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ARTICLE INFO ABSTRACT

Keywords: This paper presents a computational study for investigating the feasibility of simultaneous identi-
Joint inversion; fication of a material property of a Timoshenko continuous beam and a moving vibration source
Passive wave source-based structural on the beam by using the data of measured vibrations on it. This work employs the finite ele-
health monitoring (SHM); ment method to solve the wave equations of a Timoshenko beam subject to a moving vibrational
Vehicle-induced ambient vibrations; source. It uses the Genetic Algorithm (GA) as an inversion solver to identify the values of tar-
Timoshenko beam; geted control parameters that characterize a material property of the beam and a moving vibration
Genetic algorithm (GA); source on it. The numerical results show that, first, the presented inversion method can detect
Finite element method (FEM). the characteristics of a moving wave source as well as the spatial variation of the elastic modulus

of a Timoshenko-beam continuous bridge model, which is set to be piece wisely homogeneous
in this work. Second, the GA-based joint inversion is effective even when the moving vibra-
tional source’s moving velocity is not constant over time. Third, the detrimental effect of noise
in measurement data on the accuracy of the inversion becomes more significant as the number
of control parameters increases. By using the presented method, engineers can take advantage
of vehicle-induced ambient vibrations on bridges measured by modern sensors for the sake of
passive wave source-based structural health monitoring (SHM).

1. Introduction

There is a need to characterize the spatial distributions of the material properties of transportation infrastructures
(e.g., a bridge, a tunnel, a roadway, and a railway) and find any anomaly of their material properties (e.g., reduced
stiffness caused by corrosion or cracks in their structural members). To this end, engineers employ vibration-based
structural health monitoring (SHM) methods by employing active wave sources (e.g., impacts or vibrations) of known
signals onto an inspected structure and measuring corresponding vibration responses on it [31]. From those measured
vibrations, engineers back-calculate the properties of the structure [5]. There have been theoretical and computational
studies for identifying the material properties of a solid structure by using sparsely-measured vibration data induced
by active wave sources. For instance, there had been studies on the full-waveform inversion algorithms, based on the
partial differential equation (PDE)-constrained optimization, to identify shear modulus profiles of 1D and 2D solids
that are truncated by Perfectly-Matched-Layers (PML) by using shear waves [17, 18]. Tran and McVay [32] studied the
full-waveform inversion for a 2D solid domain by using the Gauss-Newton method and the finite difference method for
solving the elastic wave equation. Pakravan et al. [29] studied the full-waveform inversion for imaging the elastic and
attenuating parameters of 2D viscoelastic layered media. Kallivokas et al. [16], Fathi et al. [8], and Fathi et al. [9] had
investigated the full-waveform inversion in 2D and 3D elastodynamic, PML-truncated solid domains and validated
their numerical studies by using field experimental data. In addition, it had been shown that strong discontinuities
within solids, such as the boundaries of cracks or voids, can be identified by using inverse modelings coupled with
the boundary element method (BEM) [11, 12] or the extended finite element method (XFEM) [14, 33]. Both BEM
and XFEM wave solvers can model the boundaries of the strong discontinuities and update their geometries without
cumbersome remeshing during an inversion process as opposed to a conventional finite element method (FEM) wave
solver, which should remesh a domain to update the boundaries’ geometries. Despite the aforementioned extensive
development, as a disadvantage of the active wave source-based SHM approach, it requires traffics on or near an
inspected transportation structure to be stopped in order to minimize the random noises in measurement data. It is also
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Simultaneous identification of a material property of a Timoshenko beam and a moving vibration source

costly to use the active wave source-based SHM approach to infrastructures frequently. Therefore, there is a need to
develop its alternative.

In order to seek such an alternative method, this research studies a passive wave source-based SHM approach, by
which engineers can take advantage of ambient vibration sources, such as vehicles on roadway or trains on railroads.
As an advantage of the passive wave source-based SHM approach, elastic waves, induced by strong vibrational forces
(e.g., tractions exerted by moving trailer trucks or trains on an inspected structure), can reach far fields of the structure—
including not only the structure but also the soils and foundations under the structure. Thus, the measured data of such
waves can carry information about the mechanical properties of infrastructures of large extents. As another advantage
of the passive wave source-based SHM approach, engineers can take advantage of unlimited amounts of ambient
vibration data from a network of modern, ubiquitous sensors, e.g., fiber optic cables [6], in infrastructures. Namely,
because engineers can measure the traffic-induced ambient vibrations on an inspected infrastructure on a day-to-day
basis without interrupting its normal operations, they can identify its material properties frequently.

The studies related to the passive wave source-based material characterization are shown in the following. Akcelik
et al. [1] simultaneously inverted for a simplified seismic source time signal and material properties in a large 3D trun-
cated domain by using the full-waveform inversion method. Cavadas et al. [4] studied a pattern recognition method that
examines vibration data due to regular traffic, to detect wave sources’ information and the location of stiffness reduction
in a beam, considering only the quasi-static components of vibration responses (instead of their time-domain wave-
form signals). Liu et al. [23] investigated signal processing and dimensionality-reduction techniques that can identify
the relationship between the damage severity of a structure and the vibration responses of a passing vehicle by using
mobile sensors installed on a vehicle. Mei et al. [27] presented a theoretical and experimental study for the detection of
structural damages using sensors on passing-by vehicles, and considering vehicle-bridge dynamic interaction. Eshke-
vari et al. [7] presented a structural modal identification method based on data collected by multiple moving sensors
(i.e., vehicles), that can lead to frequencies, damping ratios, and high-resolution mode shapes of bridges. Despite the
recent development mentioned above, to date, the literature is not mature on the theoretical and computational stud-
ies to back-calculate the spatial distributions of material properties of infrastructures by using traffic-induced ambient
vibration signals.

To fill this gap, this paper attempts to investigate the feasibility to identify unknown information of (i) the stiftness
of a 1D beam bridge model and (ii) a moving wave source on it. When an inverse problem is aimed at identifying
the distributions of multiple independent variables (e.g., the simultaneous inversion of the Lamé parameters of a solid
[21]), itis known that the inverse problem suffers from solution multiplicity more severely than that aimed at identifying
a single variable. Thus, to address the solution multiplicity of the presented joint inversion problem, we employ the
Genetic Algorithm (GA), which is known to be a global optimization method for an optimization problem of a small
number of control parameters. As a study related to the damage detection using the GA, Mehrjoo et al. [26] proposed a
new GA-based method to detect the depth and location of a crack in a structure by analyzing the natural frequencies of
the structure extracted from vibrational measurement data. Similarly, Akula and Ganguli [2] investigated a GA-based
method to construct a hingeless helicopter rotor blade from its natural frequencies extracted from its vibrational data.

As a structural model, we consider the Timoshenko beam model instead of the Euler-Bernoulli model. We note
that the latter does not take into account the effects of shear deformation and rotational inertia of a beam, without
which the accuracy of the wave responses of a beam is compromised [3]. Namely, Law and Zhu [22] compared the
performance of a moving-force identification method based on both the Timoshenko and Euler-Bernoulli beam theory
with respect to various parameters; and they found that, in general, the Timoshenko beam model leads to more accurate
results than the other. Because of such accuracy of the Timoshenko beam model, Sarkar and Ganguli [30] considered
the Timoshenko beam theory to study higher modes of rotating elastic beams. Khaji et al. [20] also employed the
Timoshenko beam model to investigate an analytical method for crack identification in uniform beams.

In this paper, a piece-wisely homogeneous Timoshenko beam is utilized in our parametric studies to test the GA-
based joint inversion solver’s performance with respect to the number of control parameters, the number of sensors,
the population size of the GA, the noise level in measurement data, and the source’s moving velocity with/without its
acceleration.

2. Problem Definition

This study is aimed at identifying both (i) the spatial distribution of a material property of a Timoshenko continuous
beam-based bridge model and (i7) the profile of a moving vibrational source by using the GA-based inverse modeling.
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Simultaneous identification of a material property of a Timoshenko beam and a moving vibration source

Vibrational force q(x, t)

— Moving direction ~ Sensors

|
© © ©

(a) A beam subject to a moving vibrational load

V(1)

+w(z, t)
>

(b) The vertical deflection w(x, t) and slope y(x, t) of a beam

Figure 1: Problem configuration.

This work considers a one-dimensional Timoshenko beam supported at four locations by a hinge and rollers (see Fig. 1).
Its governing wave equations are the followings [19] (for brevity, the temporal and spatial dependencies of variables
are omitted in the following equations):

0 ow 0*w
= {oaK, (2 -v)}-p1Zl = M
ow 0 oy 0y
GAK (—— >+— Er) 0¥ oy, 2
S\ ox v o0x < ax) P o2 2)

where x € (0, L) denotes a position in the beam (L is the total length of the beam); ¢ € (0, T) denotes time (T is the
total observation time); w(x,t) is the total vertical deflection of a beam at x and ¢, and w(x, ?) is the slope of a beam
caused by bending only (see Fig. 1(b)); E(x) is Young’s modulus; G(x) is the shear modulus; p(x) is the mass density;
and A(x) and I(x) denote the cross-sectional area and the second moment of inertia, respectively; K (x) denotes the
Timoshenko shear factor; and g(x, ?) is the excitation force applied from a wave source (e.g., a moving vehicle) on the
beam.

The beam is supported at multiple locations by a hinge and rollers, and, hence, the boundary conditions (BCs) of
the beam are:

wx=s,1)=0, 0<t<T, 3)

EI?)—W(xzs,t)zo, 0<t<T, 4)
X

where s denotes the location of either a hinge or a roller. Equations (3) and (4) indicate that the deflection and the
bending moment of the beam vanish at the locations of the hinge and roller supports. The beam is initially at rest: the
initial-value conditions are:

wx,00 =0, 2(x,0)=0, 5)
Y(x,0)=0, aa—"t’(x, 0) = 0. ©)

This paper considers that there is a moving vibrational force exerted on the beam. Namely, the vibrational force in
(1) is defined as:

q(x,t) = F)H(x,1), @)
where the time-harmonic excitation of the force is defined as:

F(t)=—Psin(2x ft), ®)
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Figure 2: Two snapshots of H(x,?) at, respectively, f = 0 and 1 s using x, = 50 m and 9 = 20 m/s.

where P is the amplitude of the sinusoidal temporal variation of the force; f is its frequency. In (7), the time-dependent
(i.e., moving) spatial variation term, i.e., H(x,?) of g(x, t) is defined as:

H(x,1) = (cos(z) + De™2D | 7= x —x, — 9, ©)

where x, denotes the position of the centroid of H (x,?) at the initial observation time (t = 0); and J is its moving
speed (please see an example of the snapshots of H (x, ?) in Fig. 2). We note that H (x, t) represents the spatial function
of a moving wave source with a single contact area where traction is applied as the Gaussian distribution [24].

In this study, the values of the amplitude P and frequency f of F(¢) are unknown and set to be reconstructed while
the initial position x, and moving speed d of H (x, t) are known during the presented inversion solver. Thus, we would
like to remark that the presented method is a partially-passive SHM approach. Here, we consider that, in practice,
engineers can easily estimate x; and 9 by using visual footage made by traffic-surveillance cameras and transfer the
known information of x, and J to the inversion solver.! In contrast, the amplitude P and f are hard to estimate from
the video footage because P is affected by the total weight of a vehicle, including its passengers and freights, and f is
associated with the vehicle’s internal vibration. Thus, this work aims to identify P and f of a wave source as well as
the material property of a beam.

3. Forward Wave Modeling

This section presents the finite element modeling for obtaining the numerical solutions of the governing wave equations
(1) and (2).

3.1. Finite Element Method
The governing wave equations (1) and (2) are multiplied by test functions u(x) and v(x), respectively, and integrated
over the domain (0, L). Then, they become the following weak forms:

L Jw du L L
—/ (GAKv )d +/ (GAK w )dx—/ <pAu >dx— / (ug) dx, (10)
0 0x 0x 0 0
L ow ov oy L 0y
/ (GAK v— — GAK Ul//) dx—/ (EI——> dx—/ (pIU—) dx = (11
0 ox 0 0x 0 0 or2

! Please note that engineers can choose to use the data made during a particular observation time (e.g., midnight), when there is only a single
vehicle on an inspected bridge, for the presented inversion solver. From the vibrational data that are obtained during such a time slot, we invert for
the control parameters of only one wave source and the material properties of an inspected structure. Joint inversion is more plausible to solve in a
case with only one unknown wave source than a case with multiple unknown sources: the more control parameters are to be inverted for, an inverse
problem is more likely to suffer from the solution multiplicity.

Guidio and Jeong: Preprint submitted to Elsevier Page 4 of 18



122

123

131

Simultaneous identification of a material property of a Timoshenko beam and a moving vibration source
Next, the test and trial functions are approximated as follows:

u(x) 2 ul p(x), ov(x) = vlgx),

w(x, 1) = dx) W), wix1)~gx)"¥@), (12)

where w(t) and W(7) are the vectors of unknown nodal deflections and slopes of a beam, respectively, and ¢(x) and
g(x) are the vectors of global basis functions that are made of shape functions in the local coordinate of each element.
In this work, we use the Lagrange 4-noded cubic shape functions to approximate w(x, t) and u(x), and the Lagrange
3-noded quadratic shape functions to approximate y(x, ) and v(x) [19].

By virtue of the approximation of the test and trial functions as shown in (12), the weak form (10) and (11) reduce
to the following semi-discrete system:

Md() + Kd() = Q(r), (13)

where () denotes the second-order derivative of a subtended variable with respect to t; M denotes a global mass matrix;
K denotes a global stiffness matrix; Q denotes a global load vector; and d(¢) is the solution vector composed by w(t)
and W(z). In (13), the vectors and matrices are defined as:

[ w() -/ L ¢qdx
d@r) = ) = 0 . 14
0= ) ] Q) [ . (14)
- .
M = /0 pApgp’ dx ., 0 (15)
0 Jo pleg’ dx
. [ [EGAK, @ ¢'T dx JEGAK ¢ aT dx 16
| /) GAKg¢' dx  [(GAK,gg" + EIg'g'T)dx
where (') denotes the derivative of a subtended variable with respect to x.
We solve the time-dependent ordinary differential equation (13) in every i-th discrete time step as:
Md; + Kd; = Q,. (17)

By applying the initial-value conditions (5) and (6) onto (17), the solution vector at the initial time step is obtained by
solving the following:

After the initial time step, this work solves the system of equation for each time step using Newmark implicit time
integration (i.e., the average acceleration scheme), which results in the unconditionally-stable numerical solution of
wave responses [28]. The solution vector of the i-th time step is related to its previous time step as:

d,=d_, +d,_ (An+ %[0.5(1‘,4_1 +0.5d,1(A02, (19)
and

d, =d,_, +[0.5d,_, +0.5d,](A?), (20)
where At denotes the size of a time step. By plugging (19) into (17), it turns into the following:

[M + 0.25K(A0?]d; = Q; — K[d,_; +d,_,(Ar) +0.25d,_, (A1)*]. Q1)

By using (21), this work solves for d,. Then, the values of d; and d; can be updated by using, respectively, (19) and
(20).
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Figure 3: Comparison between w(5, t) generated by our FEM wave solver and that by a reference code for a simply-supported
beam of its length 10 m subject to a uniformly-distributed sinusoidal loading of its frequency 2 Hz.

3.2. Verification of the forward wave modeling

Prior to our investigation on the performance of the presented joint inversion, we verify our FEM wave solver, written
in MATLAB, by comparing our solution with the reference solution calculated by another wave solver, written in
Fortran, used for a previous Timoshenko-beam model-based study by Karve et al. [19]. This verification considers a
10 m-long Timoshenko beam, which is simply supported by a hinge and a roller. The beam is discretized by using 100
elements (each element is 0.1 m long), and the total observation duration 7 is 1.0 s with a time step At of 0.001 s. The
beam is homogeneous and has the following properties: Young’s modulus (E) of 2.5 x 10'? Pa, shear modulus (G) of
1 x 10!0 Pa, mass density (p) of 2500 kg/m3, cross-section area (A) of 0.1 m?, second moment of inertia (I) of 0.0013
m*, and shear factor (K,) of 0.8333. In this verification, a uniformly-distributed excitational loading is exerted on all
the elements of the beam, and it is defined as g(x, #) = 100 sin(2z ft) N/m with its frequency f of 2 Hz. Fig. 3 shows
an excellent agreement between the displacement field of the wave response, in the center of the beam, from our FEM
wave solver and that from the reference code. Hence, the forward wave modeling presented in this work is reliable and
can be used in the presented inversion modeling.

4. Inverse Modeling

The objective of the inverse modeling in this work is to estimate the values of the control parameters—characterizing a
moving wave source and the spatial distribution of a material property of a beam—that minimize the following misfit
functional:

T NS

L= /0 Z(w}“(r)—wj(t))z dr. (22)
j=1

In (22), T is the total observation time; NS is the number of sensors; w;“ and w ; are, respectively, the measured
wave response of the deflection, due to targeted control parameters, and its computed counterpart, due to estimated
parameters, at the location of the j-th sensor and time ¢. In this computational study, we synthetically create the
measured response data, w;n(t), by using our FEM solver with targeted control parameters. To avoid an inverse crime,

the element size used for computing w™(¢) is half the size of that for w(¢). The misfit functional (22) is of a L2 norm
(the square of the difference between w™(¢) and w (1)), which is considered to increase the misfit functional value of
outliers exponentially [13, 15, 17, 21].
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Figure 4: An exemplary contour plot of the objective functional with respect to two control parameters.

In this work, the Genetic Algorithm (GA) is employed to estimate unknown values of control parameters that
correspond to the minimal value of the misfit functional (22). We choose to use the GA because of its effectiveness for
an optimization or inverse problem with respect to a small number of control variables—in our presented numerical
experiments, the number of control parameters is sufficiently small (e.g., five in Example 1-2, six in Example 3, eleven
in Example 4-5, and twelve in Example 6). We also chose to use the GA because it is known to be an effective method
to identify control parameters that correspond to the global minimum (or a local minimum that is closer to the global
minimum than other local minima) of an objective functional. Fig. 4 presents an anecdoctal evidence, supporting that
the objective functional of the presented joint inversion problem has a number of local minima. Namely, the contour
plot in Fig. 4 shows the distribution of the objective functional with respect to estimated values of E| and f in Example
1 shown in Section 5.1 (please note that the estimated values of E,, E5 and A are the same as their targeted counterparts
in Example 1 only for showing this contour plot).

The GA involves a series of generations (i.e., inversion iterations). At each generation, the GA explores the profiles
of a given number of individuals, each of which contains a set of all the control parameters. Namely, in the presented
inverse modeling, each individual consists of following control parameters—the amplitude and frequency of a moving
wave source and the Young’s modulus of each segment in a Timoshenko beam model, which is assumed to be piece
wisely homogeneous.

The total number of generations is referred to as GN in this paper. In the beginning of the GA, it is assigned the
value of GN and a given number of individuals, which is referred to as the population size (PS). As mutation and cross-
over among the individuals diversify each population, the GA explores the fittest individual. At the last generation, the
GA returns the fittest individual that leads to the smallest value of the misfit functional, and its control parameters will
be the final inversion solution. This work uses the built-in GA function in MATLAB, and it autonomously conducts
the mutation and cross-over of individuals, for each of which w(?) at each j-th measurement location is computed by
using our forward wave solver.

5. Numerical Experiments

This section shows six numerical examples, investigating the performance of the presented GA-based joint inversion
method with respect to various factors. The first example is focused on the performance of the presented inversion
solver for estimating the values of five control parameters—two for a moving source and three for the elastic moduli
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of the beam structure’s three segments. The second example tests the inversion performance of reconstructing the
values of five control parameters with respect to the noise level. The third example shows the capability of our inverse
modeling to reconstruct six control parameters—three for a moving source, of which moving speed varies over time,
and three for the elastic moduli of beam structure’s three segments. The fourth example examines the inversion solver
for estimating the values of eleven control parameters—two for a moving source and nine for the elastic moduli of the
beam structure’s nine segments. The fifth example investigates the performance of reconstructing the values of eleven
control parameters with respect to the noise level. Lastly, the sixth example tests the performance of the presented
GA-based joint inversion solver for estimating twelve control parameters—three source parameters and nine structural
parameters—by considering that the velocity of the moving source is not constant over time. In these six examples,
this work investigates the effects of the population size (PS) and/or the number of sensors (NS) on the performance of
the presented joint inversion algorithm.

In all the examples, we consider a Timoshenko beam bridge model, of which the total extent is 100 m. It is
supported by a hinge at x of 0 m, and three rollers at x of 33.3, 66.7, and 100 m, respectively. When we compute w; (),
the beam is discretized by using 180 elements (an element size is about 0.56 m, and each element contains a set of 4
nodes for approximating w and another set of 3 nodes for approximating V'), and the time step of 0.001 s is used in the
FEM solver. The total observation duration 7 is 1.0 s, and the sensors are sparsely distributed along the beam with
uniform spacing.

In the presented inversion simulations, it is assumed that the inversion solver uses the following a-priori known,
uniformly-distributed material properties of a beam —p of 2500 kg/m?, A of 0.1 m?, I of 0.0013 m*, and K of 0.8333.
On the other hand, the value of E is unknown, and it could vary with respect to the location of the beam model. Thus,
its spatial distribution is to be identified during the inverse modeling. In the presented numerical examples of the joint
inversion, a targeted moving wave source is known to move with its moving speed 9 of 20 m/s toward the right-hand
side of the beam from its initial position at x, of 50 m. In contrast, its amplitude (P) of 100 N/m and frequency (f)
of 20 Hz are unknown, and their values will be reconstructed during the presented GA process while the upper and
lower limits of P and f are set by using + 50% deviations of their targeted values. That is, their values are bounded
as 50 < P <150 N/m and 10 < f < 30 Hz during the presented inversion process.

As the postprocessing of the inversion results, the error between each target control parameter and its corresponding
estimated solution of the fittest individual at each generation is computed as:

_ |A targeted value — An estimated value from the GA|

E %X 100 [%]. (23)

|A targeted value|

An averaged error norm for all the control parameters of the fittest individual at each generation is also defined as:

NP
£ = Zk=1 &k
NP
where NP denotes the total number of target control parameters of an individual, and k denotes the k-th control pa-

rameter of an individual, and & is the error, defined in (23), of the inversion of the k-th control parameter.

[%]. (24)

5.1. Example 1 (Cases 1 to 5): joint inversion of two source parameters and three stiffness
parameters in a bridge comprised of three piece wisely-homogeneous segments

In this example, we consider that a continuous beam model consists of three piece wisely-homogeneous segments (see
Fig. 5), and each segment’s Young’s modulus (E) is estimated by the presented joint inversion method. The targeted
value of E; of the beam’s first segment (0 < x <33.3 m)is 1.8 X 10'0 Pa, and it is smaller than those (E, and E;
of 2.5 x 1010 Pa) of the other segments (33.3 < x < 100 m). This reduced stiffness in the first segment represents a
structural anomaly, e.g., corrosion-induced reduced stiffness.

Fig. 6 shows the snapshots of a targeted moving source function g(x, ¢) and its corresponding wave responses of
a displacement field in the entire beam at 0.28 and 0.82 seconds, considering the targeted parameters of the source
and the material of this example. Fig. 7 shows the frequency contents of wave responses (up to ¢ of 0.3 s) measured
at sensors that are located, respectively, in front of (x = 60 m) and behind (x = 40 m) the targeted moving source
whose excitational frequency is 20 Hz. The wave response, measured at x of 60 m, shows the forward frequency shift
(i.e., 20 Hz shifted to 20.31 Hz) of its dominant frequency, and the other, at x of 40 m, shows the backward frequency
shift (i.e., 20 Hz shifted to 19.03 Hz). The frequency shifts are attributed to the Doppler effect of the wave responses
induced by a moving source [25].
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Figure 5: A piece wisely-homogeneous Timoshenko beam with three segments in Example 1, 2, and 3.

Table 1

Example 1: joint inversion of two source parameters and three stiffness parameters in a bridge comprised of three piece
wisely-homogeneous segments (GN = 50 for all the cases 1 to 5). The first row shows the targeted control parameters.
The second to the sixth rows show their reconstructed values and corresponding errors.

Cases Parameters Value Error, & Average Error, £
P (N/m) 100
f (Hz) 20
Target E, (Pa) 1.8x10'°
E, (Pa) 2.5x10'0
E; (Pa) 2.5x101°
P (N/m) 99.97 0.0%
Case 1 f (Hz) 20.01 0.0%
PS =100 E, (Pa) 1.80x10'° 0.0% 0.0 %
NS =45 E, (Pa) 2.50x10'° 0.1%

E, (Pa)  250x10°  0.0%
P (N/m)  100.01 0.0%

Case 2 f (Hz) 20.01 0.1%
PS =50 E, (Pa)  1.79x10°  0.4% 0.3%
NS =145 E, (Pa)  251x10°  0.5%

E, (Pa)  249x10°  05%
P (N/m) 100.19 0.2%

Case 3 f (H2) 20.01 0.0%
PS =50 E, (Pa)  1.80x10"  0.1% 0.4%
NS =30 E, (Pa)  252x101°  0.6%

E, (Pa)  2.48x10°  0.9%

P (N/m) 98.81 1.2%
Case 4 f (Hz) 20.00 0.0%
PS =50 E, (Pa)  1.80x10°  0.1% 0.4%
NS =15 E, (Pa)  251x101°  0.4%

E, (Pa)  249x10°  0.3%
P (N/m)  100.84 0.8%

Case 5 f (Hz) 20.01 0.1%
PS =50 E, (Pa)  179x10°  0.4% 0.7%
NS =10 E, (Pa)  253x10°  1.1%

E, (Pa)  2.47x10"°  1.0%

The value of the estimated E,, in each n-th segment of the beam is bounded as 1.7 x 10!° Pa < E, < 2.6 x 10'°
Pa during the GA-based inversion simulation. Please note that E, is quite unlikely to exceed its designed value of
2.5 x 10'0 Pa during the lifespan of a bridge whereas it could become smaller than its designed value due to structural
damage.

In this Example 1, Cases 1 to 5 are examined to detect the targeted control parameters by using five different
combinations of PS and NS, and we used GN of 50 for all Cases 1 to 5. Both Cases 1 and 2 use NS of 45 (the spacing
between neighboring sensors is about 2.2 m), but each of them uses PS of 100 and 50, respectively. On the other
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hand, Cases 3 to 5 use PS of 50, but each of them uses NS of 30, 15, and 10, respectively (the sensor spacings are 3.3,
6.3, and 9.2 m, respectively, in Cases 3 to 5). Table 1 shows the reconstructed values of the control parameters of the
best-fit individual at the final generation in Cases 1 to 5. The table also shows the error £, defined in (23), between
the reconstructed value of each parameter and its targeted value and the average error £, defined in (24), of all the
parameters.

Cases 2 to 5 demonstrate the performance of the inversion solver with respect to the number of sensors (or NS).
Namely, as shown in Fig. 8, the average error for the best-fit individual at the final generation tends to increase as NS
decreases (e.g., £ is 0.3 for PS of 50 and NS of 45 while € is 0.7 for PS of 50 and NS of 10). Table 1 shows that Case
1 results in the smallest average error (€ of 0.0%) because Case 1 uses larger values of PS and NS than the other cases.

In this paragraph, we describe the inversion performance of Case 1, which shows the smallest value of £ among
Cases 1to 5. Fig. 9 shows how the value of the misfit functional for the best-fit individual changes over the GA iterations
in Case 1. Figs. 10 and 11 show the histograms of estimated control parameters of all the individuals during the entire
generations in the GA inversion for Case 1. Fig. 10 presents that (7) first, the estimated values of parameters P and
f of the entire individuals have wide ranges of values (i.e., within the 50% deviations of their targeted values) in the
early generations; (i) after the first 15 generations and until the 40-th generation, their values approach to their targeted
values (i.e., within the 5% deviations of their targeted values); and, (iii) lastly, their variations become significantly low
(i.e., within the 1% deviations of their targeted values) during the last 10 generations. The histograms of the structural
parameters in the three segments are shown in Fig. 11. It shows the excellent convergence of the estimated values of
E, and E; in the first 20 generations. In contrast, the convergence of the estimated values of E; is much slower than
those of E, and E5. Nevertheless, our GA-based optimizer successfully updates the estimated value of E; such that
it converges toward its targeted value with quite a small averaged error (e.g., £ = 0.0%) as shown in Table 1. Lastly,
Fig. 12 shows that the wave response, w™, due to the targeted control parameters is in an excellent agreement with w
due to the reconstructed ones at two sensors located at x of, respectively, 40 and 60 m.

5.2. Example 2 (Cases 6 to 10): investigating the joint inversion performance of two source
parameters and three stiffness parameters with respect to the noise level

This example studies the performance of reconstructing control parameters with respect to the noise level of random
noise that is added to w™ before inversion. We employed the same continuous beam model presented in Fig. 5, where
the first segment has a reduced stiffness. In addition to the Case 1 in Example 1, where the noise level of 0% is used,
we considered Cases 6-10, which use noise level of 1%, 5%, 10%, 15%, and 20%, respectively.

Fig. 13 shows w™ with 0% noise level (Case 1) and w™ with 10% noise level (Case 8) at a sensor at x = 60 m.
As shown in Table 2 and Fig. 14, the averaged error £ of all the Cases 6-10 with noise are about the same (0.1 %).
Namely, we found that the inversion performance is not sensitive to the noise level because the number of the control
parameters is quite small under this example.

5.3. Example 3 (Cases 11 to 13): joint inversion of three source parameters, including the
acceleration of a moving source, and three stiffness parameters

In this example, we consider the same continuous beam model with three piece wisely-homogeneous segments shown

in Fig. 5. Similary to Examples 1 and 2, the targeted value of E; (1.8 x10'° Pa) is smaller than those of the other two

segments (2.5 x10'0 Pa), and the initial velocity () of 20 m/s is known prior the inversion. However, in contrast to

Examples 1 and 2, the moving velocity of the moving vibrational source is not considered to be constant over time in

this example. Therefore, the variable z in (9) is modified as:

z=x—xy— 9t —0.5a1> (25)

where a is the acceleration of the spatial variation term H (x,?) of a wave source, and in addition to the other source
parameters (P and f), a is set to be estimated under this example. Accordingly, the targeted value of a is 3 m/s?, and
the value of the estimated a is bounded as 1.5 m/s> < a < 4.5 m/s? during the inversion.

This example considers Cases 11 to 13, which are evaluated by using PS of 50, 100, and 200, respectively, while all
of them use NS of 45 and GN of 50. Table 3 shows the estimated values of control parameters of the best-fit individual
at the final generation, the error between the estimated and targeted values, and the average error of all six control
parameters in each case.
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Table 2
Example 2: Investigating the joint inversion performance with respect to the noise level in a bridge comprised of three
piece wisely-homogeneous segments by using NS of 45, GN of 50, and PS of 100.

Cases Parameters Value Error, &  Average Error, €
P (N/m) 99.97 0.0%
f (Hz) 20.01 0.0%

Case 1 E, (Pa)  1.80x10"  0.0% 0.0 %

. — N
Noise level = 0% E, (Pa) 2 50%10'0 0.1%

E; (Pa)  2.50x10"  0.0%
P (N/m) 100.36 0.4%
f (Hz) 20.00 0.0%
E, (Pa)  1.80x10"  0.0% 0.1%
E, (Pa) 25010 0.1%
E; (Pa)  2.50x10"  0.0%
P (N/m) 100.15 0.2%
f (Hz) 20.00 0.0%
E, (Pa)  1.80x10"  0.2% 0.1%
E, (Pa) 25010 0.1%
E; (Pa)  2.49x10"  0.1%

Case 6
Noise level = 1%

Case 7
Noise level = 5%

P (N/m)  99.77 0.2%
7 (Hz) 20.01 0.0%
Case 8 E, (Pa)  1.79x10°  0.1% 0.1%

. —_ 0,
Noise level = 10% E, (Pa) 2 49%1010 0.2%

E; (Pa)  2.50x10"  0.0%
P (N/m) 100.04 0.0%
f (Hz) 20.00 0.0%
E, (Pa)  1.80x10"°  0.1% 0.1%
E, (Pa) 25010 0.1%
E; (Pa)  250x10"  0.1%
P (N/m) 100.20 0.2%
f (Hz) 20.01 0.0%
E, (Pa)  1.80x10"°  0.0% 0.1%
E, (Pa) 2.51x10°  0.3%
E; (Pa)  2.49x10"  0.2%

Case 9
Noise level = 15%

Case 10
Noise level = 20%

In all the Cases, the GA-based optimizer is able to identify the segment with the reduced stiffness. In addition,
as the population size increases, the error between the estimated and targeted acceleration decreases, i.e., from 14.1%
(Case 11 using PS of 50) to 1.3% (Case 13 using PS of 200). Table 3 and Fig. 15 also show that the final value of €
for the best-fit individual decreases as the population size increases. Therefore, our optimizer is able to successfully
identify the targeted control parameters although the moving velocity of a moving wave source varies over time.

5.4. Example 4 (Cases 14 to 17): joint inversion of two source parameters and nine stiffness
parameters in a bridge comprised of nine piece wisely-homogeneous segments

This example considers a continuous beam, which consists of nine piece wisely-homogeneous segments (see Fig. 16).

The source parameters and structural parameter values are estimated by our joint inversion solver. In this example, as

the targeted stiffness parameter of the beam, Eg in the sixth segment (1.8 X 109 Pa) is smaller than those of the other

segments (E, to Eq, except for Eg, of 2.5 x 10!° Pa). Similarly to Example 1, the estimated value of E,, in each n-th

segment of the beam is bounded as 1.7 x 10'” < E < 2.6 x 10'? Pa during the GA-based inversion simulation.

This example tests Cases 14 to 17, which are evaluated by using PS of 50, 100, 200, and 400, respectively, while
all of them use NS of 45 with the sensor spacing of 2.2 m and GN of 50. Table 4 shows the reconstructed source
parameter values, the error between their reconstructed and targeted values, and the average error of all the eleven
control parameters in each case. The spatial distribution of the recovered stiffness of all the segments in each case is
shown in Fig. 17. It presents that the discrepancy between the reconstructed and targeted values of stiffness parameters
is decreased as PS is increased. Fig. 18 shows that the values of £ and £ for the best-fit individual in each case become
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Table 3

Example 3: joint inversion of three source parameters and three stiffness parameters in a bridge comprised of three piece
wisely-homogeneous segments (NS =45 and GN = 50 for all the cases 11 to 13). The first row shows the targeted control
parameters. The second to the third rows show their reconstructed values and corresponding errors.

Cases Parameters Value Error, &  Average Error, £
P (N/m) 100
f (Hz) 20
a (m/s?) 3

Target E, (Pa 1.8x10'°

)
E, (Pa)  25x10°
E, (Pa)  2.5x10°
P (N/m) 101.44 1.4%

7 (Hz) 20.01 0.0%
Case 11 a (m/s?) 3.42 14.1% 3.0%
PS =50 E ( 1.80x10°  0.0%

Pa)
E, (Pa)  247x10°  1.4%
E, (Pa)  253x100  1.2%
P (N/m) 10063  06%

7/ (Hz) 20.02 0.1%
Case 12 a (m/s?) 3.22 7.4% 1.6%
PS =100 E, (Pa)  1.79x10°  0.4%

E, (Pa)  251x10°  05%

E, (Pa)  248x10°  0.7%
P (N/m)  100.09 0.1%

7 (Hz) 20.01 0.0%
Case 13 a (m/s?) 2.96 1.3% 0.3%
PS =200 E, (Pa)  1.81x10°  0.3%

E, (Pa)  250x10°  0.1%
E, (Pa)  250x101  0.0%

smaller as the generation approaches to the last one. It also clearly shows the improvement of the accuracy of the joint
inversion as we increase PS.

5.5. Example 5 (Cases 18 to 20): investigating the joint inversion performance of two source
parameters and nine stiffness parameters with respect to the noise level

In this example, we focus on examining the performance of reconstructing eleven control parameters with respect to

the noise level of random noise added to w™. We used the piece wisely-homogeneous Timoshenko beam with nine

segments, shown in Fig. 16, in consideration of NS of 45, GN of 50, and PS of 400. In addition to 0% of noise,

utilized in Case 17 in Example 4, we examined the noise level of 1%, 10%, and 20%, which correspond to Cases 18-20,

respectively.

Table 5 summarizes the results of the critical control parameters, while Fig. 19 shows the comparisons among all
the targeted and estimated stiffness control parameters in each case. In example 3, the inversion performance is not
sensitive to the noise level due to the small number of control parameters. However, in this example, where eleven
control parameters are to be identified, the larger noise level leads to the larger error for the final best fit-individual in
each case as shown in Table 5 and Fig. 20. Thus, we suggest that the detrimental effect of noise in measurement on
the inversion accuracy increases as the number of control parameters increases.

5.6. Example 6 (Case 21): joint inversion of three source parameters, including the acceleration of
a moving source, and nine stiffness parameters

This example considers the same continuous beam utilized in examples 4 and 5, a piece wisely-homogeneous beam

with nine segments. However, unlike examples 4 and 5, this example considers that the source parameter’s velocity is

not constant over time. Namely, this example attempts to identify three source parameters — P, f, and a. Therefore,

similar to Example 3, the variable z in (9) is modified to that in (25).
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Table 4

Example 4 - joint inversion of two source parameters and nine stiffness parameters in a bridge comprised of nine piece
wisely-homogeneous segments by using NS of 45, GN of 50, and PS of different values: while only the key control
parameters are shown in this table, all the stiffness control parameters are visualized in Fig. 17. The first row shows the
targeted control parameters of P, f, and E,. The second to the fifth rows show their reconstructed values, individual
errors, and averaged errors.

Cases Key Control Parameters Value & (only P,f,E;) € (only E, to E,) &
P (N/m) 100
Target f (Hz) 20
E, (Pa) 1.80x1010
P (N/m) 99.09 0.9%
gaSse_1540 f (Hz) 20.01 0.1% 3.8% 3.2%
= E, (Pa) 1.93x10'° 6.9%
P (N/m) 100.45 0.5%
gf;e_lfoo f (Hz) 20.01 0.1% 3.5% 2.9%
= E, (Pa) 1.98x1010 10.2%
P (N/m) 99.12 0.9%
g;se_lfoo 7 (Hz) 20.01 0.0% 1.8% 1.5%
= E, (Pa) 1.87x10'° 3.7%
P (N/m) 99.66 0.3%
g"";e_lzoo f (Hz) 20.00 0.0% 1.0% 0.8%
= E, (Pa) 1.82x1010 1.0%

Table 5

Example 5: Investigating the joint inversion performance with respect to the noise level in a bridge comprised of nine piece
wisely-homogeneous segments by using NS of 45, GN of 50, and PS of 400: while only the key control parameters are
shown in this table, all the stiffness control parameters are visualized in Fig. 19.

Cases Key Control Parameters Value & (only P,f,E;) & (only E, to E,) &
P (N/m) 99.66 0.3%
ﬁi?seellzvel = 0% / (Hz) 20.00 0.0% 1.0% 0.8%
- E, (Pa) 1.82x10'° 1.0%
P (N/m) 100.24 0.2%
Ez?seelivd — 1% f (Hz) 20.00 0.0% 1.2% 1.0%
- E, (Pa) 1.81x10!° 0.5%
P (N/m) 100.48 0.5%
Ez?sellgevel = 10% / (Hz) 20.00 0.0% 2.7% 2.3%
- E; (Pa) 1.86x10'° 3.3%
P (N/m) 99.67 0.3%
ﬁi)?se:l:vel = 20% J/ (Hz) 20.04 0.2% 3.8% 3.2%
" Eq (Pa) 1.97x10'° 9.2%

The parameters used for the GA are NS of 45, GN of 50, and PS of 400. Table 6 shows that the joint inver-
sion successfully estimates the source and structural parameters with an averaged error of 1.5%. Fig. ?? shows the
reconstructed E of each segment of the beam. The GA-based optimizer is able to localize the segment with a struc-
tural anomaly. Fig. 22 shows the value of the £ for the best-fit individual in each generation as the estimated control
parameters converge to the their targeted values.

6. Conclusion

We show the feasibility of simultaneously identifying the parameters of the stiffness distribution and a moving vibration
source in a Timoshenko beam by using the presented GA-based inverse modeling. We tackle the inverse problem via
the minimization of a misfit functional, which is calculated as the difference between sparsely-measured responses
induced by target control parameters and their computed counterparts due to estimated parameters.
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Table 6

Example 6 - joint inversion of three source parameters and nine stiffness parameters in a bridge comprised of nine piece
wisely-homogeneous segments by using NS of 45, GN of 50, and PS of 400: while only the key control parameters are
shown in this table, all the stiffness control parameters are visualized in Fig. ??. The first row shows the targeted control
parameters of P, f, a, and E,. The second row shows their reconstructed values, individual error, and averaged error.

Cases Key Control Parameters Value & (only P.f.a,E;) €& (only E, to E,) £
P (N/m) 100
f (Hz) 20
Target a (m/s2) 3
E, (Pa) 1.80x101°
P (N/m) 100.24 0.2%
f (Hz) 20.00 0.0% . .
Case 21 a (m/s?) 293 29% 1.7% 1.5%
E, (Pa) 1.78x101 1.4%

The numerical results suggest the following findings. First, as shown in Example 1, the more sensors are deployed
on the beam, the better accuracy of the presented joint inversion is obtained. Second, Example 1 (i.e., Cases 1 vs 2),
Example 3 (i.e., Cases 11 to 13), and Example 4 (i.e., Cases 14 to 17) show that a larger value of PS leads to a better
convergence of estimated parameters toward their targeted parameters, while the computational cost of the entire GA
process is proportional to the multiplication between GN and PS. Third, as shown in Example 4, in order to successfully
invert for the material properties of a beam with a large number of segments, a large value of PS should be used. Fourth,
we note that the inversion performance is not sensitive to noise when a small number of control parameters (i.e., five
control parameters in Example 2) are estimated. However, as the number of control parameters increases to eleven
(i.e., Example 5), the noise affects the inversion performance: the detrimental effect of noise in measurement on the
inversion accuracy becomes more significant as the number of control parameters increases. Fifth, it is feasible to
conduct the present joint identification even when the targeted moving source’s velocity is not constant over time (i.e.,
Examples 3 and 6).

The present work is limited to structures, of which members’ vibrational behaviors are governed by a 1D beam
model. The authors, though, note that the present joint inversion method could be applied to various types of structures
in a 3D setting as well. For instance, we can apply the presented inverse modeling to a complex bridge structure that
should be modeled by 3D cubic or tetrahedral elements. For such an extension, we only need to replace the presented
forward wave solver with a new wave solver that is built by using 3D cubic or tetrahedral elements and considering its
top surface subject to moving dynamic traction. Such an extension would be onerous but feasible.

6.1. Extensions

In the future, we will extend the presented joint inversion as follows. First, we will extend this 1D beam model into
a 3D model so that 3D wave responses of a realistic, detailed bridge model will be taken into account for the inverse
modeling. Second, by using the adjoint equation-based approach, we could identify a much larger number of control
parameters than those presented in this paper. That is, the material property of each element in the finite element
mesh of the 3D model can be inverted for by using the adjoint equation-based material tomography [8]. While the
presented GA-based joint inversion method is limited to detecting the material properties of the segments of a piece
wisely homogeneous beam model, the adjoint equation-based material tomography could lead to the material inversion
performance of a higher resolution than the presented GA-based inversion method. At the same time, the arbitrary pro-
file of moving sources can be identified by using the adjoint equation-based source-reconstruction approach. Recently,
Lloyd and Jeong [24] and Guidio and Jeong [10] show that the arbitrarily-varying spatial and temporal distributions of
wave source functions can be identified by using the adjoint equation-based source-inversion approach in the 1D and
2D scalar wave settings. As the advantage of the potential adjoint equation-based joint inversion method, due to its
semi-analytical nature, its computational cost is small (compared to the GA-based joint inversion) and does not depend
on the number of control parameters that are to be identified. In addition, by virtue of the adjoint equation-based joint
inversion approach, the spatial function of an estimated wave source profile—i.e., H(x,?) in this work—would not
need to be limited to that of a single contact area where traction is applied as the Gaussian distribution. Namely, mul-
tiple contact areas of multiple moving wave sources of an arbitrary number and arbitrary traction distributions could
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be detected under the new adjoint equation-based joint inversion approach.

In a typical material inversion, adding regularization in the objective functional is known to improve the perfor-
mance of the inversion. For instance, the Tikhonov (TN) regularization could help the numerical optimizer converge
to the global minimum of an objective functional while a material discontinuity (a sharp spatial change of a material
profile) is suppressed so that an estimated material profile could be smoother than the case for not using the TN regular-
ization. While we invert for E of each finite element by using the new adjoint equation-based joint inversion approach,
the targeted profile of E could be recovered by minimizing both the objective functional £ and the TN regularization

2
term fOL R <%) dx, where R is a regularization coefficient. In such a case, although the sharp discontinuity of E

around a strong scatterer (anomaly) could be suppressed, the overall spatial distribution of reconstructed E would re-
cover its targeted profile. Besides, the total variation (TV) regularization could be an alternative because it is known to
preserve the sharp discontinuity of an estimated material profile while addressing the solution multiplicity of a material
inversion problem as well. Thus, the performance of the new adjoint equation-based joint inversion approach aided by
each regularization type (e.g., TN vs. TV) shall be investigated in the future.

Lastly, the presented theoretical work and its extensions in the 3D setting under the adjoint-equation-based joint
inversion approach should be validated by using real data. To this end, first, we could generate experimental data in
a lab setting where a wave source is moving on a beam. To take into account the smaller scale of a lab experimental
setup than a realistic bridge, the order of magnitude of the vibration frequency of a target wave source in the lab setting
should be higher than that considered in this work. Second, we can validate the 3D extension of our joint inversion
modeling by using field data from real bridges.
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Symbol Comment

X Location in a beam

L Total length of a beam

t Time

T Total observation time

w(x,t) Vertical deflection of a beam

w(x,1) Slope of a beam caused by bending only

E, G Elastic and shear moduli

p Mass density

A1 Cross-sectional area and the second moment of inertia
K, Timoshenko shear factor

q(x,1) Vibrational force

s Location of either a hinge or a roller of a beam
F(t) Temporal variation of g(x, 1)

H(x,t) Time-dependent (i.e., moving) spatial variation of g(x,1)
P, f Amplitude and frequency of F(#) in g(x,1)

X, Initial position of H(x,1) in gq(x,t) att =0

9 Moving speed of H(x,1) in g(x,1)

a Acceleration of H(x,1) in g(x,1)

u(x), v(x) Test functions

u, v Vectors of nodal solution of test functions

w(t), W(1) Vectors of nodal solutions of deflections and slopes
P(x), g(x) Vectors of global basis functions

' (x), g'(x)
M, K

Q

d@o)

d(), d@)
1

At

L

NS

Jj

wh (1)
w;(1)
GN, PS

> 2 MM
S

Derivatives of vectors of global basis functions with respect to x
Global mass and stiffness matrices

Global load vector

Solution vector composed by w(r) and ¥(r)

First- and second-order derivatives of solution vector with respect to ¢
The i-th time step

Size of time step

Objective functional to be minimized

Number of sensors

The j-th sensor

Measured response at the location of the j-th sensor and time ¢
Computed response at the location of the j-th sensor and time ¢
Number of generations and population size

Error between a target control parameter and its estimated solution
Averaged error norm for all the control parameters

Total number of target control parameters

The k-th control parameter

The Elastic modulus of each n-th segment of the beam

7. Nomenclature
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Figure 6: Snapshots of the exemplary wave response, w(x,t), and the targeted source function, g(x,?), in Example 1
considering the targeted material profile.
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Figure 16: A piece wisely-homogeneous Timoshenko beam with nine segments in Example 4, 5, and 6.
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Figure 17: The reconstructed elastic modulus of a piece wisely-homogeneous beam of nine segments via the joint inversion
in Example 4: (a) Case 14 using PS of 50, (b) Case 15 using PS of 100, (c) Case 16 using PS of 200, and (d) Case 17

using PS of 400.
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Figure 19: The reconstructed elastic modulus of a piece wisely-homogeneous beam of nine segments via the joint inversion
in Example 5: (a) Case 17 using Noise level of 0%, (b) Case 18 using Noise level of 1%, (c) Case 19 using Noise level of

10%, and (d) Case 17 using Noise level of 20%.
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Figure 20: & for the best-fit individual versus the GA iteration in Example 5.
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