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We report on transport signatures of hidden quantum Hall stripe (hQHS) phases in high (N > 2) half-

filled Landau levels of AlxGa1−xAs/Al0.24Ga0.76As quantum wells with varying Al mole fraction x < 10−3.

Residing between the conventional stripe phases (lower N ) and the isotropic liquid phases (higher N ), where

resistivity decreases as 1/N , these hQHS phases exhibit isotropic and N -independent resistivity. Using the

experimental phase diagram we establish that the stripe phases are more robust than theoretically predicted,

calling for improved theoretical treatment. We also show that, unlike conventional stripe phases, the hQHS

phases do not occur in ultrahigh mobility GaAs quantum wells, but are likely to be found in other systems.

Discovery of the integer quantum Hall effect in Si [1] has

paved the way to observations of many exotic phenomena in

two-dimensional (2D) electron and hole systems. Two prime

examples are the fractional quantum Hall effect [2] and the

quantum Hall stripes (QHSs) [3–7]. While fractional quantum

Hall effects have been realized in many systems, including

GaAs [2], Si [8, 9], AlAs [10], GaN [11], graphene [12, 13],

CdTe [14], ZnO [15], Ge [16], and InAs [17], exploration of

the QHS physics remains limited to GaAs [18].

Forming due to a peculiar box-like screened Coulomb po-

tential, QHSs can be viewed as charge density waves consist-

ing of stripes with alternating integer filling factors ν, e.g.,

ν = 4 and ν = 5 [19]. In experiments, QHSs are manifested

by giant resistivity anisotropies (ρxx ≫ ρyy) in N ≥ 2 half-

filled Landau levels (LLs). Appearance of these anisotropies

in macroscopic samples is attributed to a misterious symme-

try breaking field [20–23] which nearly always aligns QHSs

along ŷ ≡ 〈110〉 crystal axis of GaAs [24]. While a suffi-

ciently low disorder is necessary for the QHS formation, the

absence of QHSs in systems beyond GaAs might simply be

due to the lack of symmetry-breaking fields [25]. Indeed, elec-

tron bubble phases [3–5, 26–35], which are close relatives of

QHSs, have already been identified in graphene [36].

In this Letter we report observation of the recently pre-

dicted [37] hidden QHS (hQHS) phases in a series of

AlxGa1−xAs/Al0.24Ga0.76As quantum wells with x < 10−3.

In contrast to the ordinary QHS phases, the hQHS phases

are characterized by isotropic resistivity (ρxx = ρyy = ρ)

which is independent of ν, unlike the isotropic liquid phases

in which ρ ∝ ν−1. These unique properties make these phases

detectable without symmetry-breaking fields thereby opening

an avenue to study stripe physics in systems beyond GaAs.

The wide variation of mobilities in our samples allows us to

construct an experimental phase diagram in the conductivity-

filling factor plane. Its comparison to theoretical predictions

[37] yields the electron quantum lifetimes and the stripe den-

sity of states. The latter turns out to be lower than predicted

by original Hartree-Fock theory [3, 4], calling for further theo-

retical input. We confirm this finding by a complementary ex-

periment on an ultrahigh mobility GaAs quantum well, where

we also show that in this sample the hQHS phase yields to the

QHS phase, in agreement with the theory.

Before presenting our experimental data, we briefly sum-

marize the physics behind the hQHS phases [37]. The resis-

tance anisotropies in the ordinary QHS phase emerge due to

different diffusion mechanisms along and perpendicular to the

stripes [38, 39]. In this picture, an electron drifts a distance

Ly along the y-oriented stripe edge in an x-directed inter-

nal electric field until it is scattered by impurities to one of

the adjacent stripe edges located at a distance Lx = Λ/2 ≈√
2Rc [3, 4], where Λ is the stripe period and Rc is the cy-

clotron radius. When Ly ≫ Lx, the diffusion coefficient in

the ŷ direction is much larger that in the x̂ direction which

leads to anisotropic conductivity, σyy ≫ σxx, and resistiv-

ity, ρxx ≫ ρyy. Since Ly ∝ ν−1 and Lx ∝ ν [39], the

anisotropy decreases with ν and eventually vanishes at some

ν = ν1. At larger ν, the drift contribution to the diffusion

along stripes can be neglected and Ly , like Lx, is determined

entirely by the impurity scattering. For isotropic scattering, it

is easy to show [40] that Ly =
√
2Rc which coincides with

Lx. As a result, the QHS phase yields to the hQHS phase

in which the resistivity is isotropic and ν-independent (since

the stripe density of states does not vary with ν). The hQHS

phase persists till the stripe structure is destroyed by disorder

at ν = ν2 and the ground state becomes an isotropic liquid

with ρxx = ρyy ∝ ν−1, as predicted by Ando and Uemura

[41] and experimentally confirmed by Coleridge, Zawadski,

and Sachrajda (CZS) [42].

For the hQHS phase to exist and be detected, it should

span a sizable range of the filling factors, ∆ν = ν2 −
max{ν1, 9/2} ≫ 1. The range ∆ν depends sensitively on

both transport τ−1 and quantum τ−1
q scattering rates, which

control ν1 and ν2, respectively [37]. As we will see, ultrahigh

mobility GaAs quantum wells do not support the hQHS phase

as ν1 ≈ ν2 in these samples. On the other hand, adding the

correct small amount of Al [43] to the GaAs well greatly ex-
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pands ∆ν, as it affects ν1 to a much greater extent than it does

ν2. This happens because Al acts as a short-range disorder,

which contributes equally to transport τ−1 and quantum τ−1
q

scattering rates, and because τq/τ ≪ 1 at x = 0.

Apart from different x, all our AlxGa1−xAs quantum wells

share identical heterostructure design [44]. Electrons are sup-

plied by Si doping in narrow GaAs wells surrounded by nar-

row AlAs layers and placed at a setback distance of 75 mm

from each side of the 30-mm-wide AlxGa1−xAs well hosting

the 2D electrons. Parameters of samples A, B, and C, such

as Al mole fraction x, electron density ne, mobility µ, and

Drude conductivity σ̃0 = hneµ/e in units of e2/h at zero

magnetic field (B = 0) are listed in Table I. The samples

are approximately 4 mm squares with eight indium contacts

positioned at the corners and at the midsides. Longitudinal re-

sistances Rxx and Ryy were measured in sweeping magnetic

fields using a four-terminal, low-frequency (a few Hz) lock-in

technique at a temperature T ≈ 25 mK. The current was sent

along either x̂ ≡ 〈11̄0〉 or ŷ ≡ 〈110〉 direction using the mid-

side contacts and the voltage was measured between contacts

along the edge. To account for anisotropies due to non-ideal

geometry, Rxx or Ryy was multiplied by a factor (typically

. 1.1) which was chosen to make Rxx = Ryy in the low field

regime.

In Fig. 1 we present longitudinal resistances Rxx and Ryy

as a function of filling factor ν measured in sample B. At

low half-integer filling factors, such as ν = 9/2, 11/2 and

13/2, the data reveal conventional QHS phases, as evidenced

by Rxx > Ryy . At high half-integer filling factors, such as

ν > 25/2, we identify the CZS phase in which Rxx ≈ Ryy ∝
ν−1 (cf. dash-dotted line). At intermediate half-integer fill-

ing factors, ν = 15/2, ..., 23/2, one readily confirms both

characteristic features of the hQHS phase; indeed, the data

show that two longitudinal resistances are practically the same

(Rxx ≈ Ryy) and are independent of ν (cf. dashed line).

From Fig. 1, we can easily identify the characteristic filling

factors ν1 ≈ 7 and ν2 ≈ 12.5 which mark the crossovers from

the QHS to the hQHS phase and from the hQHS to the CZS

phase, respectively.

In a similar manner, we have obtained ν1 and ν2 for sam-

ple A and ν2 for sample C (which does not support the QHS

phase due to higher Al mole fraction x), which we then

use to construct the experimental phase diagram shown in

Fig. 2. We start by adding points representing the dimen-

sionless Drude conductivity σ̃0 for samples A, B, C, see Ta-

ble I, and corresponding filling factors ν1 (solid circles) and

ν2 (solid squares) To connect these data points we use the

TABLE I. Sample ID, Al mole fraction x, electron density ne, mo-

bility µ, and Drude conductivity, in units of e2/h, σ̃0 = hneµ/e at

zero magnetic field (B = 0).

Sample ID x ne (1011 cm−2) µ (106 cm2/Vs) σ̃0 (103)

A 0.00057 3.0 6.5 8.0

B 0.00082 2.9 4.1 4.9

C 0.0078 2.7 1.2 1.3

���

���

���

�

�
�
�
���
�
�
�
��
	
�



��������
��

�����������������

� � � � � � � � � � � � � ���

�����

���

���

���

�

�
�
�
���
�
�
�
��
	
�



��������
��

�����������������

� � � � � � � � � � � � � ���

�� !�� "# 

�����

FIG. 1. Longitudinal resistances Rxx (solid line) and Ryy (dot-

ted line) as a function of the filling factor ν measured in sample

B. Gap centers between spin-resolved Landau levels are labeled by

N = 2, 3, , .. at the top axis (ν = 2N + 1). The conventional QHS

phase (Rxx > Ryy) and the CZS phase (Rxx ≈ Ryy ∝ ν−1) occur

at half-integer ν = 9/2, 11/2, 13/2 and at ν = 27/2, 29/2, ..., re-

spectively. The hQHS phase is identified at intermediate half-integer

filling factors, ν = 15/2, ...., 25/2, where the resistance is isotropic

and ν− independent. The characteristic ν0 (ν−1) dependence of the

isotropic resistance in the hQHS (CZS) phase is marked by dashed

(dash-dotted) line.

theoretical boundaries of the hQHS phase [37]. The lower

boundary, ν = ν1, separating the QHS and the hQHS phases,

is given by [37]

ν1 ≃
√
σ̃0

α
, (1)

where α [45] is the QHS density of states in units of the

density of states per spin at B = 0, g0 = m⋆/2π~2. This

boundary can be obtained by either matching the parameter-

free geometric average of the resistivities in the QHS phase√
ρxxρyy = (h/e2)/(2ν2 + 1/2) ≈ (h/e2)/2ν2 [38, 39] and

the resistivity in the hQHS phase [37],

ρ̃hQHS ≡ h

e2
α2

2σ̃0

, (2)

or, equivalently, by setting the resistivity anisotropy ratio to

unity, ρxx/ρyy ≈ (σ̃0/α
2ν2)2 = 1 [37, 39].

The higher boundary, ν = ν2, marks the crossover from the

hQHS to the CZS phase and is represented by

ν2 ≃ σ̃0

α2

τq
τ

. (3)

This boundary can be obtained by equating α and the density

of states at the center of the Landau level in CZS phase, in

units of the density of states at B = 0,
√
ωcτq [47, 48] or by
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FIG. 2. A diagram in the (ν, σ0)-plane showing QHS, hQHS, and

CZS phases. Solid lines represent crossovers between phases, Eq. (1)

(left/upper line) and Eq. (3) (right/lower line). Solid circles (solid

squares) represent experimental ν1 (ν2) and horizontal dotted lines

mark σ̃0 for samples A-C [44]. Open circles (squares) are additional

data from a study conducted in a different context which conform to

our present findings [46].

matching ρhQHS and the resistivity in the CZS phase [42],

ρCZS ≡ h

e2
1

ν

τq/2τ

(τq/2τ)2 + 1
≈ h

e2
1

ν

τq
2τ

. (4)

We thus see that for a given carrier density, as mentioned

above, ν2 and ν1 are controlled by τ and τq, respectively.

Strictly speaking, Eqs. (1), (3) are not sharp boundaries but

rather gradual crossovers between corresponding phases.

With the help of Eq. (1) and experimental values of ν1 in

samples A and B, we estimate α ≈ 11, which is smaller

than the theoretical estimate of α ≃ 18 [39, 45]. We then

parametrize scattering rates τ−1 and τ−1
q as

τ−1 = τ−1
0 + κx , τ−1

q = τ−1
q0 + κx , (5)

where x is the Al mole fraction, κ ≈ 24 ns−1 per % Al

[44], and τ−1
0 ≈ 3 ns−1 [44] is the transport scattering rate

in the limit of x → 0. To find the remaining parameter τ−1
q0 ,

which is the quantum scattering rate in the limit of x → 0,

we use experimental ν2 values and notice that Eqs. (1), (3)

yield τq/τ ≃ ν2/ν
2
1 . Using Eq. (5) we then obtain an esti-

mate for τq0 ≃ 0.05 ns which is in good agreement with τq
values found from low B experiments [49–51] on microwave-

induced [52–54] and Hall field-induced [55–57] resistance os-

cillations in GaAs quantum wells.

We next use ne = 3 × 1011 cm−2 and m⋆ = 0.06m0

[58–62] to compute the phase boundaries, Eqs. (1), (3), which

are shown in Fig. 2 by solid lines. Both lines pass in close

proximity to the experimentally obtained ν1 (solid circles)

and ν2 (solid squares) from all samples, showing excellent
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FIG. 3. ρxx (solid triangles) and ρyy (open triangles) [63]) as a func-

tion of filling factor ν for sample A of Ref. 39 measured at T ≈ 50
mK. Lines are computed using theoretical expressions, marked by

equation numbers.

agreement between theory [37] and experiment. Finally, we

add data points (open circles and squares) from three other

AlxGa1−xAs/Al0.24Ga0.76As quantum wells which were in-

vestigated in a different context [46]. These points are also in

agreement with both the theory and the present experiment.

Having confirmed the existence of the hQHS phases in

AlxGa1−xAs/Al0.24Ga0.76As quantum wells, we next exam-

ine the possibility for these phases to exist in ultra-high mo-

bility GaAs quantum wells (without alloy disorder). In such

samples, the lower boundary ν1, Eq. (1), might approach and

even merge with the higher boundary ν2, Eq. (3), eliminating

the hQHS phase as a result. To test this prediction, we re-

visit the data obtained from sample A of Ref. 39 with σ̃0 ≈
3.6 × 104, much higher than in samples used in the present

study. As illustrated in Fig. 3, showing ρxx (solid triangles)

and ρyy (open triangles) [63] as a function of the filling factor

ν, the QHSs anisotropy in this sample collapses at ν1 ≈ 20.

Using Eq. (1), we can then estimate α =
√
σ̃0/ν1 ≈ 10 [64].

With τq ≃ 0.05 ns, Eq. (3) gives ν2 ≈ 21 which is very close

to ν1 ≈ 20. Indeed, the data in Fig. 3 show that the QHS

phase crosses over directly to the CZS phase, bypassing the

intermediate hQHS phase.

In the QHS phase, the easy resistivity is ν-independent and

is described by ρyy = ρhQHS, Eq. (2), while the hard resisi-

tivty exhibits clear ν−4 dependence and follows [37]

ρxx ≃ h

e2
σ̃0

2α2ν4
. (6)

However, the agreement between theory and experiment

breaks down at ν < νd ≈ 8, where one observes significant

deviations leading to the reduction of the anisotropy. While

the nature of such reduction is unclear, it increases upon fur-

ther cooling and might reflect a crossover to another ground
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FIG. 4. A diagram in the (τq/τ, σ0/α
2)-plane showing four regions

marked by detectable phases. Circles are experimental data points

from all four samples studied.

state [65, 66]. We can account for the observed anisotropy re-

duction at lower filling factors assuming that the QHS phase

has a finite concentration of dislocations separated by an aver-

age distance Ld = βΛ/2 along stripes, where β is a numerical

factor. Scattering of drifting electrons by these dislocations

limits their drift length by Ld ≪ Ly and the resistivities cal-

culated in Refs. 39, 37 need to be modified to [67, 68]

ρxx =
h

e2
β

2ν2
, (7)

ρyy =
h

e2
1

2βν2
. (8)

Equations (7), (8) are plotted as dashed lines in Fig. 3. Equat-

ing Eq. (7) to Eq. (6) [or Eq. (8) to Eq. (2)], we find that the

crossover to the dislocation limited transport happens at

νd ≡ ν1√
β
. (9)

With νd ≃ 8 and ν1 ≃ 20 we find β = (ν1/νd)
2 ≃ 6.3. This

value does not seem unreasonable and correctly accounts for

the saturation of the anisotropy, ρxx/ρyy = β2 ≈ 40 [39].

Our experimental findings in AlxGa1−x quantum wells

(Fig. 2) and in a clean GaAs quantum well (Fig. 3) can be uni-

fied in a phase diagram shown in Fig. 4 which treats σ0/α
2

and τq/τ as independent parameters. Here, the QHS phase is

observed above the horizontal line corresponding to ν1 = 9/2.

To detect the hQHS phase, one should satisfy both ν2−ν1 > 1
and ν2 > 11/2, since at least two half-integer filling factors

are needed to establish ν-independence of the resistance [69].

As a result, the most favorable conditions for the hQHS phase

are realized at the top-right corner of the diagram. However,

as demonstrated by our experiments on AlxGa1−xAs quan-

tum wells, the hQHS can be detected at modest mobilities

provided that the ratio τq/τ is sufficiently high. On the other

hand, this ratio is much smaller in clean GaAs quantum wells

which makes the hQHS detection difficult in such systems de-

spite their high mobility. The phase diagram shown in Fig. 4

provides a a road map for future experiments aiming to detect

the hQHS phases.

In summary, we have observed hidden quantum Hall stripe

(hQHS) phases [37] forming near half-integer filling factors

of AlxGa1−xAs/Al0.24Ga0.76As quantum wells with vary-

ing x. These phases reside between the conventional stripe

phases and the isotropic liquid phases and are characterized

by isotropic resistivity which is not sensitive to the filling fac-

tor. Analysis of the experimental phase diagram reveals that

the QHS density of states is smaller than predicted by the

Hartree-Fock theory [3, 4], calling for improved theory. The

unique transport characteristics of the hQHS phases should

allow exploration of the stripe physics in 2D systems which,

unlike GaAs, lack symmetry breaking fields. On the other

hand, ultrahigh mobility GaAs quantum wells favor conven-

tional QHSs over hQHSs due to a shrinking filling factor range

where the hQHS phases can form.
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and M. J. Manfra, Growth and electrical characterization

of Al0.24Ga0.76As/AlxGa1−xAs/ Al0.24Ga0.76As modulation-

doped quantum wells with extremely low x, Appl. Phys. Lett.

102, 252103 (2013).

[45] In general, α should be modified by a factor
√
2γ, where γ is

a parameter depending on the nature of scattering [39]. In sam-

ples without alloy disorder, γ decreases with N1/N2 where N1

(N2) is the concentration of Coulomb impurities in the barrier

(quantum well), starting from γ ≈ 0.43 at N1 = N2 [39],

whereas in samples where scattering is dominated by alloy dis-

order γ ≈ 0.53 [37]. While we estimate γ ≈ 0.4 in our samples

A and B, we will assume γ = 0.5 for simplicity.

[46] Q. Shi, Magnetotransport in quantum Hall systems at high Lan-

dau levels, Ph.D. thesis, University of Minnesota (2017).

[47] M. E. Raikh and T. V. Shahbazyan, High Landau levels in a

smooth random potential for two-dimensional electrons, Phys.

Rev. B 47, 1522 (1993).

[48] A. D. Mirlin, E. Altshuler, and P. Wölfle, Quasiclassical ap-
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Field-tilt anisotropy energy in quantum Hall stripe states, Phys.

Rev. B 60, 15574 (1999).

[81] T. D. Stanescu, I. Martin, and P. Phillips, Finite-Temperature

Density Instability at High Landau Level Occupancy, Phys.

Rev. Lett. 84, 1288 (2000).

[82] H. Zhu, G. Sambandamurthy, L. W. Engel, D. C. Tsui, L. N.

Pfeiffer, and K. W. West, Pinning Mode Resonances of 2D Elec-

tron Stripe Phases: Effect of an In-Plane Magnetic Field, Phys.

Rev. Lett. 102, 136804 (2009).

[83] Q. Shi, M. A. Zudov, J. D. Watson, G. C. Gardner, and M. J.

Manfra, Evidence for a new symmetry breaking mechanism re-

orienting quantum Hall nematics, Phys. Rev. B 93, 121411(R)

(2016).

[84] Q. Shi, M. A. Zudov, Q. Qian, J. D. Watson, and M. J. Manfra,

Effect of density on quantum Hall stripe orientation in tilted

magnetic fields, Phys. Rev. B 95, 161303(R) (2017).

[85] J. Falson, D. Tabrea, D. Zhang, I. Sodemann, Y. Kozuka,

A. Tsukazaki, M. Kawasaki, K. von Klitzing, and J. H.

Smet, A cascade of phase transitions in an orbitally

mixed half-filled Landau level, Science Advances 4 (2018),

http://advances.sciencemag.org/content/4/9/eaat8742.full.pdf.

[86] M. S. Hossain, M. A. Mueed, M. K. Ma, Y. J. Chung, L. N.

Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, Anoma-

lous coupling between magnetic and nematic orders in quantum

Hall systems, Phys. Rev. B 98, 081109(R) (2018).

[87] S. H. Simon, Comment on “Evidence for an Anisotropic State

of Two-Dimensional Electrons in High Landau Levels”, Phys.

Rev. Lett. 83, 4223 (1999).

[88] M. Sammon, M. A. Zudov, and B. I. Shklovskii, Mobility and

quantum mobility of modern GaAs/AlGaAs heterostructures,

Phys. Rev. Materials 2, 064604 (2018).


