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Structural roles define sets of structurally similar nodes that are more similar to nodes inside the set than
outside, whereas communities define sets of nodes with more connections inside the set than outside. Roles
based on structural similarity and communities based on proximity are fundamentally different but important
complementary notions. Recently, the notion of structural roles has become increasingly important and has
gained a lot of attention due to the proliferation of work on learning representations (node/edge embeddings)
from graphs that preserve the notion of roles. Unfortunately, recent work has sometimes confused the notion
of structural roles and communities (based on proximity) leading to misleading or incorrect claims about the
capabilities of network embedding methods. As such, this paper seeks to clarify the misconceptions and key
differences between structural roles and communities, and formalize the general mechanisms (e.g., random
walks, feature diffusion) that give rise to community or role-based structural embeddings. We theoretically
prove that embedding methods based on these mechanisms result in either community or role-based structural
embeddings. These mechanisms are typically easy to identify and can help researchers quickly determine
whether a method preserves community or role-based embeddings. Furthermore, they also serve as a basis
for developing new and improved methods for community or role-based structural embeddings. Finally, we
analyze and discuss applications and data characteristics where community or role-based embeddings are
most appropriate.
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1 INTRODUCTION

Motivated by the proliferation of work on node representation learning and the confusion between
the notions of communities and roles that existing methods capture, the goal of this manuscript
is to clearly define and clarify the differences between community (proximity) and role-based
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Fig. 1. This taxonomy intuitively illustrates the fundamental differences between the notion of roles (which
are based on structural similarity) and communities (based on density, cohesion, and small proximity/distance).
Table 1 gives a summary of the key properties of communities and roles captured by embedding methods.
Note the input graph is the classical Borgatti-Everett network originally from [Borgatti and Everett 1992].

(structural) embeddings.! Towards this goal, we formalize these notions, discuss their differences,
and show mathematically how various embedding mechanisms lead to either community or role-
based structural embeddings. Given our definitions, we also categorize the existing embedding
methods and discuss their suitability for a variety of downstream tasks.

In the following subsections, we begin by introducing the notion of communities and roles, which
can be viewed as two different but complementary graph clustering problems. Then, we discuss
how these two fundamentally different notions give rise to community and role-based embeddings.
At the end of the introduction, we also present the scope of this article, its main contributions, and
details about its organization.

1.1 Communities and Roles

Communities and roles lend themselves to many important real-world applications, which are
discussed in the seminal survey on communities [Fortunato 2010a; Schaeffer 2007] and roles [Rossi
and Ahmed 2015]. They can be viewed as cases of general graph clustering, a problem that is
fundamental to the analysis and understanding of graphs. Its main goal is to find a partition of
nodes in an input graph. We formalize the general definition of graph clustering as follows.

DEFINITION 1 (GRAPH CLUSTERING). A clustering C = {Cy,...,Cx} of graph G = (V,E) is a
partition of the node set V into non-empty subsets C; C V such thatV = Uf—c C;.

Definition 1 does not specify the objective of the clustering, but simply that it is a partitioning of
the vertex set V into non-empty subsets C; such that V = Uf C;. Overall, there are two general
objectives to graph clustering: (1) communities and (2) roles.

DEFINITION 2 (COMMUNITIES). Communities are sets of nodes with more connections inside the
set than outside.” That is, they are dense cohesive subsets of vertices C = {Cy,...,Cx}. A community
C; C V is “good" if the induced subgraph is dense (i.e., there are many edges between the vertices in
C;) and there are relatively few edges from C; to other vertices C; = V '\ C; [Schaeffer 2007].

IStructural node embeddings and role-based embeddings are used synonymously in the literature. Similarly, proximity-based
embeddings and community-based embeddings are also used synonymously.

2To capture the general notion of communities (Def. 2), there are many specific objective functions for the quality of
communities [Almeida et al. 2011] including modularity [Newman and Girvan 2004], graph conductance [Kannan et al.
2004], among others [Almeida et al. 2011; Emmons et al. 2016].
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Table 1. Roles and communities are fundamentally different but complementary notions. Roles and commu-

nities are characterized below by their key properties.

Roles

Communities

Roles form based on structural similarity, i.e., nodes with similar
structural properties (e.g., general subgraph patterns/graphlets)

Communities form based on node proxim-
ity/closeness (small distance), density, cohesiveness,

sparse cuts

Roles are defined by structural properties/features

Communities are defined by node ids and proximity

Roles generalize/transfer across networks (and can be used for
graph-based transfer learning tasks) since they are defined by
general structural properties/features

Communities do not generalize/transfer across net-
works (since based on node ids). A community in G
has no meaning in another arbitrary graph G’.

Roles characterize nodes that are structurally similar with re-
spect to their general connectivity and subgraph patterns (e.g.,
graphlets) and are independent of the distance/proximity to one

Nodes in the same community should all be close to
one another with small graph distance/proximity [For-
tunato 2010a]

another in the graph [Rossi and Ahmed 2015]. Hence, two nodes
assigned to the same role can be in different communities or dis-
connected components of a single graph, or even different graphs

Roles were first defined as classes of structurally equivalent nodes [Lorrain and White 1971].
Intuitively, two nodes are structurally equivalent if they are connected to the rest of the network
in identical ways. However, structural equivalence is far too strong and restrictive to be useful
in practice. Since then there have been many attempts to relax the criterion of equivalence, e.g.,
regular equivalence [Everett and Borgatti 1994; White and Reitz 1983], stochastic equivalence
[Holland and Leinhardt 1981]. For practical purposes, the notion of equivalence can be generally
relaxed to get at some form of structural similarity [Rossi and Ahmed 2015]. Roles may represent
node (or edge) connectivity patterns such as hub/star-center nodes, star-edge nodes, near-cliques
or bridge nodes connecting different regions of the graph [Ahmed et al. 2017b; Henderson et al.
2012]. More formally,

DEFINITION 3 (ROLES [Rossi and Ahmed 2015]). Roles define sets of nodes that are more structurally
similar to nodes inside the set than outside. The term ‘structurally similar’ refers to nodes that have
similar structural properties, e.g., bridge-nodes (gatekeepers) that connect different communities. The
terms role and position are used interchangeably.®

In this work, the term structural similarity (Definition 3) is reserved for the notion of roles as it
implies nodes that have similar structural properties whereas the term proximity and density are
reserved for communities.

Based on the definitions above, roles are complementary but fundamentally different to the notion
of communities. An intuitive example is shown in Figure 1 and their key differences are summarized
in Table 1. While communities capture cohesive/tightly-knit groups of nodes and nodes in the
same community are close together (small graph distance or high proximity) [Fortunato 2010a],
roles characterize nodes that are structurally similar with respect to their general connectivity and
subgraph patterns, and are independent of the distance/proximity to one another in the graph [Rossi

3 An equivalent definition of role is in terms of a role assignment function r : V' — R that maps nodes to a set of roles R.
The role assignment function r induces a partition C = {Cy, . . ., Cr } of V by taking the inverse-images as sets/classes of
nodes that play/have the same role. Further, if ~ is an equivalence relation (binary relation on V that is reflexive, symmetric,
and transitive), then the set of its equivalence classes is a partition of V (and conversely). Hence, it is equivalent to think
of a role as a set of nodes (node partition), function (role assignment), or equivalence relation on V since these are just
different, but equivalent mathematical formulations for the concept of roles.
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and Ahmed 2015]. Hence, two nodes that share similar roles (e.g., star-center nodes) can be in
different communities and even in two disconnected components of the graph. Another difference
is that communities are defined on a particular graph, whereas roles capture a more general notion
that represents structural patterns and are able to generalize across networks i.e., they can be
learned on one network, and transferred to another, whereas communities do not [Henderson et al.
2012; Rossi and Ahmed 2015]. For instance, roles based on graphlets (or any structural features) can
be naturally transferred to another graph as they are essentially general structural graph functions
that can be computed on any arbitrary graph, independent of the specific nodes. We refer the
interested reader to Section 5 for further details and examples.

1.2 Community- and Role-based Embeddings

Recently, there has been substantial work on learning node embeddings.* Learning an appropriate
feature-based representation of the graph (e.g., node/edge embeddings) lies at the heart and success
of many graph-based machine learning tasks. In particular, they have proven to be important for
many application tasks including node and link classification [Jin et al. 2019b; McDowell et al.
2009; Neville and Jensen 2000; Rossi and Neville 2012; Sen et al. 2008], link prediction [Al Hasan
and Zaki 2011; Bilgic et al. 2007; Grover and Leskovec 2016; Perozzi et al. 2014; Rossi et al. 2017],
regression [Gleich and Rossi 2014], anomaly detection [Akoglu et al. 2015; Jin et al. 2019¢], dynamic
network analysis [Kovanen et al. 2011; Nguyen et al. 2018; Nicosia et al. 2013], metric learning [Lee
et al. 2020; Ma et al. 2019b], few-shot learning [Satorras and Estrach 2018], entity resolution/visitor
stitching [Gilpin et al. 2013; Jin et al. 2019a; Rossi et al. 2018b], activity discovery [Safavi et al.
2020], visualization and sensemaking [Fang et al. 2017; Pienta et al. 2015; Rossi et al. 2018a],
compression/graph summarization [Ahmed et al. 2018; Jin et al. 2019c; Liu et al. 2018a], network
alignment [Heimann et al. 2018; Koyutiirk et al. 2006], graph similarity [Ma et al. 2019a], and graph
classification [Heimann et al. 2019; Nikolentzos et al. 2017; Yan et al. 2019; Ying et al. 2018].

While communities and roles are useful in themselves for many different and complementary
applications, they have also become fundamentally important for learning embeddings that preserve
the notion of community (proximity) or roles (structural similarity). Indeed, many works claim
to preserve the notion of communities [Cavallari et al. 2019, 2017; Wang et al. 2017], roles [Jin
et al. 2019b; Ribeiro et al. 2017; Rossi et al. 2018b], or even both [Grover and Leskovec 2016]. The
embedding/feature vectors given as output from an embedding method can be thought of as either
community [Fortunato 2010a; Henderson et al. 2010] or role membership vectors (assuming proper
normalization) [Airoldi et al. 2008; Gilpin et al. 2013; Rossi et al. 2013]. In this light, recent embedding
methods can be seen as approaches for modeling communities or (feature-based) roles [Rossi and
Ahmed 2015]. For simplicity, we have described roles and communities in Section 1.1 with respect
to hard assignments. However, more than a decade ago, methods for roles and communities that
naturally output node embeddings have been investigated. The node embeddings from these
methods are sometimes referred to as node mixed-membership vectors. In other words, community
and role discovery are not different problems than node embeddings, since they both output node
embeddings.

More recently, there has been an upsurge of interest in learning node embeddings that pre-
serve structural roles [Rossi and Ahmed 2015] (as opposed to communities based on proximity).
These works often claim to preserve structural equivalence [Lorrain and White 1971] or regular
equivalence [Sailer 1978; White and Reitz 1983]. However, since the output of these methods are
embeddings and not roles, these classical definitions are not appropriate since they are defined
formally with respect to the graph as shown in Section 3.2. In particular, methods used to find

4Embedding, features, and representation are considered synonymous and used interchangeably throughout this manuscript.
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role assignments that are regularly equivalent (or that preserve some other form of graph-based
equivalence) use the graph directly and not embeddings/features. The recent work that learns
embeddings is therefore more closely related to feature-based roles proposed by Rossi and Ahmed
[2015]. For instance, instead of leveraging the graph directly, feature-based roles are assigned
based on (structural) feature representations (node embeddings) that appropriately describe the
structural characteristics of the nodes in the graph. Thus, the question becomes: given node em-
beddings learned from some method, do the embeddings preserve a feature/embedding-based
role equivalence (or more generally, structural similarity) or do they preserve proximity (density,
communities)?

Understanding whether a method preserves communities (proximity) or roles (structural similar-
ity) helps identify and understand the applications and tasks where the embeddings might be useful.
For instance, if we know a method outputs embeddings that capture communities better, then we
can already begin to understand the types of applications where such embeddings are likely to
perform well, e.g., community-based embeddings work well for node classification on graphs with
homophily (i.e., neighbors of a node are more likely to share the same label than not) [La Fond
and Neville 2010] whereas role-based embeddings work better for graphs with weak homophily or
even heterophily. We discuss applications of community and role-based embeddings in Section 6.

1.3 Scope of this Article

This article formalizes the general mechanisms (techniques) that lie at the heart of nearly all
existing embedding methods. We show that these general mechanisms give rise to methods that
learn community/proximity-based embeddings (Section 4) or role-based structural embeddings
(Section 5). See Table 2 for a summary of the key mechanisms behind community and structural role-
based embeddings. Moreover, we clarify the misconceptions surrounding these two different notions
of embeddings. This paper is not a survey of the abundance of work on communities [Fortunato
2010a; Schaeffer 2007] or roles [Rossi and Ahmed 2015], nor do we attempt to survey the abundance
of work on graph embeddings/relational representation learning [Cai et al. 2018; Goyal and Ferrara
2018; Rossi et al. 2012; Wu et al. 2019a; Zhang et al. 2018].

1.4 Main Contributions

The main contributions of this work are:

e Formalizing the notion of communities and roles; and clarifying their fundamental differences
e Proposing embedding-based node equivalences for roles that are defined with respect to the
learned node embeddings (feature vectors) as opposed to a graph G as traditionally done.

e Formalizing the general mechanisms that give rise to community or role-based structural
embeddings. These mechanisms are typically easy to identify and can help researchers under-
stand whether a method learns community or structural role-based embeddings. Furthermore,
they can also be used to develop new and better community or role-based embedding methods.

e Theoretically demonstrating that embedding methods based on these mechanisms result in
either community (proximity) or role-based structural embeddings.

o Categorizing embedding methods into community or role-based by highlighting the general
mechanism used by it and why it gives rise to such embeddings.

e Analyzing and discussing the applications and data characteristics/assumptions where
community-based or role-based embeddings are most appropriate.
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Table 2. General mechanisms that give rise to community (proximity) or structural role-based embeddings.

Embedding Type General Mechanism Examples of Methods

Spectral embedding [Chung 1997]
deepwalk [Perozzi et al. 2014]
node2vec [Grover and Leskovec 2016]
LINE [Tang et al. 2015]

GraRep [Cao et al. 2015]

ComE+ [Cavallari et al. 2019]

Random Walks (Sec. 4.1)
COMMUNITY-BASED
(Section 4)

GCN [Kipf and Welling 2017]
Feature Prop./Diffusion (Sec. 4.2)  GraphSage [Hamilton et al. 2017]
MultiLENS [Jin et al. 2019c¢]

deepGL [Rossi et al. 2017]
Graphlets (Sec. 5.1) MCN [Lee et al. 2018b]
HONE [Rossi et al. 2018b]

ROLE-BASED role2vec [Ahmed et al. 2018]
(Section 5) Feature-based Walks (Sec. 5.2) node2bits [Jin et al. 2019a]
SimSum [Liu et al. 2018b, 2019]

rolX [Henderson et al. 2012]
Feature-based MF (Sec. 5.3) HERO [Ahmed et al. 2017b]
EMBER [Jin et al. 2019b]

1.5 Organization of this Article

The article is organized as follows: We first discuss background and preliminaries in Section 2.
In Section 3, we formalize the notion of communities and roles, discuss issues relating to false
claims about these notions, and propose new feature/embedding-based equivalences for embedding
methods. In Sections 4 and 5, we formally describe the general mechanisms that lie at the heart of
nearly all existing embedding methods. We show that these general mechanisms give rise to methods
that learn community/proximity-based embeddings (Section 4) or role-based structural embeddings
(Section 5). For the general mechanisms behind community or role-based structural embeddings
(summarized in Table 2), we theoretically demonstrate why they are community-based or role-
based. Section 6 discusses applications and the specific settings (e.g., data characteristics, problem
setting/constraints) that are well-suited for community or role-based embedding techniques. Finally,
Section 7 concludes.

2 PRELIMINARIES

Given a graph G = (V, E) where V represents the set of nodes and E represents the set of edges, we
define node and edge embedding as follows:

DEFINITION 4 (NoDE EMBEDDING). Node embedding aims to learn a function f : V. — RF that
maps each node to a k-dimensional embedding vector x where k < |V/|.

DEFINITION 5 (EDGE EMBEDDING). Edge embedding aims to learn a function f : E — R¥ that
maps an edge (node pair) to a k-dimensional embedding vector x where k < |E|.

Let X denote the node (or edge) embedding/feature matrix where the rows represent nodes (or edges)
and the columns represent (latent) features. Hence, x; is the k-dimensional embedding/feature
vector for the i-th node (edge).
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Many existing works derive edge embeddings based on the learned low-dimensional representa-
tions of nodes [Grover and Leskovec 2016; Perozzi et al. 2014] through element-wise operators such
as average, Hadamard, etc., so we categorize them together. Approaches such as DeepGL [Rossi
et al. 2017] that can learn edge embeddings directly from the graph are called direct edge embedding
methods and are discussed separately.

There is also a line of works that aim to learn an embedding vector for an entire graph:

DEFINITION 6 ((WHOLE-) GRAPH EMBEDDING). Given a set of graphs, the goal is to learn a
function f : G — RF that maps an entire input graph G € G to a low-dimensional embedding vector
z of length k where G is the input space of graphs. Similar graphs (e.g., graphs belonging to the same
class) should be embedded close to one another in the low k-dimensional space.

Some existing works in the literature aim to embed an induced subgraph such as the subgraph
rooted at a specific node [Narayanan et al. 2016, 2017]. These methods can be easily applied to
embed the entire graph by treating the input as a subset of the union of all graphs. The graph
embeddings can then be used as input for downstream applications such as graph classification [Lee
et al. 2018a], regression [Duvenaud et al. 2015], and anomaly detection [Hu et al. 2016]. We refer
interested readers to the comprehensive review on the traditional graph embedding methods [Fu
and Ma 2012].

3 COMMUNITIES AND STRUCTURAL ROLES

This section formally defines the notions of communities and structural roles. We then discuss and
summarize the fundamental differences between these notions. Despite the various applications
and practical importance, the notion of structural roles has only received a limited amount of
attention [Rossi and Ahmed 2015] compared to communities [Backstrom et al. 2006; Chakrabarti
et al. 2006; Chen and Saad 2010; Newman 2004; Schaeffer 2007]. As such, we discuss roles in
significantly more detail and show that classical node equivalences for assigning roles with respect
to G are inappropriate for embeddings (by definition).

3.1 Communities

While there are many different methods for finding communities (e.g., modularity maximiza-
tion [Newman and Girvan 2004], cut-based methods [Kannan et al. 2004], among others [Almeida
et al. 2011; Emmons et al. 2016]), it is generally agreed that a subset of vertices S C V is a “good”
community if the induced subgraph is dense (e.g., many edges between the vertices in S) and there
are relatively few edges from S to the other vertices S = V' \ S [Schaeffer 2007]. Let E(S) denote the
set of edges between vertices in S (internal edges) and E(S, S) be the set of edges between S and S
(cut set, that is, the set of edges that if removed would disconnect S from S). Note E(S, S) is the set
of external edges, that is, the set of edges that have their origin in S and destination in S. Clearly,
|E(S, S)| should be small relative to |E(S)| and E(S) for any “good” and reasonable community
detection method. An ideal situation is when communities are disjoint cliques. A summary of the
key properties of communities are as follows:
(1) Densely connected: Nodes inside a community are more densely connected to nodes within
the community than nodes in another community (By Definition 2).
(2) Proximity/closeness: Nodes in the same community are close to one another in the graph
in terms of distance/proximity.
(3) Walks: Nodes in the same community have more walks to one another (i.e., ways of going
from node i to j) compared to nodes outside the community.
Intuitively, both density and proximity are also closely related. For instance, the more dense a
community is in terms of the number of edges between nodes within the community, the more
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close (shorter distance/more walks) the nodes must be in the community, and vice-versa. Both
of these properties also imply more walks between nodes in the same community compared to
nodes in another community. See the seminal survey by Schaeffer [2007] for discussion on other
properties. Note the term community-based embeddings and proximity-based embeddings are used
interchangeably in the literature.

3.2 Structural Roles

We first review and discuss the classical node equivalences used for structural roles. These classical
node equivalences (e.g., structural and regular equivalence [Luczkovich et al. 2003]) are defined
directly on the graph G as opposed to the node embedding/feature matrix X. Algorithms that return
a structurally equivalent (or regularly equivalent) role assignment are known and have been widely
studied [Lorrain and White 1971; White and Reitz 1983]. However, since these node equivalences
are defined with respect to G and not embeddings, they cannot be used on embeddings/feature
vectors, despite such claims in recent work.

In this work, we formalize the notion of structural similarity and introduce node equivalences
that can be used on an embedding/feature representation of G. These embedding-based node
equivalences serve two main purposes. First, they allow us to precisely formulate the notion of role
mathematically which can be used to understand and theoretically analyze embedding methods
and their representational power. Second, algorithms based on these notions of feature-based node
equivalences can be developed to find such roles.

We start by defining a role assignment, which is used later in the formalization of the differ-
ent graph-based role equivalences (e.g., Definitions 8-9) and embedding-based role equivalences
(Definitions 12-14) that lie at the heart of structural roles. In particular, a role assignment r of
V is a surjective mapping r : V — R onto a set R of roles. An assignment r defines a partition®
C ={Cy,...,Cx} of V by taking the inverse-images as classes, i.e.,r"1(s) = {i € V | r(i) = s},V¥s € R.
Clearly, any role assignment r is not useful alone, unless it satisfies one of the equivalences defined
later in this section. For instance, if r satisfies regular equivalence (Definition 9), then we say the
role assignment r is regularly equivalent.

Given a node embedding/feature matrix X from an arbitrary embedding/representation learning
method f, we can find a role assignment r : V. — R indirectly using another method M (e.g., an
approach that partitions nodes into disjoint sets C = {Cy,...,Cx} such as k-means, or assigns
nodes to classes). However, since the role assignment r is given by M and not f, it is difficult (if
not impossible) to make any claims about f with respect to classical notions of node equivalence
such as structural (Definition 8) or regular equivalence (Definition 9). In other words, there is
no guarantee that a role assignment r : V' — R is structurally or regularly equivalent since it is
computed by some method M based on the learned node embedding/feature matrix X only, despite
the fact that the definitions of structural and regular equivalence involve the graph G only (and
more specifically, the neighbors of nodes) and not X. Hence, the method M used to assign roles
r using X would need to also consider the graph G to guarantee that such a role assignment is
structurally equivalent or regular equivalent; and it is unclear that X would actually be useful
in finding such a role assignment, since (efficient) algorithms that return such role assignments
using only G have been known for years [Borgatti et al. 2018; Boyd and Everett 1999; Everett
and Borgatti 1991; Lorrain and White 1971; White and Reitz 1983]. In other words, there is no
guarantee that the role assignments r given by M based on node embeddings X from f will satisfy
a graph-based equivalence such as structural equivalence or regular equivalence. However, given a
role assignment r and a node equivalence (e.g., structural or regular equivalence), we can verify if

SRecall a partition C = {Cy, . . ., Cx } is a set of non-empty, disjoint subsets C; C V such that V = Ule Ci.
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the role assignment r is a valid and proper assignment under the chosen node equivalence (i.e.,
the node equivalence holds for r). Though, as mentioned above, this is not useful since there are
methods to find such role assignments directly from the graph G, and in practice, such strict role
assignments are typically not very useful.

DEFINITION 7 (ROLE GRAPH). Let G = (V,E) be a graph with role assignmentr : V. — R, then
Gr = (R, ER) is the role graph with vertex set R (roles) and edge set Er C R X R defined as:

Er = {(ri,rj)|(i,)) € E} (1)
where Gg succinctly models the roles and the relationships between the roles R. The role graph
summarizes the essential structural properties of G and thus can be viewed as a form of compression.

Role assignment definitions translate to partitions and equivalence relations for roles.

DEFINITION 8 (STRUCTURAL EQUIVALENCE). Let G = (V,E) be a graph andr : V. — R be a role
assignment, then r is strong structural if equivalent vertices have the same neighbors. More formally,
ifVi,jev,

ri=r;j = N;r:I\];/\N;:N; (2)
where N and N[ are the out and in neighbors of i. In other words, two nodes are structurally equivalent
iff they are connected to the same neighbors. Structural equivalence can only identify nodes close to
each other in G.

A few trivial examples of structurally equivalent nodes are star-edge nodes of a k-star graph, nodes
in a k-clique graph, or nodes in a complete bipartite graph. Structural equivalence is computationally
and theoretically trivial. It is far too strict for general graphs and only nodes with distance at most
two can be identified by it. This has led to many slightly more useful relaxations including regular
equivalence:

DEFINITION 9 (REGULAR EQUIVALENCE). Let r(W) = {r(i)|i € W} be the role set of W C V. A
role assignmentr : V. — R isregular ifVi,j € V
ri=r; = r(Nj)= r(Nj+) A r(Ny) =r(N;) (3)

where r(N) is the set of roles from the neighbor set N;". Hence, i and j are regularly equivalent iff
they are connected to the same role equivalent neighbors (i.e., have the same set of roles from their
neighbors).

DEFINITION 10 (EXACT ROLE ASSIGNMENT). A role assignmentr : V — R is exact iff
ri=r; = r(N;)=r(N;) 4)
where N; = {j € V| (i,j) € E} and r(N;) is the multi-set of roles from set of neighbors N;. Hence,

nodes of the same role must contain the same number of each of the other roles in their neighborhood.

Note the slight abuse of r(N;) in Definition 11 to mean the multi-set of roles from N; whereas
in regular equivalence (Definition 9) and elsewhere it is simply the set of roles. An example of an
exact role assignment is shown in Figure 1.

DEFINITION 11 (STRONG STRUCTURAL ROLE ASSIGNMENT). Let G = (V,E) and Gg = (Vg, ER)
denote the role graph. A role assignment r : V. — R is strong structural iff for all i, j € V, there exists
an edge (r;, ;) in the role graph Gg and (i, ) € E.

All of the classical node equivalences are defined strictly using the graph G alone, and not defined
with respect to embeddings/features. For instance, the formal definitions of structural and regular
equivalence (Definition 8-9) involve only the sets of neighbors of nodes in G, and algorithms for
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finding such a role assignment r that is structurally or regularly equivalent are known and require
only the graph G since that is all that is necessary by Definition 8-9. For a summary of other
classical graph-based node role equivalences that have the same issues, see [Rossi and Ahmed
2015]. Nevertheless, all such classical node equivalences that are formally defined w.r.t. the graph G
are obviously not helpful for assigning roles based on embeddings/features. Furthermore, given
node embeddings from any method, it is also not possible to use these classical graph-based node
equivalences to make claims on whether the embeddings preserve the equivalence or not (by
definition).

From Equivalences on the Graph to Equivalences on Embeddings. While the classical node
equivalences are defined w.r.t. the graph G (and thus not useful for embeddings), we now introduce
the notion of an embedding-based node equivalence defined w.r.t. node embeddings (as opposed to
graph-based node equivalences discussed previously). More importantly, we formalize the notion
of structural similarity that serves as a basis for defining new node equivalences that involve node
embeddings (features). We begin by defining an equivalence relation for features:

DEFINITION 12 (FEATURE-BASED/EMBEDDING EQUIVALENCE). A feature(embedding)-based
equivalence is an equivalence relation ~ between two structural feature/embedding vectors x; and X;
foriandj.

One of the most strict notions of node equivalence on embeddings/feature representation is
feature-based structural equivalence defined as:

DEFINITION 13 (FEATURE-BASED STRUCTURAL EQUIVALENCE [Rosst AND AHMED 2015]).
Let X be a structural embedding/feature matrix (e.g., features/embeddings that capture structural
properties such as in/out/total degree, k-stars, k-paths, and other subgraph patterns/graphlets, etc). A
role assignment r : V. — R is called feature-based structurally equivalent if for all v;,v; € V:

ri=rp = [Vk,lgkgd:xikZXJk] G)

and X are proper structural properties (and not based on proximity/cohesion) where x;i is the k-th
feature value of node i. Eq. 5 is strict since two nodes belong to the same role iff they have identical
feature vectors.

Notice a key difference between feature-based equivalences and the other graph-based equiva-
lences is that there is no requirement on the neighbors of a node. This avoids roles being tied to one
another based on proximity (cohesion/distance in the graph). A more practical notion of roles is
called feature-based structural similarity [Rossi and Ahmed 2015] and is a relaxation of the notion
of feature-based structural equivalence (Definition 13). This notion replaces the strict requirement
that nodes in the same roles have identical feature vectors by the requirement that nodes in the
same roles must be e-structurally similar for any €. More formally,

DEFINITION 14 (FEATURE-BASED STRUCTURAL SIMILARITY). Let X; and X; be structural em-
beddings and K be a similarity function, then we say node i and j are e-structurally similar for
any € > 0 iff
(1) x; and x; encode structural properties of i and j in G (e.g., “role-based” features related to
whether i is on the periphery, star-edge, star-center/hub, bridge, near-clique, and so on)
(2) x; and x; are not correlated with graph proximity and/or density (communities) in G
(3) K(x;,x;) > 1—€ foranye > 0

Intuitively, i and j are “equivalent” (which implies a partitioning/role assignment) iff K(x;, x;) >
1 — € (i.e, they are e-structurally similar) and the features/embeddings are strictly structural
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and representative of the structural properties/topology in G and not based on communities (i.e.,
proximity/closeness and density).

One can also add additional conditions to Definition 14 to make it more strict (and possibly more
useful for certain applications). For instance, we can add an additional constraint that neighbors
must not be of the same role. While this constraint will strengthen condition 2 of Definition 14, it
will also impact the roles we are able to capture, e.g., we would be unable to capture roles of nodes
that represent near-cliques. However, such a constraint will ensure that the features/embeddings
do not simply capture communities, since if they did, then neighbors would likely be assigned to
the same role. We can relax this further by allowing one such role to have neighbors of the same
role (e.g., to capture near-clique role).

3.3 Discussion

In the context of embeddings, community-based methods embed nodes that are close in the graph
(proximity, density) in a similar fashion whereas structural role-based methods embed nodes that
are structurally similar (based on structural properties such as graphlets) such that structurally
similar nodes are close in some low k-dimensional space. In some papers, there are misleading
or false claims made about the resulting node embeddings. For instance, some existing work
claims that the resulting embeddings preserve the notion of structural equivalence or even regular
equivalence. Unfortunately, none of these notions are defined on the level of embeddings/features.
In fact, structural and regular equivalence are defined with respect to a graph G and not node
embeddings X of the graph. Thus it is impossible to apply such equivalences or make claims
about such equivalences with respect to any arbitrary embeddings as shown and discussed in
Section 3.2. As an aside, roles and communities can also be defined to allow a node or edge to
belong to multiple roles and communities. Typically, each node (edge) i is assigned a weight x;
indicating the membership to the k™ cluster (community or role). These are typically referred to as
role or community membership models. Overlapping communities is a special case of the above.

In Table 3, the general mechanisms behind community and role-based structural embeddings are
summarized (which are discussed next in Section 4-5) along with a few representative embedding
methods from each of the mechanisms as well as the input and output of the community and role-
based embedding methods. Recall from Section 1.3 that this paper is not a survey of such embedding
methods (as this is outside the scope of this work), and thus, Table 3 shows only a few methods
from each community and role-based mechanism. Moreover, the vast majority of embedding
methods are community-based and thus, if we included all such methods, it would be highly skewed
towards community-based embeddings. As an aside, a recent work [Srinivasan and Ribeiro 2019]
claims to show the equivalence between what they call node embeddings and (structural) graph
representations.® However, the definitions introduced in that work deviate fundamentally from the
definitions (and terminology) used in the literature and in this paper. Therefore, while the problems
studied in [Srinivasan and Ribeiro 2019] sound related, they are fundamentally different, and the
corresponding findings and conclusions should not be confused.

4 COMMUNITY-BASED EMBEDDING

We discuss the two main general mechanisms behind existing community-based embedding methods,
namely, random walks (Section 4.1) and feature propagation/diffusion (Section 4.2).

%The term node embedding and representation are typically used interchangeably in the literature.
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Table 3. Qualitative and quantitative comparison of a few representative community and role-based graph
embedding methods from each of the general mechanisms.

INPUT OuTpPUT MECHANISM
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=2 Tle 2 2|8 28 = & &
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g 2|E B E®E 2|8 3 |EEEEZ
5§ 5|83 E3F £ F|B E |53 ¢ 5 3
Method CEEZ R ARZzAS|IgA S A A
DeepWalk [Perozzi et al. 2014] v v v v/ v v
Node2vec [Grover and Leskovec 2016] Ve Ve v v/ v Ve
Metapath2vec [Dong et al. 2017] v /7 v v v
CTDNE [Nguyen et al. 2018] v YV O/ v
LINE [Tang et al. 2015] Ve v v v v
S2S-AE [Taheri et al. 2018] v v / v v |V
GraRep [Cao et al. 2015] v/ v v v v
ComE+ [Cavallari et al. 2019] Ve v v v v
GCN [Kipf and Welling 2017] v v v Va4 v
graphSAGE [Hamilton et al. 2017] v v v Va4 v
MultiLENS [Jin et al. 2019¢] v v / v / v v
DeepGL [Rossi et al. 2017] v |V VA A A4 v
MCN [Lee et al. 2018b] v |V /N v
HONE [Rossi et al. 2018b] I v/ Va4 v
role2vec [Ahmed et al. 2018] v |V VA A4 v v/
node2bits [Jin et al. 2019a] IV /N e
rolX [Henderson et al. 2012] v |V VR AArd v
GLRD [Gilpin et al. 2013] Va4 v |/ v
DBMM [Rossi et al. 2013] v |V v v/ Va4 v
struc2vec [Ribeiro et al. 2017] v |V v v
xNetMF [Heimann et al. 2018] Va4 Va4 v
EMBER [Jin et al. 2019b] Va4 Ve A Ard ve
HERO [Ahmed et al. 2017b] v |V v v/ VA A4 v v

4.1 Random Walks

Random walks have been used as a basis in many community detection methods [Van Dongen
2000] for decades [Fortunato 2010b]. Recent embedding approaches are based on traditional random
walks and thus are unable to capture roles (structural similarity) and instead capture the notion
of communities [Cavallari et al. 2019, 2017; Dong et al. 2017; Grover and Leskovec 2016; Perozzi
et al. 2014] as shown later in this section. Hence, these methods learn community/proximity-
based embeddings, as opposed to structural role-based embeddings. In particular, these methods
embed nodes that are close to one another in the graph in a similar way and therefore are largely
capturing the notion of communities as opposed to roles. Recent empirical analysis shows that
using random walks for embeddings primarily capture proximity among the vertices (see Goyal
and Ferrara [2018]), so that vertices that are close to one another in the graph (in terms of distance)
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are embedded together, e.g., vertices that belong to the same community are embedded similarly.
In contrast, random walks will likely visit nearby vertices first, which makes them suitable for
finding communities (based on proximity/density), rather than roles (structural similarity). In fact,
random walks are fundamental to many important community detection methods [Schaeffer 2007;
Van Dongen 2000]. Indeed, components of the eigenevector corresponding to the second eigenvalue
of the transition matrix of a random walk on a graph provide proximity measures that indicate how
long it takes for a walk to reach each vertex. Obviously, vertices in the same community should be
quickly reachable. Furthermore, a random walk starting from a vertex in one community is more
likely to remain in the community than to move to another community. This is precisely the reason
that random walks and communities are very closely related.

The normalized cut of a graph (used for community detection) can be expressed in terms of the
transition probabilities and the stationary distribution of a random walk in the graph [Ahmed et al.
2018; Chung 1997; Dong et al. 2016; Meila and Shi 2001a,b; Orponen and Schaeffer 2005; Orponen
et al. 2008]. This formally links the mathematics of random walks to cut-based community detection
methods. Thus, random walks and communities are fundamentally tied.

The connection between walk-based embeddings and communities was formally shown by Ahmed
et al. [2018]. We summarize it below. Suppose P is the transition matrix defined as

P(u,v) = { 6%“

if u and v are adjacent

) (6)
otherwise.
The probability that a random walk W (u) starting at u visits a vertex x at time i is e,P’el where
e, is the unit vector having 1 in coordinate x and 0 in every other coordinate. For a directed edge
(u, v), the probability that a random walk W (x) visits u at time i and then visits v at time i + 1 can
be denoted as )

e Plel
du

Given an edge (u,v) € E, let I(u, v) denotes the total number of walks containing it. With d,, walks
(each of which is of length [) starting at v, the sum of the probabilities that there exists a walk W (x)
that visits (u,v) is

-1
I(u,v) < Z Z dxexPieZ/du
i=0 x

-1 -1 -1
= > DP'e[/d, = » 1De[/d, = Y 1=1
i=0 i=0 i=0

where D is the degree matrix D(u, u) = d,,, 1 is the all-one vector and 1DP? = 1D. Therefore, if we
start d,, random walks from u € V, the expectation of I(u, v) is no more than /.

Let C denote a community in the graph, u,v € C and v’ € C = V \ C. The probability of the
random walker staying in its community in the next step is:

P(u,C) = Z P(u,v) = duc

veC du

(7)

where d,,c denotes the number of edges originating from u within the same community. Similarly,
the probability of leaving the community is )’ s P(u, v’) = d‘}‘c . By Definition 2, communities are
densely connected with few edges across communities, which iumplies that at time i the probability
of the random walker staying in the same community is larger than reaching nodes outside the

community, i.e.

duc > dy,c = Pu,C) >Pu,C) VYueC (8)
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The above notion only reflects that at any time i, the random walk is more likely to sample neighbors
of the same community. In order to measure the probability that all elements in a random walk
stay in the same community, we introduce volume and conductance.

DEFINITION 15. Given a set of nodes C € V (partition of V), the volume of C is u(C) = Y\, ec do-
The conductance can then be computed as the ratio of its external edges over the minimum of u(C)
and p(C):
o(C) = — POl

min(u(C), u(C))
where |E(C, C)| denotes the number of external edges between C andC =V - C

©)

As shown by Spielman and Teng [2013], the probability that an ¢-step walk starting from a
random vertex in C stays entirely in C is bounded by

Pz 9 (10)

This implies that if ®(C) is small (which is usually the case for “good commumities”), then the £-step
walk will stay inside C with fairly high probability. Further, while the probability to “escape” the
community increases with longer walks, £ has to be comparable to ﬁ, which is generally a large
value. More recently, Andersen et al. [2016] further shows that under certain mild assumptions, this
lower bound can be improved to (1 — @)5. Nevertheless, both bounds indicate that random walks
visit nodes in the same community with high probability. Note that for disconnected communities
their conductance values are always 0, i.e., ®(C) = 0 since there are no external edges. Under this
circumstance, both Equation (10) and lower bound (1 — @)f produce probability 1, which indicate
that nodes from disconnected components can never be embedded in a similar fashion.

The above shows that random walks capture communities and thus any walk-based embedding
method that uses either implicit walks (sequences of node ids) or explicit walks (number of walks

between two nodes) outputs community-based embeddings.

Explicit Walk-based Sampling: We first discuss methods that sample explicit walks (sequences
of node ids) from G and then use these walks to derive embeddings. A walk in G is a sequence
of nodes vy, vz, - -+ , vy s.t. (v;,vi41) € E, Vi. Note that the term walk-based sampling (or explicit
walks) [Kolaczyk and Csardi 2009; Ribeiro et al. 2012] is used to distinguish techniques that sample
explicit walks from the graph (representing sequences of node ids) from methods that are based
on (implicit) walks, but do not explicitly sample them from the graph. The basic idea behind
walk-based sampling is that nodes connecting with similar sets of neighbors (identified by ids)
should be embedded closer. Therefore, these approaches first sample walks explicitly from the
graph and then use these explicit sequences of ids to derive low-dimensional node embeddings
that maximize the likelihood of predicting them.

Naturally, nodes and their neighbors in the walks are embedded closely in the vector space.
DeepWalk [Perozzi et al. 2014] is the first such method that leveraged explicit walks (sequences of
node ids) to learn community-based embeddings. Deepwalk employs Skip-Gram model to derive
node embeddings that maximize the probability of neighbors identified in the explicit walks, i.e.,

arg m]?XPr(’Ui_k, L, 0i-1, Vi1, vi+k|f(vi))'
As a result, nodes in the same community will be embedded closely by DeepWalk. Based on
DeepWalk, node2vec [Grover and Leskovec 2016] introduced a way to bias the random walks and

claimed that both homophily (proximity/community-based embedding) and structural equivalency
(Definition 8) can be preserved in the embeddings. However, the notion of structural equivalence is
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defined only in terms of an actual role assignment, not an embedding, and therefore no claim can be
made about whether an embedding is structurally equivalent (or regular equivalent). Furthermore,
as we showed above, random walks naturally give rise to community-based embeddings. LINE [Tang
et al. 2015] explicitly uses 1- and 2-hop neighbors (node contexts) to learn community/proximity-
based node embeddings. LINE minimizes the KL-divergence between the first- and second-order
joint probability distribution and the empirical distribution related to edge weights separately, and
forms the output embeddings through concatenation. The embeddings derived by LINE incorporates
local community information. As indicated in [Qiu et al. 2018], LINE can be seen as a special case of
DeepWalk with the contextual size set to one. More recently, ComE+ [Cavallari et al. 2019] learns
community-based embeddings by first sampling a fixed number of explicit paths of a fixed length
from every node, then leverages DeepWalk to obtain initial node embeddings. Afterwards, the
explicit paths are again used in an iterative fashion to obtain the final embeddings.

There are many extensions of DeepWalk to handle different types of graphs. All such extensions
also use explicit walks with node ids. One extension called metapath2vec [Dong et al. 2017] is
proposed to embed nodes in heterogeneous networks. This work relies on meta-path based random
walk to capture contexts consisting of multiple node types following predefined meta-schemas.
More recently, CTDNE [Nguyen et al. 2018] introduces the notion of temporal random walk and
describes a general framework based on these temporal walks to learn temporally-valid embeddings
at the finest temporal granularity. There are also walk-based sampling methods for graph embedding.
One such method by Taheri et al. [2018] generates multiple sequences including random walks,
shortest paths between node pairs, and paths rooted at specific nodes to approximate the global
graph structure and leverage sequence-to-sequence LSTM autoencoder to derive the embeddings.
Other examples include Patchy-san [Niepert et al. 2016] and random-walk-based sub2vec [Adhikari
et al. 2018].

Implicit Walk-based: Now we discuss implicit walk-based embeddings. These are characterized
by the following property:

(Ak),-j = number of walks of length k between i and j (11)

Note that unlike embeddings that use explicit walks, that is, sequences of node ids (e.g., DeepWalk,
node2vec), implicit walk-based embeddings use the count of walks in some fashion. Eq. 11 obviously
captures proximity (i.e., communities) explicitly since A¥ is the number of walks of length k between
any two nodes. Hence, the quantity itself describes the proximity between nodes. Furthermore,
Afj > 0 iff there is a walk from node i to j of length k, otherwise (AX);; = 0. The above property is
important, as this implies that nodes within the same community will have many such available
walks compared to nodes between communities. GraRep [Cao et al. 2015] is directly based on the
above. In particular, GraRep computes Ak fork =1,...,K and derives an embedding for each Ak
using SVD. The K embeddings are then concatenated.

Besides AX, we can also derive a matrix denoted as A representing the sum of all walks up
to length k and use this for embedding. More formally, the graph G* with the adjacency matrix
denoted as Ay given by the sum of the first k powers of the adjacency matrix A is:

Ak:ZAi (12)
=A+A%+... + AF

where (Ag);; > 0 iff there is a walk from i to j in at least k steps and (Ay);; = 0 if no such walk
between i and j exists of length 1, .. ., k. Setting k = diam(G) in Eq. 12 gives a complete graph.
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More generally, any matrix factorization method applied to A directly results in community-based
embeddings as shown in [Rossi and Ahmed 2015].7 This is true for the adjacency matrix A of G
or any matrix function of A such as the normalized Laplacian L or probability transition matrix
P. One such example is spectral embedding/clustering that computes the k eigenvectors of the
Laplacian matrix L = I — D™Y/2AD™"/2 of G [Ng et al. 2002; Tang and Liu 2011]. The intuition is
the same as above. Another example is HOPE [Ou et al. 2016], which proposes 4 different ways
to measure the proximity, which are Katz Index, personalized PageRank, Common neighbors
and Adamic-Adar. TADW [Yang et al. 2015], HSCA [Zhang et al. 2016] leverage Pointwise Mutal
Information (PMI) of word-context pair to denote proximity. CMF [Zhao et al. 2015] leverages
Positive Pointwise Mutal information (PPMI) by omitting unrelated pairs of nodes with negative
PMI values. Modularized NMF (M-NMF) [Wang et al. 2017] is an implicit walk-based approach for
deriving community/proximity-based embeddings by jointly optimizing an NMF-based model with
a modularity-based community detection model. All of these methods are community-based.

These embeddings have connections to eigenvectors and in particular the principle eigenvector.
The proof of the Ergodic theorem is most frequently given as an application of the Perron Frobenius
theorem, which states that the probabilities of being at a node are given as the coefficients of the
principal eigenvector of the stochastic transition matrix P associated to the Markov chain computed
as follows:

klim Pre (13)
where e is the unit vector. Recall that Ae gives the degree vector whereas AZe is the number of
walks of length 2, and so on. In general, the operation Ae is essentially equivalent to a single BFS
iteration (over all nodes), see [Kepner and Gilbert 2011] for more details.® The above has been
used for decades in a variety of seminal community detection and community-based embedding
methods [Andersen et al. 2006; Gibson et al. 1998; Schaeffer 2007].

4.2 Feature Propagation/Diffusion

While most community-based embeddings arise from explicit or implicit walks (Section 4.1), there
are also many methods that use feature diffusions (i.e., feature propagation) to learn community-
based embeddings. These methods are fundamentally tied to communities as they are still related
to walk-based methods (which we formally showed in Section 4.1 that such walk-based methods
are fundamentally community-based). The only difference is that features are diffused through the
neighborhoods. Thus, as k — oo, for any (AX)¥, then the features are smoothed over the graph.
Using Eq. 10, we can see that nodes within the same community will have similar embeddings
since the diffusion and resulting features primarily stay within the same community by definition.
Thus, the nodes within the same community become more and more similar as features are diffused
from further away (but primarily from nodes within the same community), making all such nodes
in the same community appear increasingly similar to one another. This is precisely why such
graph diffusion lies at the heart of many community detection methods such as heat kernel [Kloster
and Gleich 2014], PageRank communities [Andersen et al. 2006], among many others [Kondor
and Lafferty 2002; Raghavan et al. 2007]. Furthermore, these methods typically rely on selecting a
good seed set of nodes to begin such diffusions. In theory, a good seed set should contain one or

7This is the reason that feature-based role methods were proposed in [Rossi and Ahmed 2015], which avoid using A directly,
and instead derive a structural feature matrix X that captures the structural properties (e.g., degree, triangles, betweenness,
k-stars) of G and then uses this matrix X to derive roles.

8BFS and DFS are general graph traversal/search techniques used in the implementation of graph algorithms. These
techniques are simply different ways to visit nodes in the graph, and are often used in the implementation of both
community- and structural role-based embeddings.
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more vertices from each “community”, otherwise, some communities will be missed for precisely
the same reason (it is unlikely that a walk starting from one community will end up in another
community) as shown above in Eq. 10.

In general, propagation/diffusion-based methods make the assumption that some initial attributes
are given as input and stored in X. For instance, we may associate with each node in a social network
features that were taken from the corresponding user’s profile. Node embeddings are then generated
via a k-step diffusion process. At each step, a node’s features are diffused to its immediate neighbors
and, after k rounds, each node obtains an embedding which is essentially an aggregation of the
information in its k-order neighborhood. While the diffusion process is dependent on walks between
node pairs, methods falling into this category do not explicitly leverage walks to approximate the
graph structure. Instead, they propagate information over the graph structure up to k-orders, and
characterize individual nodes by collecting the diffused feature values in the neighborhood [Rossi
et al. 2017; Xiang et al. 2018]. Thus, embeddings based on feature diffusion are community-based
as the diffusion process is fundamentally tied to proximity in the graph as opposed to structural
properties of nodes. See Table 3 for a summary of a few representative network embedding methods
based on feature propagation/diffusion.

The general form of this process is denoted as

X = ¥(A, X) (19)

where ¥ denotes the feature expansion or diffusion function and X denotes the expanded features.
In the simplest case, a feature matrix propagating over the graph structure can be written as the
standard form of Laplacian smoothing:

(2) o(t-1)

-pax"™ = 1Ak = d1A)'X (15)

where D is the diagonal degree matrix and t represents iteration ¢ of the diffusion process. X© is
generally set to be the initial feature matrix X € RN*F je, X© = X,
More complex feature diffusion processes can be denoted through the Laplacian diffusion process:

X® = (1-9)LX"V + X (16)

where 0 controls the weighting between features of a node itself and its neighbors. L is the
normalized Laplacian:

X

L=1-D:AD: 17)

The Laplacian smoothing process generates new features as the weighted average given a specific
node itself and its neighbors.

Many of the recent propagation or diffusion-based methods [Hamilton et al. 2017; Kipf and

Welling 2016, 2017; Velickovic et al. 2018] also incorporate trainable parameters into the diffu-

sion process to learn better community/proximity-based embeddings. For instance, the step-wise
diffusion for GCN can be defined as follows:

X0 = o (D*%AD*%XU*”W“)) (18)

where W) is the weight matrix for step t and ¢ is a non-linearity. Depending on specific propagation
configuration, there is a number of recent works that fall under this category. For example, GAE
(and its variant using variational training manner, VGAE) [Kipf and Welling 2016] leverages GCN
to encode node features, and then uses a simple decoder to reconstruct the graph adjacency matrix
so that the loss can be minimized. DySAT [You et al. 2019] casts the Boolean Satisfiability (SAT)
problem as a problem of deriving latent bipartite graph representations and provides a solution in
the GCN feature aggregation manner. HGCN [Chami et al. 2019] extends GCN into the hyperbolic
space so that node features are learned with less distortion. Some other variants are devoted to
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capturing both spatial and temporal dependency between nodes in the graph, such as [Wu et al.
2019b]. In order to gain interpretability of these models, GNNExplainer [Ying et al. 2019] was
proposed as a model-agnostic approach to explain the prediction/inference on machine learning
tasks, while GroupINN [Yan et al. 2019] introduced a grouping or summarization layer that explains
the classification by exposing the most relevant edges. PRUNE [Lai et al. 2017] is another recent
proximity/community-based embedding method that uses a Siamese neural network structure to
preserve proximity among the nodes.

Now we show that repeated application of a smoothing operator results in the features converging
to the same quantity. In other words, the features of nodes within the same community become
indistinguishable from one another as the number of iterations (feature propagations) become
large. In particular, we prove that by iteratively applying the smoothing operator D™ A, the feature
vectors associated with nodes in a connected graph G will converge in the end. The same applies

when D™2AD"? is used as a smoothing operator over every node and its neighbors in the graph.

THEOREM 4.1. Assuming G is connected and non-bipartite, then for any feature/embedding matrix
X € R™F:

lim (DAY X = 1y7 (19)
and
lim (D"2AD"%)'X = D 21y (20)

wherey € R Hence, Eq. 19 converges to identical feature vectors for all nodes whereas the features of
nodes smoothed using Eq. 20 (normalized Laplacian) converge to be proportional to the square root of
the node degree.

Note that D™'A in Eq. 19 is for the random walk Laplacian matrix whereas D :AD": in Eq. 20
is for the normalized Laplacian.

Proor. LetL,,, = I-D!AandL = 1I- D :AD": (Eq. (17)). L,y and L have the same n
eigenvalues by multiplicity with different eigenvectors with eigenvalues in [0, 2) [Chung 1997].
The eigenspaces corresponding to eigenvalue 0 are thus spanned by 1 and D i1, respectively. Thus
the eigenvalues of D™'A (I - L,,,) and D :AD": (I — L) would fall into (-1, 1]. Since the absolute
value of the eigenvalues are less than or equal to 1, the repeating multiplication will converge to
the largest eigenvector corresponding to eigenvalue 1, which is 1 and D21, respectively. |

The above obviously holds for k = |C| communities C = {Cy, ..., C¢} such that |E(C;, Cj)| =
0,Vi,j, i.e, there are no edges between any pair of the communities. This is an extreme case.
However, when the number of feature propagations is small, it is easy to see that the resulting
embedding vectors of nodes within the same community become more and more similar due to
the smoothing of the nodes within the same community. Intuitively, when ¢ is small, then after ¢
feature propagations, the resulting diffused feature vectors of nodes within the same community
are more similar to each other than to the diffused feature vectors of nodes in another community.
This occurs since the nodes inside a community are not as impacted by the features in another
community due to the sparse edges between communities, i.e., |E(C;, C;)| < |E(C;)|, |E(C;)|, hence
the number of edges between nodes in the same community is significantly larger than the number
of edges between communities (by Definition 2). Thus, nodes in the same community become more
and more similar to each other.

In Figure 2, we provide an illustration of Theorem 4.1 for further intuition. This example clearly
shows why feature diffusion gives rise to community-based embeddings. In particular, after only 3
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(d) Initial random feature (e) After 3 feature diffusions () After 5 feature diffusions

Fig. 2. Feature diffusion example via DA in a barbell graph (top) and a graph following the Block Chung-Lu
model (bottom). For demonstration/visualization purposes, we use a single feature, the value of which is
denoted by the node color. Feature values were drawn from the uniform distribution on the open interval
(0, 1). For the Block Chung-Lu model, the graph was generated with exp(1.7). See text for discussion.

iterations of feature diffusion, the diffused features of nodes in either community become indistin-
guishable from one another. More precisely, the diffused feature values of nodes within the same
community are identical to one another after only a few iterations. Furthermore, even after the first
iteration of feature diffusion (Figure 2(b)), the features of nodes in the same community appear more
similar and after only 3 iterations, the features of nodes in each community are indistinguishable
from one another (Figure 2(e)).

Graph diffusion has also been used in community detection methods for decades [Barbieri et al.
2013; Kloster and Gleich 2014; Lin et al. 2015]. The diffusion process adopted by GCN is based on the
Laplacian which has traditionally been used for community detection [Schaeffer 2007]. Furthermore,
recent work has also shown that embeddings from GCN are useful for community detection [Bruna
and Li 2017; Chen et al. 2018; Shchur and Giinnemann 2018]. The Laplacian-based diffusion used
by GCN essentially uses a weighted sum to aggregate features from a node’s neighbors.

While the diffusion process is dependent on walks between node pairs, methods falling into
this category do not explicitly leverage walks to approximate the graph structure. Instead, they
propagate features over the graph structure up to t-orders, and characterize individual nodes by
collecting the diffused feature values in the neighborhood [Xiang et al. 2018]. Thus, embeddings
based on feature diffusions are community-based as the diffusion process is fundamentally tied to
proximity in the graph as opposed to structural properties of nodes.

While all work described above essentially uses sum as a diffusion operator, DeepGL proposed
the idea of using general aggregation functions. Intuitively, DeepGL [Rossi et al. 2017] replaces the
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sum aggregator (which is naturally represented by a matrix-vector or matrix-matrix multiplication)
with a general aggregation function ¢. More generally, unlike previous work that used only sum,
DeepGL uses multiple aggregation functions. Examples of ¢ include min, max, product, mean,
median, mode, L1, Ly, RBF or more generally, any function that can be defined between a node i
and its neighborhood (or k-hop neighborhood). More recently, this idea has been adopted in other
works such as GCN-GraphSage [Hamilton et al. 2017] and MultiLENS [Jin et al. 2019c]. However,
replacing sum with a different aggregation function (or even multiple aggregation functions) does
not change the fact that these methods are community-based in general for large k.

There are a few cases where feature diffusion can be used to derive role-based embeddings.
Note that when X is motif/graphlet features and the number of feature propagations k is 1, then
role-based embeddings can be derived. Intuitively, the motif/graphlet features are not smoothed
out for k = 1. However, as k increases, the impact of the motif/graphlet features in their ability to
capture the structural features are lost since they become increasingly similar to their neighbors.
Clearly, role-based embeddings can also be derived if X representing motif/graphlet features is
used without any diffusion (degenerate case).

5 ROLE-BASED EMBEDDING

This section discusses the main mechanisms behind role-based embeddings. One notable observation
is that the general mechanisms behind role-based embeddings all exploit an initial (small) set of
structural features in some fashion. As such, these mechanisms give rise to feature-based role
methods [Rossi and Ahmed 2015] where nodes with similar network neighborhoods will have
similar embeddings when such mechanisms are used, despite that the nodes may be in different
parts of the graph or even different graphs altogether. We summarize the role-based embedding
mechanisms in Table 2 along with a few representative methods that use each mechanism.

5.1 Graphlets

We first give the definition of graphlets (network motifs/induced subgraphs) and orbits, then show
how they can be used for learning role-based embeddings.

DEFINITION 16 (GRAPHLET). A k-vertex graphlet H = (Vi, E) is an induced subgraph consisting of
a subset Vi, C V of k vertices from G = (V, E) together with all edges whose endpoints are both in this
subset E, = {Ve € E|e = (u,v) Au,v € Vi.}.

The edges of a graphlet can be partitioned into a set of automorphism groups called orbits based
on the position (or “role”) of an edge in a graphlet [Ahmed et al. 2015; Przulj 2007]. Formally,

DEFINITION 17 (ORBIT). An automorphism of a k-node graphlet Hy = (Vi,Ey) is defined as a
permutation of the nodes in H; that preserves edges and non-edges. The automorphisms of Hy form an
automorphism group denoted as Aut(Hy). A set of nodes Vi of graphlet H; define an orbit iff (i) for
any node u € Vi and any automorphism  of Hy, u € Vi & n(u) € Vi; and (ii) if v,u € Vi then
there exists an automorphism & of H; and ay > 0 such that =¥ (u) = v.

Graphlets naturally capture the key structural properties of edges and nodes in the graph as shown
in Figure 3. In particular, Figure 3 shows the full spectrum of connected graphlets with {2, 3, 4}-
nodes; each set of k-node graphlets are ordered from least to most dense. Notice that graphlets
are the fundamental building blocks of graphs since any graph (or £-hop neighborhood subgraph
surrounding a node/edge) can be decomposed into its smaller subgraph patterns (graphlets). In other
words, any (sub)graph can be represented using only k-node graphlets. Therefore, by definition,
the graphlets and their counts must capture the structural properties that are important to a
node or edge. As such, graphlets (and their edge orbits) capture precisely the notion of role. This
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can be trivially verified from Figure 3 as many of the individual graphlets can even capture the
traditional examples of roles used in the literature. Recall roles represent node (or edge [Ahmed
et al. 2017b]) connectivity patterns such as hub/star-center nodes, star-edge nodes, near-cliques
or bridge nodes connecting different regions of the graph. Graphlets capture the full spectrum of
possible connectivity/subgraph patterns arising in graphs as shown in Figure 3, which lies at the
heart of the notion of roles (Section 3.2). Intuitively, two nodes belong to the same role if they
are structurally similar with respect to their general connectivity/subgraph patterns [Rossi and
Ahmed 2015]. Therefore, it is only natural to consider graphlet features when learning role-based
embeddings. There is a broad class of embedding methods that represents structural information
using graphlets to learn role-based embeddings. Graphlets and the statistics (e.g., frequencies) carry
significant information about the structural properties of nodes and edges and have been used for
many applications [Ahmed et al. 2017a; Faust 2010; Holland and Leinhardt 1976; Milo et al. 2002].
The set of decomposed graphlets {H;, H;, - - - Hy } can be used to characterize both the whole graph
and individual nodes/edges by counting the number of times in the embedded d-dimensional vector.
Intuitively, nodes associated with similar graphlet/motif types (e.g., triangle, star) and counts are
structurally similar and thus are embedded closer in some low-dimensional space.

The graphlet features are computed for each node (or edge) in the graph and naturally generalize
across graphs (for transfer learning tasks) since they represent “structural graph functions” that are
easily computed on any arbitrary graph. Fast algorithms for counting such graphlets/network motifs
in very large graphs have become common place, e.g., PGD [Ahmed et al. 2015] takes a few seconds
to count graphlets in very large networks with hundreds of millions of edges. Furthermore, since
most embedding methods are not exact and we typically only care about the relative/approximate
magnitude of the count (e.g., whether the count is on the order of 10!, 102, 10* and so on), and
not the actual exact count, we can also leverage provably accurate graphlet estimators to obtain

graphlet counts even faster.
1 2% 4
I 3 17’

Hz Hs

Hi

5

6 7 9 10 1 15
THY NK
12 144

Ha Hs He H7 Hs Ho
Fig. 3. All 9 graphlets and 15 node orbits with {2, 3,4}-nodes. Each unique node position of a graphlet is

labeled, e.g., nodes in the 4-star graphlet (Hs) have two unique positions, namely, the star-center (hub) position
or the star-edge (peripheral) position.

Representative approaches falling into this category are as follows. Role2vec [Ahmed et al. 2018]
proposed an end-to-end inductive framework to learn role embeddings that capture the structural
similarity among nodes and generalizes across networks. To achieve this, role2vec introduced the
general notion of feature-based random walks, to replace the traditional random walks (i.e., random
sequence of node ids) by walks that represent the structural similarity among nodes, where each
walk is a sequence of features or functions of multiple features. Thus, the feature-based walks
find nodes with similar structure identified by structural properties and higher-order features (e.g.,
graphlets), and enable space-efficient role embeddings. DeepGL [Rossi et al. 2017] learns inductive
graph functions where each represent a composition of relational operators/aggregator functions
applied to a graphlet/motif feature. HONE [Rossi et al. 2018b] proposed the notion of higher-
order network embeddings and described a framework based on weighted k-step motif graphs to
learn the low-dimensional role-based embeddings. More recently, higher-order motif-based GCN’s
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(a) Initial graph A (b) Weighted 4-clique graph X (c) Wt. 4-cycle graph 1 (d) Wt. 4-star graph Y

Fig. 4. Graphlet/motif graphs differ in structure and weight. Size (weight) of nodes and edges in the motif
graphs correspond to the frequency of the motif. In this example (web-google), the initial (edge motif) graph
is fractured into many disconnected components when deriving the motif graphs. This is due to the constraint
that each edge in an arbitrary motif graph contain at least a single motif. Edges are removed if they do not
participate in at least one 4-clique (b), 4-cycle (c), or 4-star (d).

called MCN were proposed by Lee et al. [2018b]. MCN leverages the weighted motif-based matrix
functions introduced in HONE [Rossi et al. 2018b] to learn role-based embeddings. While HONE
and MCN (a higher-order generalization of GCN) also use different forms of feature diffusion, they
are nevertheless role-based since they do not leverage A directly, but instead use A to derive a set of
weighted motif graphs (i.e., weighted motif adjacency matrices W1, W, . .., W) that are then used
to derive node embeddings. In particular, given a motif H, the weighted motif adjacency matrix of
H denoted W is defined as:

(Wg);j = number of instances of motif H that contain nodes i and j (21)

The weighted motif adjacency matrices differ fundamentally in structure (and weight) when
compared to the original graph as shown in Figure 4. In particular, the motif graphs typically
consist of many connected components, i.e., the graph shatters into many connected components
due to the requirement that each edge have at least § > 0 motifs. This requirement acts as a filter,
removing many of the unimportant edges, and highlighting only the edges (and structures) in the
graph that contain at least one such occurrence of H (or more generally § occurrences of H). In
Figure 4, the motif graphs immediately reveal nodes with similar structural properties. For instance,
the weighted 4-star graph (Figure 4(d)) fractures the graph into many connected components where
each connected component consists of nodes that are either (i) star-center (hub) nodes of some
larger star structure or (ii) star-edge (peripheral) nodes.” Furthermore, the graphlet/motif graphs
immediately reveal larger subgraph patterns, e.g., the 4-star graph shown in Figure 4(d) shows large
stars made up of many 4-stars. Both of these properties are important when considering feature
diffusion (via a graph smoothing operator such as the normalized Laplacian (I — D‘%AD_%)X or
(D7'A)X) and its meaning and impact when used with these weighted motif graphs. As such, the
diffusion process is performed over each connected component in a motif graph, and has less of an
impact since all nodes in the motif graph by definition have similar structural properties.

Recall from Section 3 that star-centers (hubs) and star-edges are two of the classic examples used for roles.
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5.2 Feature-based Walks

While we theoretically showed in Section 4 that walk-based embedding methods derive community
/ proximity-based embeddings, Ahmed et al. [2017c] proposed the notion of a feature-based walk
(attributed random walk) that allows existing walk-based methods to be generalized for learning role-
based embeddings. The general idea is to generate walks that represent sequences of feature values
as opposed to sequences of node ids as done in DeepWalk, node2vec, among many others. Intuitively,
the feature values in the walks naturally generalize across graphs since they can represent general
graph functions (like degree, number of triangles, 4-node cycles). By applying a mapping function
® to map sequences of node ids (walks) to their associated feature-values, the skip-gram model (or
any other model that uses the walks) would preserve the similarity in terms of attributes in the
embeddings. Formally, the walk consisting of node feature-values/types/labels/attributes is defined
as follows:

DEFINITION 18 (FEATURE-BASED WALK). Let x; be a K-dimensional feature vector for vertex v;.
A feature-based (or attributed) walk of length L is a sequence of adjacent feature-values,

(P(Xl), q)(XZ)’ ) (I)(XL) (22)

induced by a sequence of indices (vy, vy, - - - , v ) generated by a random walk of length L starting at
v1, and a function ® that maps a feature vector x to a type O(x).

Definition 18 can be used in a variety of ways and gives rise to many interesting role-based
methods [Ahmed et al. 2018]. For instance, instead of using a mapping function (which can be
thought of as replacing ® with the identity function), one can simply use one or more features to
derive feature-based walks for each different feature.

Recently, an approach called role2vec [Ahmed et al. 2018] was proposed that learns role-based
node embeddings by first mapping each node to a type (or role) via a function and then uses the
notion of attributed random walks to derive role-based embeddings for the nodes that capture
structural similarity. Since the “feature-based” random walks by definition capture the structural
properties (the features can be thought of as describing the topological/structural characteristics of
a node), node embeddings (representations, encodings) learned from these attributed/feature-based
walks are able to capture roles as opposed to communities. Attributed random walks [Ahmed et al.
2017c, 2018] have since become increasingly popular with applications in entity resolution [Jin et al.
2019a], churn prediction [Liu et al. 2018b, 2019], among many others [Al Etaiwi and Awajan 2018;
Chen et al. 2020a; Rozemberczki et al. 2019; Zhang et al. 2019]. In particular, node2bits [Jin et al.
2019a] builds on the idea of feature-based walks and also the notion of temporal walks that obey
time from CTDNE [Nguyen et al. 2018] in order to obtain temporal, feature-based context around
the nodes (based on both structural features and node attributes). It then aggregates the contexts
into node-level histograms and obtains compact, binary node representations that preserve context
similarity via locality sensitive hashing (LSH) and uses the final embeddings for the application of
visitor stitching/entity resolution. More recently, [Liu et al. 2018b, 2019] proposed SimSum that
leverages attributed random walks to analyze churn in mobile games at both the micro and macro
levels. Another extension of role2vec called RiWalk [Xuewei et al. 2019] introduced a new role
mapping function based on the shortest path and Weisfeiler-Lehman kernels. Many other works
have also used the notion of attributed random walks for a variety of applications and problem
settings [Al Etaiwi and Awajan 2018; Huang et al. 2019; Rozemberczki et al. 2019; Zhang et al. 2019].

5.3 Feature-based Matrix Factorization

There are also role-based structural embeddings that use a form of matrix factorization over a
matrix of structural features [Rossi and Ahmed 2015]. This is in contrast to community-based
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embeddings that use matrix factorization over the graph’s adjacency matrix. This class of role-based
embeddings largely depends on the structural feature matrix used in the factorization. For instance,
suppose the features in the matrix are all correlated with communities (as opposed to roles; and thus
they are not structural features), then the resulting embeddings would in fact be community-based
and not role-based. Thus, the most critical step in these methods is to ensure the initial set of
structural features are appropriate and are most suitable for capturing roles.

This class of feature-based role embeddings along with a general framework for computing them
was introduced in [Rossi and Ahmed 2015]. One such work by Henderson et al. [2012] starts with
degree/egonet-based features, aggregates them recursively, and then uses Non-negative Matrix
Factorization (NMF) over the feature matrix to derive roles. More recently, Rossi et al. [2013]
proposed modeling feature-based roles in dynamic networks whereas Gilpin et al. [2013] used
a sparsity regularized NMF (as well as other convex constraints) to learn better roles. While all
previous methods directly learn node embeddings, Ahmed et al. [2017b] learns role-based edge
embeddings. This approach starts with higher-order graphlet features that explicitly captures
the notion of roles (see Section 5.1) and iteratively computes additional higher-order features
via relational aggregates over the neighborhood, and then factorizes this matrix of structural
features to obtain role-based embeddings of the edges. More recently, xNetMF [Heimann et al.
2018] computes degree-based features from a node’s neighborhood at different hops, and uses
implicit matrix factorization over this feature matrix to obtain generalizable embeddings that are
suitable for network alignment. EMBER [Jin et al. 2019b] generalizes xNetMF to weighted and
directed graphs by extending the degree-based distributions to weighted distributions defined
over directed neighborhood contexts. SEGK [Nikolentzos and Vazirgiannis 2019] also computes
the similarity between nodes by leveraging different hops of neighborhoods, but utilizes graph
kernels for the comparison, and then factorizes the resultant kernel matrix to obtain the structural
node embeddings. While most of the approaches discussed in this section so far first compute
a tall-and-skinny “structural” feature matrix, struc2vec [Ribeiro et al. 2017] computes multiple
(large and dense) node-by-node feature matrices between all pairs of nodes using dynamic time
warping (DTW) distance based on sequences of node degrees (i.e., degrees of the neighbors of a
node). Afterwards, explicit walks over the resultant dense multi-layer graph are sampled and used
to derive embeddings in a similar fashion to DeepWalk.

Moreover, we note that any of the previous structural embeddings from Sections 5.1-5.2 can
be used as input into matrix factorization to learn more compact and space-efficient role-based
embeddings [Rossi and Ahmed 2015].

6 APPLICATIONS

In this section, we describe applications for community (proximity) and role-based embeddings.
For each application, we discuss conditions including data characteristics, noise, and variants of the
applications where community and role-based embeddings are most suitable. Notably, community
or role-based embeddings are shown to be useful for the same applications such as classification, link
prediction, and anomaly detection. The fundamental difference of whether community or role-based
embeddings are preferred depends entirely on the underlying data characteristics (e.g., homophily
vs. heterophily, noisy/missing data vs. clean/accurate data) and problem setting/assumptions.

6.1 Node classification

Embeddings have been used to improve node classification performance. We discuss a few different
node classification tasks below and mention the key differences and data characteristics that make
community-based or role-based embeddings more appropriate.
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6.1.1 Community-based embeddings. Semi-supervised classification in graphs typically performs
best with community-based embeddings since these methods iteratively predict labels of neighbors
and propagate them to neighboring nodes [Sen et al. 2008]. In other words, the labels of neighboring
nodes are repeatedly diffused to the neighbors until convergence. The overall process is similar to
feature diffusion-based methods from Section 4.2. Typically, these methods assume a small fraction
of nodes with known labels are given (for training), and since neighboring nodes are assumed to be
labeled the same, these methods are most useful for graphs with significant homophily/large rela-
tional autocorrelation, i.e., graphs where the node labels are highly correlated with their immediate
neighbors [Koutra and Faloutsos 2017; La Fond and Neville 2010; Neville et al. 2004]. Examples of
such graphs with strong homophily include Cora, CiteSeer, among many others [McDowell et al.
2009]. As such, if such strong homophily exists, then community-based embedding methods are
most appropriate. This is the reason why many community-based embedding methods such as
GCN [Kipf and Welling 2017] are evaluated for semi-supervised classification using graphs with
strong homophily such as Cora, CiteSeer, PubMed, and others. Nevertheless, community-based
embeddings are also preferred for general node classification with homophily [Cavallari et al. 2017;
Grover and Leskovec 2016; Perozzi et al. 2014; Tang et al. 2015], going beyond the semi-supervised
classification setting.

6.1.2 Role-based embeddings. Role-based embeddings are based on structural similarity (Defini-
tion 14) and thus appropriate for classifying nodes with similar functionality (roles) in terms of
their structural properties, e.g., triangles, betweenness, stars, etc. For collective/semi-supervised
classification, there are some instances where role-based embeddings can perform better than
community-based. For instance, role-based embeddings are often useful for graphs with weak/low
homophily. Such graphs may have weak homophily due to noise, incompleteness, or other data
collection/sampling issues, or graphs with heterophily where node labels (and attributes) are
not correlated with the labels of their neighbors [Gatterbauer et al. 2015; Peel 2017; Rogers and
Bhowmik 1970; Rossi et al. 2018]. For instance, molecular, chemical, and protein networks often
have between 2 and 20 class labels, which are highly correlated with the structural properties (e.g.,
graphlets/network motifs) and behavior surrounding a given node or edge in the graph [Gardiner
et al. 2000; Vishwanathan et al. 2010]. Networks of email communication in the workplace is another
example where the professional roles of nodes (e.g., C-suite employees vs. managers) correlate with
their structural properties in the network [Jin et al. 2019b]. In these cases, the nodes whom share
class labels are often not directly connected, or even in the same community, but share similar
structural properties and behavior (or role/position) in the network [Rossi and Ahmed 2015].

While community-based embeddings are primarily useful for semi-supervised classification,
role-based embeddings are also well-suited for across-network (relational) classification where the
goal is to learn a classification model on one graph and then use it to predict the labels of nodes in
an entirely different graph that may not share any of the same nodes. The two graphs could have
completely different nodes (i.e., node ids) or may have some nodes in common between the two
graphs, e.g., in temporal networks where there is a sequence of graphs over time. This application
is sometimes called relational classification as opposed to semi-supervised classification, see [Rossi
et al. 2012] for more details.

6.2 Link prediction

Link prediction is another important application where embeddings can be used to improve
performance over simpler approaches such as common neighbors, Jaccard similarity and the
ilk [Ahmed et al. 2018; Grover and Leskovec 2016; Kipf and Welling 2016]. Given a graph G = (V, E),
the link prediction task is to predict a set of (top-k) missing (unobserved) or future links E” such that
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E’ N E = 0. Given node embeddings (either community-based or role-based), links can be predicted
by computing edge feature vectors g(x;, x;), Vi, j pairs (i.e., in the training set), and then learning a
model based on these, which is then used to predict the likelihood that a link exists between any
arbitrary pair of nodes. Alternatively, we can directly compute a score without learning a model.

6.2.1 Community-based Embeddings. In many cases, the missing or future links are assumed to
arise between nodes that share many of the same neighbors. Hence, given nodes i and j such that
(i,)) ¢ E, community-based embeddings are useful when [N; N N;| > 0, that is, i and j share at
least one neighbor (1-hop away). The above condition implies that i and j are near one another in
the graph due to the sharing of at least one neighbor among them. We call such predicted links
short-range, since they are between nodes that are close to one another in the graph. It is because of
this property that community-based embeddings will work best for predicting such links (especially
if the pair of nodes are both in the same community, and therefore will be embedded in a similar
fashion) [Grover and Leskovec 2016; Kipf and Welling 2017].

6.2.2 Role-based Embeddings. There are also many settings and applications where role-based
embeddings perform best for link prediction. In some cases, the graph data may be noisy or
incomplete due to sampling or data collection issues [Ahmed et al. 2014], and therefore the actual
links may not be close in terms of graph distance. More formally, |[N; N N;| = 0. In fact, the actual
links could be between nodes that are far from one another in the graph (long-range) or even in
different connected components [Ahmed et al. 2018; Gilpin et al. 2013; Jin et al. 2019a]. We call
such links long-range as opposed to short-range. Furthermore, links may also be predicted between
nodes far away in the graph to improve relational autocorrelation or similarity, see [Gallagher et al.
2008; Lassez et al. 2008; Neville and Jensen 2005; Rossi et al. 2012].

6.3 Graph alignment and classification

Node embeddings have also been used for graph-level tasks, such as graph alignment and classifi-
cation. Network alignment seeks to find the corresponding nodes across two or more networks. It
can be thought of as a link prediction problem, where the links are predicted between two nodes i
and j such that i is in one graph G and j is a node in another graph G’. Graph classification aims
to categorize graphs into classes based on their structure. We discuss the properties that make
community-based or role-based embeddings appropriate for these tasks.

6.3.1 Community-based Embeddings. Methods that learn proximity-based node embeddings via
diffusion or propagation, such as GCN [Kipf and Welling 2017] and GraphSAGE [Hamilton et al.
2017], can be used to obtain supervised network representations by aggregating (e.g., concatenation)
the node embeddings. Supervision makes these representations suitable for graph-level tasks such
as network classification. Some graph neural network-based methods tailored to graph classification
supervise layer-wise node pooling to learn expressive, hierarchical network representations [Ying
et al. 2018], or supervise node grouping (or graph summarization) in order to learn more robust-to-
noise network representations, provide interpretability, and achieve better scalability [Yan et al.
2019]. Transductive community-based embeddings (that do not leverage structural or other node
features) are specific to a network, and fail to tackle cross-network tasks such as unsupervised
network alignment [Heimann and Koutra 2017] or unsupervised network classification (e.g., by
simply aggregating unsupervised community-based node embeddings into a network-level vector
representation). However, recent work inspired by machine translation has shown that transductive
proximity-based embeddings can be used to improve the performance in network alignment by
encouraging the alignment of local neighborhoods across different graphs (rather than greedily
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matching nodes with the same structural properties), but only after appropriately aligning/rotating
the embedding spaces of the networks [Chen et al. 2020b].

6.3.2 Role-based Embeddings. Role-based embeddings generalize across networks [Rossi and
Ahmed 2015], so they are useful in network alignment and identity resolution (or user stitching,
which can be seen as a node correspondence problem within a single network or across multiple
networks) [Gilpin et al. 2013; Heimann et al. 2018; Jin et al. 2019a; Zhang et al. 2013]. In such
applications, transductive community-based embeddings are unable to be used off-the-shelf since
the corresponding embeddings belong to different, unaligned latent spaces [Heimann and Koutra
2017]. However, since role-based node embeddings are based on structural properties (e.g., degree,
graphlet counts, betweenness) that generalize over any graph, they can naturally be used in such
settings, referred to as graph-based transfer learning [Rossi et al. 2017]. Role-based embeddings
also generalize across different parts of a single network, making them suitable for matching
nodes corresponding to the same entity (i.e., identity resolution or user stitching) [Jin et al. 2019a].
Beyond alignment and identity resolution, aggregating role-based node embeddings can provide a
powerful descriptor of an entire network, which is useful for network classification. For example,
a graph descriptor can be obtained by using role-based embeddings (e.g., inductive extension of
xNetMF [Heimann et al. 2019, 2018], SEGK [Nikolentzos and Vazirgiannis 2019]) and creating a
graph-level feature vector based on the distribution or spatial overlap of the embeddings [Heimann
et al. 2019; Nikolentzos et al. 2017] or a graph kernel [Nikolentzos and Vazirgiannis 2019]. On the
other hand, embeddings based on proximity are not suitable for this setting.

6.4 Anomaly detection

Community or role-based embeddings also have applications in graph-based anomaly detection
where the goal is to identify (node/edge/subgraph) anomalies that do not conform to the ex-
pected behavior in the graph [Abello et al. 2010; Akoglu et al. 2015; Fond et al. 2018]. Such
nodes/edges/subgraphs with non-conforming behavior are known as anomalies, outliers, or excep-
tions [Chandola et al. 2009]. This problem also has connections to change detection in temporal
networks. There are specific problem settings in anomaly detection where community-based or
role-based embeddings are more appropriate. We discuss these settings below.

6.4.1 Community-based Embeddings. One anomaly detection application of community-based
embeddings is in the detection of anomalous global changes between different static snapshot
graphs derived from the temporal network (sequence of edge timestamps) [Idé and Kashima 2004;
Jin et al. 2019c]. One particular instance of this problem uses communities (groups of nodes that are
tightly/densely connected) and considers an anomaly (or change-point) to occur when the nodes and
their community-based embeddings differ significantly from the previous time at ¢ — 1 [Chen et al.
2012; Idé and Kashima 2004]. The underlying assumption is that the communities and community-
based embeddings will remain largely stationary over time, i.e., there is minor differences between
time t — 1 and time t [Akoglu et al. 2015]. Thus, when a group of nodes suddenly becomes more
similar to another community, a flag is raised and a change-point is detected [Sun et al. 2007].

6.4.2 Role-based Embeddings. There are many applications and problem settings where role-based
embeddings are more useful for graph-based anomaly detection. Role-based embeddings are often
most useful for applications where anomalies can be defined with respect to the structural properties
and behavior in the network. For instance, an anomaly in this setting might be when a node’s
structural properties/behavior differ significantly from all other nodes in the network [Akoglu
et al. 2015]. Another slight variation of this problem can be defined for temporal networks as
well. In particular, suppose the goal is to detect nodes with sudden changes in their structural
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behavior. In this example, node anomalies may represent users (or computers) that become infected
with a virus/malware in the network and thus the nodes structural properties/behavior abruptly
changes [Fu et al. 2009; Ranshous et al. 2015; Rossi et al. 2013].

Many anomaly detection applications might benefit from the use of external knowledge (struc-
tural behavior/profile) that was found to be important in the detection of a new anomaly that
has recently been detected in some other graph (e.g., an IP communication/traceroute network
from another organization/company) [Henderson et al. 2012]. Role-based embeddings are therefore
most useful for this application since they represent general structural properties important in
the detection of the anomaly and the specific structural properties captured in the embedding can
be transferred to another arbitrary network (and thus used as a signature) for detecting this new
recent anomaly (e.g., the anomaly may represent a recent zero-day attack vector).

6.5 Summarization / compression

The overall goal of summarization/compression is to describe the input graph G with a compact
representation [Ahmed et al. 2017; Liu et al. 2018a]. The precise way to do this fundamentally
differs depending on whether communities or roles are preserved.

6.5.1 Community-based Embeddings. The majority of work in graph summarization are naturally
based on community-based embeddings as they leverage the notion of communities directly.
Though there are various different summarization techniques, many methods leverage grouping or
clustering, and represent each group of densely connected nodes that are nearby one another (cluster
or community) as a super-node and the edges between such nodes as super-edges [Koutra et al. 2014;
Liu et al. 2018a; Shah et al. 2015]. More recently, the notion of latent network summarization was
introduced [Jin et al. 2019c]; it leverages community-based embeddings by propagating structural
features in the network via relational functions, and achieves compression by storing low-rank,
size-independent structural feature matrices and the relational functions as the latent network
summary.

6.5.2 Role-based Embeddings. Role discovery methods typically output a role graph (Definition 7)
that succinctly represents the key structural roles and the dependencies between them [Carrington
et al. 2005; Rossi and Ahmed 2015]. The role graph consists of super-nodes that represent roles and
the edges between the roles are super-edges and encode the dependencies between the different
roles. The role graph represents a summary of the roles and relationships between the roles. It can
also be seen as a smaller model of the original graph and therefore can be viewed as a compressed
representation of the overall graph as it succinctly represents the main structural patterns and the
relationships between them (e.g., if a star-center node connects to many star-edge nodes, then the
super-node that captures the star-center role will have an edge to the super-node representing the
star-edge role).

6.6 Visualization

Community and role-based embeddings are also useful in visualization applications, especially
as they relate to reducing information overload and in the visualization of large graphs [Abello
et al. 2006; Keim et al. 2008; Von Landesberger et al. 2011]. Recall that communities and roles are
complimentary concepts (Table 1) and therefore both provide useful information when used to
summarize the graph for visualization purposes.

6.6.1 Community-based Embeddings. In many visualization applications, community-based em-
beddings are useful when the graph/network data is too large to visualize all-at-once [Hu and Shi
2015; Newman and Girvan 2004]. In such problem settings, community-based embeddings can
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be used to derive communities which are then displayed to the user in the initial visualization of
the graph. This is used as a way to navigate large graphs and avoid the computational and visual
problems that arise when visualizing large-scale graphs [Von Landesberger et al. 2011]. The user
can then visually select the community of interest, which is then displayed to the user. In this
example, once a community is selected, the user can view the nodes and edges that belong to it,
while avoiding all other nodes and edges that are not of interest to the specific user/query [Abello
et al. 2006].

6.6.2 Role-based Embeddings. In a similar fashion, role-based embeddings can be used for nav-
igating large networks [Koutra and Faloutsos 2017; Rossi et al. 2018a]. Suppose the user is only
interested in hub (star-center) nodes, then we can immediately visualize all such nodes and their
roles while avoiding the computational and visual issues that arise when trying to visualize large
graphs. Work on vocabulary- or motif-based summarization of static or time-evolving graphs can
also be leveraged in visualization of structural roles [Dunne and Shneiderman 2013; Koutra et al.
2014; Shah et al. 2017]. Other similar types of (structural role-based) queries and filtering can be
performed to answer other questions of interest to the user.

6.7 Clustering

Community and role-based embeddings are also clearly useful in graph clustering (Section 1.1).
For simplicity, we have described roles and communities in Section 1.1 with respect to hard
assignments. However, over a decade ago, methods for roles and communities that naturally output
node embeddings have been investigated. The node embeddings from these methods are sometimes
referred to as node mixed-membership vectors. In other words, community and role discovery are
not different problems than node embeddings, since they both output node embeddings.

In this section, we discuss a few applications of communities and roles that make use of the hard
assignments. We also note that some of the previous applications leveraged the hard assignments.
However, we focus mainly on discussing other applications that have not yet been discussed above.

6.7.1 Community-based Embeddings. Given the community-based embeddings, we can use a
clustering algorithm to derive hard cluster assignments. These hard cluster assignments have been
useful for sampling-based applications. In particular, Bilgic et al. [2010] used them for relational
active learning where nodes are actively sampled from every community. Hard cluster assignments
can also be used to improve scalability of a variety of applications. For instance, given a node
embedding of interest, we can use the k cluster centroids to find the significantly smaller set
(community cluster) of relevant nodes, without having to compare to all such nodes. Similar ideas
may also be useful for improving search and recommendation systems [Li and Kim 2003; Sarwar
et al. 2002]. In this context, similarity in representations can also be used to identify the top-K
related objects, without explicitly defining clusters. For instance, by learning propagation-based
representations of objects in the personal web (i.e., heterogeneous personal information network),
it is possible to identify the objects that are most relevant to specific activities or topics (e.g., work
projects, vacation) [Safavi et al. 2020], and then automatically organize them into groups.

6.7.2 Role-based Embeddings. Given the structural role-based embeddings, we can derive hard
cluster assignments, which can also be used in a variety of applications. In general, there are many
applications where it would also make sense to sample a set of nodes that belong to the same
structural role or a diverse set of nodes from different structural roles. In the above, structural roles
are used for sampling. Sampling nodes from the same structural role might be useful for identifying
nodes that are similar to a given node of interest. In contrast, one possibility for sampling nodes
from different structural roles is for the active learning setting. Another important application
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where hard assignment of roles can be used is in selecting users with similar structural behavior
for recommendation or influence maximization applications. In online advertisement campaigns,
the specific advertisement can be personalized better based on the role of a user in the network
(e.g., Facebook, Yelp) [Farahat et al. 2012]. Furthermore, a business might only be interested in
targeting an individual with a certain role in the network. Role-based embeddings and the hard
assignment of roles from them are also useful in a wide variety of transfer learning tasks such as
across-network classification, link prediction, and finding similar nodes in general.

7 CONCLUSION

In this work, communities and roles are formally defined and used as a basis for analysis of
the main mechanisms behind popular embedding methods for graph data. We have described a
general framework for the study of embedding methods based on whether they are community
or role-based. We have also shown formally why the mechanisms (e.g., random walks, feature
diffusion) behind many of the popular embedding methods give rise to community (proximity)
or role-based (structural) embeddings. This formalization and theoretical analysis allows for a
deeper understanding of the key mechanisms used by many existing embedding methods, and gives
intuition for where such methods are most appropriate, but more importantly, provides intuition
for how to develop better embedding methods for specific applications that may favor either
communities (proximity) or roles (structural). In addition, we discuss applications, problem settings,
and data characteristics that are best for community-based or role-based embeddings. We believe a
main contribution of this work is that it allows researchers to not only gain a deeper understanding
of the main mechanisms behind embedding methods (and whether they are community or role-
based), but also gain insight and understanding of how to develop better embedding methods for
specific applications that favor community-based or structural role-based embeddings.
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