (g) a 3D printed Ti-6Al-4V gyroid-structured scaffold
showing diagonal shear bands from compression tests?® (h) X-ray tomographic reconstruction of open-



channel aluminum fabricated by casting and subsequent extraction of lubricated metallic wires?” 28 (i)

photographs of closed-cell aluminum foams with graded density before and after a compression test?
(j) SEM micrographs of hierarchically-porous titanium with macro-/micro-/nanopores, prepared using
NaCl spacer and dealloying methods®°.

Pore size effects

The two main architectural parameters affecting properties of porous metals are (i) pore volume fraction
and (ii) pore size; other pore parameters include pore shape, tortuosity, connectivity and orientation, as
well as distribution of these attributes. Microstructural parameters pertain to the alloy itself (e.g.
composition, grain size, dislocation density, second phases) and are only weakly connected to the above
architectural pore parameters.

The volume fraction of pores affects strongly the property of porous metals, similar to the effect of volume
fraction of reinforcement in metal matrix composites, or of second phases in precipitation- or dispersion-
strengthened alloys. Recently, high and ultra-high porosities (>96% and >99.5%) have been achieved in
metals via various manufacturing methods (e.g., combustion synthesis3?,
microstereolithography®?, electrodeposition on a removable substrate3), making these very light metal
structures attractive in industrial applications where very high surface area is desirable. The typical range
of pore volume fraction reported in porous metals is, roughly, 50 to 99.95%; when expressed as relative
density, it is 50 to 0.05%, or three orders of magnitude.

Pore size, the second main architectural parameter for porous metals, varies over a much wider range, as
demonstrated by the articles in this Focus Issue and as illustrated in Fig. 1: from nanometers (e.g., for
dealloyed metals), to micrometers (e.g., for freeze-cast or replicated foams), to sub-millimeters (e.g., for
additively manufactured lattices), to centimeters (e.g., for open-channel metals), with some porous
metals displaying hierarchical macro/micro/nano pores. At the low end of this scale, with nanometer-
sized pores and ligaments, are nanoporous alloys fabricated by dealloying 3*3¢, which may be combined
with methods such as additive manufacturing 3%, powder metallurgy® *° or other strategies to create
hierarchical structure.s** These display promising applications in areas such as catalysis %%, sensing ** and
energy storage. ** The complex mechanisms underlying nanoporosity formation and coarsening #-* has
also attracted great interest in fundamental mechanism studies and continuing innovation on dealloying
methods such as liquid metal dealloying®®>?, solid-state interfacial dealloying®® >*, vapor phase
dealloying® °®, and reduction/thermal decomposition®” *8, At the high end of the scale (as illustrated in
Fig. 2), meter-size struts, defining meter-to-decameter voids, are present in built metal lattice structures
such as the 324m high Eiffel Tower in Paris (built in 1889 from wrought-iron elements) or the 17m high
Hive in London’s Kew Gardens, a 44-ton aluminum honeycomb sculpture celebrating the beauty of bees
(designed and built in 2015 by architect Wolfgang Buttress). This 10-order of magnitude range in pore
size (from nanometers to decameters) translates into a 30-order of magnitude in pore volume range (from
cubic nanometers to thousands of cubic meters). Nevertheless, many of the same fundamental concepts
and mechanisms are present in these porous metals over this huge dimensional scale, at least until the
nano-scale is approached.



Figure 2 — (a) Upward view of the Eiffel Tower in Paris, showing hierarchical structure of 18,000 iron
parts (mostly struts) connected with 250 million rivets.>® (b) The Hive, installed in London’s Kew Gardens
in 2016, simulates a living beehive. Its lattice, 17 m in height, comprises 170,000 aluminum struts and
connectors.?® (c) A view inside the Bao'an airport at Shenzhen, with a 450,000 steel member structure
allowing for high earthquake loads, with cross bracings providing high stiffness ! (photo courtesy: Prof.
J. Huang, Northwestern University, IL, USA).

As the size of micro- and nanopores becomes close to the size of microstructural features (grain size,
precipitate spacing, dislocation spacing, phonon and electron mean free path), the properties of porous
metals may become pore-size dependent. For example, nanoporous gold exhibits ligaments which,
because they are dislocation-free, are brittle, unlike bulk or micro-porous gold®. In another example, as
the oxide layer forming on most metals (e.g., sub-micron is thickness) displays a thickness comparable to
that of submicron metallic struts, the oxide must be taken into account into prediction of the properties
of the porous metal® (e.g., its higher stiffness will stiffen it, its high strength will strengthen it). In a third
example, if struts or walls of the porous metals are smaller than the grain size, they become mono- or
oligocrystalline, thus showing anisotropic mechanical and thermal properties®. Only properties which
are affected solely by atoms and their nearest neighbors are unaffected by pore size, for example:
stiffness, thermal expansion, melting point, and mass density (except for the so-far unreachable case of
porous metals consisting of walls or ligaments only a few atoms in thickness).

Conclusion

As we enter the 2020’s, we are witnessing the rapid development of new areas in the field of porous
metals, including additive manufacturing, freeze-casting, electro-deposition, liquid- and gas-phase
deposition, triply-minimal-surface foams, porous metallic metamaterials, and nanoporous metals. This
Focus Issue of the Journal of Materials Research (“Porous Metals: From Nano to Macro”) provides a
representative snapshot of some of the cutting-edge research activities in the field, illustrating new
developments, applications, and analyses of these versatile materials by a growing community of
scientists, engineers, designers, and architects, working on a continuum of experiments to modeling. The
guest editors sincerely hope that this Focus Issue will serve as a timely resource for those interested in
porous, foamed, and cellular metals and alloys, with pores and features at all length scales.
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