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We report on transport signatures of hidden quantum Hall stripe (hQHS) phases in high (N > 2) half-
filled Landau levels of Al,Gai—_,As/Alp.24Gag.76 As quantum wells with varying Al mole fraction x < 1073,
Residing between the conventional stripe phases (lower N) and the isotropic liquid phases (higher V), where
resistivity decreases as 1/N, these hQHS phases exhibit isotropic and N-independent resistivity. Using the
experimental phase diagram we establish that the stripe phases are more robust than theoretically predicted,
calling for improved theoretical treatment. We also show that, unlike conventional stripe phases, the hQHS
phases do not occur in ultrahigh mobility GaAs quantum wells, but are likely to be found in other systems.

Discovery of the integer quantum Hall effect in Si [1] has
paved the way to observations of many exotic phenomena in
two-dimensional (2D) electron and hole systems. Two prime
examples are the fractional quantum Hall effect [2] and the
quantum Hall stripes (QHSs) [3—7]. While fractional quantum
Hall effects have been realized in many systems, including
GaAs [2], Si [8, 9], AlAs [10], GaN [11], graphene [12, 13],
CdTe [14], ZnO [15], Ge [16], and InAs [17], exploration of
the QHS physics remains limited to GaAs [18].

Forming due to a peculiar box-like screened Coulomb po-
tential, QHSs can be viewed as charge density waves consist-
ing of stripes with alternating integer filling factors v, e.g.,
v =4 and v = 5 [19]. In experiments, QHSs are manifested
by giant resistivity anisotropies (g > pyy) in N > 2 half-
filled Landau levels (LLs). Appearance of these anisotropies
in macroscopic samples is attributed to a misterious symme-
try breaking field [20-23] which nearly always aligns QHSs
along § = (110) crystal axis of GaAs [24]. While a suffi-
ciently low disorder is necessary for the QHS formation, the
absence of QHSs in systems beyond GaAs might simply be
due to the lack of symmetry-breaking fields [25]. Indeed, elec-
tron bubble phases [3-5, 26-35], which are close relatives of
QHSs, have already been identified in graphene [36].

In this Letter we report observation of the recently pre-
dicted [37] hidden QHS (hQHS) phases in a series of
Al;Ga;_As/Alg 24Gag 76As quantum wells with x < 1073,
In contrast to the ordinary QHS phases, the hQHS phases
are characterized by isotropic resistivity (pgz = pyy = p)
which is independent of v, unlike the isotropic liquid phases
in which p oc v~ 1. These unique properties make these phases
detectable without symmetry-breaking fields thereby opening
an avenue to study stripe physics in systems beyond GaAs.
The wide variation of mobilities in our samples allows us to
construct an experimental phase diagram in the conductivity-
filling factor plane. Its comparison to theoretical predictions
[37] yields the electron quantum lifetimes and the stripe den-
sity of states. The latter turns out to be lower than predicted
by original Hartree-Fock theory [3, 4], calling for further theo-

retical input. We confirm this finding by a complementary ex-
periment on an ultrahigh mobility GaAs quantum well, where
we also show that in this sample the hQHS phase yields to the
QHS phase, in agreement with the theory.

Before presenting our experimental data, we briefly sum-
marize the physics behind the hQHS phases [37]. The resis-
tance anisotropies in the ordinary QHS phase emerge due to
different diffusion mechanisms along and perpendicular to the
stripes [38, 39]. In this picture, an electron drifts a distance
L, along the y-oriented stripe edge in an x-directed inter-
nal electric field until it is scattered by impurities to one of
the adjacent stripe edges located at a distance L, = A/2 =~
V2R, [3, 4], where A is the stripe period and R, is the cy-
clotron radius. When L, > L, the diffusion coefficient in
the y direction is much larger that in the z direction which
leads to anisotropic conductivity, oy, > 0y, and resistiv-
ity, puz > pyy. Since L, o< v~ and L, o v [39], the
anisotropy decreases with v and eventually vanishes at some
v = vy. At larger v, the drift contribution to the diffusion
along stripes can be neglected and L,, like L,, is determined
entirely by the impurity scattering. For isotropic scattering, it
is easy to show [40] that L, = V2R, which coincides with
L. As a result, the QHS phase yields to the hQHS phase
in which the resistivity is isotropic and v-independent (since
the stripe density of states does not vary with v). The hQHS
phase persists till the stripe structure is destroyed by disorder
at v = v, and the ground state becomes an isotropic liquid
with pg; = pyy o v71, as predicted by Ando and Uemura
[41] and experimentally confirmed by Coleridge, Zawadski,
and Sachrajda (CZS) [42].

For the hQHS phase to exist and be detected, it should
span a sizable range of the filling factors, Av = vy —
max{v1,9/2} > 1. The range Av depends sensitively on
both transport 7! and quantum Tq ! scattering rates, which
control v; and vy, respectively [37]. As we will see, ultrahigh
mobility GaAs quantum wells do not support the hQHS phase
as v; =~ vy in these samples. On the other hand, adding the
correct small amount of Al [43] to the GaAs well greatly ex-



pands Av, as it affects 14 to a much greater extent than it does
vo. This happens because Al acts as a short-range disorder,
which contributes equally to transport 7! and quantum 7!
scattering rates, and because 74/7 < 1l at z = 0.

Apart from different x, all our Al,Ga;_,As quantum wells
share identical heterostructure design [44]. Electrons are sup-
plied by Si doping in narrow GaAs wells surrounded by nar-
row AlAs layers and placed at a setback distance of 75 mm
from each side of the 30-mm-wide Al, Ga;_,As well hosting
the 2D electrons. Parameters of samples A, B, and C, such
as Al mole fraction z, electron density n., mobility u, and
Drude conductivity 69 = hnep/e in units of e?/h at zero
magnetic field (B = 0) are listed in TableI. The samples
are approximately 4 mm squares with eight indium contacts
positioned at the corners and at the midsides. Longitudinal re-
sistances R, and R,, were measured in sweeping magnetic
fields using a four-terminal, low-frequency (a few Hz) lock-in
technique at a temperature 7' =~ 25 mK. The current was sent
along either & = (110) or § = (110) direction using the mid-
side contacts and the voltage was measured between contacts
along the edge. To account for anisotropies due to non-ideal
geometry, I%,, or R,, was multiplied by a factor (typically
< 1.1) which was chosen to make R, = R, in the low field
regime.

In Fig. 1 we present longitudinal resistances R, and R,
as a function of filling factor » measured in sample B. At
low half-integer filling factors, such as v = 9/2, 11/2 and
13/2, the data reveal conventional QHS phases, as evidenced
by R, > Ry,. At high half-integer filling factors, such as
v > 25/2, we identify the CZS phase in which R, ~ R,
v~1 (cf. dash-dotted line). At intermediate half-integer fill-
ing factors, v = 15/2,...,23/2, one readily confirms both
characteristic features of the hQHS phase; indeed, the data
show that two longitudinal resistances are practically the same
(Rye =~ Ryy) and are independent of v (cf. dashed line).
From Fig. 1, we can easily identify the characteristic filling
factors 11 &~ 7 and v5 = 12.5 which mark the crossovers from
the QHS to the hQHS phase and from the hQHS to the CZS
phase, respectively.

In a similar manner, we have obtained v and v for sam-
ple A and v, for sample C (which does not support the QHS
phase due to higher Al mole fraction x), which we then
use to construct the experimental phase diagram shown in
Fig.2. We start by adding points representing the dimen-
sionless Drude conductivity o for samples A, B, C, see Ta-
blel, and corresponding filling factors v (solid circles) and
v (solid squares) To connect these data points we use the

TABLE I. Sample ID, Al mole fraction z, electron density n., mo-
bility p, and Drude conductivity, in units of e?/h, 6o = hneu/e at
zero magnetic field (B = 0).

SampleID =z ne (10" em™2) 11 (10° cm?/Vs) 6o (10%)

A 0.00057 3.0 6.5 8.0
B 0.00082 2.9 4.1 4.9
C 0.0078 2.7 1.2 1.3
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FIG. 1. Longitudinal resistances R, (solid line) and R, (dot-
ted line) as a function of the filling factor ¥ measured in sample
B. Gap centers between spin-resolved Landau levels are labeled by
N = 2,3,,.. at the top axis (v = 2N + 1). The conventional QHS
phase (Rzz > Ryy) and the CZS phase (Rye = Ryy X 1/*1) occur
at half-integer v = 9/2,11/2,13/2 and at v = 27/2,29/2, ..., re-
spectively. The hQHS phase is identified at intermediate half-integer
filling factors, v = 15/2, ...., 25/2, where the resistance is isotropic
and v— independent. The characteristic v° (v ') dependence of the
isotropic resistance in the hQHS (CZS) phase is marked by dashed
(dash-dotted) line.

theoretical boundaries of the hQHS phase [37]. The lower
boundary, v = vy, separating the QHS and the hQHS phases,
is given by [37]

po X0 )

«

where « [45] is the QHS density of states in units of the
density of states per spin at B = 0, go = m*/2mh?. This
boundary can be obtained by either matching the parameter-
free geometric average of the resistivities in the QHS phase

/PazPyy = (h]€?)/(2v% +1/2) =~ (h/e?)/21? [38, 39] and
the resistivity in the hQHS phase [37],

h o?
D = —— 2
PhQHS = 595 2
or, equivalently, by setting the resistivity anisotropy ratio to
unity, pue/pyy ~ (60/a?v?)? = 137, 39].
The higher boundary, v = vy, marks the crossover from the
hQHS to the CZS phase and is represented by
00 T
vy — 3. 3)
o T
This boundary can be obtained by equating « and the density
of states at the center of the Landau level in CZS phase, in
units of the density of states at B = 0, /.7 [47, 48] or by
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FIG. 2. A diagram in the (v, 0¢)-plane showing QHS, hQHS, and
CZS phases. Solid lines represent crossovers between phases, Eq. (1)
(left/upper line) and Eq. (3) (right/lower line). Solid circles (solid
squares) represent experimental v, (v2) and horizontal dotted lines
mark & for samples A-C [44]. Open circles (squares) are additional
data from a study conducted in a different context which conform to
our present findings [46].

matching pnqus and the resistivity in the CZS phase [42],

pCZSE%lLiTQ%ET_q- “)
e2v(rq/21)24+1 €e2v2r
We thus see that for a given carrier density, as mentioned
above, vo and vq are controlled by 7 and 7, respectively.
Strictly speaking, Egs. (1), (3) are not sharp boundaries but
rather gradual crossovers between corresponding phases.
With the help of Eq. (1) and experimental values of v in
samples A and B, we estimate @ ~ 11, which is smaller
than the theoretical estimate of o ~ 18 [39, 45]. We then
parametrize scattering rates 7' and 7. " as

-1_ -1 -1 _ -1
T =Ty tKT, Tq =Ty Tk, 5)

a
where x is the Al mole fraction, x ~ 24 ns~! per % Al
[44], and 75 V'~ 3ns! [44] is the transport scattering rate
in the limit of x — 0. To find the remaining parameter 7';01,
which is the quantum scattering rate in the limit of x — 0,
we use experimental 5 values and notice that Egs. (1), (3)
yield 74 /T ~ vy /vi. Using Eq.(5) we then obtain an esti-
mate for 749 ~ 0.05 ns which is in good agreement with 74
values found from low B experiments [49-51] on microwave-
induced [52-54] and Hall field-induced [55-57] resistance os-
cillations in GaAs quantum wells.

We next use n. = 3 x 10" cm™2 and m* = 0.06 mg
[58-62] to compute the phase boundaries, Egs. (1), (3), which
are shown in Fig.2 by solid lines. Both lines pass in close
proximity to the experimentally obtained v, (solid circles)
and v, (solid squares) from all samples, showing excellent
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FIG. 3. p, (solid triangles) and p,, (open triangles) [63]) as a func-
tion of filling factor v for sample A of Ref. 39 measured at 7' ~ 50
mK. Lines are computed using theoretical expressions, marked by
equation numbers.

agreement between theory [37] and experiment. Finally, we
add data points (open circles and squares) from three other
Al,;Ga;_As/Aly 24Gag 76As quantum wells which were in-
vestigated in a different context [46]. These points are also in
agreement with both the theory and the present experiment.

Having confirmed the existence of the hQHS phases in
Al,Ga;_As/Alg 24Gag 76 As quantum wells, we next exam-
ine the possibility for these phases to exist in ultra-high mo-
bility GaAs quantum wells (without alloy disorder). In such
samples, the lower boundary v, Eq. (1), might approach and
even merge with the higher boundary v», Eq. (3), eliminating
the hQHS phase as a result. To test this prediction, we re-
visit the data obtained from sample A of Ref. 39 with 55 ~
3.6 x 10%, much higher than in samples used in the present
study. As illustrated in Fig. 3, showing p,, (solid triangles)
and p,, (open triangles) [63] as a function of the filling factor
v, the QHSs anisotropy in this sample collapses at vy ~ 20.
Using Eq. (1), we can then estimate o = /5o/v1 ~ 10 [64].
With 74 ~ 0.05 ns, Eq. (3) gives v2 = 21 which is very close
to 1 ~ 20. Indeed, the data in Fig.3 show that the QHS
phase crosses over directly to the CZS phase, bypassing the
intermediate hQHS phase.

In the QHS phase, the easy resistivity is v-independent and
is described by p,, = pnqus, Eq.(2), while the hard resisi-
tivty exhibits clear »~* dependence and follows [37]

h &9
Pra = —5 557 -
e’ 2a°v

(6)

However, the agreement between theory and experiment
breaks down at v < 14 = 8, where one observes significant
deviations leading to the reduction of the anisotropy. While
the nature of such reduction is unclear, it increases upon fur-
ther cooling and might reflect a crossover to another ground
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FIG. 4. A diagram in the (74 /7, o0/a?)-plane showing four regions
marked by detectable phases. Circles are experimental data points
from all four samples studied.

state [65, 66]. We can account for the observed anisotropy re-
duction at lower filling factors assuming that the QHS phase
has a finite concentration of dislocations separated by an aver-
age distance Ly = SA /2 along stripes, where (3 is a numerical
factor. Scattering of drifting electrons by these dislocations
limits their drift length by Lq < L, and the resistivities cal-
culated in Refs. 39, 37 need to be modified to [67, 68]

h B

Pm—?ﬁ7 @)
h 1

Pyy = §2BV2 : 3

Equations (7), (8) are plotted as dashed lines in Fig. 3. Equat-
ing Eq.(7) to Eq.(6) [or Eq. (8) to Eq. (2)], we find that the
crossover to the dislocation limited transport happens at

V1
Vg = —.
4= 73 ©))
With v4 ~ 8 and v; ~ 20 we find 8 = (v1/vq)? =~ 6.3. This
value does not seem unreasonable and correctly accounts for
the saturation of the anisotropy, pu./pyy = 3% &~ 40 [39].
Our experimental findings in Al,Ga;_, quantum wells
(Fig.2) and in a clean GaAs quantum well (Fig. 3) can be uni-
fied in a phase diagram shown in Fig. 4 which treats oq/a?
and 7, /7 as independent parameters. Here, the QHS phase is
observed above the horizontal line corresponding to v, = 9/2.
To detect the hQHS phase, one should satisfy both vp —v; > 1
and vo > 11/2, since at least two half-integer filling factors
are needed to establish v-independence of the resistance [69].
As a result, the most favorable conditions for the hQHS phase
are realized at the top-right corner of the diagram. However,

as demonstrated by our experiments on Al,Ga;_,As quan-
tum wells, the hQHS can be detected at modest mobilities
provided that the ratio 7, /7 is sufficiently high. On the other
hand, this ratio is much smaller in clean GaAs quantum wells
which makes the hQHS detection difficult in such systems de-
spite their high mobility. The phase diagram shown in Fig. 4
provides a a road map for future experiments aiming to detect
the hQHS phases.

In summary, we have observed hidden quantum Hall stripe
(hQHS) phases [37] forming near half-integer filling factors
of Al,Ga;_,As/Aly24Gag 76As quantum wells with vary-
ing z. These phases reside between the conventional stripe
phases and the isotropic liquid phases and are characterized
by isotropic resistivity which is not sensitive to the filling fac-
tor. Analysis of the experimental phase diagram reveals that
the QHS density of states is smaller than predicted by the
Hartree-Fock theory [3, 4], calling for improved theory. The
unique transport characteristics of the hQHS phases should
allow exploration of the stripe physics in 2D systems which,
unlike GaAs, lack symmetry breaking fields. On the other
hand, ultrahigh mobility GaAs quantum wells favor conven-
tional QHSs over hQHSs due to a shrinking filling factor range
where the hQHS phases can form.
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