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Abstract

We present CODEX, a set of knowledge graph
Completion Datasets EXtracted from Wiki-
data and Wikipedia that improve upon existing
knowledge graph completion benchmarks in
scope and level of difficulty. In terms of scope,
CODEX comprises three knowledge graphs
varying in size and structure, multilingual de-
scriptions of entities and relations, and tens
of thousands of hard negative triples that are
plausible but verified to be false. To character-
ize CODEX, we contribute thorough empirical
analyses and benchmarking experiments. First,
we analyze each CODEX dataset in terms of
logical relation patterns. Next, we report base-
line link prediction and triple classification re-
sults on CODEX for five extensively tuned
embedding models. Finally, we differentiate
CODEX from the popular FB 15K-237 knowl-
edge graph completion dataset by showing that
CODEX covers more diverse and interpretable
content, and is a more difficult link prediction
benchmark. Data, code, and pretrained models
are available at https://bit.1y/2EPbr]Js.

1 Introduction

Knowledge graphs are multi-relational graphs that
express facts about the world by connecting enti-
ties (people, places, things, concepts) via different
types of relationships. The field of automatic knowl-
edge graph completion (KGC), which is motivated
by the fact that knowledge graphs are usually in-
complete, is an active research direction spanning
several subfields of artificial intelligence (Nickel
etal., 2015; Wang et al., 2017; Ji et al., 2020).

As progress in artificial intelligence depends
heavily on data, a relevant and high-quality bench-
mark is imperative to evaluating and advancing
the state of the art in KGC. However, the field has
largely remained static in this regard over the past
decade. Outdated subsets of Freebase (Bollacker
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et al., 2008) are most commonly used for evalu-
ation in KGC, even though Freebase had known
quality issues (Tanon et al., 2016) and was eventu-
ally deprecated in favor of the more recent Wikidata
knowledge base (Vrandeci¢ and Krotzsch, 2014).

Indeed, KGC benchmarks extracted from Free-
base like FB15K and FB15K-237 (Bordes et al.,
2013; Toutanova and Chen, 2015) are question-
able in quality. For example, FB 15K was shown to
have train/test leakage (Toutanova and Chen, 2015).
Later in this paper (§ 6.2), we will show that a rela-
tively large proportion of relations in FB15K-237
can be covered by a trivial frequency rule.

To address the need for a solid benchmark in
KGC, we present CODEX, a set of knowledge
graph Completion Datasets EXtracted from Wiki-
data and its sister project Wikipedia. Inasmuch as
Wikidata is considered the successor of Freebase,
CoDEX improves upon existing Freebase-based
KGC benchmarks in terms of scope and level of
difficulty (Table 1). Our contributions include:

Foundations We survey evaluation datasets in
encyclopedic knowledge graph completion to moti-
vate a new benchmark (§ 2 and Appendix A).

Data We introduce CODEX, a benchmark con-
sisting of three knowledge graphs varying in size
and structure, entity types, multilingual labels and
descriptions, and—unique to CODEX—manually
verified hard negative triples (§ 3). To better un-
derstand CODEX, we analyze the logical relation
patterns in each of its datasets (§ 4).

Benchmarking We conduct large-scale model
selection and benchmarking experiments, reporting
baseline link prediction and triple classification
results on CODEX for five widely used embedding
models from different architectural classes (§ 5).

Comparative analysis Finally, to demonstrate
the unique value of CODEX, we differentiate
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Table 1: Qualitative comparison of CODEX datasets to existing Freebase-based KGC datasets (§ 2.1).

Freebase variants (FB15K, FB15K-237)

CODEX datasets

Scope (domains)

Multi-domain, with a strong focus on awards, enter-
tainment, and sports (§ 6.1 and Appendix E)

Multi-domain, with focuses on writing, en-
tertainment, music, politics, journalism, aca-
demics, and science (§ 6.1 and Appendix E)

Scope (auxiliary data)

Various decentralized versions of FB15K with,
e.g., entity types (Xie et al., 2016), sampled nega-
tives (Socher et al., 2013), and more (Table 8)

Centralized repository of three datasets with
entity types, multilingual text, and manually
annotated hard negatives (§ 3)

Level of difficulty

FB 15K has severe train/test leakage from inverse re-
lations (Toutanova and Chen, 2015); while removal
of inverse relations makes FB15K-237 harder than
FB15K, FB15K-237 still has a high proportion of
easy-to-predict relational patterns (§ 6.2)

Inverse relations removed from all datasets
to avoid train/test leakage (§ 3.2); manually
annotated hard negatives for the task of triple
classification (§ 3.4); few trivial patterns for
the task of link prediction (§ 6.2)

CODEX from FB15K-237 in terms of both content
and difficulty (§ 6). We show that CODEX covers
more diverse and interpretable content, and is a
more challenging link prediction benchmark.

2 Existing datasets

We begin by surveying existing KGC benchmarks.
Table 8 in Appendix A provides an overview of
evaluation datasets and tasks on a per-paper basis
across the artificial intelligence, machine learning,
and natural language processing communities.

Note that we focus on data rather than models, so
we only overview relevant evaluation benchmarks
here. For more on existing KGC models, both neu-
ral and symbolic, we refer the reader to (Meilicke
et al., 2018) and (Ji et al., 2020).

2.1 Freebase extracts

These datasets, extracted from the Freebase knowl-
edge graph (Bollacker et al., 2008), are the most
popular for KGC (see Table 8 in Appendix A).

FB15K was introduced by Bordes et al. (2013).
It contains 14,951 entities, 1,345 relations, and
592,213 triples covering several domains, with a
strong focus on awards, entertainment, and sports.

FB15K-237 was introduced by Toutanova and
Chen (2015) to remedy data leakage in FB15K,
which contains many test triples that invert triples
in the training set. FB15K-237 contains 14,541 en-
tities, 237 relations, and 310,116 triples. We com-
pare FB15K-237 to CODEX in § 6 to assess each
dataset’s content and relative difficulty.

2.2 Other encyclopedic datasets

NELL-995 (Xiong et al., 2017) was taken from
the Never Ending Language Learner (NELL) sys-

tem (Mitchell et al., 2018), which continuously
reads the web to obtain and update its knowledge.
NELL-995, a subset of the 995th iteration of NELL,
contains 75,492 entities, 200 relations, and 154,213
triples. While NELL-995 is general and covers
many domains, its mean average precision was less
than 50% around its 1000th iteration (Mitchell et al.,
2018). A cursory inspection reveals that many of
the triples in NELL-995 are nonsensical or overly
generic, suggesting that NELL-995 is not a mean-
ingful dataset for KGC evaluation.!

YAGO3-10 (Dettmers et al., 2018) is a subset of
YAGO3 (Mahdisoltani et al., 2014), which cov-
ers portions of Wikipedia, Wikidata, and Word-
Net. YAGO3-10 has 123,182 entities, 37 relations,
and 1,089,040 triples mostly limited to facts about
people and locations. While YAGO3-10 is a high-
precision dataset, it was recently shown to be too
easy for link prediction because it contains a large
proportion of duplicate relations (Akrami et al.,
2020; Pezeshkpour et al., 2020).

2.3 Domain-specific datasets

In addition to large encyclopedic knowledge
graphs, it is common to evaluate KGC methods
on at least one smaller, domain-specific dataset,
typically drawn from the WordNet semantic net-
work (Miller, 1998; Bordes et al., 2013). Other
choices include the Unified Medical Language
System (UMLS) database (McCray, 2003), the
Alyawarra kinship dataset (Kemp et al., 20006),
the Countries dataset (Bouchard et al., 2015),
and variants of a synthetic “family tree” (Hinton,
1986). As our focus in this paper is encyclopedic
knowledge, we do not cover these datasets further.

'Some examples: (politician:jobs, worksfor, county:god),
(person:buddha001, parentofperson, person:jesus)



Table 2: CODEX datasets. (+): Positive (true) triples. (-): Verified negative (false) triples (§ 3.4). We compute
multilingual coverage over all labels, descriptions, and entity Wikipedia extracts successfully retrieved for the
respective dataset in Arabic (ar), German (de), English (en), Spanish (es), Russian (ru), and Chinese (zh).

Triples E x R x E

Multilingual coverage

|El R

Train (+) Valid (+) Test(+) Valid(-) Test(-) ar de en es ru zh
CODEX-S 2,034 42 32,888 1827 1828 1827 1828 7738 91.87 96.38 9155 89.17 79.36
CODEX-M 17,050 51 185,584 10,310 10,311 10,310 10,311 75.80 9520 96.95 8791 81.88 69.63
CoDEx-L 77,951 69 551,193 30,622 30,622 67.47 90.84 9240 8130 71.12 61.06

3 Data collection

In this section we describe the pipeline used to con-
struct CODEX. For reference, we define a knowl-
edge graph G as a multi-relational graph consisting
of a set of entities I/, relations R, and factual state-
ments in the form of (head, relation, tail) triples
(h,rt) € EX R X E.

3.1 Seeding the collection

We collected an initial set of triples using a type of
snowball sampling (Goodman, 1961). We first man-
ually defined a broad seed set of entity and relation
types common to 13 domains: Business, geography,
literature, media and entertainment, medicine, mu-
sic, news, politics, religion, science, sports, travel,
and visual art. Examples of seed entity types in-
clude airline, journalist, and religious text; cor-
responding seed relation types in each respective
domain include airline alliance, notable works, and
language of work or name. Table 9 in Appendix B
gives all seed entity and relation types.

Using these seeds, we retrieved an initial set of
380,038 entities, 75 relations, and 1,156,222 triples
by querying Wikidata for statements of the form
(head entity of seed type, seed relation type, 7).

3.2 Filtering the collection

To create smaller data snapshots, we filtered the
initial 1.15 million triples to k-cores, which are
maximal subgraphs G’ of a given graph G such
that every node in G’ has a degree of at least
k (Batagelj and Zaversnik, 2011).> We constructed
three CODEX datasets (Table 2):

* CODEX-S (k = 15), which has 36k triples.
Because of its smaller size, we recommend
that CODEX-S be used for model testing and
debugging, as well as evaluation of methods
that are less computationally efficient (e.g.,
symbolic search-based approaches).

2 A similar approach was used to extract the FB 15K dataset
from Freebase (Bordes et al., 2013).

* CODEX-M (k = 10), which has 206k triples.
CoDEX-M is all-purpose, being comparable
in size to FB15K-237 (§ 2.1), one of the most
popular benchmarks for KGC evaluation.

* CODEX-L (k =5), which has 612k triples.
CoDEX-L is comparable in size to FB15K
(§ 2.1), and can be used for both general eval-
uation and “few-shot” evaluation.

We also release the raw dump that we collected
via snowball sampling, but focus on CODEX-S
through L for the remainder of this paper.

To minimize train/test leakage, we removed in-
verse relations from each dataset (Toutanova and
Chen, 2015). We computed (head, tail) and (tail,
head) overlap between all pairs of relations, and
removed each relation whose entity pair set over-
lapped with that of another relation more than
50% of the time. Finally, we split each dataset into
90/5/5 train/validation/test triples such that the val-
idation and test sets contained only entities and
relations seen in the respective training sets.

3.3 Auxiliary information

An advantage of Wikidata is that it links entities
and relations to various sources of rich auxiliary
information. To enable tasks that involve joint learn-
ing over knowledge graph structure and such addi-
tional information, we collected:

 Entity types for each entity as given by Wiki-
data’s instance of and subclass of relations;

» Wikidata labels and descriptions for enti-
ties, relations, and entity types; and

* Wikipedia page extracts (introduction sec-
tions) for entities and entity types.

For the latter two, we collected text where available
in Arabic, German, English, Spanish, Russian, and
Chinese. We chose these languages because they
are all relatively well-represented on Wikidata (Kaf-
fee et al., 2017). Table 2 provides the coverage by
language for each CODEX dataset.



Table 3: Selected examples of hard negatives in CODEX with explanations.

Negative

Explanation

(Frédéric Chopin, occupation, conductor)
(Lesotho, official language, American English)
(Senegal, part of, Middle East)

(Simone de Beauvoir, field of work, astronomy)
(Vatican City, member of, UNESCO)

Chopin was a pianist and a composer, not a conductor.

English, not American English, is an official language of Lesotho.
Senegal is part of West Africa.

Simone de Beauvoir’s field of work was primarily philosophy.

Vatican City is a UNESCO World Heritage Site but not a member state.

3.4 Hard negatives for evaluation

Knowledge graphs are unique in that they only con-
tain positive statements, meaning that triples not
observed in a given knowledge graph are not nec-
essarily false, but merely unseen; this is called the
Open World Assumption (Galarraga et al., 2013).
However, most machine learning tasks on knowl-
edge graphs require negatives in some capacity.
While different negative sampling strategies ex-
ist (Cai and Wang, 2018), the most common ap-
proach is to randomly perturb observed triples to
generate negatives, following Bordes et al. (2013).

While random negative sampling is beneficial
and even necessary in the case where a large num-
ber of negatives is needed (i.e., training), it is
not necessarily useful for evaluation. For exam-
ple, in the task of triple classification, the goal is to
discriminate between positive (true) and negative
(false) triples. As we show in § 5.5, triple classifica-
tion over randomly generated negatives is trivially
easy for state-of-the-art models because random
negatives are generally not meaningful or plausible.
Therefore, we generate and manually evaluate hard
negatives for KGC evaluation.

Generation To generate hard negatives, we used
each pre-trained embedding model from § 5.2 to
predict tail entities of triples in CODEX. For each
model, we took as candidate negatives the triples
(h,r,t) for which (i) the type of the predicted tail
entity ¢ matched the type of the true tail entity ¢;
(ii) # was ranked in the top-10 predictions by that
model; and (iii) (h,,) was not observed in G.

Annotation We manually labeled all candidate
negative triples generated for CODEX-S and
CODEX-M as true or false using the guidelines
provided in Appendix C.? We randomly selected
among the triples labeled as false to create val-
idation and test negatives for CODEX-S and
CODEX-M, examples of which are given in Ta-

3We are currently investigating methods for obtaining high-
quality crowdsourced annotations of negatives for CODEX-L.

ble 3. To assess the quality of our annotations, we
gathered judgments from two independent native
English speakers on a random selection of 100 can-
didate negatives. The annotators were provided the
instructions from Appendix C. On average, our la-
bels agreed with those of the annotators 89.5% of
the time. Among the disagreements, 81% of the
time we assigned the label true whereas the annota-
tor assigned the label false, meaning that we were
comparatively conservative in labeling negatives.

4 Analysis of relation patterns

To give an idea of the types of reasoning neces-
sary for models to perform well on CODEX, we
analyze the presence of learnable binary relation
patterns within CODEX. The three main types of
such patterns in knowledge graphs are symmetry,
inversion, and compositionality (Trouillon et al.,
2019; Sun et al., 2019). We address symmetry and
compositionality here, and omit inversion because
we specifically removed inverse relations to avoid
train/test leakage (§ 3.2).

4.1 Symmetry

Symmetric relations are relations r for which
(h,r,t) € G implies (¢t,r,h) € G. For each rela-
tion, we compute the number of its (head, tail) pairs
that overlap with its (tail, head) pairs, divided by
the total number of pairs, and take those with 50%
overlap or higher as symmetric. CODEX datasets
have five such relations: diplomatic relation, shares
border with, sibling, spouse, and unmarried part-
ner. Table 4 gives the proportion of triples con-
taining symmetric relations per dataset. Symmetric
patterns are more prevalent in CODEX-S, whereas
the larger datasets are mostly antisymmetric, i.e.,
(h,rt) € G implies (t,r, h) € G.

4.2 Composition

Compositionality captures path rules of the form
(hyr1,21), ., (Tn, 0, t) — (h,7,t). To learn
these rules, models must be capable of “multi-hop”
reasoning on knowledge graphs (Guu et al., 2015).



Table 4: Relation patterns in CODEX. For symmetry,
we give the proportion of triples containing a symmet-
ric relation. For composition, we give the proportion of
triples participating in a rule of length two or three.

CoDEx-S CoDEx-M CoDEXx-L

17.46% 4.01% 3.29%
10.09% 16.55% 31.84%

Symmetry
Composition

To identify compositional paths, we use the
AMIE3 system (Lajus et al., 2020), which out-
puts rules with confidence scores that capture how
many times those rules are seen versus violated, to
identify paths of lengths two and three; we omit
longer paths as they are relatively costly to com-
pute. We identify 26, 44, and 93 rules in CODEX-S,
CoDEXx-M, and CODEX-L, respectively, with av-
erage confidence (out of 1) of 0.630, 0.556, and
0.459. Table 4 gives the percentage of triples per
dataset participating in a discovered rule.

Evidently, composition is especially prevalent in
CoDEX-L. An example rule in CODEX-L is “if
X was founded by Y, and Y’s country of citizen-
ship is Z, then the country [i.e., of origin] of X is
Z” (confidence 0.709). We release these rules as
part of CODEX for further development of KGC
methodologies that incorporate or learn rules.

5 Benchmarking

Next, we benchmark performance on CODEX for
the tasks of link prediction and triple classification.
To ensure that models are fairly and accurately
compared, we follow Ruffinelli et al. (2020), who
conducted what is (to the best of our knowledge)
the largest-scale hyperparameter tuning study of
knowledge graph embeddings to date.

Note that CODEX can be used to evaluate any
type of KGC method. However, we focus on em-
beddings in this section due to their widespread
usage in modern NLP (Ji et al., 2020).

5.1 Tasks

Link prediction The link prediction task is con-
ducted as follows: Given a test triple (h,r,t), we
construct queries (7,r,t) and (h,r,?). For each
query, a model scores candidate head (tail) entities
h (0 according to its belief that h (0 completes the
triple (i.e., answers the query). The goal is of link
prediction is to rank true triples (h, 7, t) or (h,r, )
higher than false and unseen triples.

Link prediction performance is evaluated with

mean reciprocal rank (MRR) and hits@k. MRR
is the average reciprocal of each ground-truth en-
tity’s rank over all (?,r,¢) and (h,r, ?) test triples.
Hits@k measures the proportion of test triples
for which the ground-truth entity is ranked in the
top-k predicted entities. In computing these met-
rics, we exclude the predicted entities for which
(h,r,t) € G or (h,r,t) € G so that known posi-
tive triples do not artificially lower ranking scores.
This is called “filtering” (Bordes et al., 2013).

Triple classification Given a triple (h, 7, t), the
goal of triple classification is to predict a corre-
sponding label y € {—1,1}. Since knowledge
graph embedding models output real-valued scores
for triples, we convert these scores into labels by
selecting a decision threshold per relation on the
validation set such that validation accuracy is max-
imized for the model in question. A similar ap-
proach was used by Socher et al. (2013).

We compare results on three sets of evaluation
negatives: (1) We generate one negative per pos-
itive by replacing the positive triple’s tail entity
by a tail entity ¢’ sampled uniformly at random;
(2) We generate negatives by sampling tail entities
according to their relative frequency in the tail
slot of all triples; and (3) We use the CODEX hard
negatives. We measure accuracy and F1 score.

5.2 Models

We compare the following embedding methods:
RESCAL (Nickel et al., 2011), TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), and TuckER (Bal-
azevic et al., 2019b). These models represent sev-
eral classes of architecture, from linear (RESCAL,
TuckER, ComplEx) to translational (TransE) to
nonlinear/learned (ConvE). Appendix D provides
more specifics on each model.

5.3 Model selection

As recent studies have observed that training strate-
gies are equally, if not more, important than ar-
chitecture for link prediction (Kadlec et al., 2017;
Lacroix et al., 2018; Ruffinelli et al., 2020), we
search across a large range of hyperparameters to
ensure a truly fair comparison. To this end we use
the PyTorch-based LibKGE framework for training
and selecting knowledge graph embeddings.* In the
remainder of this section we outline the most im-
portant parameters of our model selection process.

*https://github.com/uma-pil/kge
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Table 5: Comparison of link prediction performance on CODEX.

CoDEX-S CoDEx-M CoDEXx-L
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10
RESCAL 0.404 0.293 0.623 0.317 0.244 0.456 0.304 0.242 0.419
TransE 0.354  0.219 0.634 0.303  0.223 0.454 0.187  0.116 0.317
ComplEx 0.465 0.372 0.646 0.337  0.262 0.476 0.294  0.237 0.400
ConvE 0.444  0.343 0.635 0.318 0.239 0.464 0.303  0.240 0.420
TuckER  0.444  0.339 0.638 0.328  0.259 0.458 0.309 0.244 0.430
Table 10 in Appendix F gives further details and all 04-
hyperparameter ranges and values. All experiments g 03 % 0
were run on a single NVIDIA Tesla V100 GPU S oo
with 16 GB of RAM. g
= 01
S
00 L

Training negatives Given a set of positive train-
ing triples {(h,r,t)}, we compare three types
of negative sampling strategy implemented by
LibKGE: (a) NegSamp, or randomly corrupting
head entities h or tail entities ¢ to create negatives;
(b) 1vsAll, or treating all possible head/tail corrup-
tions of (h,r,t) as negatives, including the corrup-
tions that are actually positives; and (c) KvsAll, or
treating batches of head/tail corruptions not seen in
the knowledge graph as negatives.

Loss functions We consider the following loss
functions: (i) MR or margin ranking, which aims to
maximize a margin between positive and negative
triples; (ii) BCE or binary cross-entropy, which
is computed by applying the logistic sigmoid to
triple scores; and (iii) CE or cross-entropy between
the softmax over the entire distribution of triple
scores and the label distribution over all triples,
normalized to sum to one.

Search strategies We select models using the Ax
platform, which supports hyperparameter search
using both quasi-random sequences of generated
configurations and Bayesian optimization (BO)
with Gaussian processes.” At a high level, for
each dataset and model, we generate both quasi-
random and BO trials per negative sampling and
loss function combination, ensuring that we search
over a wide range of hyperparameters for different
types of training strategy. Appendix F provides spe-
cific details on the search strategy for each dataset,
which was determined according to resource con-
straints and observed performance patterns.

>https://ax.dev/

ComplEx ConvE RESCAL TransE TuckER

Figure 1: Distribution of validation MRR, CODEX-M.

5.4 Link prediction results

Table 5 gives link prediction results. We find that
ComplEx is the best at modeling symmetry and
antisymmetry, and indeed it was designed specifi-
cally to improve upon bilinear models that do not
capture symmetry, like DistMult (Trouillon et al.,
2016). As such, it performs the best on CODEX-S,
which has the highest proportion of symmetric rela-
tions. For example, on the most frequent symmetric
relation (diplomatic relation), ComplEx achieves
0.859 MRR, compared to 0.793 for ConvE, 0.490
for RESCAL, and 0.281 for TransE.

By contrast, TuckER is strongest at modeling
compositional relations, so it performs best on
CoDEX-L, which has a high degree of composi-
tionality. For example, on the most frequent com-
positional relation in CODEX-L (languages spo-
ken, written, or signed), TuckER achieves 0.465
MRR, compared to 0.464 for RESCAL, 0.463 for
ConvE, 0.456 for ComplEXx, and 0.385 for TransE.
By contrast, since CODEX-M is mostly asymmet-
ric and non-compositional, ComplEx performs best
because of its ability to model asymmetry.

Effect of hyperparameters As shown by Fig-
ure 1, hyperparameters have a strong impact on
link prediction performance: Validation MRR for
all models varies by over 30 percentage points de-
pending on the training strategy and input config-
uration. This finding is consistent with previous
observations in the literature (Kadlec et al., 2017;
Ruffinelli et al., 2020). Appendix F provides the
best configurations for each model.
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Table 6: Comparison of triple classification performance on CODEX by negative generation strategy.

CODEX-S CoDEx-M

Uniform Relative freq. Hard neg. Uniform Relative freq. Hard neg.

Acc. F1 Acc. F1 Acc. Acc. F1 Acc. F1 Acc. F1
RESCAL 0.972 0.972 0916 0.920 0.843 0.852 0.977 0.976 0.921 0.922 0.818 0.815
TransE 0974 0.974 0919 0.923 0.829 0.837 0.986 0.986 0.932 0.933 0.797 0.803
ComplEx 0.975 0.975 0.927 0.930 0.836 0.846 0.984 0.984 0.930 0.933 0.824 0.818
ConvE 0972 0.972 0921 0.924 0.841 0.846 0.979 0.979 0.934 0.935 0.826 0.829
TuckER 0973 0.973 0917 0.920 0.840 0.846 0977 0977 0.920 0.922 0.823 0.816

Overall, we find that the choice of loss function
in particular significantly impacts model perfor-
mance. Each model consistently achieved its re-
spective peak performance with cross-entropy
(CE) loss, a finding which is corroborated by sev-
eral other KGC comparison papers (Kadlec et al.,
2017; Ruffinelli et al., 2020; Jain et al., 2020). As
far as negative sampling techniques, we do not find
that a single strategy is dominant, suggesting that
the choice of loss function is more important.

5.5 Triple classification results

Table 6 gives triple classification results. Evidently,
triple classification on randomly generated neg-
atives is a nearly-solved task. On negatives gen-
erated uniformly at random, performance scores
are nearly identical at almost 100% accuracy. Even
with a negative sampling strategy “smarter” than
uniform random, all models perform well.

Hard negatives Classification performance de-
generates considerably on our hard negatives,
around 8 to 11 percentage points from relative
frequency-based sampling and 13 to 19 percentage
points from uniformly random sampling. Relative
performance also varies: In contrast to our link pre-
diction task in which ComplEx and TuckER were
by far the strongest models, RESCAL is slightly
stronger on the CODEX-S hard negatives, whereas
ConvE performs best on the CODEX-M hard neg-
atives. These results indicate that triple classifi-
cation is indeed a distinct task that requires dif-
ferent architectures and, in many cases, different
training strategies (Appendix F).

We believe that few recent works use triple clas-
sification as an evaluation task because of the lack
of true hard negatives in existing benchmarks. Early
works reported high triple classification accuracy
on sampled negatives (Socher et al., 2013; Wang
et al., 2014), perhaps leading the community to be-
lieve that the task was nearly solved. However, our
results demonstrate that the task is far from solved

when the negatives are plausible but truly false.

6 Comparative case study

Finally, we conduct a comparative analysis between
CoDEX-M and FB15K-237 (§ 2.1) to demon-
strate the unique value of CODEX. We choose
FB15K-237 because it is the most popular encyclo-
pedic KGC benchmark after FB15K, which was
already shown to be an easy dataset by Toutanova
and Chen (2015). We choose CODEX-M because
it is the closest in size to FB15K-237.

6.1 Content

We first compare the content in CODEX-M, which
is extracted from Wikidata, with that of FB15K-
237, which is extracted from Freebase. For brevity,
Figure 2 compares the top-15 relations by mention
count in the two datasets. Appendix E provides
more content comparisons.

Diversity The most common relation in CODEX-
M is occupation, which is because most people
on Wikidata have multiple occupations listed. By
contrast, the frequent relations in FB15K-237 are
mostly related to awards and film. In fact, over 25%
of all triples in FB15K-237 belong to the /award
relation domain, suggesting that CODEX covers a
more diverse selection of content.

Interpretability The Freebase-style relations are
also arguably less interpretable than those in Wiki-
data. Whereas Wikidata relations have concise nat-
ural language labels, the Freebase relation labels
are hierarchical, often at five or six levels of hier-
archy (Figure 2). Moreover, all relations in Wiki-
data are binary, whereas some Freebase relations
are n-nary (Tanon et al., 2016), meaning that they
connect more than two entities. The relations con-
taining a dot (““.”) are such n-nary relations, and are
difficult to reason about without understanding the
structure of Freebase, which has been deprecated.
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Figure 2: Top-15 most frequent relations in CODEX-M and FB15K-237.

We further discuss the impact of such n-nary rela-
tions for link prediction in the following section.

6.2 Difficulty

Next, we compare the datasets in a link prediction
task to show that CODEX-M is more difficult.

Baseline We devise a “non-learning” link pre-
diction baseline. Let (h,r, ?) be a test query. Our
baseline scores candidate tail entities by their rela-
tive frequency in the tail slot of all training triples
mentioning r, filtering out tail entities ¢ for which
(h,r,t) is already observed in the training set. If
all tail entities ¢ are filtered out, we score entities
by frequency before filtering. The logic of our ap-
proach works in reverse for (7, r, t) queries. In eval-
uating our baseline, we follow LibKGE’s protocol
for breaking ties in ranking (i.e., for entities that
appear with equal frequency) by taking the mean
rank of all entities with the same score.

Setup We compare our baseline to the best pre-
trained embedding model per dataset: RESCAL for
FB15K-237, which was released by Ruffinelli et al.
(2020), and ComplEx for CODEX-M. We evalu-
ate performance with MRR and Hits@10. Beyond
overall performance, we also compute per-relation
improvement of the respective embedding over our
baseline in terms of percentage points MRR. This
measures the amount of learning beyond frequency
statistics necessary for each relation.

Results and discussion Table 7 compares the
overall performance of our baseline versus the best
embedding per dataset, and Figure 3 shows the im-
provement of the respective embedding over our
baseline per relation type on each dataset. The im-
provement of the embedding is much smaller on
FB15K-237 than CODEX-M, and in fact our base-
line performs on par with or even outperforms the

Table 7: Overall performance (MRR) of our frequency
baseline versus the best embedding nodel per bench-
mark. “Improvement” refers to the improvement of the
embedding over the baseline.

Baseline Embedding Improvement
FB15K-237 0.236 0.356 +0.120
COoDEX-M 0.135 0.337 +0.202
5 +100.0 g 5
S +80.0 é
% +60.0 8
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Figure 3: Improvement in MRR of the embedding
over our frequency baseline per relation type. Negative
means that our baseline outperforms the embedding.
The medians are 8.27 and 20.04 percentage points on
FB15K-237 and CODEX-M, respectively.

embedding on FB 15K-237 for some relation types.

To further explore these cases, Figure 4 gives
the empirical cumulative distribution function of
improvement, which shows the percentage of test
triples for which the level of improvement is less
than or equal to a given value on each dataset.
Surprisingly, the improvement for both MRR and
Hits@10 is less than five percentage points for
nearly 40% of FB15K-237’s test set, and is zero or
negative 15% of the time. By contrast, our baseline
is significantly weaker than the strongest embed-
ding method on CODEX-M.

The disparity in improvement is due to two rela-
tion patterns prevalent in FB15K-237:
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-1.5 0.0 +1.5 +3.0 +4.5 -1.5
Hits@10 improvement
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Figure 4: Empirical CDF of improvement of the best
embedding over our frequency baseline.

* Skewed relations FB15K-237 contains
many relations that are skewed toward a single
head or tail entity. For example, our baseline
achieves perfect performance over all (h,r, ?)
queries for the /common/topic/webpage.
/common/webpage/category relation because
this relation has only one unique tail entity.
Another example of a highly skewed relation
in FB15K-237 is /people/person/ gender, for
which 78.41% of tails are the entity male. In
fact, 11 relations in FB15K-237 have only
one unique tail entity, accounting for 3.22%
of all tail queries in FB15K-237. Overall,
15.98% of test triples in FB15K-237 con-
tain relations that are skewed 50% or more
toward a single head or tail entity, whereas
only 1.26% of test triples in CODEX-M con-
tain such skewed relations.

Fixed-set relations Around 12.7% of test
queries in FB15K-237 contain relation
types that connect entities to fixed sets of
values. As an example, each head entity
that participates in the FB15K-237 relation
/travel/travel_destination/climate./travel/
travel_destination_monthly_climate/month
is connected to the same 12 tails (months of
the year) throughout train, validation, and
test. This makes prediction trivial with our
baseline: By filtering out the tail entities
already seen in train, only a few (or even
one) candidate tail(s) are left in test, and
the answer is guaranteed to be within these
candidates. These relations only occur in
FB15K-237 because of the way the dataset
was constructed from Freebase. Specifically,
Freebase used a special type of entity
called Compound Value Type (CVT) as an
intermediary node connecting n-ary relations.
Binary relations were created by traversing
through CVTs, yielding some relations that
connect entities to fixed sets of values.

We conclude that while FB15K-237 is a valuable
dataset, CODEX is more appropriately difficult
for link prediction. Additionally, we note that in
FB15K-237, all validation and test triples contain-
ing entity pairs directly linked in the training set
were deleted (Toutanova and Chen, 2015), meaning
that symmetry cannot be tested for in FB15K-237.
Given that CODEX datasets contain both symme-
try and compositionality, CODEX is more suitable
for assessing how well models can learn relation
patterns that go beyond frequency.

7 Conclusion and outlook

We present CODEX, a set of knowledge graph
Completion Datasets EXtracted from Wikidata
and Wikipedia, and show that CODEX is suitable
for multiple KGC tasks. We release data, code, and
pretrained models for use by the community at
https://bit.ly/2EPbrJs. Some promising future di-
rections on CODEX include:

* Better model understanding CODEX can
be used to analyze the impact of hyperparam-
eters, training strategies, and model architec-
tures in KGC tasks.

* Revival of triple classification We encour-
age the use of triple classification on CODEX
in addition to link prediction because it di-
rectly tests discriminative power.

* Fusing text and structure Including text in
both the link prediction and triple classifica-
tion tasks should substantially improve perfor-
mance (Toutanova et al., 2015). Furthermore,
text can be used for few-shot link prediction,
an emerging research direction (Xiong et al.,
2017; Shi and Weninger, 2017).

Overall, we hope that CODEX will provide a boost
to research in KGC, which will in turn impact many
other fields of artificial intelligence.
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A Literature review

Table 8 provides an overview of knowledge graph
embedding papers with respect to datasets and eval-
uation tasks. In our review, we only consider papers
published between 2014 and 2020 in the main pro-
ceedings of conferences where KGC embedding
papers are most likely to appear: Artificial intelli-
gence (AAAI IJCAI), machine learning (ICML,
ICLR, NeurIPS), and natural language processing
(ACL, EMNLP, NAACL).

The main evaluation benchmarks are FB15K
(Bordes et al., 2013), WN18 (Bordes et al.,
2013), FB15K-237 (Toutanova and Chen, 2015),
WN18RR (Dettmers et al., 2018), FB13 (Socher
etal., 2013), WN11 (Socher et al., 2013), NELL-
995 (Xiong et al., 2017), YAGO3-10 (Dettmers
et al., 2018), Countries (Bouchard et al., 2015).
UMLS (McCray, 2003), Kinship (Kemp et al.,
2006), Families (Hinton, 1986), and other versions
of NELL (Mitchell et al., 2018).

B Seeds for data collection

Table 9 provides all seed entity and relation types
used to collect CODEX. Each type is given first by
its natural language label and then by its Wikidata
unique ID: Entity IDs begin with Q, whereas re-
lation (property) IDs begin with P. For the entity
types that apply to people (e.g., actor, musician,
journalist), we retrieved seed entities by querying
Wikidata using the occupation relation. For the
entity types that apply to things (e.g., airline, dis-
ease, tourist attraction), we retrieved seed entities
by querying Wikidata using the instance of and
subclass of relations.

C Negative annotation guidelines

We provide the annotation guidelines we used to
label candidate negative triples (§ 3.4).

Task You must label each triple as either frue or
false. To help you find the answer, we have pro-
vided you with Wikipedia and Wikidata links for
the entities and relations in each triple. You may
also search on Google for the answer, although
most claims should be resolvable using Wikipedia
and Wikidata alone. If you are not able to find any
reliable, specific, clear information supporting the
claim, choose false. You may explain your reason-
ing if need be or provide sources to back up your
answer in the optional explanation column.

Examples False triples may have problems with
grammar, factual content, or both. Examples of
grammatically incorrect triples are those whose
entity or relation types do not make sense, for ex-
ample:

e (United States of America, continent, science
fiction writer)

e (Mohandas Karamchand Gandhi, medical
condition, British Raj)

* (Canada, foundational text, Vietnamese cui-
sine)

Examples of grammatically correct but factually
false triples include:

* (United States of America, continent, Europe)

* (Mohandas Karamchand Gandhi, country of
citizenship, Argentina)

* (Canada, foundational text, Harry Potter and
the Goblet of Fire)

* (Alexander Pushkin, influenced by, Leo Tol-
stoy) — Pushkin died only a few years after
Tolstoy was born, so this sentence is unlikely.

Notice that in the latter examples, the entity types
match up, but the statements are still false.

Tips For triples about people’s occupation and
genre, try to be as specific as possible. For example,
if the triple says (<person>, occupation, guitarist)
but that person is mainly known for their singing,
choose false, even if that person plays the guitar.
Likewise, if a triple says (<person>, genre, clas-
sical) but they are mostly known for jazz music,
choose false even if, for example, that person had
classical training in their childhood.

D Embedding models

We briefly overview the five models compared in
our link prediction and triple classification tasks.

RESCAL (Nickel et al., 2011) was one of the first
knowledge graph embedding models. Although it is
not often used as a baseline, Ruffinelli et al. (2020)
showed that it is competitive when appropriately
tuned. RESCAL treats relational learning as tensor
decomposition, scoring entity embeddings h, r €
R% and relation embeddings R, € R% *% with the
bilinear form h " Rt.



Table 8: An overview of knowledge graph embedding papers published between 2014 and 2020 with respect to
datasets and evaluation tasks. Original citations for datasets are given in Appendix A. Link pred. refers to link
prediction, and triple class. refers to triple classification, both of which are covered in § 5.
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Table 9: The entity and relation types (Wikidata IDs in parentheses) used to seed CODEX.

Seed types

Entities

actor (Q33999), airline (Q46970), airport (Q1248784), athlete (Q2066131), book (Q571), businessperson
(Q43845), city (Q515), company (Q783794), country (Q6256), disease (Q12136), engineer (Q81096), film
(Q11424), government agency (Q327333), journalist (Q1930187), lake (Q23397), monarch (Q116), mountain
(Q8502), musical group (Q215380), musician (Q639669), newspaper (Q11032), ocean (Q9430), politician
(Q82955), record label (Q18127), religion (Q9174), religious leader (Q15995642), religious text (Q179461),
scientist (Q901), sports league (Q623109), sports team (Q12973014), stadium (Q483110), television program
(Q15416), tourist attraction (Q570116), visual artist (Q3391743), visual artwork (Q4502142), writer (Q36180)

Relations

airline alliance (P114), airline hub (P113), architect (P84), architectural style (P149), author (P50), capital
(P36), cast member (P161), cause of death (P509), chairperson (P488), chief executive officer (P169), child
(P40), continent (P30), country (P17), country of citizenship (P27), country of origin (P495), creator (P170),
diplomatic relation (P530), director (P57), drug used for treatment (P2176), educated at (P69), employer (P108),
ethnic group (P172), field of work (P101), foundational text (P457), founded by (P112), genre (P136), head
of government (P6), head of state (P35), headquarters location (P159), health specialty (P1995), indigenous
to (P2341), industry (P452), influenced by (P737), instance of (P31), instrument (P1303), language of work
or name (P407), languages spoken, written, or signed (P1412), legal form (P1454), legislative body (P194),
located in the administrative terroritorial entity (P131), location of formation (P740), medical condition (P1050),
medical examinations (P923), member of (P463), member of political party (P102), member of sports team (P54),
mountain range (P4552), movement (P135), named after (P138), narrative location (P840), notable works (P800),
occupant (P466), occupation (P106), official language (P37), parent organization (P749), part of (P361), place of
birth (P19), place of burial (P119), place of death (P20), practiced by (P3095), product or material produced
(P1056), publisher (P123), record label (P264), regulated by (P3719), religion (P140), residence (P551), shares
border with (P47), sibling (P3373), sport (P641), spouse (P26), studies (P2578), subclass of (P279), symptoms

(P780), time period (P2348), tributary (P974), unmarried partner (P451), use (P366), uses (P2283)

TransE (Bordes et al., 2013) treats relations as
translations between entities, i.e., h + r ~ t for
h,r,t € R%, and scores embeddings with negative
Euclidean distance —||h + r — t||. TransE is likely
the most popular baseline for KGC tasks and the
most influential of all KGC embedding papers.

ComplEx (Trouillon et al., 2016) uses a bilinear
function to score triples with a diagonal relation em-
bedding matrix and complex-valued embeddings.
Its scoring function is re (h ' diag(r)t), where ¢ is
the complex conjugate of t and re denotes the real
part of a complex number.

ConvE (Dettmers et al., 2018) is one of the first
and most popular nonlinear models for KGC.
It concatenates head and relation embeddings h
and r into a two-dimensional “image”, applies a
pointwise linearity over convolutional and fully-
connected layers, and multiplies the result with
the tail embedding t to obtain a score. Formally,
its scoring function is given as f(vec(f([h;¥] *
w))W)t, where f is a nonlinearity (originally,
ReLU), [h;T| denotes a concatenation and two-
dimensional reshaping of the head and relation
embeddings, w denotes the filters of the convo-
lutional layer, and vec denotes the flattening of a
two-dimensional matrix.

TuckER (Balazevic et al., 2019b) is a linear model
based on the Tucker tensor decomposition, which
factorizes a tensor into three lower-rank matrices
and a core tensor. The TuckER scoring function for
a single triple (h,r,t) is givenas W x1 h xor X3
t, where MV is the mode-three core tensor that is
shared among all entity and relation embeddings,
and X, denotes the tensor product along the n-
th mode of the tensor. TuckER can be seen as a
generalized form of other linear KGC embedding
models like RESCAL and ComplEXx.

E Content comparison

We provide additional comparison of the contents
in CODEX-M and FB15K-237.

Figure 5, which plots the top-30 entities by fre-
quency in the two benchmarks, demonstrates that
both dataset are biased toward developed Western
countries and cultures. However, CODEX-M is
more diverse in domain. It covers academia, enter-
tainment, journalism, politics, science, and writing,
whereas FB15K-237 covers mostly entertaiment
and sports. FB15K-237 is also much more biased
toward the United States in particular, as five of its
top-30 entities are specific to the US: United States
of America, United States dollar, New York City,
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Figure 5: Top-30 most frequent entities in CODEX-M and FB15K-237.
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Figure 6: Top-15 most frequent entity types in CODEX-M and FB15K-237.

Los Angeles, and the United States Department of
Housing and Urban Development.

Figure 6 compares the top-15 entity types in
CoODEX-M and FB15K-237. Again, CODEX-M
is diverse, covering people, places, organizations,
movies, and abstract concepts, whereas FB15K-
237 has many overlapping entity types mostly
about entertainment.

F Hyperparameter search

Table 10 gives our hyperparameter search space.
Tables 11, 12, and 13 report the best hyperparame-
ter configurations for link prediction on CODEX-

S, CODEx-M, and CODEX-L, respectively. Ta-
bles 14 and 15 report the best hyperparameter con-

figurations for triple classification on the hard neg-
atives in CODEX-S and CODEX-M, respectively.

Terminology For embedding initialization, Xv
refers to Xavier initialization (Glorot and Bengio,
2010). The reciprocal relations model refers to
learning separate relation embeddings for queries
in the direction of (h,r,?) versus (7, r,t) (Kazemi
and Poole, 2018). The frequency weighting regu-
larization technique refers to regularizing embed-
dings by the relative frequency of the correspond-
ing entity or relation in the training data.



Search strategies Recall that we select models
using Ax, which supports hyperparameter search
using both quasi-random sequences of generated

configurations and Bayesian optimization (BO).

The search strategy for each CODEX dataset is
as follows:

* CODEX-S: Per negative sampling type/loss
combination, we generate 30 quasi-random
trials followed by 10 BO trials. We select the
best-performing model by validation MRR
over all such combinations. In each trial, the
model is trained for a maximum of 400 epochs
with an early stopping patience of 5. We also
terminate a trial after 50 epochs if the model
does not reach > 0.05 MRR.

* CODEX-M: Per negative sampling type/loss
combination, we generate 20 quasi-random
trials. The maximum number of epochs and
early stopping criteria are the same as for
CoDEX-S.

* CODEX-L: Per negative sampling type/loss
combination, we generate 10 quasi-random
trials of 20 training epochs instead of 400. We
reduce the number of epochs to limit resource
usage. In most cases, MRR plateaus after 20-
30 epochs, an observation which is consistent
with (Ruffinelli et al., 2020). Then, we take
the best-performing model by validation MRR
over all such combinations, and retrain that
model for a maximum of 400 epochs.

Note that we search using MRR as our metric, but
the triple classification task measures 0/1 accuracy,
not ranking performance. For triple classification,
we choose the model with the highest validation
accuracy among the pre-trained models across all
negative sampling type/loss function combinations.

We release all pretrained LibKGE models and
accompanying configuration files in the centralized
CoODEX repository.



Table 10: Our hyperparameter search space. We follow the naming conventions and ranges given by Ruffinelli et al.
(2020), and explain the meanings of selected hyperparameter settings in Appendix F. As most KGC embedding
models have a wide range of configuration options, we encourage future work to follow this tabular scheme for
transparent reporting of implementation details.

Hyperparameter Range
Embedding size {128,256,512}
Training type {NegSamp, 1vsAll, KvsAll}

Reciprocal {True, False}

# head samples (NegSamp)
# tail samples (NegSamp)

[1,1000], log scale
[1,1000], log scale

Label smoothing (KvsAll) [0,0.3]
Loss {MR, BCE, CE}
Margin (MR) [0, 10]
£, norm (TransE) {1,2}
Optimizer {Adam, Adagrad}
Batch size {128,256, 512, 1024}

Learning rate

[1074, 1], log scale

LR scheduler patience [0, 10]
£, regularization {1,2,3, None}
Entity embedding weight [10%°,1077]
Relation embedding weight [10%°,1077]

Frequency weighting

Embedding normalization (TransE)

{True, False}

Entity {True, False}

Relation {True, False}
Dropout

Entity embedding [0.0,0.5]

Relation embedding [0.0,0.5]

Feature map (ConvE) [0.0,0.5]

Projection (ConvE) [0.0,0.5]

Embedding initialization

{Normal, Unif, XvNorm, XvUnif}

Stdev (Normal) [1075,1.0]
Interval (Unif) [-1.0,1.0]
Gain (XvNorm) 1.0
Gain (XvUnif) 1.0




Table 11: Best link prediction hyperparameter configurations on CODEX-S.

Gain (XvUnif)

RESCAL TransE ComplEx ConvE TuckER
Best validation MRR 0.4076 0.3602 0.4752 0.4639 0.4574
Embedding size 512 512 512 256 512
Training type 1vsAll NegSamp 1vsAll 1vsAll KvsAll
Reciprocal No Yes Yes Yes Yes
# head samples (NegSamp) - 2 - - -
# tail samples (NegSamp) - 56 - - -
Label smoothing (KvsAll) - - - - 0.0950
Loss CE CE CE CE CE
Margin (MR) - - - - -
¢, norm (TransE) - 2 - - -
Optimizer Adagrad Adagrad Adam Adagrad Adagrad
Batch size 128 128 1024 512 256
Learning rate 0.0452 0.0412 0.0003 0.0117 0.0145
LR scheduler patience 7 6 7 3 1
£, regularization 3 2 None 3 1
Entity embedding weight 218 x 10710 1.32x 1077 958 x 10713 3.11x107'° 347 x 10715
Relation embedding weight 3.37T x 10714 372 x 10718 0.0229 4.68 x 1077 343 x 10714
Frequency weighting False False True True True
Embedding normalization (TransE)
Entity - No - - -
Relation - No - - -
Dropout
Entity embedding 0.0 0.0 0.0793 0.0 0.1895
Relation embedding 0.0804 0.0 0.0564 0.0 0.0
Feature map (ConvE) - - - 0.2062 -
Projection (ConvE) - - - 0.1709 -
Embedding initialization Normal XvNorm XvNorm XvNorm XvNorm
Stdev (Normal) 0.0622 - - - -
Interval (Unif) - - - - -
Gain (XvNorm) - 1.0 1.0 1.0 1.0




Table 12: Best link prediction hyperparameter configurations on CODEX-M.

RESCAL TransE ComplEx ConvE TuckER
Best validation MRR 0.3173 0.2993 0.3351 0.3146 0.3253
Embedding size 256 512 512 512 512
Training type 1vsAll NegSamp KvsAll NegSamp KvsAll
Reciprocal Yes Yes Yes Yes Yes
# head samples (NegSamp) - 2 - 381 -
# tail samples (NegSamp) - 56 - 751 -
Label smoothing (KvsAll) - - 0.2081 - 0.0950
Loss CE CE CE CE CE
Margin (MR) - - - - -
£, norm (TransE) - 2 - - -
Optimizer Adagrad Adagrad Adagrad Adagrad Adagrad
Batch size 256 128 1024 128 256
Learning rate 0.0695 0.0412 0.2557 0.0024 0.0145
LR scheduler patience 8 6 6 9 1
£, regularization 2 2 3 1 1
Entity embedding weight 9.56 x 1077 1.32x 1077 1.34x 10710 1.37x 10710 347 x 1071
Relation embedding weight 2.56 x 10717 3.72x 10718 6.38 x 10716 4.72 x 10-10 3.4 x 10~™
Frequency weighting False False True True True
Embedding normalization (TransE)
Entity - No - - -
Relation - No - - -
Dropout
Entity embedding 0.0 0.0 0.1196 0.0 0.1895
Relation embedding 0.0 0.0 0.3602 0.0348 0.0
Feature map (ConvE) - - - 0.3042 -
Projection (ConvE) - - - 0.2343 -
Embedding initialization XvUnif XvUnif Unif XvNorm XvNorm
Stdev (Normal) - - - - -
Interval (Unif) - - —0.8133 - -
Gain (XvNorm) - - - 1.0 1.0
Gain (XvUnif) 1.0 1.0 - - -




Table 13: Best link prediction hyperparameter configurations on CODEX-L.

Gain (XvUnif)

RESCAL TransE ComplEx ConvE TuckER
Best validation MRR 0.3030 0.1871 0.2943 0.3010 0.3091
Embedding size 128 128 128 256 256
Training type 1vsAll NegSamp 1vsAll 1vsAll 1vsAll
Reciprocal No Yes Yes Yes No
# head samples (NegSamp) - 209 - - -
# tail samples (NegSamp) - 2 - - -
Label smoothing (KvsAll) - - - - -
Loss CE CE CE CE CE
Margin (MR) - - - - -
¢, norm (TransE) - 2 - - -
Optimizer Adagrad Adam Adagrad Adagrad Adagrad
Batch size 1024 128 1024 256 512
Learning rate 0.2651 0.0009 0.2651 0.0329 0.0196
LR scheduler patience 7 9 7 1 4
£, regularization 2 2 2 1 2
Entity embedding weight 2.01 x 10716 7.98 x 1071* 2.01 x 10716 6.10 x 10716 8.06 x 10~
Relation embedding weight 3.52x 10713 342x 1072 3.52x 10713 1.03x 10716 7.19 x 10719
Frequency weighting True False True True True
Embedding normalization (TransE)
Entity - No - - -
Relation - No - - -
Dropout
Entity embedding 0.0 0.0 0.0 0.0064 0.1606
Relation embedding 0.0 0.0 0.0 0.0 0.0857
Feature map (ConvE) - - - 0.1530 -
Projection (ConvE) - - - 0.4192 -
Embedding initialization Normal Unif Normal XvNorm Normal
Stdev (Normal) 0.0169 - 0.0169 - 0.0002
Interval (Unif) - —0.4464 - -
Gain (XvNorm) - - 1.0 -




Table 14: Best triple classification hyperparameter configurations on CODEX-S (hard negatives).

RESCAL TransE ComplEx ConvE TuckER
Best validation accuracy 0.8571 0.8511 0.8558 0.8607 0.8596
Embedding size See Tab. 11  See Tab. 11  See Tab. 11 512  See Tab. 11
Training type 1vsAll NegSamp 1vsAll 1vsAll KvsAll
Reciprocal See Tab. 11 See Tab. 11  See Tab. 11 Yes See Tab. 11
# head samples (NegSamp) - See Tab. 11 - - -
# tail samples (NegSamp) - See Tab. 11 - - -
Label smoothing (KvsAll) - - - - -
Loss CE CE CE BCE CE
Margin (MR) - - - - -
£, norm (TransE) - SeeTab. 11 - - -
Optimizer See Tab. 11  See Tab. 11  See Tab. 11 Adagrad See Tab. 11
Batch size See Tab. 11  See Tab. 11  See Tab. 11 256 See Tab. 11
Learning rate See Tab. 11  See Tab. 11  See Tab. 11 0.0263 See Tab. 11
LR scheduler patience See Tab. 11  See Tab. 11  See Tab. 11 7 See Tab. 11
£, regularization See Tab. 11 ~ See Tab. 11  See Tab. 11 2 See Tab. 11
Entity embedding weight See Tab. 11 See Tab. 11 See Tab. 11~ 9.62 x 107%  See Tab. 11
Relation embedding weight See Tab. 11 See Tab. 11  See Tab. 11  1.34 x 10712 See Tab. 11
Frequency weighting See Tab. 11  See Tab. 11  See Tab. 11 False See Tab. 11
Embedding normalization (TransE)
Entity - See Tab. 11 - - -
Relation - See Tab. 11 - - -
Dropout
Entity embedding See Tab. 11  See Tab. 11  See Tab. 11 0.1620 See Tab. 11
Relation embedding See Tab. 11  See Tab. 11  See Tab. 11 0.0031 See Tab. 11
Feature map (ConvE) - - - 0.0682 -
Projection (ConvE) - - - 0.2375 -
Embedding initialization See Tab. 11 See Tab. 11  See Tab. 11 Normal See Tab. 11
Stdev (Normal) See Tab. 11  See Tab. 11  See Tab. 11 0.0006 See Tab. 11
Interval (Unif) See Tab. 11  See Tab. 11  See Tab. 11 - See Tab. 11
Gain (XvNorm) See Tab. 11  See Tab. 11  See Tab. 11 - See Tab. 11
Gain (XvUnif) See Tab. 11 See Tab. 11  See Tab. 11 - SeeTab. 11




Table 15: Best triple classification hyperparameter configurations on CODEX-M (hard negatives).

RESCAL TransE ComplEx ConvE TuckER
Best validation accuracy 0.8232 0.8002 0.8267 0.8292 0.8267
Embedding size 512 See Tab. 12 512 512  See Tab. 12
Training type KvsAll NegSamp KvsAll KvsAll KvsAll
Reciprocal Yes See Tab. 12 Yes Yes See Tab. 12
# head samples (NegSamp) - See Tab. 12 - - -
# tail samples (NegSamp) - See Tab. 12 - - -
Label smoothing (KvsAll) 0.0949 - 0.2081 0.0847 -
Loss CE CE CE CE CE
Margin (MR) - - - - -
£, norm (TransE) - See Tab. 12 - - -
Optimizer Adagrad See Tab. 12 Adagrad Adagrad See Tab. 12
Batch size 256  See Tab. 12 1024 1024  See Tab. 12
Learning rate 0.0144 See Tab. 12 0.2557 0.0378 See Tab. 12
LR scheduler patience 1 See Tab. 12 6 6 See Tab. 12
£, regularization 1 See Tab. 12 3 3 See Tab. 12
Entity embedding weight 3.47 x 1071  SeeTab. 12 1.34 x 10710 1.03 x 10716 See Tab. 12
Relation embedding weight 3.43 x 1071*  See Tab. 12 6.38 x 10716 0.0052 See Tab. 12
Frequency weighting True See Tab. 12 True True See Tab. 12
Embedding normalization (TransE)
Entity - See Tab. 12 - - -
Relation - See Tab. 12 - - -
Dropout
Entity embedding 0.1895 See Tab. 12 0.1196 0.4828 See Tab. 12
Relation embedding 0.0 See Tab. 12 0.3602 0.0 See Tab. 12
Feature map (ConvE) - - - 0.2649 -
Projection (ConvE) - - - 0.2790 -
Embedding initialization XvNorm See Tab. 12 Unif XvUnif See Tab. 12
Stdev (Normal) - See Tab. 12 - - See Tab. 12
Interval (Unif) - See Tab. 12 —0.8133 - See Tab. 12
Gain (XvNorm) 1.0 See Tab. 12 - - See Tab. 12
Gain (XvUnif) - See Tab. 12 - 1.0 See Tab. 12




