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ABSTRACT8

This paper presents a full-waveform inversionmethod for reconstructing the temporal and spatial9

distribution of unknown, incoherent dynamic traction in a heterogeneous, bounded solid domain10

from sparse, surficial responses. This work considers SH wave motions in a two-dimensional (2D)11

domain. The partial-differential-equation (PDE)-constrained optimization framework is employed12

to search a set of control parameters, by which a misfit between measured responses at sensors on13

the top surface induced by targeted traction and their computed counterparts induced by estimated14

traction is minimized. To mitigate the solution multiplicity of the presented inverse problem,15

we employ the Tikhonov (TN) regularization on the estimated traction function. We present the16

mathematical modeling and numerical implementation of both optimize-then-discretize (OTD)17

and discretize-then-optimize (DTO) approaches. The finite element method (FEM) is employed18

to obtain the numerical solutions of state and adjoint problems. Newton’s method is utilized for19

estimating an optimal step length in combination with the conjugate-gradient scheme, calculating20

a desired search direction, throughout a minimization process.21

Numerical results present that the complexity of a material profile in a domain increases the22

error between reconstructed traction and its target. Second, the OTD and DTO approaches lead23
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to the same inversion result. Third, when the sampling rate of the measurement is equal to the24

timestep for discretizing estimated traction, the ratio of the size of measurement data to the number25

of the control parameters can be as small as 1:12 in the presented work. Fourth, it is acceptable26

to tackle the presented inverse modeling of dynamic traction without the TN regularization. Fifth,27

the inversion performance is more compromised when the noise of a larger level is added to the28

measurement data, and using the TN regularization does not improve the inversion performance29

when noise is added to the measurement. Sixth, our minimizer suffers from solution multiplicity30

less when it identifies dynamic traction of lower frequency content than that of higher frequency31

content. The wave responses in a computational domain, induced by targeted traction and its32

reconstructed one, are in excellent agreement with each other. Thus, if the presented dynamic-input33

inversion algorithm is extended in realistic 3D settings, it could reconstruct seismic input motions34

in a truncated domain and, then, replay the wave responses in a computational domain.35

INTRODUCTION36

There is a need for estimating incident seismic wavefields in a soil-structure system from limited37

seismic measurement data because, by using the identified seismic inputs, engineers can reconstruct38

(i.e., replay) responses within structures and soils during an earthquake event. There have been two39

dominant, conventional methods for the purpose mentioned above: the one is deconvolution and40

the other is the inversion of a seismic source profile at a fault in a very large domain.41

The deconvolution algorithm has been used for the identification of an incoming seismic wave42

signal into a soil column by using vibrational measurement on the ground surface. For instance,43

Mejia and Dawson (2006) have presented the deconvolution to compute a seismic input signal by44

using the SHAKE program (Schnabel 1972), which solves the 1D seismic wave propagation prob-45

lem in a domain of a semi-infinite extent. Recently, there have been studies on the deconvolution46

of both vertical and horizontal components of surficial measurement data to identify the vertical47

and horizontal input wave motions (Poul and Zerva 2018a; Poul and Zerva 2018b). We note that,48

although the deconvolution has been widely used in geotechnical earthquake engineering, it is effec-49

tive on individual soil columns only when soil stratification is horizontally uniform, and incoming50
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seismic waves vertically propagate. Namely, when the soil property is arbitrarily heterogeneous51

(not horizontally layered), and incoming seismic waves, consisted of P, S, and/or surface waves,52

are highly incoherent (not vertically propagating), the deconvolution cannot effectively reconstruct53

the incoming waves.54

On the other hand, there have been studies for inverting for seismic-source parameters (however55

simple or complicated an adopted seismic source model may be) at a hypocenter. For instance,56

Akcelik et al. (2002) presented a method to invert for a simplified seismic source time signal in a57

large 3D domain that includes a source at a fault. This method requires forward and inverse wave58

simulations of a very large domain. Upon characterizing the seismic source via inversion, then59

attention is typically turned on how to propagate the motion from the source to the surface, where60

the real interest is. However, in the large-scale source-inversion problem, the material properties61

of a large domain could be poorly characterized (on the other hand, the material properties could62

be better characterized by virtue of active wave source-based geotechnical characterization method63

(Fathi et al. 2016)).64

The limitations of the two methods, mentioned above, necessitate developing an alternative65

method that can identify arbitrary, incoherent incoming seismic waves in a truncated 2D or 3D66

domain by using sparse seismic measurement. Such a potential method could serve as an alternative67

to the deconvolution, while bypassing all the complexities associated with the inversion of the68

source at the hypocenter and the subsequent propagation steps. Recently, Jeong and Seylabi (2018)69

presented prototype research that can reconstruct a seismic input signal propagating into a 1D70

truncated, heterogeneous, undamped solid system by using the partial differential equation (PDE)-71

constrained optimization method. Lloyd and Jeong (2018) also show that the PDE-constrained72

optimization can reconstruct the discretized parameters of moving vibrational body forces in73

both space and time in a 1D heterogeneous, linear, elastic, undamped solid by using the sparse74

measurement of wave motions. These works were cast into a minimization problem, where a75

misfit between a measured response(s) at a sensor(s) induced by a targeted wave source profile76

and a computed wave solution(s) induced by an estimated source profile is minimized, and the77
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PDE-constrained optimization scheme analytically evaluates the gradient of a misfit with respect78

to control parameters, which parameterize an estimated dynamic input function. Because of79

such an analytical nature, its computational efficiency of computing the gradient of a misfit with80

respect to control parameters does not depend on the number of them. Thus, it can update a81

large set of control parameters very efficiently. In addition, the PDE-constrained optimization82

can accommodate regularization to address the solution multiplicity of full-waveform inversion83

problems, typically caused by the sparsity of measurement, and to stabilize the convergence by84

penalizing an undesired aspect of an estimated profile while enhancing a selected feature (e.g.,85

smoothness) of targeted profiles.86

There had been a wide range of studies on elastodynamic inverse problems—e.g., full-waveform87

material inversion, inversematerial design, full-waveform inverse-scattering, and source inversion—88

based on the PDE-constrained optimization as shown in the following literature review. Kang and89

Kallivokas (2010a) and Kang and Kallivokas (2011) examined the numerical algorithms to image90

the distributions of the scalar-wave speeds in one-dimensional and two-dimensional solids that are91

surrounded by Perfectly-Matched-Layers (PML), where waves are forced to decay and they are pre-92

vented from reflecting off the surrounding boundaries (Kang and Kallivokas 2010b; Kucukcoban93

and Kallivokas 2011; Kucukcoban and Kallivokas 2013; Fathi et al. 2015b; Poul and Zerva 2018c).94

Pakravan et al. (2016) devised a new methodology to probe the elastic and attenuating parameters95

of two-dimensional viscoelastic layered solids. Kallivokas et al. (2013), Fathi et al. (2015a), Fathi96

et al. (2016), and Kucukcoban et al. (2019) studied algorithms to invert for the Lamé parameters97

in two-dimensional and three-dimensional PML-truncated solid domains, and these computational98

studies made significant advancement in geotechnical site characterization using dynamic tests.99

Tran and McVay (2012) investigated the Gauss-Newton-based full waveform inversion approach to100

estimate the elastic modulus profile in a two-dimensional domain. Mashayekh et al. (2018) inves-101

tigated a new methodology to estimate the mechanical properties of layered elastic or viscoelastic102

media by taking into account the dispersion relation of the layered medium. Tromp et al. (2008) and103

Zhu et al. (2017) investigated the adjoint-tomography geophysical inversion using the spectral ele-104
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ment wave modeling in global- or regional-scale domains by using earthquake waves emitted from105

a seismic source of a known location and a known signal. Recently, Goh and Kallivokas (2019)106

investigated a new inverse metamaterial design method by minimizing the distance between the107

target and the computed group velocity profiles via a dispersion-constrained optimization method,108

and the method can be used for designing metamaterials, such as user-defined omnidirectional band109

gaps in an elastic medium. In addition, it had been shown that strong discontinuities within solids,110

such as the boundaries of voids, can be identified by using inverse modelings. Namely, Guzina et al.111

(2003) and Jeong et al. (2009) studied inverse scattering algorithms using the PDE-constrained op-112

timization, associated with the boundary element method (BEM) wave solver, taking advantages of113

the moving boundary concept and the total derivative (Petryk and Mroz 1986). Nguyen-Tuan et al.114

(2019) also made recent progress in the inverse scattering algorithm, using the PDE-constrained115

optimization associated with the level-set based extended finite element method (XFEM) solver, so116

as to identify the geometry of voids in a static-hydro-mechanical system. Both BEM and XFEM117

wave solvers can model the boundaries of the strong discontinuities and update their geometries118

without cumbersome remeshing during an inversion process as opposed to a conventional finite119

element method (FEM) wave solver, which should remesh a domain to update the boundaries’120

geometries (Jung et al. 2013). On the other hand, Aquino et al. (2019) devised a novel algorithm121

to detect debonded interfaces (i.e., interface cracks or incomplete weld bonds) in composite solids122

by using steady-state vibrational tests and a density function that characterizes the bonding at the123

interfaces in composite solids. Besides, the following studies have investigated the methods to124

identify dynamic input functions. Hasanov and Baysal (2014) studied an algorithm to detect the125

time-independent spatial load distributions of a dynamic source on a cantilever beam. Binder et al.126

(2015) also recover virtual, stationary wave sources at possible locations of structural anomalies127

using the adjoint equation approach. Walsh et al. (2013) reported the inverse problems for the128

identification of dynamic sources in acoustics and elastodynamics, employing a DTO approach.129

That is, the discrete form of the forward wave equation at each time step is imposed into a La-130

grangian, and the adjoint equation and the gradient of the Lagrangian with respect to the source131
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parameters are derived in discrete forms. In particular, Walsh et al. (2013) suggested that the132

DTO approach is more suitable than the OTD counterpart when the nonlinearity is considered133

in the forward problem because the discrete, linearized forward equation of every time step can134

be individually side-imposed into the Lagrangian. The PDE-constrained optimization has been135

also used for identifying optimal, non-moving wave source profiles that can focus wave energy to136

specific areas in solids (Tadi et al. 1996; Jeong et al. 2010; Jeong et al. 2015; Karve et al. 2015;137

Karve and Kallivokas 2015; Jeong and Kallivokas 2016; Karve et al. 2016).138

Due to the aforementioned robustness and scalability of the PDE-constrained optimization for139

inverse problems, it is worth continuing to investigate it so as to identify incoherent seismic input140

motions in a multi-dimensional domain from sparse seismic measurement data. This research141

reconstructs the spatial and temporal distributions of incoherent dynamic traction on a boundary142

of a heterogeneous, bounded, undamped solid system of anti-plane motions by using the PDE-143

constrained optimization method.144

Our numerical experiments show that the presented dynamic-input identification approach can145

successfully identify unknown targeted traction without knowing any information about the target146

in heterogeneous domains. Our parametric studies investigate the performance of the presented147

inverse modeling with respect to the complexity of material heterogeneity in a domain, the number148

of sensors, the regularization intensity factor, the optimization modeling type (i.e., OTD versus149

DTO), the noise level in measurement data, and the traction signal type (i.e., a high-frequency150

Ricker wavelet versus a low-frequency realistic seismic signal).151

PROBLEM DEFINITION152

This study is aimed at reconstructing the spatial and temporal distributions of dynamic traction on a153

boundary of an undamped solid by using measured wave responses at sparsely-distributed sensors154

on the top surface of the solid (see Fig. 1). The geometries and the material properties of the solid155

are assumed to be known in advance.156
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The governing equation157

The governing equation for the SH wave propagation in the undamped solid domain is (we omit158

to show the spatial and/or temporal dependency of the variables):159

∇ · (�∇D) − d m
2D

mC2
= 0, on Ω × J, (1)160

where D = D(G, H, C) denotes the displacement field in the anti-plane (I) direction of the wavemotion161

of a solid particle (i.e., SH wave motion); G, H, and C denote horizontal and vertical coordinates and162

time; � (G, H) and d(G, H) denote the shear modulus and the mass density of the solid; Ω denotes163

the domain, and J = (0, )] is the time interval of interest. The solid is subject to a traction-free164

condition on the top surface (Γt) and dynamic shear stress on the bottom surface (Γb):165

�
mD

mH
(G, 0, C) = 0, 0 ≤ G ≤ !, (2)166

�
mD

mH
(G, �, C) = � (G, C), 0 ≤ G ≤ !, (3)167

168

where � is the H-coordinate of Γb, and � (G, C) denotes the dynamic shear stress applied on Γb. The169

solid is constrained by fixed boundary conditions on the left (Γl) and right (Γr) boundaries:170

D(0, H, C) = 0, � < H < 0, (4)171

D(!, H, C) = 0, � < H < 0. (5)172
173

where ! is the G-coordinate of Γr. The governing wave physics is also subject to zero initial-value174

conditions:175

D(G, H, 0) = 0, (6)176

mD

mC
(G, H, 0) = 0. (7)177

178
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We note that this work considers a 2D bounded domain as a prototype for the seismic-input179

inversion problem in the multi-dimensional setting. Continuing this work, we will investigate the180

seismic-input inversion in a 2D/3D unbounded (truncated) domain.181

Parameterization of an estimated dynamic traction function182

We discretize an estimated dynamic traction function, � (G, C), over space and time as:183

� (G, C) =
#G∑
:=1

#C∑
9=1
Φ: (G)q 9 (C)�: 9 , (8)184

where Φ: (G) denotes the :-th component of a vector of global basis functions used for the spatial185

discretization of � (G, C); q 9 (C) denotes the 9-th component of a vector of global basis functions186

used for the temporal discretization of � (G, C); �: 9 denotes the discretized value of � (G, C) at each187

discrete location G: and time C 9 ; and #G and #C denote the numbers of discretization points over188

space and time, respectively. Although the shape functions to construct Φ: (G) and q 9 (C) can be of189

any low order, linear shape functions are used for both of them in the presented inverse modeling.190

The sizes of the temporal and spatial discretization are set to be, respectively, the time-step size191

(ΔC) of the forward time integration and the element size (ΔG) of a mesh on Γb for a forward wave192

solver. The presented inverse modeling is aimed at reconstructing the set of control parameters �: 9 ,193

of which corresponding wave responses in the domain are consistent with the measurement on Γt.194

INVERSE MODELING—THE OPTIMIZE-THEN-DISCRETIZE (OTD) APPROACH195

This section presents the OTD modeling for identifying the temporal and spatial distributions of196

unknown traction � (G, C) based on measured wave responses on the top surface of the solid. First,197

this section presents the mathematical modeling of deriving the first-order optimality conditions in198

a continuous form. Second, this section shows the discrete forms of the state and adjoint equations199

and the gradient of the objective functional with respect to the control parameters.200

The objective functional201

We cast the presented inverse problem into a minimization problem, where we seek the values of202

control parameters (i.e., �: 9 in (8) for all : and 9) that correspond to a minimum (either global or203
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local one) of an objective functional:204

L =
∫ )

0

#s∑
8=1
(Dm8 − D8)2 dC + RTN, (9)205

where Dm8 denotes the displacement field of the measured wave response at the 8-th sensor induced206

by a targeted � (G, C); D8 denotes the computed counterpart due to an estimated � (G, C), which207

is constructed by estimated control parameters; and #s denotes the number of sensors. In this208

computational study, Dm8 is synthetically created by using a forward wave solver with a pseudo209

target of � (G, C). The first term of (9) is a misfit between Dm8 and D8. We speculate that the misfit210

functional is quadratic and convex (please see the Appendix III) so that the first-order optimality211

conditions of the Lagrangian functional (11) would be sufficient for obtaining the inversion solution.212

However, due to the sparsity of measurement data, we hypothesize that the considered inverse213

problem would suffer from the solution multiplicity, and the regularization could be effective for214

improving the convergence of the inversion solution to a targeted profile. To test the hypothesis,215

we employ the second term of (9), RTN, which denotes the Tikhonov (TN) regularization term:216

RTN =
'

2

∫ )

0

∫
Γb

(
m� (G, C)
mG

)2
+

(
m� (G, C)
mC

)2
dΓ dC, (10)217

where ' is the regularization factor, which adjusts the amount of penalty on the derivative of218

� (G, C). By minimizing the regularization term RTN along with the misfit, we attempt to mini-219

mize the discontinuity of � (G, C) and smooth it while mitigating the solution multiplicity of the220

presented inverse problem. It is well known that, when the material inversion is performed, the221

TN regularization on a material profile overly smooths the discontinuity at the interface of layered222

media. Thus, the TN regularization is suited for identifying a smooth material profile while the223

total variation (TV) is used for enhancing the discontinuity of the material profile. Meanwhile,224

for the seismic input inversion, a typical time signal of a seismic input motion should be a smooth225

function because the high-frequency content of a discontinuous signal cannot be retained along the226

propagation path from a seismic source to a near-surface domain due to attenuation. Thus, this227
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work used the TN regularization under a hypothesis that using the TN regularization can improve228

the uniqueness of the inversion solution while smoothing the estimated traction function. This229

hypothesis is tested in Example 4 shown in the later section ‘Numerical Experiments’.230

Lagrangian functional231

By imposing the governing equation (1) and the Neumann boundary condition (3) onto the side of232

the objective functional via Lagrange multipliers, a Lagrangian functional is built as:233

A =

∫ )

0

#s∑
8=1
(Dm8 − D8)2 dC + RTN

234

+
∫ )

0

∫
Ω

_

[
∇ · (�∇D) − d m

2D

mC2

]
dΩ dC235

+
∫ )

0

∫
Γb

_�

[
�
mD

mH
− � (G, C)

]
dΓ dC, (11)236

237

where _ = _(G, H, C) and _� = _� (G, C) are the Lagrange multipliers. Note that the boundary238

condition and initial conditions are implicitly imposed in (11): they are not shown in (11) but239

used for the derivation of the adjoint and control equations. The first-order optimality conditions240

of the Lagrangian functional lead to state, adjoint, and control equations. The satisfaction of241

these equations leads to an optimal solution, corresponding to the minimal value of the objective242

functional.243

The first-order optimality conditions244

Thefirst-order optimality conditions of theLagrangian functionalA require the vanishing variations245

ofA with respect to the state variable D(G, H, C), the Lagrange variables _(G, H, C) and _� (G, C), and246

the control parameter b = �: 9 . Such vanishing conditions lead to a triad of state, adjoint, and247

control equations (Lions 1971):248

X_,_�A = 0 : The first condition (state problem), (12)249

XDA = 0 : The second condition (adjoint problem), (13)250

XbA = 0 : The third condition (control problem). (14)251
252
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For the first condition, the variation of A with respect to the Lagrange variables _(G, H, C)253

and _� (G, C) vanishes when the state problem—the original governing wave equation (1) and its254

associated boundary and initial-value conditions—is satisfied. Our inverse modeling procedure255

automatically satisfies it by numerically solving the state problem for estimated control parameters.256

As the second condition, the variation of A with respect to the state variable D(G, H, C) should257

vanish. Such a vanishing variational condition leads to the following adjoint equation (see the258

derivation of the adjoint problem in Appendix):259

∇ · (�∇_) − d m
2_

mC2
= 2(Dm − D)

#s∑
8=1
Δ (G − G8, H − H8), on Ω × [0, )), (15)260

where Δ (G − G8, H − H8) is the Dirac delta. In the adjoint PDE, the difference between Dm and D261

serves as the time signal of a point wave source at each location of a sensor. It is noteworthy that262

the strong form of the adjoint PDE is derived from the weak-form like equation (77). Although263

the strong form of the adjoint PDE is weakly satisfied, the FEM solution of the adjoint PDE fully264

satisfies the weak-form like equation (77) and, thus, satisfies the second condition of the first-order265

optimality condition. On the other hand, if the Lagrangian functional is built by imposing the266

discrete form of the state PDE, the aforementioned issue does not arise because the corresponding267

discrete form of the adjoint problem fully satisfies the second condition of the first-order optimality268

condition. To study the latter aspect, this paper also presents the discretize-then-optimize (DTO)269

counterpart in the later section ‘Inverse Modeling—the discretize–then-optimize (DTO) approach’,270

and our numerical experiments tests its inversion performance in Example 2 in the later section271

‘Numerical Experiments’.272

The adjoint PDE is also subject to the following boundary conditions:273

_(0, H, C) = _(!, H, C) = 0, � < H < 0,274

m_

mH
(G, 0, C) = m_

mH
(G, �, C) = 0, 0 ≤ G ≤ !, (16)275

276
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and the following final-value conditions:277

_(G, H, )) = 0,278

m_

mC
(G, H, )) = 0. (17)279

280

The third condition states that the variation ofAwith respect to a scalar-valued control parameter281

b = �: 9 should vanish. The vanishing variation condition leads to the following control equation282

(see the derivation of the control problem in Appendix):283

XbA =
mA
mb

284

= −
∫ )

0

∫
Γb

_
m

mb
(� (G, C)) dΓ dC + mR

TN

mb
285

= −
∫ )

0

∫
Γb

_Φ: (G)q 9 (C) dΓ dC − '
∫ )

0

∫
Γb

(
m2� (G, C)
mG2 + m

2� (G, C)
mC2

)
Φ: (G)q 9 (C) dΓ dC︸                                                                                                             ︷︷                                                                                                             ︸

the closed form of mA
mb
= mL
mb

= 0.

(18)

286

287

Note that XbA = mA
mb

is the derivative of A with respect to a control parameter b = �: 9 . Since the288

side-imposed terms inA vanish, mA
mb

is equivalent to mL
mb

, which constitutes a gradient vector ∇/L,289

where / is a vector of all the control parameters. The control equation (18) implies that ∇/L at any290

estimated values of / can be evaluated in a semi-analytical manner by using its closed form once291

the solutions of state and adjoint problems are computed.292

Finite element solution of the state problem293

To find D(C) ∈ * for all E ∈ V, we cast the weak form of the state problem as:294

∫
Ω

∇E · (�∇D) dΩ +
∫
Ω

Ed
m2D

mC2
dΩ = −

∫
Γb

E� (G, C) dΓ, (19)295
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where E denotes a test function. The function spaces for a scalar-valued D and E are defined as:296

* = {D : D ∈ �1, D
��
Γ; ,ΓA

= 0}297

V = {E : E ∈ �1, E
��
Γ; ,ΓA

= 0} (20)298
299

To resolve the weak form numerically, we use the standard finite-element approximation. We300

approximate the test and trial functions, respectively, as:301

E(G, H) ' v)7(G, H), D(G, H, C) ' 7(G, H))u(C), (21)302

where 7(G, H) denotes a vector of global basis functions constructed by shape functions of each303

finite element mesh in the domain, and u(C) denotes a vector of nodal solutions of the state problem.304

Then, (19) reduces to the following discrete form:305

M¥u(C) +Ku(C) = F(C), (22)306

where (¥) denotes the second-order derivative of its subtended variable with respect to C;M denotes307

a global mass matrix; K denotes a global stiffness matrix; F(C) denotes a global force vector. They308

are defined as:309

K =

∫
Ω

�

(
m7

mG

m7)

mG
+ m7
mH

m7)

mH

)
dΩ,310

M =

∫
Ω

d77) dΩ,311

F(C) = −
∫
Γb

7� (G, C) dΓ. (23)312

313
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Finite element solution of the adjoint problem314

To find _(C) ∈ Λ for all E ∈ V, the weak form of the adjoint equation (15) is obtained as:315

∫
Ω

∇E · (�∇_) dΩ +
∫
Ω

Ed
m2_

mC2
dΩ = −

#s∑
8=1

2E(G8, H8) (Dm(G8, H8, C) − D(G8, H8, C)). (24)316

The function space for a scalar-valued _ is defined as:317

Λ = {_ : _ ∈ �1, _
��
Γ; ,ΓA

= 0} (25)318

The test and trial functions are approximated as follows:319

E(G, H) ' v)7(G, H), _(G, H, C) ' 7(G, H)),(C), (26)320

where ,(C) is a vector of the nodal adjoint solution. The weak form of the adjoint problem changes321

to the following time-dependent discrete form:322

M ¥,(C) +K,(C) = Fadj(C), (27)323

where Fadj(C) is defined as:324

Fadj(C) = 2
#s∑
8=1
(7(G8, H8)D(G8, H8, C) − 7(G8, H8)Dm(G8, H8, C)). (28)325

We note that the specific forms of the matricesK andM in the discrete form of the adjoint problem326

in (27) are identical to those for the state problem in (23).327

Time integration328

We solve the time-dependent discrete form of the state problem in (22) by using the implicit329

Newmark time integration (i.e., average-acceleration scheme). We omit to show the detail of the330

forward time integration procedure of the state problem.331
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On the other hand, for the time-dependent discrete form of the adjoint problem in (27), the time332

integration begins from the final time C = ) and ends at the initial time C = 0. That is, the backward333

time integration begins with the final-value conditions, ,()) = 0, ¤,()) = 0, and334

¥,()) = M−1Fadj()). (29)335

For the backward time-marching procedure from C = ) , the following approximations are used:336

¤,= = ¤,=+1 −
ΔC

2
¥,= −

ΔC

2
¥,=+1, (30)337

¥,= =
4
(ΔC)2

(,=+1 − ,=) −
4
ΔC

¤,= − ¥,=+1. (31)338

339

Substituting (30) into (31) yields:340

¥,= = −
4
(ΔC)2

(,=+1 − ,=) +
4
ΔC

¤,=+1 − ¥,=+1. (32)341

By inserting (32) into the discrete form of the adjoint equation (27), we obtain the following342

equation that will be used for computing ,= at every =-th time step:343

,= =

[
K + 4
(ΔC)2

M
]−1{

Fadj(C=) +M
(

4
(ΔC)2

,=+1 −
4
ΔC

¤,=+1 + ¥,=+1

)}
. (33)344

Once we obtain ,= from (33), we obtain ¥,= from (32) and, in turn, ¤,= from (30).345

The discrete form of the gradient346

The gradient of the objective functionalL with respect to a scalar variable b can now be numerically347

computed as:348

∇(b=�: 9 )L = −ΔGΔC × _(G: , �, C 9 ) − ' × ΔGΔC ×
[
m2� (G, C)
mG2 + m

2� (G, C)
mC2

]
at G: ,C 9

. (34)349

15 Guidio and Jeong, September 25, 2020



Here, this works uses the aforementioned FEM solution of the adjoint problem for evaluating the350

gradient in (34) under the OTD approach.351

INVERSE MODELING—THE DISCRETIZE–THEN-OPTIMIZE (DTO) APPROACH352

This section presents the inverse modeling based on the DTO approach. The Lagrangian353

functional is built by imposing the discrete form of the state problem, using the discrete adjoint354

variable, into the objective functional in the discrete form. The first-order optimality conditions are355

derived in the discrete form. The time-integration implementation of the state and adjoint problems356

are already embedded in their discrete forms.357

The discrete objective functional358

The discrete-form counterpart of the objective functional (9) is given by:359

L̂ = (ûm − û)T B (ûm − û) + '
2
F̂TR F̂, (35)360

where û = [u0 ¤u0 ¥u0 u1 ¤u1 ¥u1 . . . uN ¤uN ¥uN]) corresponds to the space-time discretization ofD(G, H, C)361

for (G, H) ∈ Ω and C ∈ [0, )], induced by an estimated � (G, C) (N is the number of time steps, and362

u8 are the spatial degrees of freedom at the 8-th time step); û< is the space-time discretization of363

Dm(G, C) induced by a targeted � (G, C); and B is a block diagonal matrix, determined as B = ΔCB364

on the diagonal, where B is a square matrix that is zero everywhere except on the diagonals that365

correspond to a degree of freedom for which measured data are available; ' is the regularization366

factor; F̂ = [0 0 F0 F1 0 0 . . . FN 0 0]) is a global force vector corresponding to all the time steps—367

that is, the discrete control parameter �: 9 are populated in F̂; and R is the matrix corresponding to368

the discretization scheme used for the regularization terms defined as:369

R =

∫ )

0

∫
Γb

(
mw(G, 0, C)

mG

mw) (G, 0, C)
mG

+ mw(G, 0, C)
mC

mw) (G, 0, C)
mC

)
dΓ dC, (36)370

where w(G, H, C) denotes a vector of global basis functions, in both space and time, constructed by371

shape functions of each finite element mesh in the domain and the shape functions over the time.372
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That is, an estimated traction function � (G, C) can be discretized as:373

� (G, C) = w) (G, H = 0, C)F̂. (37)374

The discrete Lagrangian functional375

The Lagrangian functional corresponding to (35) is built by imposing the discrete form of the376

state problem using the discrete adjoint variable:377

Â = (ûm − û)T B (ûm − û) + '
2
F̂TR F̂ + ,̂) (Qû − F̂), (38)378

where ,̂ = [,0 ¤,0 ¥,0 ,1 ¤,1 ¥,1 . . . ,N ¤,N ¥,N]) is the discrete (space-time) Lagrange multiplier that379

enforces the discrete forward problem as a constraint; andQ is the discrete forward operator defined380

as:381

Q =



I 0 0 0 0 0 . . . 0 0 0 0 0 0

0 I 0 0 0 0 . . . 0 0 0 0 0 0

K 0 M 0 0 0 . . . 0 0 0 0 0 0

L1 L2 L3 Keff 0 0 . . . 0 0 0 0 0 0

01I I 0 −01I I 0 . . . 0 0 0 0 0 0

00I 02I I −00I 0 I . . . 0 0 0 0 0 0
...

...
...

...
...
...

. . .
...

...
...

...
...
...

0 0 0 0 0 0 . . . L1 L2 L3 Keff 0 0

0 0 0 0 0 0 . . . 01I I 0 −01I I 0

0 0 0 0 0 0 . . . 00I 02I I −00I 0 I



, (39)382

383
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where:384

00 =
4
(ΔC)2

, 01 =
2
ΔC
, 02 =

4
ΔC
, (40)385

Keff = 00M +K, (41)386

L1 = −00M, L2 = −02M, L3 = −M. (42)387
388

389

The first-order optimality condition in the DTO modeling390

The discrete optimality conditions of (35) require that the variations of Â with respect to ,̂, û391

and F̂ vanish. The first condition, taking the variation with respect to ,̂, recovers the discrete form392

of the state equation:393

mÂ
m,̂

= Qû − F̂ = 0. (43)394

For the second condition, the variation of Â with respect to û should vanish:395

mÂ
mû

= Q) ,̂ + 2B (ûm − û) = 0. (44)396

Equation (44) represents the discrete adjoint equation. Since it involves the transpose of Q, we397

solve it by marching backwards in time. For example, from the last two rows of (39), we obtain the398

final conditions:399

¥,# = 0, (45)400

¤,# = 0, (46)401
402

respectively; and the third row from the bottom yields:403

Keff),# = 2ΔCB (u# − um# ) + 01 ¤,# + 00 ¥,# , (47)404
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which can be solved for ,# . For time steps = = # − 1, # − 2, . . . , 1, we first update ¥,= and ¤,= as405

the following:406

¥,= =M),=+1 − ¥,=+1, (48)407

¤,= = 02M),=+1 − ¤,=+1 − 02 ¥,=+1, (49)408
409

and, then, solve the following:410

Keff),= =2ΔCB (u= − um=) + 01 ¤,= + 00 ¥,=411

+ 00M),=+1 − 01 ¤,=+1 − 00 ¥,=+1, (50)412
413

Finally, the first three rows of (15) result in the following equations. First, we solve:414

M) ¥,0 =M),1 − ¥,1, (51)415

and, then, update ¤,0 and ,0 as the following:416

¤,0 = 02M),1 − ¤,1 − 02 ¥,1, (52)417

,0 = −K) ¥,0 + 00M),1 − 01 ¤,1 − 00 ¥,1 + ΔCB (u0 − um0). (53)418
419

We note that the backward adjoint time integration in the DTO approach differs from that shown420

in its counterpart of the OTD approach.421

The third condition states that the variation of A with respect to F̂ should vanish:422

mÂ
mF̂

= 'R F̂ − ,̂ = 0, (54)423

which represents the discrete control equation and implies that mÂ
mb
= mL̂

mb
is the component of the424
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vector:425

'R F̂ − ,̂, (55)426

at its row corresponding to b = �: 9 .427

Implementation of the regularization term in the gradient428

This subsection shows the detail of evaluating the regularization term, 'R F̂, in (55). The429

non-zero contribution of an element (shown in Fig. 2) in the space in terms of G and C to R matrix430

is:431

R4 = ΔGΔC



( 13
1
(ΔG)2 +

1
3

1
(ΔC)2 ) (−1

3
1
(ΔG)2 +

1
6

1
(ΔC)2 ) (−

1
6

1
(ΔG)2 −

1
6

1
(ΔC)2 ) ( 16

1
(ΔG)2 −

1
3

1
(ΔC)2 )

(−1
3

1
(ΔG)2 +

1
6

1
(ΔC)2 ) ( 13

1
(ΔG)2 +

1
3

1
(ΔC)2 ) ( 16

1
(ΔG)2 −

1
3

1
(ΔC)2 ) (−1

6
1
(ΔG)2 −

1
6

1
(ΔC)2

(−1
6

1
(ΔG)2 −

1
6

1
(ΔC)2 ) ( 16

1
(ΔG)2 −

1
3

1
(ΔC)2 ) ( 13

1
(ΔG)2 +

1
3

1
(ΔC)2 ) (−1

3
1
(ΔG)2 +

1
6

1
(ΔC)2 )

( 16
1
(ΔG)2 −

1
3

1
(ΔC)2 ) (−1

6
1
(ΔG)2 −

1
6

1
(ΔC)2 ) (−

1
3

1
(ΔG)2 +

1
6

1
(ΔC)2 ) ( 13

1
(ΔG)2 +

1
3

1
(ΔC)2 )


.

(56)

432

433

434

Accordingly, the four elements surrounding �: 9 (see Fig. 2) contribute to the 9 × 9 submatrix435

(i.e., R4E) of R. Then, the component of 'R F̂ corresponding to �: 9 can be computed as:436

mRTN

m�: 9
= '(R4E

5-th row)F
4E, (57)437
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where the 5-th row of R4E (i.e., R4E
5-th row) is:438

R4E
5-th row = ΔGΔC



(− 1
6(ΔG)2 −

1
6(ΔC)2 )

( 1
3(ΔG)2 −

2
3(ΔC)2 )

(− 1
6(ΔG)2 −

1
6(ΔC)2 )

(− 2
3(ΔG)2 +

1
3(ΔC)2 )

( 4
3(ΔG)2 +

4
3(ΔC)2 )

(− 2
3(ΔG)2 +

1
3(ΔC)2 )

(− 1
6(ΔG)2 −

1
6(ΔC)2 )

( 1
3(ΔG)2 −

2
3(ΔC)2 )

(− 1
6(ΔG)2 −

1
6(ΔC)2 ).



)

, (58)439

440

and F4E is defined as:441

F4E =



�(:−1) ( 9−1)

�(:−1) 9

�(:−1) ( 9+1)

�: ( 9−1)

�: 9

�: ( 9+1)

�(:+1) ( 9−1)

�(:+1) 9

�(:+1) ( 9+1)



. (59)442

443
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Thus, under the DTO approach, (57) can be implemented as:444

mRTN

m�: 9 DTO
= − ' × ΔGΔC×445 {

1
6

(
�(:−1) ( 9−1) − 2�(:−1) 9 + �(:−1) ( 9+1)

(ΔG)2

)
+ 4

6

(
�: ( 9−1) − 2�: 9 + �: ( 9+1)

(ΔG)2

)
446

+ 1
6

(
�(:+1) ( 9−1) − 2�(:+1) 9 + �(:+1) ( 9+1)

(ΔG)2

)
+ 1

6

(
�(:−1) ( 9−1) − 2�: ( 9−1) + �(:+)( 9−1)

(ΔC)2

)
447

+ 4
6

(
�(:−1) 9 − 2�: 9 + �(:+1) 9

(ΔC)2

)
+ 1

6

(
�(:−1) ( 9+1) − 2�: ( 9+1) + �(:+1) ( 9+1)

(ΔC)2

)}
, (60)448

449

while, its counterpart in the OTD approach can be implemented as:450

mRTN

m�: 9 OTD
= −' × ΔGΔC ×

{(
�: ( 9−1) − 2�: 9 + �: ( 9+1)

(ΔG)2

)
+

(
�(:−1) 9 − 2�: 9 + �(:+1) 9

(ΔC)2

)}
, (61)451

which corresponds to (34).452

NUMERICAL IMPLEMENTATION OF THE INVERSION PROCESS453

By utilizing the semi-analytically evaluated gradient vector ∇/L, this work iteratively updates a set454

of estimated control parameters by using the gradient-based minimization scheme as follows:455

(a) First, we compute synthetic measured data Dm at sensors by using pseudo-target traction456

� (G, C).457

(b) Then, D(G, C) is obtained by using estimated � (G, C) that is constructed by estimated control458

parameters /.459

(c) The adjoint problem is, then, solved by using the solution of the state problem in the previous460

step.461

(d) The gradient of the objective functional, ∇/L, is evaluated.462

(e) Finally, the gradient-based minimization scheme updates the estimated control parameters /463

via the conjugate-gradient method and the Newton’s method. The conjugate-gradient method464
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determines the best search direction, and the Newton’s method determines an optimal step465

length.466

The numerical optimizer repeats the above steps (b) to (e) and iteratively solve for the control467

parameters that satisfy the vanishing control equation. A set of these steps is counted as an468

inversion iteration. The detailed procedure of the numerical optimizer is summarized in Algorithm469

1.470

Algorithm 1 Minimization Algorithm

1: Set TOL=10−10

2: Build M and K matrices for forward and adjoint wave solvers.
3: Compute Dm by using a forward wave solver with target traction � (G, C).
4: Set an iteration index B = 1 and initial control parameters (/ (B=1) = 0) and compute L (B=1) .
5: while (L (B+1) > TOL ×L (1) and B < 103) do
6: Compute D(G, H, C) by solving the discrete form of the forward problem using / (B) .
7: Solve the discrete form of the adjoint problem.
8: Compute the components of a gradient vector, g(B) = ∇/L (B) .
9: Compute an optimal search direction d(B) by using the conjugate-gradient scheme.
10: Compute an optimal step length ℎ (B) by using the Newton’s method.
11: Update estimated control parameters as / (B+1) = / (B) + d(B)ℎ (B) and compute L (B+1) .
12: B← B + 1
13: end while

Conjugate gradient471

In every s-th inversion iteration, the gradient vector is computed as g(B) = ∇bL(B) . By using g(B) ,472

the search direction d(B) is computed by using the conjugate-gradient scheme (Fletcher and Reeves473

1951):474

d(B) = −g(B) (B = 0 and every < (e.g., < = 5)),475

d(B) = −g(B) +
g(B) .g(B)

g(B−1) .g(B−1)
d(B−1) (B ≥ 1). (62)476

477

The g(B) is reset to be equal to −g(B) at every < inversion iteration in order to eliminate the478

progressively-accumulated error in the search direction (Kang and Kallivokas 2010a). In the479

presented numerical experiments, we used < = 5.480
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Adaptively-calculated regularization factor481

The value of the regularization factor ' in the above gradient (18) determines the extent, to which482

the penalty is imposed on the oscillation of the spatial and temporal variation of � (G, C). If ' is483

too large, the estimated traction profile may remain too smooth. If ' is too small, the numerical484

optimizer could suffer from the solution multiplicity. To determine the optimal value of ' during485

the inversion process, this work adopts the regularization factor continuation scheme (Kang and486

Kallivokas 2010a). To this end, we decompose L into L< and RTN = 'L', which are defined as:487

L< =
∫ )

0

#s∑
8=1
(Dm8 − D8)2 dC,488

L' =
1
2

∫ )

0

∫
Γb

(
m� (G, C)
mG

)2
+

(
m� (G, C)
mC

)2
dΓ dC. (63)489

490

Accordingly, ∇(b=�: 9 )L in (18) can be decomposed into the following two in the OTD approach:491

∇(b=�: 9 )L< = −
∫ )

0

∫
Γb

_Φ: (G)q 9 (C) dΓ dC, (64)492

'∇(b=�: 9 )L' = −'
∫ )

0

∫
Γb

(
m2� (G, C)
mG2 + m

2� (G, C)
mC2

)
Φ: (G)q 9 (C) dΓ dC. (65)493

494

or the following two in theDTO approach: ∇(b=�: 9 )L̂< and '∇(b=�: 9 )L̂', which are the components495

of the vectors, respectively, −,̂ and 'R F̂ in (55), at their rows corresponding to b = �: 9 . Here,496

Kang and Kallivokas (2010a) suggested imposing the following inequality:497

' |∇/L' | < |∇/L< |, or ' <
|∇/L< |
|∇/L' |

. (66)498

Thus, in each inversion iteration, ' can be set as:499

' = �'
|∇/L< |
|∇/L' |

, (67)500
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where �' denotes the regularization intensity factor. Since Kang and Kallivokas (2010a) heuris-501

tically found that the value of �' should be 0 < �' < 0.5 for the material inversion, we tested the502

performance of the presented inversion with respect to �' in the numerical experiments as well.503

Updating the estimated control parameters504

Starting with an initial guess for the control parameter vector /, which is comprised of �: 9 , the505

estimate of / can be updated iteratively as:506

/(B+1) = /(B) + ℎ(B)d(B) , (68)507

where ℎ(B) is a scalar-valued step size and d(B) is a search-direction vector computed by the508

conjugate-gradient scheme, and B is the iteration index in the optimization process. For each509

iteration, B, the Newton’s method (Lloyd and Jeong 2018) is used to determine the optimal step510

size, ℎ(B) . Namely, in each B-th iteration in the numerical optimization process, there are up to 4511

sub-iterations (A is the sub-iteration index). We begin from an initially estimated ℎB (A=1) , and, for512

the next sub-iteration of (A + 1) up to A of 4, we update ℎB (A+1) as the following:513

ℎB (A+1) = ℎBA −
( L′(ℎBA )(B+1)
L′′(ℎBA )(B+1)

)
= ℎBA −

(
L(ℎBA +[)(B+1)−L(ℎBA −[)(B+1)

2[

)(
L(ℎBA +[)(B+1)−2L(ℎBA )(B+1)+L(ℎBA −[)(B+1)

[2

) (69)514

where L(ℎBA )(B+1) is the objective functional given the updated / in (68) using ℎBA . For each515

sub-iteration, A, values for the first and second derivatives of the objective functional with respect516

to ℎB—i.e., L′(ℎBA )(B+1) and L′′(ℎBA )(B+1)—are determined numerically via central difference ap-517

proximations. In the very right hand side term of (69), L(ℎBA ± [)(B+1) is L(B+1) evaluated when518

/(B+1) = /B + (ℎBA ± [)dB.519

NUMERICAL EXPERIMENTS520

This section shows a set of numerical examples, investigating the performance of the presented521

inverse modeling with respect to various factors. In all the examples, we consider a square-shaped522

solid domain, of which extent is 60 m × 60 m. To avoid an inverse crime, we compute the synthetic523
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measured data Dm using an element size set as 0.5 m, while an element size of 1 m is used in the524

FEM solvers for obtaining state and adjoint solutions in the computational domain. The same time525

step of 0.001 s is used in the forward and inversion problems. The solid has a uniform mass density526

d of 1000 kg/m3.527

Two targeted dynamic tractions, �1(G, C) and �2(G, C), are considered in this section. The528

targeted �1(G, C), of which amplitude changes over space and time, is shown in Fig. 6(a). Its peak529

amplitude is 200 N/m2, and the total observation duration )1 is 1.5 s in the inversion simulation530

of �1(G, C). The time-dependent value of the targeted �1(G, C) at any specific value of G is a531

Ricker wavelet (for instance, see �1(30, C) in Fig. 3(a)) with its central frequency of 10 Hz (see the532

frequency contents of �1(30, C) in Fig. 3(b)).533

The targeted �2(G, C) is shown in Fig. 19(a), and its amplitude changes over space and time.534

Fig. 3(c) shows the time-dependent value of the targeted �2(30, C) and Fig. 3(d) shows its frequency535

contents. The signal is a part of a recorded ground motion signal during the 1994 Northridge536

earthquake from the Pacific Earthquake Engineering Research Center (PEER) ground motion537

database (PEER 2000). The total observation duration )2 is 6 s for the inversion simulation to538

identify the targeted �2(30, C).539

For the inversion process, we discretize estimated �1(G, C) by using 91,500 control parameters—540

i.e., 61 (over space) × 1500 (over time)—and �2(G, C) by using 366,000 control parameters—i.e., 61541

(over space) × 6000 (over time). The temporal and spatial intervals for the discretization are 0.001542

s and 1 m, respectively, for both forces. Initially-estimated values of all the control parameters are543

zero. Our numerical optimizer iteratively updates the values of all the control parameters by using544

the presented inverse modeling procedure.545

In what follows, six examples of numerical experiments are presented. The first example is546

focused on the performance of inverting for �1(G, C) with respect to the complexity of the material547

profile in the domain. To this end, we consider the following material profiles:548

• Material profile 1: A homogeneous solid with the wave speed of +B = 250 m/s,549

• Material profile 2: A 2-layered solid with 1 inclusion as in Fig. 4(a) with wave speeds of +B1550
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= 300 m/s, +B2 = 350 m/s, and +B3 = 200 m/s,551

• Material profile 3: A 3-layered solid with 3 inclusions as in Fig. 4(b) with wave speeds of+B1552

= 400 m/s, +B2 = 450 m/s, +B3 = 300 m/s, +B4 = 350 m/s, +B5 = 200 m/s, and +B6 = 250 m/s.553

The second example compares the performance of identifying �1(G, C) by using theOTDmethod554

versus the DTO method. The third example tests the inversion performance of identifying �1(G, C)555

with respect to the number of sensors on the top surface of the domain. The fourth example556

examines the convergence of the estimated �1(G, C) into the target with respect to the regularization557

intensity factor, �'. The fifth example is focused on the performance of inverting for �1(G, C) with558

respect to the noise level. Lastly, the sixth example shows the capability of our inverse modeling559

to reconstruct �2(G, C), which is a realistic seismic signal as opposed to �1(G, C). Each example560

considers the result data of multiple cases, of which input parameters are summarized in Table 1.561

For the sake of assessing the accuracy to reconstruct � (G, C) in the numerical results, the following562

error norm between estimated � (G, C) and its target is used:563

E =
∫ )
0

∫
Ω
|� (G, C)target − � (G, C)estimate |2 dΩ dC∫ )

0

∫
Ω
|� (G, C)target |2 dΩ dC

× 100[%] . (70)564

Before our parametric studies on the inversion performance, we verify the theoretical derivation565

of the adjoint and control equations and the numerical implementation. That is, the gradients566

obtained by our semi-analytical OTD and DTO approaches are compared with that from the finite567

difference (FD) approach. In this verification, we used the targeted �1(G, C), a heterogeneous domain568

of the material profile 3, shown in Fig. 4(b), only one sensor in the center of Γt, �' of 0, and the noise569

level of 0%. In order to reduce the computational cost of the FD approach, the spatial distribution of570

�1(G, C) is set to be uniform, and, thus, only the temporal variation of �1(G, C) is considered. Fig. 5571

shows excellent agreement among the normalized gradients (i.e., ∇/L/|∇/L|) that are calculated572

by using the OTD approach, the DTO approach, and the FD approach, respectively, at the first573

inversion iteration. Thus, our theoretical derivation and numerical implementation of the presented574

inverse modeling are trustable.575

27 Guidio and Jeong, September 25, 2020



Example 1: Investigating the inversion performance with respect to the material profile576

complexity.577

In this example, we test the performance of the presented inverse modeling with respect to the578

complexity of the material profile by using the results of Cases 1 to 3. We used the OTD approach,579

30 sensors, �' of 0.5, and the noise level of 0% in these Cases.580

Fig. 6(b,c,d) show reconstructed dynamic traction for Cases 1, 2, and 3, respectively. Figs. 7581

and 8 show that the values of L and E, in general, decrease as the number of iterations increases.582

Fig. 7 depicts that L shows a sawtooth behavior over iterations. We suggest that it occurs because583

of the penalty that is imposed by the regularization term on the derivative of �1(G, C). Namely, as584

seen in the later Examples 4 and 6, when �' is equal to zero, the sawtooth behavior of L does not585

occur. Besides, Fig. 8 shows that the more complex the material profile is, the higher terminal value586

of E is obtained. Fig. 9 shows that the wave responses of Dm due to the targeted �1(G, C) match587

those of D due to the reconstructed one at two sensors in Cases 1-3. It implies that our numerical588

minimizer is very effective in minimizing the misfit: there is a very small difference, of the scale589

of 10−13 to 10−12, among the terminal values of L in Fig. 7 for Cases 1 to 3. Even though D match590

Dm at the end of the inversion simulation, our optimizer results in a higher terminal value of E591

for a more complex material profile. To explain this aspect, we note that Lloyd and Jeong (2018)592

reported that a more heterogeneous background solid leads to a larger terminal value of an error593

between a targeted moving, body force-typed wave source function and its estimated counterpart in594

a 1D solid setting. It is because, the more heterogeneous the material property of a domain is, the595

waves reverberate more inside the domain. That is, because of the reverberation, as seen in Fig. 6,596

the reconstructed traction has a stronger noise-like behavior, leading to a higher final value of E597

when a more heterogeneous material profile is used. Thus, in a more heterogeneous solid setting,598

the inversion solver is less likely to converge towards a targeted traction function.599

Fig. 10 shows the snapshots of the wave responses in the entire computational domain, induced600

by (a) the targeted �1(G, C) and (b) its reconstructed counterpart in Case 3. Both responses are in601

excellent agreement with each other even though the terminal value of E in Case 3 is the largest602
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among the Cases 1-3. Thus, the presented dynamic-input inversion algorithm could be further603

developed for reconstructing seismic input motions and, then, “replaying" the corresponding wave604

responses in a truncated computational domain during seismic events.605

Example 2: Comparison between the inversion performances of the OTD and DTO ap-606

proaches607

This example compares the performance of the OTD approach with that of the DTO counterpart by608

using the results of Cases 3 and 4, in both of which we reconstruct the targeted traction �1(G, C) by609

using the material profile 3, �' of 0.5, and the noise level of 0%. Fig. 11 shows the targeted �1(G, C)610

and its reconstructed counterparts obtained by using the OTD and DTO approaches, in Cases 3611

and 4, respectively. We could not visually noice the difference between the two reconstructed ones612

in Fig. 11. Thus, we suggest that there is no difference between the final reconstructed traction613

function obtained by using the OTD approach and that by using the DTO approach in this 2D SH614

wave work. Fig. 12 also shows that the terminal values of L and E, when using the OTD approach,615

are in excellent agreement with those using the DTO counterpart. However, a sawtooth behavior616

of L occurs more when we use the DTO approach than the OTD approach. As mentioned earlier,617

the sawtooth behavior occurs because of the regularization. Namely, as shown in (60) and (61), the618

gradient of the regularization term in the OTD approach is implemented differently from the DTO619

counterpart so that their corresponding behaviors of L differ from each other.620

Example 3: Investigating the inversion performance with respect to the number of sensors621

In this example, we study the inversion performance with respect to the number of sensors on the622

top surface. We considered Cases 3, 5, 6, and 7, which use 30, 15, 10, and 5 sensors, respectively,623

and the material profile 3, �' of 0.5, and the noise level of 0%. Fig. 13 shows that, although624

increasing the number of sensors decreases the terminal value of E of the inversion, using 5, 10,625

15, and 30 sensors gives rise to the terminal values of E of the almost same magnitude, i.e., 25 to626

26% with a slight difference of only up to 1% from each other. Thus, we suggest that when the627

sampling rate of the measurement is equal to the timestep for discretizing �1(G, C), the ratio of the628

size of measurement data to the number of the control parameters can be as small as 1:12—e.g., (5629
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sensors × 1500 timesteps):(61 nodes × 1500 timesteps)—in the presented example.630

Example 4: Investigating the inversion performance with respect to �'631

This example studies the accuracy of the inversion with respect to the regularization intensity factor,632

�'. We used 15 sensors on the top surface, the material profile 3, and the noise level of 0% for633

all the cases in this example. In addition to the Case 5 in Example 3, where �' of 0.5 is used, we634

considered Cases 8-11, which use �' of 1.0, 0.1, 0.01, and 0.0, respectively.635

As can be seen in Fig. 14, the terminal value of L for a large value of �' (e.g., �' = 1.0) is larger636

than those for smaller values of �'. We also note that, when �' is 0.0, the sawtooth behavior of L637

does not occur in Fig. 14. Furthermore, Fig. 15 shows that the terminal value of E for �' of 1.0 is638

54.9 % and is about twice higher than those (about 25 %) for 0 ≤ �' ≤ 0.5.639

The inversion performance, in terms of E over the iterations, is relatively unstable for �' of 1.0,640

while it is stable for 0 ≤ �' ≤ 0.5. That is, using �' of 1.0 increases E after the 180-th iteration.641

Fig. 16 compares the final estimated traction function, when �' is 1.0, with that for �' of 0.0.642

Fig. 16 shows that the noise-like behavior is more severe in the reconstructed traction for �' of 1.0643

than that for �' of 0.0. We also note that when �' of 0.0 was used, E is the smallest (24.65%) in644

this example as shown in Fig. 15.645

We discuss why using �' of 0.0 leads to as a small terminal value of E as �' greater than 0.0646

in the following. As discussed in the previous 1D work of the seismic-input inversion (Jeong and647

Seylabi 2018), the proposed dynamic-traction inversion is naturally equipped with the smoothing648

effect even without using the TN regularization. Namely, the FEM solver naturally filters out high649

frequencies of the estimated traction function and smooths its temporal variation even without the650

regularization method. Similarly, it filters out the high-wavelength content of the spatial variation651

of an estimated traction function. Because of such inherent low-pass filtering of the FEM solver, as652

shown in our presented numerical results, even when TN regularization is not used, the inversion653

solver smooths an estimated traction function.654
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Example 5: Investigating the inversion performance with respect to the noise level655

In this example, we focus on examining the performance of inverting �1(G, C) with respect to the656

noise level of random noise that is added to Dm prior to the inversion. We used the OTD approach,657

the material profile 3, 15 sensors, �' of 0.0, and examined the noise level of 0%, 1%, 2%, and 3%,658

which correspond to Cases 11-14, respectively. Fig. 17 shows that, the larger the noise level is, the659

larger the terminal values of L and E are obtained when no regularization is used.660

Fig. 18 shows the inversion performance with respect to �' (Cases 15-17 in addition to the Case661

13) when we use the material profile 3, 15 sensors, and the noise level of 2%. We note that �' of662

0.01, 0.1, and 0,5 did not make any difference in the terminal value of E compare to that for �' of663

0.0. Thus, we suggest that using the TN regularization does not improve the inversion performance664

in the presented work when Dm contains noises.665

Example 6: Examining the feasibility of the presented inverse modeling to reconstruct a666

realistic seismic signal �2(G, C)667

In this example, we focus on examining the feasibility of inverting for a realistic seismic signal668

�2(G, C). We used the OTD approach, the material profile 3, 15 sensors, �' of 0.0, and the noise level669

of 0%. Fig. 19 shows the excellent agreement between the targeted and reconstructed dynamic670

tractions, �2(G, C), in Case 18. Fig. 20 and 21 show the values of L and E, respectively, over671

iterations, and L decreases without the sawtooth behavior because �' of 0.0 is used. Overall,672

�2(G, C) has much lower frequency content than �1(G, C) so that the wave responses induced by673

�2(G, C) are less complex than those by �1(G, C) (see the wave responses in Fig. 22 and compare them674

with those in Fig. 10). Thus, our minimizer suffers from solution multiplicity less severely when675

it identifies �2(G, C) than �1(G, C). Accordingly, the terminal value of E, 3.86%, for reconstructing676

�2(G, C) in Case 18 is much smaller than its counterpart, 29.76%, of reconstructing �1(G, C) in677

Case 11. Fig. 22 shows the snapshots of the wave responses in the entire computational domain,678

induced by (a) the targeted �2(G, C) and (b) its reconstructed counterpart in Case 18. In general,679

both responses are in excellent agreement with each other.680

31 Guidio and Jeong, September 25, 2020



CONCLUSION681

We present the mathematical modeling and numerical implementation of a new inversion process682

for identifying the spatial and temporal distributions of dynamic traction applied on a boundary of a683

2D solid domain with SH scalar wave motions. We tackle the inverse problem by using a gradient-684

based minimization scheme. The gradient of an objective functional is evaluated semi-analytically685

by using the adjoint solution. We present both OTD and DTO methods, each of which resolves the686

adjoint problem differently from each other.687

Numerical results show the following findings of the performance of this new inversion method.688

First, the complexity of thematerial profile in a domain increases the error between the reconstructed689

traction and its target. The more heterogeneous the material property of a domain is, the waves690

reverberate more inside the domain. Because of the reverberation, the reconstructed traction has a691

stronger noise-like behavior, leading to a higher terminal value of E when a more heterogeneous692

material profile is used. Thus, in a more heterogeneous solid setting, the inversion solver is less693

likely to converge towards a targeted traction function. Second, the OTD and DTO methods694

lead to the same inversion results, but the distribution of L over the iterations shows a more695

significant sawtooth behavior when we use the DTO method than the OTD method. Third, when696

the sampling rate of the measurement is equal to the timestep for discretizing � (G, C), the ratio of697

the size of measurement data to the number of the control parameters can be as small as 1:12 in698

the presented work. Fourth, the regularization intensity �' should not be too large: for instance,699

�' is recommended to be smaller than and equal to 0.5. We also note that the terminal value of700

E, when �' of 0 is used, is as small as those when using 0.01≤ �' ≤0.5. Thus, it is acceptable to701

tackle the presented inverse modeling of dynamic tractions without the regularization. Fifth, the702

terminal values of L and E increase as the noise of a larger level is added to Dm, and using the703

TN regularization does not improve the inversion performance when noise is added to Dm. Sixth,704

our minimizer suffers from solution multiplicity less when it identifies dynamic traction of lower705

frequency content than that of higher frequency content.706

As shown in the numerical results, the wave responses in the entire computational domain,707
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induced by the targeted traction and the reconstructed one, are in excellent agreement with each708

other in the presented highly-reverberating domain. Thus, if the presented dynamic-input inversion709

algorithm is extended into realistic 3D settings (see below for the details of the extension), it could710

allow engineers to reconstruct incident seismic motions and, then, to replay the wave responses in711

a 3D truncated domain.712

Future extensions713

The presented domain does not fully represent a realistic one, which should be truncated by a714

wave-absorbing boundary condition (WABC) and subject to remote seismic excitation. Thus, we715

will extend this work as follows. A large extent of the computational domain will be truncated by716

using a WABC. Then, one can invert for seismic input motions in a truncated 2D/3D domain in the717

following two possible methods.718

First, an estimated incident seismic wave can be modeled as an equivalent traction function719

on a WABC, e.g., dashpot (Lysmer and Kuhlemeyer 1969). The estimated traction function will720

be discretized over space and time, and all the discretized values will be control parameters to be721

identified. For instance, an G-directional traction function, �G (G, H, C), on a face that is perpendicular722

to the I-axis of a WABC will be discretized over space (G and H) and time (C). Then, by using the723

presented traction-inversion approach, we can reconstruct the traction on the surfaces of a WABC.724

Second, the Domain Reduction Method (DRM) will be featured in a forward wave solver.725

Bielak and Christiano (1984) and Bielak et al. (2003) had developed the DRM, by which free-field726

wave motions are applied, as a dynamic input, along a fictitious boundary (also known as a DRM727

boundary) enclosed by the WABC. The DRM has been widely used for modeling wave behaviors728

of truncated solid domains subject to remote seismic excitations (Paolucci and Pitilakis 2007; Tripe729

et al. 2013; Jeremić et al. 2013; Rahnema et al. 2016; Poursartip et al. 2017; Zhang et al. 2019).730

Thus, the extension of the presented method will be aiming at reconstructing free-field seismic731

input motions at a DRM boundary. That is, we will spatially and temporally discretize estimated732

incident seismic wavefield functions at the two boundary surfaces of a single-element DRM buffer733

layer of the domain. For instance, we will discretize an G-component incident-wavefield function734
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at the horizontal boundary of a DRM buffer layer, i.e., D0
1G
(G, H, C) or D0

4G
(G, H, C)—the subscripts735

1 and 4 denote the boundaries of the DRM layer neighboring the interior and exterior domains,736

respectively. Next, we will reconstruct the spatial and temporal distributions of the estimated737

incident seismic wavefield functions.738
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APPENDIX I. DERIVATION OF THE ADJOINT PROBLEM750

The variation of A with respect to D should vanish as:751

XDA =

∫ )

0
XD

#s∑
8=1
(Dm8 − D8)2 dC︸                         ︷︷                         ︸
0

+
∫ )

0

∫
Ω

_∇ · (�∇XD) dΩ dC︸                             ︷︷                             ︸
1

−
∫ )

0

∫
Ω

_d
m2XD

mC2
dΩ dC︸                       ︷︷                       ︸

2

752

+
∫ )

0

∫
Γb

_��
mXD

mH
dΓ dC︸                        ︷︷                        ︸

3

−
∫ )

0

∫
Γb

_�� (G, C) dΓ dC︸                         ︷︷                         ︸
=0

= 0. (71)753

754

Part 0 in (71) can be written as:755

0 =

∫ )

0
XD

#s∑
8=1
(Dm8 − D8)2 dC = −

∫ )

0

#s∑
8=1

2(Dm8 − D8)XD8 dC756

= −
∫ )

0

∫
Ω

2(Dm − D)XD
#s∑
8=1
Δ (G − G8, H − H8) dΩ dC, (72)757

758

where Δ (G − G8, H − H8) is the Dirac delta function. Integrating part 1 in (71) by parts over space759

twice leads to:760

1 =

∫ )

0

∫
Ω

_∇ · (�∇XD) dΩ dC761

=

∫ )

0

∫
Ω

∇ · (_�∇XD) dΩ dC −
∫ )

0

∫
Ω

(∇_ · �∇XD) dΩ dC762

=

∫ )

0

∫
Ω

∇ · (_�∇XD) dΩ dC +
∫ )

0

∫
Ω

XD∇ · (�∇_) dΩ dC −
∫ )

0

∫
Ω

∇ · (XD�∇_) dΩ dC.

(73)

763

764
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Due to the Divergence Theorem, (73) becomes:765

1 =

∫ )

0

∫
Γ

_�
mXD

m=
dΓ dC +
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0
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771

where m (·)
m=

denotes a directional derivative of a variable in the direction of an outward unit normal772

vector n on Γ. Integrating 2 in (71) by parts over time twice leads to:773
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∫ )
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777

Because mXD
mC
(C = 0) and XD(C = 0) vanish, (75) becomes:778
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780
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Due to (72), (74), and (76), (71) can be written as:781
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∫ )
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786

XDA = 0 in (77) is satisfied when we satisfy the adjoint problem in (15) to (17).787
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APPENDIX II. DERIVATION OF THE CONTROL EQUATION788

The variation of A with respect to b should vanish as:789
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Part 4 in (78) can be written as:796
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Integrating 5 in (78) by parts twice over space leads to:799
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By integrating 6 in (78) by parts over time twice and knowing that m
mC
mD
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(C = 0) and mD
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(C = 0)803

vanish, we rewrite 6 in (78) as:804
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Due to (79), (80), and (81), (78) becomes:807
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Eq. (82) reduces to:814
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The first term of (83) is:817
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In addition, the second term in (83) is:820
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the second term of (18)

, (85)825

826

where �̂ is defined as:827

�̂ =
m� (G, C)
mb

= Φ: (G)q 9 (C), (86)828

829

and we enforce that:830

m�

mG
= 0, at G = 0, !,831

m�

mC
= 0, at C = 0, ) . (87)832

833
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APPENDIX III. ON THE QUADRATIC AND CONVEX OBJECTIVE FUNCTIONAL834

In this section, we prove that the objective functional is quadratic and convex. From the compact835

form of the state problem, û can be defined as:836

û = Q−1F̂. (88)837

Due to (88), the discrete objective functional (L̂) can be written as:838

L̂ = (ûm − û)T B (ûm − û)839

= (ûm −Q−1F̂)T B (ûm −Q−1F̂)840

= (ûT
m − F̂

T(Q−1)T) B (ûm −Q−1F̂)841

= ûT
m B ûm︸   ︷︷   ︸
0

− F̂T(Q−1)T B ûm︸                ︷︷                ︸
1

− ûT
m BQ−1F̂︸          ︷︷          ︸

2

+ F̂T(Q−1)T BQ−1F̂︸                    ︷︷                    ︸
3

, (89)842

843

where the part 0 is a constant, and the parts 1 and 2 are linear functions so that their Hessians844

vanish. The part 3 in (89) is a quadratic function. Therefore, proving that the part 3 in (89) is845

convex will show that L̂ is convex.846

To this end, we consider the following simple example—a homogeneous square-shaped solid847

domain, of which extent is 60 m × 60 m with its shear wave speed of 400 m/s and mass density848

of 1000 kg/m3. The shear stress is applied on the bottom surface, and one sensor is placed in the849

middle of top surface (see Fig. 23). The solid is constrained by fixed boundary conditions on the850

left and right boundaries, and the element size is 30 m. Therefore, in this case, there are only three851

degrees of freedom in the discretized domain. We consider 2 time steps, where ΔC = 0.1 s. In such852

a case, the matrices M, K, and Q are the followings:853

M =


199980 99990 0

99990 399960 99990

0 99990 199980


, K =


213344000 −53344000 0

−53344000 426688000 −53344000

0 −53344000 213344000


, (90)854

855
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and856

Q =



I 0 0 0 0 0

0 I 0 0 0 0

K 0 M 0 0 0

L1 L2 L3 Keff 0 0

01I I 0 −01I I 0

00I 02I I −00I 0 I



, (91)857

858

where:859

00 =
4
(ΔC)2

, 01 =
2
ΔC
, 02 =

4
ΔC
, (92)860

Keff = 00M +K, (93)861

L1 = −00M, L2 = −02M, L3 = −M. (94)862
863

The vector F̂ is built as:864

F̂ =



0

0

F0

F1

0

0



, F0 =


�30,0

0

0


, F1 =


�30,1

0

0


, (95)865

866

where �30,0 and �30,1 are the components of a force vector at the node of G = 30 m and at the867

timesteps of C = 0 s and C = 0.1 s, respectively. In addition, the block diagonal matrix B is defined868
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as:869

B = ΔC



B1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 B2 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, B1 = B2 =


0 0 0

0 0 0

0 0 1


. (96)870

871

Therefore, in this case, due to (90)-(96), the part 3 in (89) can be written as:872

3 = F̂T(Q−1)T BQ−1F̂873

= 1.25 × 10−24�2
30,0 + 1.25 × 10−24�2

30,1 + 2.5 × 10−24�30,0�30,1. (97)874
875

As shown in (97), the part 3 in (89) is a quadratic function in terms of �30,0 and �30,1.876

We note that the part 3 in (89) is convex if the eigenvalues of its Hessian matrix are non-negative877

(greater than or equal to 0). Here, the Hessian matrix of the part 3 in (89) is:878

H =


m23
m�2

30,0

m23
m�30,0m�30,1

m23
m�30,1m�30,0

m23
m�2

30,1

 =

2.5 × 10−24 2.5 × 10−24

2.5 × 10−24 2.5 × 10−24

 , (98)879

880

of which eigenvalues are obtained as:881

|I*_ - H| =

�������_ − 2.5 × 10−24 2.5 × 10−24

2.5 × 10−24 _ − 2.5 × 10−24

������� = 0. (99)882

883

Namely, the eigenvalues are:884

_1 = 0, _2 = 5 × 10−24. (100)885
886

43 Guidio and Jeong, September 25, 2020



Both eigenvalues are non-negative so that the part 3 in (89) is convex, and, therefore, the objective887

functional L̂ is also convex.888
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TABLE 1. Summary of all cases.

Case number Material profile Force profile Approach # of sensors �' Noise level [%]
1 1 1 OTD 30 0.5 0
2 2 1 OTD 30 0.5 0
3 3 1 OTD 30 0.5 0
4 3 1 DTO 30 0.5 0
5 3 1 OTD 15 0.5 0
6 3 1 OTD 10 0.5 0
7 3 1 OTD 5 0.5 0
8 3 1 OTD 15 1.0 0
9 3 1 OTD 15 0.1 0
10 3 1 OTD 15 0.01 0
11 3 1 OTD 15 0.0 0
12 3 1 OTD 15 0.0 1
13 3 1 OTD 15 0.0 2
14 3 1 OTD 15 0.0 3
15 3 1 OTD 15 0.01 2
16 3 1 OTD 15 0.1 2
17 3 1 OTD 15 0.5 2
18 3 2 OTD 15 0.0 0
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Fig. 1. Problem setting.

54 Guidio and Jeong, September 25, 2020



Fig. 2. �: 9 is surrounded by four elements in the space in terms of G and C: the horizontal and
vertical axes represent, respectively, the G coordinate and time C.
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Fig. 3. (a) The time signal of �1(G = 30, C); (b) the amplitude of Fourier Transform of �1(G = 30, C);
(c) the time signal of �2(G = 30, C); and (d) the FFT of �2(G = 30, C).
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(a) (b)

Fig. 4. Heterogeneous solids: (a) Material profile 2; and (b) Material profile 3.
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Fig. 5. Comparison between the gradients generated by the OTD approach, DTO approach and the
FD approximation.
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(a) (b)

(c) (d)

Fig. 6. (a) Target and (b-d) Reconstructed �1(G, C) for Cases 1-3 at the 1000th iteration. Horizontal
and vertical axis in the contour plot represent, respectively, the numbering of the discretized points
over space (G) and time (C) of the distribution of �1(G, C).
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Fig. 7. Example 1 - Objective function, L, versus iterations with respect to the material profiles.
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Fig. 8. Example 1 - Error, E, versus iterations with respect to the material profiles.
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Fig. 9. Dm and D, at sensors placed on the top surface. (a-b) measured at G = 20 m and G = 40 m,
respectively, for Case 1. (c-d) measured at G = 20 m and G = 40 m, respectively, for Case 2. (e-f)
measured at G = 10 m and G = 20 m, respectively, for Case 3.
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Fig. 10. Wave responses, D(G, H, C), at 1.5 seconds due to (a) target traction and (b) reconstructed
traction in Case 3.
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Fig. 11. (a) Targeted �1(G, C) and (b,c) Reconstructed �1(G, C) for the OTD and DTO approaches,
respectively, at the 1000th iteration.
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(b) Error, E, versus iterations

Fig. 12. Example 2 - L and E with respect to the inverse approach.
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Fig. 13. Example 3 - Error, E, versus iterations with respect to the number of sensors.

66 Guidio and Jeong, September 25, 2020



0 200 400 600 800 1000
10 -13

10 -12

10 -11

10 -10

10 -9

10 -8

Fig. 14. Example 4 - Objective functional, L, versus iterations with respect to �'.
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Fig. 15. Example 4 - Error, E, versus iterations with respect to �'.
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(a) (b)

Fig. 16. Example 4 - Estimated traction �1(G, C) for (a) Case 8, where �' = 1.0, and (b) Case 11,
where �' = 0.0
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Fig. 17. Example 5 - L and E with respect to the noise level.
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Fig. 18. Example 5 - L and E for 2% of noise with respect of �'.
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(a) (b)

Fig. 19. Example 6 - (a) Target and (b) Reconstructed �2(G, C) for Case 18 at the 6000-th iteration.
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Fig. 20. Example 6 - Objective function, L, versus iterations.
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Fig. 21. Example 6 - Error, E, versus iterations.
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Fig. 22. Wave responses, D(G, H, C), at 6.0 seconds due to (a) target load and (b) reconstructed load
in Case 18.
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Fig. 23. Problem setting of Appendix III
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