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In engineering systems design, designers iteratively go back and forth between different
design stages to explore the design space and search for the best design solution that satis-
fies all design constraints. For complex design problems, human has shown surprising
capability in effectively reducing the dimensionality of design space and quickly converging
it to a reasonable range for algorithms to step in and continue the search process. There-
fore, modeling how human designers make decisions in such a sequential design process
can help discover beneficial design patterns, strategies, and heuristics, which are essential
to the development of new algorithms embedded with human intelligence to augment the
computational design. In this paper, we develop a deep learning-based approach to
model and predict designers’ sequential decisions in the systems design context. The core
of this approach is an integration of the function-behavior-structure (FBS) model for
design process characterization and the long short-term memory unit (LSTM) model for
deep leaning. This approach is demonstrated in two case studies on solar energy system
design, and its prediction accuracy is evaluated benchmarking on several commonly
used models for sequential design decisions, such as the Markov Chain model, the
Hidden Markov Chain model, and the random sequence generation model. The results indi-
cate that the proposed approach outperforms the other traditional models. This implies that
during a system design task, designers are very likely to rely on both short-term and long-
term memory of past design decisions in guiding their future decision-making in the design
process. Our approach can support human–computer interactions in design and is general
to be applied in other design contexts as long as the sequential data of design actions are
available. [DOI: 10.1115/1.4049971]

Keywords: computer-aided design, data-driven design, decision theory, design process,
deep learning, systems design

1 Background Introduction and Research Overview
Design involves an iteratively searching process of design space

for desired solutions. In such a search process, designers make
sequential decisions that involve the selection of design actions
and determination of design parameters so that they can get the
best output. Since the search process always accompanies uncer-
tainties, the tradeoff strategies and the decisions on when and
where to explore and exploit design space are essential to the
quality of design outcomes and the resources needed to achieve
the objectives. For example, in our previous study on sequential
design behaviors [1], we integrated the Markov chain and unsuper-
vised clustering methods to explore designers’ sequential behaviors.
We observed that designers follow specific design patterns, such as
high frequent design synthesis-related operations, in systems
designs that often have many coupling design variables and
exhibit significant design uncertainties.
These sequential decision-making strategies are often the key

features that differentiate expert designers and novice. Therefore,
these strategies compose the essence of human intelligence in

design. This is also the reason why sometimes human designers
are effective in reducing the dimensionality of solution space of
complex systems design and quickly converge it to a reasonable
range for the search. For example, human designers show very dif-
ferent strategies compared with computational algorithms [2], and
they are more effective than algorithms searching for promising
design candidates in certain situations, such as in early-stage
systems design [3].
Modeling and machine learning of human sequential design deci-

sions would significantly impact the engineering design process and
design automation in three aspects. First, successful modeling of
sequential design decisions can help discover quantifiable design
patterns that are useful to improve the existing computational
design by encoding human intelligence. Second, the discovery of
beneficial design patterns from expert designers can be used to
train novice designers. Third, computational modeling of sequential
design decisions can help build artificial design agent, which can be
used in computer-aided design (CAD) systems to work collabora-
tively with human designers by reducing unnecessary design itera-
tions and reinforce useful iterations.
These benefits are significant to socio-technical systems engi-

neering and design. This is because human–system interaction
plays a vital role in determining whether desired design solutions
can be successfully achieved [4] in the open design platform or dis-
tributed innovation. For example, in the study of participants’
behaviors on GrabCAD, a community-based design innovation
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system, Sha et al. [5] developed a network-based approach and used
online design challenge data to identify the important system factors
(e.g., incentivize structures and prize amount) that can significantly
influence participants (designers’) behaviors, which in turn, impact
how successfully the GrabCAD system can solicit design solutions
through design contests. Similarly, with the establishment of the
design collaboration network of OpenIDEO—a design and innova-
tion online platform that uses a human-centered, collaborative
approach to solving complex issues—Fuge et al. [6] found that
the core-periphery structure in OpenIDEO’s collaborative network
is at risk of decreasing its design exploration ability. The authors
proposed possible interventions that can prevent this issue, for
example, by encouraging core members to collaborate with periph-
ery nodes, and increasing the diversity of the user population. In
other socio-technical systems, such as autonomous vehicle and
human–robot manufacturing, the ability to predict operators’ next
move is even more critical because it directly affects the system per-
formance and human safety.
However, modeling and predicting sequential human decisions is

challenging. First, human decisions are a result of a mental process
that is hidden, implicit, and sometimes tacit [7] because they are dif-
ficult to be transferred in an explicit way like writing or verbalizing.
Second, sequential design data have unique features that are differ-
ent from the sequential data in other fields, such as in natural lan-
guage or human daily routine activities where machine learning
approaches can yield satisfactory performance. In design, designers
perform conceptual design at the beginning stage and involve
design actions that would be very different from the ones in the
embodiment design stage. This indicates the design actions taken
in various phases of design would be very different, while in the
same phase, a particular set of actions could be more preferred.
Third, design decisions are intricate, particularly in systems
design scenarios where the design process often spans over a long
period, and designers’ decisions involve multiple interdependent
variables; thus, their decisions are highly correlated in time
sequence. So, it is very challenging for traditional sequential learn-
ing models such as the Markov model (MM), autoregressive inte-
grated moving average (ARIMA), etc., to discover prominent
design patterns for prediction. To address these challenges, the
objective of this study is to computationally model and predict
human designers’ sequential decisions in support of an in-depth
understanding of designers’ thinking in the systems design context.
Artificial neural network (ANN), which mimics the human brain,

has been proved to be capable of machine learning sequential beha-
vioral patterns in various fields such as natural language processing
[8], healthcare [9], image recognition [10], finance [11], etc., and
recently in the field of engineering design (see Sec. 2 for detail).
Yet, there is still a gap of using deep learning-based approaches
in understanding designers’ design processes and sequential
decision-making, which requires integration with design theory,
and particularly design process models. Therefore, the questions
we are interested in this study are: how a design process model
can be used in support of modeling and understand designer’s
sequential decision-making? And what is the performance of the
neural network-based models in predicting sequential design deci-
sions? To answer these questions, we develop a deep learning-based
approach integrating recurrent neural network (RNN) and
function-behavior-structure (FBS).
In this paper, we focus on the systems design problems that

involve parametric and configuration design decisions. In real
design scenarios, from product design to production pipeline, con-
figuration and parametric design are crucial where designers make
decisions on which design components to use and what design
parameter values to choose for the desired design outcome that
satisfies the given requirements. These decisions can be recorded
continuously in real time as a sequence of actions taken. The
scope and the design context of this research are put under the
design decisions made in a CAD process for the ease of data collec-
tion, but our approach is generally applicable in any design situa-
tions as long as designers’ sequential actions can be collected.

The contributions of this work are twofold: (1) A new approach
that integrates the FBS-based design process model and RNN to
model and predict human sequential design decisions in systems
designs. (2) The new knowledge about the capability of deep learn-
ing models in predicting sequential design decisions and supporting
design thinking research, benchmarking conventional models. The
remaining paper is organized as follows. In Sec. 2, we discuss the
state-of-the-art design research on sequential design decision-
making and deep learning of sequential design data. In Sec. 3, we
present our research approach and briefly introduce the technical
backgrounds on different types of ANN models and the FBS
based design process model. In Sec. 4, two case studies are pre-
sented to demonstrate the approach in predicting designers’ sequen-
tial decisions in a solar energy system design context. The details of
the design experiment and data collection are provided in this
section too. In Sec. 5, the validation based on a comparative
study of different models for sequential design decisions is per-
formed; the results are presented and discussed. Finally, we con-
clude the paper with closing insights and discuss our future work
in Sec. 6.

2 Literature Review of the Research on Sequential
Design Decision
Several studies have been done in the engineering design field to

explore the sequential patterns, optimize the sequence of design
tasks, and finding heuristics from sequence learning. Particularly,
a large number of studies have been conducted based on the
Markov chain model. For example, in order to compare designers’
sequential design behaviors in three different domains, including
architecture, software design, and mechanical design, the
function-behavior-structure ontology and the first-order Markov
chain [12] were adopted. The second-order Markov chain model
was also used to explore the effect of previous experience and
design knowledge on design sequence [13]. In order to study
designers’ sequential learning strategies, McComb et al. [14] used
a Markov chain model in a truss design problem. Their results indi-
cate that the first-order Markov chain better represents designers’
action sequences. In a later study, they used the hidden Markov
model (HMM) to study the patterns of sequential design state in
the same design problem. They found four hidden states in the con-
figuration design and observed that designers used the first two
states to topology operation, the third state to spatial, and the
fourth state to parameter operation. The trained HMM model was
then utilized to compare the design processes of the high-
performing group and low-performing group [15].
To computationally model designers’ sequential search process,

there have been studies based on Bayesian optimization (BO)
framework. For example, to mimic the human searching strategy,
Sexton and Ren [3] developed a searching process using the BO
algorithm, which can replace human solvers from a design
process. Sha et al. [16] also integrated the Weiner process BO
with game theory to study designers’ sequential decisions in a
one-on-one competition for monetary reward. Some studies have
also used the Gaussian process-based model [17] and descriptive
models based on expected utility maximization [18] to understand
human design strategies in the sequential information acquisition
decision-making (SIADM) scenario. In order to quantify the
impact of designers’ domain knowledge and problem framing,
Shergadwala et al. [19] developed a SIADM framework incorporat-
ing expected improvement maximization and optimal one-step
look-ahead strategy. The framework is applied to a motor track
design problem and found that problem framing impacts designers’
knowledge as well as their performance. Later, the framework is
extended as a Strategic-SIADM model to understand the influence
of competitors’ past performance on individuals’ design behavior
and outcomes [20].
Prior studies on sequential design processes have also been

focused on project task level in support of product development

081706-2 / Vol. 143, AUGUST 2021 Transactions of the ASME



and project management. For example, the design structure matrix
[21] has been used to study task sequencing for identifying the
sequence that minimizes expected project completion time. Some
other work has been grounded in theoretical processes. For
example, Miller et al. [22] use multi-objective formulations to
study the design process sequentially advancing through to
smaller sets of alternatives using models of increasing fidelity. In
addition, optimization approaches, such as the expected value of
perfect information [23], genetic algorithm [24], and optimal learn-
ing [25], have been utilized in studying optimal design sequences.
However, these studies are fundamentally different from the pre-
sented work in that they formulate a design problem and cast it
into a sequential decision process to be optimized with normative
models. In this study, however, we focus on the sequential decision-
making of human designers. It is about the actual actions that
designers sequentially take. By modeling and analyzing such a
design sequence at a fine-grained resolution, it is expected that
insights and new knowledge regarding the designers’ thought
process can be obtained.
In recent years, deep learning techniques have shown their

promise in the designfield to solve different design problems, includ-
ing design optimization, design ideation, and design behavioralmod-
eling. For example, Raina et al. [26] developed a two-step deep
learning framework. A convolutional neural network (CNN) based
auto-encoder is used in the framework to map the images of design
to a low-dimensional embedding to generate design without specific
design operation (i.e., adding any particular design component). In
the second step, the derived embedding and a rule-based image pro-
cessing inference algorithm are used to output the operation, con-
struct the structure, and iteratively improve the design. The
resulting design is found to have a better factor of safety and
strength-to-weight ratio over human designs. Oh et al. [27] devel-
oped a framework where topology optimization and boundary equi-
librium generative adversarial network (BEGAN) is used iteratively
to generate new designs. The proposed method is applied to a case
study on a 2D car wheel design. Stump et al. [28] developed a
method for optimizing the structure and attributes of sailboat
design. By embedding spatial grammar in character recurrent
neural network (char-RNN), the structure of the sailboat is optimized
in a physics-based game engine, Unity3D. In a similar case study,
reinforcement learning (RL) is used to minimize the time of the sail-
boat’s travel path. Table 1 shows a summary of these relevant studies.
Although deep learning methods serve as the core of the research

approaches in several studies in the design field, the research objec-
tives are fundamentally different from the presented study. Current
deep learning-based methods aim at improving or optimizing a
design output or generating new designs by training a neural
network that learns from existing design artifact data. For
example, Raina et al. [26] uses 2D images of the designs as their
input and uses the CNN model to learn truss design structures
that can yield high design performance. There are similarities
between Raina et al.’s work and this study in the ideas of using
deep learning techniques to study human sequential design behav-
iors. But the research goal and the deep neural networks adopted by
Raina et al. are different from the current work. For example, while

the other work’s ultimate goal is to generate and optimize new
designs, this paper aims at understanding designer’s thinking in
an engineering system design process and learning the beneficial
design sequences for an in-depth understanding of their thought
processes. Because of this motivation, the integration of a higher
level of abstraction of the design process (often known as design
ontology) is needed to transform the design action space to the
design thinking space.

3 Research Approach and Technical Background
In this section, we first introduce our research approach. Then, we

present the technical background regarding the deep learning
models and the FBS design process model adopted in our approach.

3.1 The Research Approach. The approach starts with the
raw data collection of designers’ sequential design decisions from
different sources such as the action logger of CAD software, inter-
views of designers, design documents, etc. The raw data contains
the details of human design behaviors (i.e., design actions) as
well as design artifact’s information, such as values of design
parameters, simulation results, etc. In this study, we only extract
the actions which are only design-related; for example, in a CAD
environment, these actions could be adding a new component or
editing that component. Designers act based on the given design
requirements and constraints; thus, those design actions can
reflect designers’ thinking and strategies in searching the design
space. Next, we apply a design process model to convert the
design actions into design process data. The design process model
consists of a series of design stages that characterize a design
process. This treatment transforms the action space into a design
process space. This treatment helps better interpret and understand
designers’ design thinking and reduce the dimensionality of the
sequential action data (see Sec. 4.2 for details). Then, we use the
sequential design process data to train deep learning models and
predict the next immediate design action category (i.e., the design
stage defined by a design process model) based on the trained
models. In this study, we use ANN models, particularly the feed-
forward neural network (FNN) and RNN models, to implement
the deep learning approach as these two models can properly
handle sequential data [29]. Finally, we evaluate the predictive per-
formance of these models and compare them with those commonly
used models using different metrics, such as testing accuracy, pre-
cision, recall, F1 score, and area under the receiver operating char-
acteristics (AUROC) curve, at both aggregated level and design
process stage level (see Sec. 5 for details). Figure 1 depicts a sche-
matic diagram of the overall approach used in this study.

3.2 Feed-Forward Neural Network and Recurrent Neural
Network. In an FNN architecture, the information follows one
direction from input to output with no back loops. In addition to
the input layer and output layer, FNN may have single or multiple
hidden layers. When FNN has only one layer between input and

Table 1 The summary of the relevant literature on deep learning in engineering design

References Data type
Used deep learning

model Research objective Design context
Number of available design

operations

Raina et al.
[26]

Images of sequence of
design artifacts

Convolutional neural
network

Generative design and
optimization

Truss design 9 design operations

Oh et al. [27] Images of sequence of
design artifacts

Generative adversarial
network

Topology optimization Car wheel design N/A

Stump et al.
[28]

3D CAD geometry Char-recurrent neural
network

Structure and attribute
optimization

Sailboat N/A

McComb et al.
[15]

Text data sequence of
design actions

Hidden Markov model Identify beneficial
design heuristics

Truss design and
cooling system design

9 operations for truss design and 7
for cooling system design
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output, it is known as the single-layer perceptron. An FNN with
more than one hidden layer, including the output layer, is called a
multilayer perceptron. An FNN with a single hidden layer
between the input layer and the output layer is often sufficient to
be universal function approximation [30]. However, deep neural
networks with additional hidden layers outperform this shallow
model. A standard depth of deep neural network (i.e., the number
of hidden layers) may vary from two or three to even one thousand
[10]. The structure of the RNN is similar to that of an FNN. The
only distinction is that there is no restriction on back loops. So,
the information not only passes in one direction forward but also
does it flow backward, called recurrence. This feature allows
RNN to create a hidden state which carries information from the
previous time-steps to its current step. Although RNN can be
used for capturing long-term dependencies, simple recurrent units
are not effective in this task due to vanishing gradient problem
[31]. In order to solve this problem, Hocreiter and Schmidhuber
[32] proposed the long short-term memory units (LSTMs)—a
special type of mechanism where information flow is controlled
by three different gates, namely, input gate, forget gate, and
output gate. LSTM is more widely used than simple RNN in
many domains for its capability of modeling long-term dependen-
cies. To study to what extent the past decisions of designers’ can
influence their future decision-making, we adopt LSTM as a repre-
sentative RNN model in our study.

3.3 The Function-Behavior-Structure Design Process
Model. The FBS model [33], a domain-independent design
process model, consists of three ontological design variables: Func-
tion (F), Behavior (B), and Structure (S). Function describes the
purpose of the design and establishes the connection between
design goals and measurable effect. Behavior is defined as a
design attribute that can be derived from the design structure. Struc-
ture (S) is defined as the design component and its interconnected
relationship. During the design task, designers establish intercon-
nections among these three variables. The first basic interconnection
is constructed by transforming the function into behavior and beha-
vior into the structure, i.e., F→ B (#1), and B→ S (#2), as shown in
Fig. 2. Here behavior is interpreted as the expected performance in
order to achieve the function. However, once the structure is gener-
ated, the expected performance may not be achieved. Therefore, the
performance from the structure needs to be compared with the
expected performance. For this reason, in the FBS design model,
the behavior is distinguished into two separate classes of behavior:
expected behavior (Be) and behavior derived from the structure
(Bs). With these additional variables, the transformations are
extended as follows: F → Be (#1), Be → S (#2), S → Bs (#3),
and Be → Bs (#4), as shown in Fig. 2.
Often designers start their design from the initial requirement and

finish the design task by reporting the description of the design.
Therefore, two additional design variables: requirements (R) and

description (D) are added to the design process model. The FBS
design processmodel regards requirements (R) as a function (F) gen-
erator and defines description (D) as the representation of a design
task. The additional transformations are S→D (#5) and R→ F (#1).
During the design task, designers iteratively and incrementally

improve the design. Also, designers implement new ideas by
removing or changing the existing structures or functions in order
to improve the behavior of the structure. Thus, additional three
transformations are included in the FBS model: S → S′ (#6), S →
Be′ (#7), and S → F (#8). With all of these transformations, a
total of eight design processes are obtained, as summarized in
Table 2, along with the interpretations. This FBS design ontology
provides us with the rationale for the transformation of design
action data to design process data in support of the study of
design thinking.

4 Predicting Sequential Design Processes in Solar
Energy Systems Design With Two Case Studies
In this section,we present two case studies on solar energy systems

design and implement the proposedapproach to predicting designers’
sequential design decisions. First, we introduce the design experi-
ments conducted for data collection. Next, we present the collected
data and introduce the methods for processing it.

4.1 The Design Context. In order to collect sequential design
behavioral data, we conducted a series of design challenges on real-
world engineering design problems. The challenges were held at the
University of Arkansas. Both undergraduate and graduate students
from engineering disciplines participated in these challenges. In this
study, we mainly adopt the data collected from two design chal-
lenges. In the first challenge, the students were asked to design a
solarized home in Texas with a budget of $200,000 (see Fig. 3).

Fig. 1 The overall research approach

Fig. 2 The FBS design ontology (adapted from Ref. [33])
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The second challenge was to build a solarized parking lot at the
University of Arkansas. The budget for this challenge was $1.5M.
The design objective of both challenges is to maximize the

annual net energy (ANE) with the given budget. The design
requirements and constraints are provided to the participants so
they can start the design with a focus on configuration and paramet-
ric design. In this study, the design variables are mainly related to
the components that have a direct impact on the design objective.
We limit the number of design variables and design constraints
so that the experiment remains in a controlled manner. By doing
so, we are able to compare the models in different settings of
design complexity. Table 3 shows the requirements and constraints
of both design challenges. These two design problems reflect differ-
ent design complexity in terms of design variables and the cou-
plings between these variables. For example, the energy plus
home design problem has more design variables than the parking
lot design problem. Therefore, the two design problems bring gen-
erality for a comparison of the proposed approach.
Students’ designs were conducted within a CAD environment,

called Energy3D. Energy3D is a full-fledged CAD software spe-
cially built for solar systems design [34]. It has several unique fea-
tures, such as interactive visualization, high-fidelity simulation, and
built-in financial evaluation [35]. These features can help designers
effectively explore and exploit the design space. Moreover,
Energy3D has a nonintrusive data action logger. That means
designers are not aware of the data collection process, and this
helps reduces participants’ cognitive burden that could be intro-
duced in experimental settings. As a result, the data that reflect
designers thinking and decision-making can be less biased.
Energy3D sorts and logs every performed action in JSON format.

This high-resolution data provide us with a large amount of data
that is essential to implementing deep learning models.

4.2 Data Collection and Preprocessing. Energy3D collects
the continuous flow of design action data, which includes time-
steps, design actions, design parameter values, and simulation
results. In the solarized home design problem, a total of 52 engi-
neering students participated in this design challenge. Among
them, 29 students are undergraduate students, and 23 are graduate
students. 40 students are from Mechanical Engineering. On
average, the design action log records 1500 lines and 220 interme-
diate files per student. In the parking lot design problem, a total of
41 students participated in which 35 students are from undergradu-
ate, and five students are from graduate students, all in the major of
Mechanical Engineering. The design action log records, on
average, 1300 lines of data per student. An example of one
logged design action is presented below:

We ignored the actions, such as “camera,”2 that do not have
direct effects on the design outcomes (i.e., ANE). After removing
those irrelevant actions, there are about 300 actions per participant
on average, and 115 are unique actions in the solarized home design
problem. In the solarized parking lot design problem, the average
number of design actions is about 350 after removing those
trivial actions. Among these, 72 design actions are unique.

Analysis of such a high dimension action space would yield
results hard to interpret. To better understand the design process
and designers’ sequential decision-making strategies, the
FBS-based design process model introduced in Sec. 3.3 is
applied. In this study, an encoding scheme (see Table 4) is estab-
lished to transcribe different types of design actions to the seven
design process stages, including Formulation (F), Analysis (A),
Evaluation (E), Synthesis (S), Reformulation 1 (R1), Reformulation
2 (R2), and Reformulation 3 (R3). In our design problem, adding
any component such as add wall, add a solar panel, etc. refers to
Formulation. Designers add components in order to construct the
artifact to achieve the desired objective. According to Table 2,
Synthesis occurs when parameters of a component are tuned to

Table 2 Transformation of ontological design variables and the
rationale of the FBS-based design processes

Transformation Design process Definition and interpretation

F → Be &
R → F

Formulation Generate when requirement is
transformed into function and function
is transformed into behavior

Be → S Analysis Obtain behavior from generated
structure

S → Bs Synthesis Generate and tune structure based on
the expected behavior

Be → Bs Evaluation Comparison of the expected behavior
and actual behavior

S → D Documentation Generate design description based on
structure

S → S′ Reformulation 1 Regenerate and modify one structure to
another structure

S → Be′ Reformulation 2 Regenerate or modifies structure based
on the expected behavior

S → Be′ Reformulation 3 Regenerate and modifies structure based
on the formulation

Fig. 3 An example of solarized home designed by one of the
participants

Table 3 The design requirements and constraints of the two
design problems

Components Requirements

Solarized
home

Story 1
Number of
windows

>4

Size of windows >1.44 m2

Number of doors ≥1
Size of doors
(Width × height)

>1.2 m× 2m

Height of wall >2.5 m
Distance between
ridge to panel

>0

Solarized
parking lot

Base height ≥3.5
Tilt angle ≤20
Solar panel rack Shall not produce any hindrance to

the pedestrian zone and drive ways
The pole of the rack Shall be placed along with the

parking lot line marker

2We observe that there is a large number of camera action in the collected design
sequence data (more than 30%). Majority of the camera view is more likely to be
an unconscious mouse operation or a habit while designers are pondering on their
designs.
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achieve the expected behaviors. So, the action of editing any com-
ponents refers to Synthesis. When designers analyze the ANE of
their solar system designs, this action refers to Analysis because
designers aim to obtain the behavior from the generated structure.
To compare the expected behavior and the actual structural beha-
vior, designers check whether the design cost exceeds the given
budget or not. According to Table 2, this can be defined as Evalu-
ation. Finally, designers remove structures and regenerate new
structures to meet the design requirements and their own intrinsic
criteria. When designers remove structure related components
such as walls, windows, or doors, these actions are referred to as
Reformulation 1. However, when designers remove the roof, this
action is primarily driven by the obtained expected behavior of
design, e.g., the ANE does not meet the objective. So, they
modify the roof style in order to put more solar panels for the poten-
tial increase of ANE. According to Table 2, these actions can be
defined as Reformulation 2. Finally, if designers remove other struc-
tures, such as trees, these design actions are defined as Reformula-
tion 3 because these modifications are merely based on the
formulation process. We did not consider Documentation because
Energy3D automatically documents all the design process. There-
fore, designers are not required to report their designs separately.
The application of the FBS model helps map the design action
space to the design thinking space to better understand the design
rationale and the discovery of sequential design patterns. This treat-
ment also helps dimension reduction that is useful to reduce the
effect of the “curse of dimensionality” [36].
Given a set of sequential text data, we must encode the sequences

so that it can be implemented by neural networks. The most popular
encoding technique is known as “one-hot encoding” [37]. One-hot
encoding transforms a single variable of n observations with m dis-
tinct variables into m binary variable with n observations. Each
observation indicates the presence (1) for the corresponding posi-
tion of that variable and absence (0) in all other dimensions.
Figure 4 shows an example of the one-hot vector presentation of
a design sequence.

5 Result and Discussion
In this section, we present the results of the LSTM and FNN

models and compare them with the models that are commonly used
in existing literature, such as the MM and the HMM. Additionally,
we develop a repetitive model (REP model) for comparison
because we found from our previous study [1] that designers quite
frequently repeat the previous design action in the CAD

environment. For example, we found that in the solarized home
design problem, on average, 51.2% of design actions were simply
repeating the action in the previous step. In the solarized parking
lot design, we found the repetition rate is at about 59.3%. So, in the
REP model, we simply use the average percentage of occurrence of
each design stage as the model to predict the next design stage with
the highest percentage value. Finally, a random model is presented
as the benchmark for all the models in comparison. The purpose is
to examine whether the design sequences indeed follow certain pat-
terns or just randomness. In this study, since there are seven design
process stages, the prediction of the next stagewill be a random selec-
tionof oneprocess stage fromseven following auniformdistribution.
Thus, every process stage has a probability of 1/7 to be selected.
In the following two sections, we first evaluate the performance

of different models in terms of prediction accuracy, precision,
recall, and F1 score regardless of the category of design actions
(i.e., the design process stages defined by the FBS model). Next,
we perform an in-depth analysis of how accurately each design
process stage in the next step can be predicted and compare the per-
formance of different models using the metrics of the area under the
receiver operating curve (AUROC).

5.1 Evaluation of Model Performance at the Level of the
Entire Sequence. Tovalidate themodels,we adopt the k-fold cross-
validation [38] technique, where we divide our data into five folds.
First, we use any four folds to train the models and leave the remain-
ing fold for validation purposes. Next, we train the models on a new
combination of 4 folds, including the previously withheld fold, and
validate the model again with the remaining one. In this way, we
iterate through all over the five rounds. An illustration of the fivefold
cross-validation method is shown in Fig. 5.
Keras deep learning library [39] is used to run the HMM, FNN,

and LSTM model, and we programmed for the Markov chain
model. While going through each of the rounds, the training data
set performs forward pass and backward pass (a.k.a. backpropaga-
tion) [40] in order to update the models’ parameters (including both
weight values and bias values). When the entire dataset is passed
forward and backward through the neural network, it’s called one
epoch. During testing, we predict the next action (at+1) by
passing the previous actions from time 0 to t as the input into the
trained model. So, if a design sequence has n actions, then n− 1 pre-
dictions will be made. Then, by comparing with the real observation
of a design sequence, we count the total number of correctly pre-
dicted actions (ncp) and divide it by the total number of predictions,
i.e., n− 1. In this way, we get the prediction accuracy of that model
in every epoch. In this study, only the prediction accuracy of the last
epoch (when the model is fully trained) in each round is taken, and
the average from five rounds is used as the metric for evaluating a
model’s predictive power. The mathematical expression of this
metric is as follows:

Prediction accuracy =
1
R

∑R
i=1

ncp
nmaxi − 1

( )
(1)

Table 4 Mapping of design actions to design process stage

Design process Type of design actions

Formulation Add any design component
Analysis Analysis of annual net energy
Synthesis Edit any component
Evaluation Cost analysis
Reformulation 1 Remove structure
Reformulation 2 Remove solar device
Reformulation 3 Remove other component

Fig. 4 One-hot vector representation of a sequence

Fig. 5 Training and testing data split according to fivefold
cross-validation technique
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where R denotes the number of rounds for cross-validation. R= 5 in
this study. nmaxi is the maximal number of actions of the design
sequence (i.e., the length of the longest design sequence) in round
i. The models were trained by the stochastic gradient descent algo-
rithm [41] with a learning rate of 0.001. This learning rate is deter-
mined by trial and error for producing the best accuracy, and we
found all the models converge after 40 epochs. Section 5.3 presents
a sensitivity analysis of the hyperparameters.
MM provides the prediction of the design process state in the

next step based on the state in the current time-step. With the
design sequence as input, training of an MM will produce a 7 × 7
transition probability matrix because the seven design process
stages in the FBS model represent seven states in MM. Each of
the entries of the matrix defines the probability of one design
stage transitioning to the next design stage. We follow the same
structure in Fig. 5 to train and test MM. The trained model (i.e.,
the transition probability matrix) is an aggregation by averaging
the matrices obtained from every designer in the training dataset.
When testing a MM model, for every given FBS design process
stage in a design sequence, the MM will predict seven probabilities
of design stages following that given stage, and the one with the
highest probability is picked for comparing with the real data, and
then the prediction accuracy is reported. MM is not associated
with any external parameters. So, we calculate the prediction accu-
racy just based on the transition probability matrix.
Figure 6 shows a comparison of the testing accuracy of all the

models for both the solarized home design and the solarized
parking lot design. The baseline model, i.e., the random model,
shows the least accuracy of 14.29% (standard deviation 1.66%)
and14.59% (standard deviation 2.02%) for solarized homeand solar-
ized parking lot, respectively. The accuracy of the REP model is
much higher than the random model, which is about 51.2% for the
solarized home dataset and 59.3% for the solarized parking lot
dataset. This is because the REP model is developed based on the
simple repetition process in design, and it is observed that when
designerswereworking on this design problem usingCAD software,
many of them repeated their previous action very frequently, and the
REP model captures such a pattern. We present only the prediction
accuracy for the randommodel and the REPmodel because the train-
ing process is not needed in these models. The accuracy of the REP
model for the solarized parking lot design is higher than the solarized
home design. This is probably due to the reason that the number of
unique design actions in the solarized parking lot design is lower
than those in the other design problem. Therefore, the design
actions can be more frequently repeated in the former design
context, and this is well captured by the REP model.
It is shown from Fig. 6 that both MM and HMM yields better per-

formance than the random model for both datasets. In the solarized

home design problem, the prediction accuracy of MM and HMM
are 44.41% and 58.95%, respectively. Similarly, in the solarized
parking lot, the accuracies for MM and HMM are 46.29% and
60.38%, respectively. This indicates that designers’ actions indeed
follow certain patterns and are not random. In MM, each action is
dependent only on the action of the previous step. As a conse-
quence, MM does not encode long-term “memory” of past events
in the prediction. On the other hand, the inclusion of hidden-state
architecture in HMM allows it to “remember” the past state. As
in design, designers do have to refer to past information in
guiding their future design decisions, the successful modeling of
past information into the hidden state may be the reason why
HMM has significantly higher prediction accuracy (the average is
58.1%) than those of MM and REP model. This observation
echoes many of the existing studies on the comparison between
MM and HMM, and the conclusion that HMM outperforms MM
[42] is very likely due to the reason that HMM can better model
the interdependencies between past states and current state.
We also observe that HMM slightly outperforms the FNN model

on average. FNN gives an average prediction accuracy of 58.07%
(with a standard deviation of 2.14%), which is 0.88% lower than
that of the HMM in the solarized home design. For the parking
lot dataset, FNN achieves a prediction accuracy of 59.38%
(with a standard deviation of 2.3%), which is 1% lower than
HMM. The ability to pass information from the previous states
to the current hidden state makes HMM a better predictor than
FNN in this study. FNN does not essentially have a hidden
state as it does not consider feedback loop in hidden layers and
hidden units are not connected (see Sec. 3.2.1 for the architecture
of FNN).
Among all of the models, LSTM produces the highest prediction

accuracy in both datasets. The prediction accuracy for the solarized
home design and the parking lot design is 61.25% and 62.4%,
respectively. The significance of the difference between the deep
learning models and the existing models are assessed using the
paired t-test. Among the existing models, the prediction accuracy
of the HMM is close to the deep learning models (i.e., LSTM and
FNN). Therefore, using this instance, the null hypothesis (H0) of
the test is that the mean of the prediction accuracy of the deep learn-
ing models is equal to that of the HMM model. The alternative
hypothesis (Ha) is that the mean of the accuracy of the deep learning
models is higher than that of the HMM. With the level of signifi-
cance 0.05, the p-value indicates (0.04756 for the solarized home
design and 0.03234 for the solarized parking lot design) that, for
both datasets, the prediction accuracy of the LSTM model is
higher than that of the HMM, and the difference is statistically sig-
nificant; however, HMM is not significantly better than FNN as
indicated by the p-values (0.2339 and 0.2088 for solarized home

Fig. 6 Testing accuracy of different predictive models
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and solarized parking lot, respectively). The results imply that
during the systems design process, designers’ future actions do
have strong dependencies with past design information. For
example, in the solarized home design problem, we observe that
one designer, most of the time, analyzes “Building cost” after
adding several new components, such as “Add window” → “Edit
window” → “Building cost”, and again, “Add Rack” → “Edit
Rack” → “Add SolarPanel” → “Building cost”. This infers that
after adding new components, this designer started configuring
the related components to try improving the design performance
and check if the total cost is still within the budget. Since LSTM
leverages longer “memory” of past events and their interconnec-
tions in predicting future states, its architecture best resembles
designers’ decision-making process, and this is probably the
reason why it yields the best performance in this study. LSTM’s
highest prediction accuracy also implies that designer does not
only recall short-term memory (like what MM and HMM do) but
also use long-term memory information in their design process.
Generally, the models that encode longer “memory” in their

architecture performs better in predicting designers’ future
actions. The possible reason is that in systems design, there are
many design variables that are interdependent, and designers may
not be able to immediately understand such a complex relationship.
One method that can help understand the interdependencies among
design variables and their effects on the design objective is to con-
stantly change the variables and then run simulations to see how it
would affect the objective value. Since there are multiple variables
in these design case studies (as presented in Table 1), designers
often perform a series of configurations (such as “Add wall”→“Edit
wall”→“Edit Foundation”→“Add Roof”→“Add Rack” for home
design problem and “Add solar panel”→“Edit panel”→“Change
pole height” for solarized parking lot design problem), and then
perform ANE analysis cost evaluation. These processes may have
to be repeated several times in order to find the best configura-
tion/combination of design variables for the desired objective.
Such a pattern can reflect designers’ exploration-exploitation strate-
gies for design tradeoff (i.e., the sequential decision-making strat-
egy) and their design heuristics. The results indicate that the
hidden states of LSTM and HMM work as a memory unit seem
to well capture those design patterns.
In addition to the prediction accuracy defined in Eq. (1), we also

report the metrics, including Precision, Recall, and F1 score (see
Eqs. (2)–(4)), for comparison

Precision =
True positive (TP)

True positive (TP) + False positive (FP)
(2)

Recall =
True positive (TP)

True positive (TP) + False negetive (FN)
(3)

F1 score = 2 ×
Recall × Precision

Recall + Precision
(4)

These three metrics are often used simultaneously, as each of
these metrics reveals different aspects of a model’s predictive
power [43]. For example, there might be a case where precision is
higher, but the recall is lower than the other models. In that case,
for a proper evaluation, the F1 score, which takes the harmonic
means of the precision and recall, can be used. Figure 7 shows the
result of the scores of the metrics of different models for both case
studies. Among all the models, LSTM outperforms the other
models, especially in the solarized home dataset. LSTM archives
about 0.57, 0.63, and 0.58 for precision, recall, and F1 score, respec-
tively, while the nearest scores for HMM are 0.54, 0.61, and 0.55,
respectively. The same conclusion holds in the parking lot dataset.

5.2 Evaluation of Model Performance at Each Category of
Design Actions. In order to understand the models’ performance at
a finer resolution, we check how well each model can predict each
category of design actions, i.e., the design process stage defined by
the FBS design process model. To achieve this, we adopt receiver
operating characteristics (ROC) curve [44] as the method evaluates
the model’s two operating characteristics (the true positive rate and
the false positive rate) on each design process stage under different
binary threshold values from 0 to 1.
After obtaining the ROC curves for each design process stage, the

area under the ROC curve (AUROC) is used to provide one single
metric which aggregates the predictive performance cross the
thresholds so that we can compare in which design process stage
does the model perform better. A larger AUROC indicates a
better predictive performance. Figure 8 shows an example of
LSTM’s ROC curve of each design process stage in one fold of pre-
diction for the solarized home design problem. If the AUROC
values from all the five folds are averaged, we obtain Fig. 9. For
example, the AUROC of Formulation and Analysis for the LSTM
model in the solarized home design problem reaches a maximum
of 0.82 and 0.80, respectively, among the seven design process cat-
egories. LSTM model also produces a decent AUROC score (0.77)
for Evaluation. These results imply that designers tend to enter into
these design stages after completing a certain series of design tasks.
For example, the designers must first construct the house, which
involves many design actions related to Formulation (i.e., Add
Wall, Add Window, etc.) and then evaluate the performance by

(a) (b)

Fig. 7 F1, Precision, and Recall score for different models: (a) solarized home design and (b) solarized parking lot design
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simulating annual net energy (Analysis) and analyzing the building
cost (Evaluation). However, in the solarized parking lot problem,
Evaluation achieves the highest AUROC score (0.91), which indi-
cates that designers follow certain strong behavioral patterns while
checking the design cost. Also, the AUROC scores for Formulation
(0.83) and Reformulation 2 (0.85) are higher than the other design
process stages. The potential explanation is that as solarized parking
lot design is less complex, the only design component that designers
add and remove is the solar panel. While designers are adding solar
panels, they frequently check if the overall design cost (i.e., Evalu-
ation) exceeds the budget limit or not. Also, in order to increase the
ANE, designers may need to remove existing solar panels (i.e.,
Reformulation 2) and try a new layout. These patterns of design
behaviors make Formulation and Reformulation 2 more easily to
be captured by the model.
LSTM also produces some lower AUROC values, particularly

for Reformulation 1 and 3, in both datasets. This is because Refor-
mulation involves the design actions of removing components, such
as remove a tree or remove a window. These removal actions are
often paired with another Reformulation and/or Formulation
actions, such as add a wall or add a window. These action pairs
reflect designers’ fine-tuning behaviors (exploitation) on particular
design components immediately based on the observations from
the CAD interface and no necessary to run a simulation for feedback
to support their design decisions. Therefore, referring to the action
in the last step should be sufficient for prediction, and it does not
require to use long-term memory in predicting these design
stages. This may also be the reason why MM can produce higher
AUROC scores for Reformulation 2 (0.60 in the solarized home
design and 0.57 in the parking lot design, respectively). For
example, Reformulation 2 contains the design actions related to
the removal of solar panels. As solar panels directly affect the
system performance, most designers spent a significant amount of
time fine-tuning (e.g., add, remove and then add back again) this
component, and therefore, there exist a large number of action
pairs of “Add Solar Panel → Remove Solar Panel” in the design
sequence. Since MM predicts the state only one time-step ahead
based on the current state, it captures this design pattern very
well. But on the other hand, it does not effectively capture the

patterns that involve longer historical information, such as Evalua-
tion and Analysis stages in the solarized home design problem, as
compared with the other models. However, in the parking lot
dataset, the more frequent short-term action pairs are observed,
such as Evaluation→Evaluation and Analysis→Evaluation (see
Table 5 for the transition probabilities from other design processes
to Evaluation as an example), this pattern can be better captured by
MM; therefore, their AUROC scores are higher.
Please note that in the solarized house design problem, MM has

the least AUROC for Formulation. This is because MM is derived
from the frequency of the event. In the design, the repetition of For-
mulation (corresponds to adding components) does not occur fre-
quently. For example, once a designer finishes adding all the
necessary components, e.g., “Add Wall” and “Add Window,”
she/he would never take those actions again because the house
has already been established. Instead, she/he tends to start fine-
tuning the associated parameters through the actions of “Edit
Wall” and “Edit Window” (i.e., the auctions related to Synthesis).
If we take an average for the AUROC scores from every design

process stage, that average value can be used to compare the perfor-
mance between different models, as shown in the last column of
Fig. 9. For the solarized home design problem, we observe that,
on average, the LSTM model outperforms the other models with
the AUROC of 0.78. The HMM model (0.75) and FNN (0.63)
achieve a lower AUROC score than the LSTM model. This indi-
cates that even if HMM and FNN take historical design information
into their prediction, they do not effectively process that informa-
tion during the model training as what LSTM does. Both FNN
and HMM perform relatively better on average across all the
design process stages than the MM (0.45).
In the parking lot design problem, the LSTM outperforms the

other models as well (0.82). However, other predictive models
such as HMM and FNN also perform better with the AUROC of
0.81 and 0.79, respectively. The AUROC score of each design
process stage predicted by the models is also close to each other.
This phenomenon indicates that for the less complex design
problem where designers use less complex design patterns and
fewer types of design actions (i.e., design variables), there are no
significant differences between LSTM and other models.

Fig. 8 Receiver operating characteristics (ROC) curves of LSTM in fold 5 for solarized
home design dataset. Each curve represents the model performance for each design
process stage.
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However, for complex design problems where various types of
design actions exist, there could exist different design approaches
to reaching the objective. As a result, designers’ behavior may
follow different patterns that are hard to be captured by models
with simple structures, such as HMM and FNN. But LSTM’s
gate mechanism (e.g., input gate, forget gate, and output gates)
seems well to capture and process the dependent relations
between different design stages during a design process, therefore,
yields the best performance regardless of the complexity of the
dataset. These results cross-validate the conclusion we reached
from the prediction accuracy results shown in Fig. 6.

5.3 Sensitivity Analysis. When training an LSTM model,
there are several pre-determined hyperparameters, such as the
number of LSTM layers, LSTM size, the number of dense layers,
the size of a dense layer, learning rate and dropout value. LSTM
size refers to LSTM nodes in each LSTM layer. The fully connected
layer indicates the number of layers of the feed-forward network.
The size of a fully connected layer indicates the number of nodes
in each dense layer. Dropout is the value of dropout regularization.
In order to prevent the model from overfitting, we use dropout reg-
ularization [45] with two different values. The learning rate is the
converge rate used in the stochastic gradient descent algorithm in
backpropagation.
To investigate how the prediction accuracy would be affected

by these hyperparameters, we perform a sensitivity analysis by
changing the values of these parameters and study the corresponding
prediction accuracies. In the experiment, we use one layer of LSTM
for all the settings with a various number of LSTM nodes. Table 6
shows the test accuracy of the LSTM models with different hyper-
parameter settings. From all the settings, it is observed that the
model with one fully connected layer performs better (i.e., above
58%) than the models with two fully connected layers (i.e., 56.17%
for the solarized parking lot dataset and 54.95% for the solarized
home design dataset). Given the same number of fully connected
layers and the same fully connected size, a learning rate of 0.1 pro-
duces relatively lower performance (57.50%) than those of other set-
tings. But the dropout rate (changing from 0.3 to 0.2) and the LSTM

(a)

(b)

Fig. 9 Area under the receiver operating characteristics curve (AUROC) scores for dif-
ferent models. The average in the last column is the average AUROC value of all design
process stages per model: (a) solarized home design and (b) solarized parking lot
design

Table 5 Transition probability fromother design process stages
to evaluation in both datasets

Transit to

Transit from

Evaluation

Solarized home design Solarized parking lot design

Analysis 0.197 0.23
Evaluation 0.061 0.2
Formulation 0.036 0.012
Reformulation 1 0.034 0.002
Reformulation 2 0.036 0.07
Reformulation 3 0.051 0.021
Synthesis 0.08 0.31
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size (changing from256 to 128 nodes) do not influence themodel sig-
nificantly. Among all the settings, it is found that the model with
LSTM unit 256, dropout value with 0.3, and learning rate with
0.001 provides the best accuracy in both datasets.

6 Conclusion and Closing Thoughts
In this study, a deep learning approach is developed to analyze

and predict the sequential design decisions in the systems design
context. We use Energy3D as the research platform to conduct
design challenges and collect designers’ sequential design beha-
vioral data. Then, the FBS-based design process model is adopted
to transform the sequential design action data into the sequential
design process data. Based on the design process data, we
adopted two deep learning models, i.e., the FNN and the LSTM,
to predict designers’ next immediate design process stage. These
deep learning models are evaluated with different performance
metrics, including testing accuracy, Precision, Recall, F1 score,
and area under the ROC curve. Their predictive performances are
compared with the other four models, including a MM, an HMM,
a repetitive model, and a random model. The predictive power is
assessed at the level of the entire design sequence as well as at
the level of each design process stage.
We found that, on average, the LSTM model outperforms all the

other models, while FNN shows lower performance than tradition-
ally used HMM. From the ROC curve analysis, we found that in
both datasets, LSTM yields overall better performance for all of
the design process. In contrast, the predictive performance of the
other models is not consistent. Moreover, from this study, we also
observe that for design problems that are less complex and involve a
fewer number of design variables, predictive models perform simi-
larly. For complex design problems, the performance of the predic-
tive models differs. However, regardless of the design complexity,
LSTM performs better than the other models. With these findings,
we conclude that both short-term and long-term memories have
together influenced human sequential design decision-making.
The neglect of either aspect in the modeling would lead to inade-
quate prediction accuracy. However, such an effect is not always
significant for all design actions in every stage because, indeed, it
is found that in predicting certain design actions (e.g., Remove
Wall, Remove Window), LSTM was not the best model.
This work shows that deep learning, particularly the LSTM, can

be a stepping stone for modeling and predicting sequential decision-
making in engineering design and facilitating design automation.
By predicting the design process stage at both the aggregated
level and individual level, the models exhibit designers’ thinking
and strategies. The approach introduced in this paper is general
and can be implemented in other design contexts to understand
the design thinking and decision-making strategies as long as the
data of the design action sequences are available.
However, there are some limitations to our approach. For

example, the accuracy we obtained in this study is below the
state-of-the-art accuracy of the deep learning methods in other
fields. This is because design activities could be diverse and compli-
cated in complex systems design, and it is challenging to learn
prominent patterns due to the heterogeneities within the training

dataset. This is different from other types of human behaviors,
such as consumer behaviors, where individual shopping mode
shows more tractable patterns and would be more easily to be
learned by deep neural networks. Additionally, indifferent from
other fields where a large amount of human behavioral data can
be obtained for model training, such as the customers’ shopping
records and purchase history collected from Amazon, the amount
of data collected from human-subject experiments based on stu-
dents is not ideal. But we were trying to overcome this limitation,
e.g., by increasing the amount of data in temporal dimensions in
addition to the number of human subjects, and our approach
showed better performance compared with those existing methods.
In addition, we used the FBS design process model to encode the

design action data as well as to reduce its dimensionality. However,
the prediction is made at the design process stage level. In order to
predict design actions, various embedding techniques (e.g.,
word2vec [46], Glove [47], etc.) could help because both embed-
dings and the FBS model serve the purpose of mapping the high-
dimensional sequential data to a low-dimensional latent space, yet
embedding provides both encoding and decoding schemes that
can be used to map low- dimensional data back to the high-
dimensional design action data.
However, current embedding techniques do not take care of the

nature of the design process and cannot help interpreting designers’
sequential decisions. In the future work, we would like to establish
a theoretical bond between the ontological model (such as the
FBS used in this study) and embedding technique and identify
embedding technique that could best capture the latent design
thinking space of a particular design ontology model. Also, to
improve the prediction accuracy as well as to further validate the
proposed model, we will collect more data based on our designed
experiment and research new models, such as the Markov decision
process, which consider the “reward” information (i.e., the design
objective values) along with the design action sequence to test the
feasibility of reinforcement learning techniques in design thinking
research.
Finally, the proposed approach can be used to study the differ-

ence between experts and novice designers. It would be expected
that experts show different patterns compared with the notice
designers, and the proposed approach is promising to learn
such patterns and help discover who would better utilize
memory in guiding their future design decisions. But to answer
this research question requires a rigorous design of the human-
subject experiment and relies on the validity of the developed
approach. This is the reason why in this first study, we focused
on investigating the performance of the model and did a compar-
ative study benchmarking on commonly used models in current
literature before we apply this approach to answer other interest-
ing research questions.
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Table 6 Different hyperparameter settings for LSTM model

No. LSTM size Fully connected layer Fully connected layer size Dropout Learning rate

Testing accuracy
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