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ABSTRACT

The spatial instability of inward radial Rayleigh–B�enard–Poiseuille flow was investigated using direct numerical simulations with random
and controlled inflow forcing. The simulations were carried out with a higher-order-accurate compact finite difference code in cylindrical
coordinates. Inward radial Rayleigh–B�enard–Poiseuille flows can be found, for example, in the collectors of solar chimney power plants. The
conditions for the present simulations were chosen such that both steady and unsteady three-dimensional waves are amplified. The spatial
growth rates are attenuated significantly in the downstream direction as a result of strong streamwise acceleration. For the oblique waves, the
growth rates and wave angles decrease and the phase speeds get larger with increasing frequency. As the oblique waves travel downstream,
the phase speeds decrease and the wave angles increase. Overall, steady waves with a wave angle of 90 � are the most amplified. In general,
because of the finite azimuthal extent, only certain azimuthal wavenumbers are possible. As a result, the steady waves appear to merge in the
streamwise direction. When the inflow is at an angle such that a spiral flow is formed, one family of oblique waves is favored over the other
and the mode shapes of the left- and right-traveling oblique waves are asymmetric with respect to the radius. As the inflow angle increases,
this asymmetry is aggravated and the wavenumber of the most amplified disturbances is diminished.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043823

I. INTRODUCTION

The radial channel flow between two horizontal and circular paral-
lel plates with the temperature gradient in the wall-normal direction and
opposing gravitational field is known as radial Rayleigh–B�enard–
Poiseuille (RBP) flow as opposed to plane RBP flow. Because of the geo-
metric configuration, two types of flows are possible, which are inward
and outward radial RBP flow. Inward radial RBP flows, for example, are
found in the collectors of solar chimney power plants (SCPPs). Both
inward and outward RBP flow can exhibit buoyancy-driven instability.
Two non-dimensional numbers, namely, the Reynolds number,

Re ¼ umaxh=2
�

; (1)

with umax being the maximum velocity, h being the channel height,
and � being the kinematic viscosity, and the Rayleigh number,

Ra ¼ gh3cDT
�a

; (2)

with g being gravitational acceleration, c being the volumetric thermal
expansion coefficient, DT being the temperature difference, and a
being the thermal diffusivity, govern the onset of flow instability.

The hydrodynamic instability of plane RBP flow has been the
focus of much research because of its many scientific and engineering
applications. Linear stability investigations of plane RBP flow by Gage
and Reid1 provided neutral curves (stability boundaries) for the onset
of both buoyancy- and viscosity-driven instability. According to Gage
and Reid,1 for Re < Rec ¼ 5400 and Ra > Rac ¼ 1708, buoyancy-
driven instability (thermal effect) occurs and three-dimensional (3-D)
waves are most amplified. These waves can develop into longitudinal
vortices. On the other hand, for Re > Rec ¼ 5400 and
Ra < Rac ¼ 1708, viscosity-driven instability occurs and two-
dimensional (2D) waves in the form of Tollmien–Schlichting (T–S)
waves are most amplified (the effect of shear is dominant). When the
disturbance amplitudes become non-linear, transverse rolls are
formed. Later on, Orszag2 carried out linear temporal stability analyses
of plane Poiseuille flow and obtained a more accurate value of the criti-
cal Reynolds number for T–S waves, Rec¼ 5772.22. According to
Luijkx et al.,3 for a finite aspect ratio channel, transverse rolls can
appear first below the critical Reynolds number when the Rayleigh
number is above the critical value. However, 3D longitudinal rolls
were found when the Reynolds number was increased. A 2D numeri-
cal investigation of Poiseuille–B�enard flow in a plane channel by
Nicolas et al.4 revealed transverse rolls that were superimposed on the
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mean flow. Nicolas et al.5 provided an extensive literature review and
employed linear stability theory and numerical analyses for investigat-
ing both the primary and secondary instabilities of plane RBP flow. In
their finite aspect ratio simulations, longitudinal rolls appeared first
near the lateral walls. A correlation was proposed for the “growth
length” (i.e., downstream distance from inflow to emergence of fully
developed longitudinal rolls) based on the Rayleigh and Reynolds
number and vertical velocity along the channel axis. White noise was
then introduced at the inlet to obtain wavy longitudinal rolls. The
growth length of the wavy rolls was found to linearly decrease with the
logarithm of the forcing amplitude. The onset of mixed instability due
to the combined effect of buoyancy- and viscosity-driven instability
was investigated by Fujimura and Kelly6 and Ng and Reid.7

Experiments by Mori and Uchida8 confirmed the formation of longi-
tudinal rolls when the wall-normal temperature gradient exceeded a
critical value. In plane RBP flow experiments by Chang et al.,9,10 the
longitudinal flow structures first developed near the channel side walls.
Mergui et al.11 carried out both experimental and numerical analyses
of plane RBP flow and showed that the boundary layers close to the
channel side walls triggered the onset of longitudinal rolls. Hasan and
Gross12 employed temporal direct numerical simulations (DNSs) to
investigate the primary buoyancy-driven instability of plane RBP flow
in a channel with infinite span. They also found that 3D waves with a
wave angle of 90� are most amplified, which corroborates the findings
by Gage and Reid.1 The same authors13 also investigated the secondary
instability of plane RBP flow with longitudinal vortices resulting from
a primary buoyancy-driven instability and found a secondary instabil-
ity that resulted from a triad interaction of the primary steady 3D
mode with an unsteady 2D mode and two unsteady oblique modes. In
summary, as long as the lateral confinement is negligible and the insta-
bility is linear (i.e., modal), longitudinal rolls that are aligned in the
streamwise direction will appear first as a result of the primary insta-
bility when the Reynolds number is below its critical value and the
Rayleigh number is above its critical value.

The hydrodynamic instability of radial RBP has not attracted
much attention and is less well understood. This is despite the fact that
knowledge of the critical parameters such as the Reynolds number,
Rayleigh number, and Prandtl number is of high relevance for the
design and operation of engineering applications that feature radial
RBP flows such as, for example, SCPPs and chemical vapor deposition
(CVD) reactors. Because of continuity (qv / 1=r relationship), the
inward radial flow accelerates strongly in the streamwise direction.
Also different from plane RBP flows that have a finite aspect ratio, the
aspect ratio is infinite (no sidewall effect). Moreover, since acceleration
generally has a stabilizing effect,14 the stability characteristics of inward
radial RBP flow are likely different from those of plane RBP flow.

Fasel et al.15,16 carried out implicit large-eddy simulations and
Reynolds averaged Navier–Stokes calculations of the flow through the
collector of a 1:33 scale model of the Manzanares SCPP. The simula-
tions revealed both transverse rolls (close to the inlet) and longitudinal
vortices (close to the outlet). For the Rayleigh and Reynolds number
range of the simulations, longitudinal vortices were expected based on
the neutral curves by Gage and Reid.1 The longitudinal flow structures
were reported to enhance the vertical heat transfer in the collector. A
direct numerical simulation of the flow inside the collector of the same
1:33 scale SCPP model by Hasan et al.17 revealed strongly amplified
steady 3D waves that appear to merge in the downstream direction.

The almost step-like mergings were attributed to the fact that only cer-
tain azimuthal wavelengths are possible for each radial location. Since
the wavelength has to be an integer fraction of the circumference, a
continuous smooth adjustment of the wavelength in the streamwise
direction is not possible. The natural laminar convection in a radial
solar heater was investigated numerically by Bernardes et al.18 The
conic chimney geometry was found to affect the mass flow rate and
outflow temperature. A numerical investigation of the instability of the
inward radial flow between two almost parallel fixed circular plates
that resemble the collector of an SCPP was carried out by Bernardes.19

According to this study, longitudinal vortex structures are formed
when the Richardson number, Ri ¼ Ra=ðPrRe2), exceeds 10. Here,
Pr ¼ �=a is the Prandtl number. Bernardes20 also developed correla-
tions for the friction factor and Nusselt number (ratio of convective to
conductive heat transfer) for flow between two nearly parallel disks.
Van Santen et al.21,22 investigated a radial outward flow with buoyancy
between two horizontal plates. Transverse rolls were observed for
10 � Re � 50 and Ra¼ 2000, which is in disagreement with the study
by Gage and Reid.1 According to Gage and Reid,1 3D longitudinal rolls
should be unstable for this Reynolds number range and Rayleigh num-
ber. When Van Santen et al.21,22 increased the Rayleigh number to
Ra¼ 5000, for the same Re¼ 50, torus-shaped flow structures
appeared. The relaminarization of turbulent inward radial flow
between two fixed parallel disks has been investigated experimentally
and numerically by Singh et al.23 The authors examined the effect of
acceleration on the flow and found that for a constant Reynolds num-
ber, a decrease in the acceleration parameter was observed when the
gap ratio (height/radius) was reduced. It was also noticed that decreas-
ing the gap ratio stabilizes the flow.

The dearth of dedicated stability investigations for inward radial
RBP flow motivates the present numerical stability analyses. The onset
of instability determines if and where flow structures will form. The
flow structures will increase the wall-normal momentum and heat
transfer. For SCPP applications, this will not only strengthen the heat
flux from the ground into the collector but also increase the stream-
wise pressure drop. For CVD reactor applications, it will affect the uni-
formity of the deposition. The primary instability of inward radial
RBP flow is investigated using direct numerical simulations (DNSs).
Different from the earlier temporal stability analyses for plane RBP
flow by Hasan and Gross,12 spatial simulations are employed for the
present stability analyses of inward radial RBP flow. First, the
Navier–Stokes code and the discretization are described. Next, results
from DNS with random unsteady inflow forcing for a fixed subcritical
Reynolds number and supercritical Rayleigh number are presented.
Then, several cases with fixed deterministic inflow forcing are com-
pared with the results from the DNS with random inflow forcing.
Afterward, two cases with spiral RBP basic flow with random inflow
forcing are discussed. This paper concludes with a brief discussion of
the results.

II. METHODOLOGY
A. Governing equations

The compressible Navier-Stokes equations in cylindrical coordi-
nates were solved numerically. The governing equations were non-
dimensionalized with the channel half height, Lref, inflow velocity, uref,
density, qref, and temperature, Tref ¼ 300K. The pressure, p, was
made dimensionless with qref u

2
ref . The reference Mach number was

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 034120 (2021); doi: 10.1063/5.0043823 33, 034120-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


M¼ 0.05, and the Prandtl number was set to 1. For the chosen refer-
ence Mach number, the local Mach number remains below 0.3 every-
where in the computational domain such that the flow can be
considered to be nearly incompressible. The compressible Navier-
Stokes equations in cylindrical coordinates24 can be written in vector
form

@Q
@t
þ @A
@z
þ @B
@r
þ 1

r
@C
@h
þ 1

r
D ¼ H; (3)

with state vector

Q ¼ q;qu;qv;qw; qe
� �T

; (4)

and flux vectors

EðiÞ ¼

qui
quui þ pd1i � s1i
qvui þ pd2i � s2i
qwui þ pd3i � s3i

uiðqeþ pÞ � ujsij þ qi

2
6666664

3
7777775
: (5)

Here, the Einstein notation is used where repeated indices imply a
summation. The fluxes EðiÞ corresponding to i¼ 1, 2, 3 are Eð1Þ ¼ A;
Eð2Þ ¼ B, and Eð3Þ ¼ C. The source term vectors are

D ¼

qv

quv � srz
qv2 � qw2 � srr þ shh

2qvw� 2shr

vðqeþ pÞ � usrz � vsrr � wshr þ qr

2
6666664

3
7777775
; (6)

and

H ¼

0

gðqref � qÞ
0

0

ugðqref � qÞ

2
6666664

3
7777775
: (7)

Here, u, v, and w are the velocities in the z (wall-normal), r (stream-
wise), and h (azimuthal) directions that correspond to i¼ 1, 2, 3.
Subscripts indicate partial derivatives. The total energy,
e ¼ eþ 1=2uiui, is the sum of the internal energy, e ¼ cvT , and the
kinetic energy, where cv is the specific heat at constant volume and T is
the temperature. Vector H includes a buoyancy term that makes
recourse to the Boussinesq approximation, gðqref � qÞ, with gravita-
tional acceleration g ¼ 9:81m=s2. For the present numerical analyses,
the assumptions made for the Boussinesq approximation (see the
study by Spiegel and Veronis25) are satisfied. The shear stress tensor
components are

szz ¼
2l
3Re

2
@u
@z
� @v
@r
� 1

r
@w
@h
þ v

� �� �
; (8)

srr ¼
2l
3Re

� @u
@z
þ 2

@v
@r
� 1

r
@w
@h
þ v

� �� �
; (9)

shh ¼
2l
3Re

� @u
@z
� @v
@r
þ 2

1
r

@w
@h
þ v

� �� �
; (10)

and

srz ¼
l
Re

@u
@r
þ @v
@z

� �
; (11)

shz ¼
l
Re

@w
@z
þ 1

r
@u
@h

� �
; (12)

shr ¼
l
Re

1
r

@v
@h
� w

� �
þ @w
@r

� �
; (13)

with l being dynamic viscosity. The heat flux vector components are

qz ¼ �k
@T
@z

; (14)

qr ¼ �k
@T
@r
; (15)

qh ¼ �k
1
r
@T
@h

; (16)

with k being the heat conduction coefficient. The set of equations is
closed by the ideal gas equation,

p ¼ qRT; (17)

with R being the gas constant and Sutherland’s law for the viscosity.
For the chosen reference quantities, the Rayleigh number [as defined
in Eq. (2)] can be rewritten as

Ra ¼ Re2
DT
Tav

h
Lref

 !3

g
Lref
u2ref

 !
Pr; (18)

where c ¼ 1=Tav , with Tav ¼ ðTb þ TtÞ=2 being the thermal expan-
sion coefficient for a perfect gas, DT ¼ Tb � Tt is the temperature
difference between the bottom and top wall, and gLref =u2ref is
the dimensionless gravitational acceleration. The dimensionless
specific heats and gas constant are cp ¼ 1=½ðc� 1ÞM2�; cv ¼ 1=
½cðc� 1ÞM2�, and R ¼ cp � cv ¼ 1=ðcM2Þ. The dimensionless heat
conduction coefficient is k ¼ l=½Prðc� 1ÞM2Re�.

B. Computational domain and discretization

A computational domain with a grid opening angle of H¼ 90�

was employed for all simulations [Fig. 1(a)] except for one full domain
simulation (H¼ 360�). The inflow radius was r2 ¼ 22:918, and the
outflow radius was r1 ¼ 3. Both r1 and r2 were non-dimensionalized
by Lref. The ratio r2=r1 � 7:6 was chosen such that an appreciable
streamwise flow acceleration was obtained. The choice of the distance
r2 � r1 � 20 was based on two considerations: (1) to provide a suffi-
cient streamwise domain extent to allow the disturbance amplitudes to
grow several orders of magnitude and (2) to limit the computational
expense of the simulations. A wall-normal coordinate transformation
was employed, and grid points were clustered near the walls12 based
on the analytical relationship,

zj ¼
tan�1ðjc� f1Þ

f2
þ 1

" #
� h

2
; (19)
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where h¼ 2 is the channel height, f1 ¼ c�jx=2; f2 ¼ tan�1ðf1Þ; c�
¼ 0:05 is a user-specified constant, j is the grid line index, and jx is the
total number of grid points in the wall-normal direction. An equidis-
tant grid point distribution was employed in the streamwise direction.
The details of the computational grid with ix¼ 240, jx¼ 72, and
kx¼ 64 are given in Fig. 1(b).

The spatial DNS code is an extension of an in-house developed
temporal DNS code based on Cartesian coordinates, which was suc-
cessfully employed for investigating the primary and secondary insta-
bility of plane RBP flow.12,13 The convective terms in the wall-normal
and radial direction are discretized with fifth-order accurate upwind-
biased and downwind-biased compact finite differences.26 The first
and second derivatives of the viscous terms (wall-normal and radial
direction) are discretized with fourth-order accurate compact finite
differences for non-equidistant meshes by Shukla et al.27 Derivatives
in the periodic azimuthal (h-coordinate) direction are calculated in
spectral space using forward and backward fast Fourier transforms. A
fourth-order accurate explicit low-storage Runge-Kutta method28 is
employed for time integration. The number of grid points in the
streamwise and wall-normal direction, ix and jx, as well as the number
of azimuthal Fourier modes, kx, for the different cases discussed in
this paper are summarized in Table I.

C. Boundary conditions

No-slip and no-penetration boundary conditions were imposed
at both the top and bottom walls. The temperature of the bottom wall,
Tb ¼ 350K, and top wall, Tt ¼ 300K, were held constant. The values
of Tb and Tt were the same as in the previous work by the authors.12,13

The bottom and top wall pressure were obtained from one-sided finite
difference stencils as explained in the study by Hasan and Gross.12

The spectral discretization in the azimuthal direction implicitly
enforces flow periodicity. At the inflow boundary, a nonreflecting

boundary condition based on Riemann invariants29 was applied. A
characteristic-based boundary condition30 was employed at the out-
flow boundary. The reference profiles required by both boundary con-
ditions were generated by solving the one-dimensional Navier-Stokes
equations for laminar plane RBP flow,

@p
@x
¼ l

@2u�

@y2
; (20)

@p
@y
¼ ð1� qÞg; (21)

k
@2T
@y2
þ l

@u�

@y

� �2

¼ 0: (22)

Here, x, y, and u� refer to the streamwise coordinate, wall-normal
coordinate, and streamwise velocity in the Cartesian system.

D. Numerical linear stability analysis

Both straight (purely radial) and spiral basic flows were consid-
ered. The nominal inflow angles as defined by tan�1ðjwj=jvjÞ for the
spiral flow cases were 22.5 and 45�. In the experiments, inflow guide
vanes could be employed to deflect the flow in the azimuthal direction
and create a swirl. The different cases that were investigated fall into
two categories: a) “uncontrolled” cases and (b) “controlled” cases. For
the uncontrolled cases, unsteady randomized (based on the
FORTRAN subroutine “random_number”) velocity disturbances with
a maximum amplitude of 10�6 were added to the basic flow at the
inflow boundary to excite a broad spectrum of frequencies and a wide
range of streamwise and azimuthal wavenumbers. The maximum
amplitude of the velocity disturbances was such that the disturbance
amplitudes remained linear throughout the domain. For the controlled
cases, mode shapes from precursor simulations were introduced at the
inflow boundary to force one specific mode. The different cases are
tabulated in Table II. For both categories, the simulation data obtained
from the DNS were Fourier transformed in time and then Fourier
transformed in the azimuthal direction. From these double Fourier
transformed data, the growth rates, wave angles, and phase speeds of
the disturbance waves were computed.

Similar to linear stability theory (LST), a wave ansatz of the form

u0ðr; z; h; tÞ ¼
X

ûðzÞeiðarþbh�xtÞ (23)

is made for the disturbances. Here, a¼ arþiai and b are the radial and
azimuthal wavenumbers, respectively, and x¼xrþixi is the angular
frequency. The mode shapes (eigenfunctions in linear stability theory)

FIG. 1. (a) Computational domain for H¼ 90� simulation and (b) detail of the grid
near outflow boundary.

TABLE I. Streamwise and wall-normal number of grid points and number of azi-
muthal Fourier modes.

Grid Rea Ra Resolution

a 200 500 000 ix¼ 120, jx¼ 48, kx¼ 32
b 200 500 000 ix¼ 240, jx¼ 48, kx¼ 32
c 200 500 000 ix¼ 360, jx¼ 48, kx¼ 32
d 200 500 000 ix¼ 240, jx¼ 72, kx¼ 32
e 200 500 000 ix¼ 240, jx¼ 120, kx¼ 32

aReference inflow Reynolds number.
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are defined by ûðzÞ. Since the disturbances grow in space for the pre-
sent spatial simulations, the temporal growth rates, xi, are zero and
the spatial growth rates, ai, are negative for growing waves. The radial
wavenumber, ar ¼ 2p=kr , and azimuthal wavenumber, b ¼ 2p=kh,
are linked to the radial wavelength, kr, and the azimuthal wavelength,
kh. The real part of the angular frequency, xr, and period, T, are con-
nected through xr ¼ 2p=T . The temporal and azimuthal mode num-
bers are denoted by n and k, respectively.

The wall-normal disturbance velocity at a particular location can
be described by

u0ðr; z; h; tÞ ¼ âccðr; zÞ cosxt cosbrhþ âcsðr; zÞ cosxt sin brh

þâscðr; zÞ sinxt cos brhþ âssðr; zÞ sinxt sin brh:

(24)

Here, the spanwise wavenumber and frequency are b ¼ 2pk=ðrHÞ
and xr ¼ 2pn=T , respectively. The first subscript refers to the time
(cosine and sine mode), and the second subscript refers to the azi-
muthal direction. The coefficients are used to obtain the amplitude
and phase of the right traveling waves (in the positive h-direction, “þ”
superscript),

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðâþc Þ

2 þ ðâþs Þ
2

q
(25)

and

w ¼ �tan�1 â
þ
s

âþc
; (26)

where âþc ¼ ðâcc þ âssÞ=2 and âþs ¼ ðâcs � âscÞ=2. Similarly,
the amplitude and phase of the left traveling waves (in negative h-
direction, “-” superscript) are

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðâ�c Þ

2 þ ðâ�s Þ
2

q
(27)

and

w ¼ �tan�1 â
�
s

â�c
; (28)

with â�c ¼ ðâcc � âssÞ=2 and â�s ¼ �ðâcs þ âscÞ=2. The spatial
growth rates can be computed from the amplitude via

ai ¼ �
@ lnA
@s

; (29)

where s ¼ ðr2 � rÞ is the streamwise coordinate measured from
the inflow and r is the local radius. The phase is defined as
w ¼ arr þ brh� xr t. The phase speed in the radial direction is

cr ¼ �
@w
@t
@w
@r

¼ xr

ar
; (30)

and the phase speed in the wave propagation direction is

c ¼ xr

K
; (31)

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2r þ b2

q
. The wave angle is obtained from

/ ¼ tan�1
b
ar
: (32)

III. BASIC FLOWS

Direct numerical simulations without any inflow forcing were
carried out first to obtain the basic flows. The basic flow simulations
were advanced in time until all disturbance amplitudes decayed to
machine zero. Simulations with random and controlled inflow forcing
were then carried out, and detailed analyses of the flow were per-
formed for three streamwise locations, s¼ 9.96, 12.45, and 14.94. A
schematic indicating the three streamwise locations is shown in Fig. 2.
In this figure, s¼ 0 indicates the inflow and s¼ 19.918 is the outflow.

The radial and azimuthal velocity profiles obtained from the basic
flow simulations for the case with radial and swept (spiral) inflow are
plotted in Fig. 3. It can be noticed that the radial velocity increases
almost hyperbolically (it becomes more negative for the chosen coor-
dinate system) in the radial direction and approximately follows a
qv / 1=r relationship due to the conservation of mass. The azimuthal
velocity for the simulation with radial inflow is zero. However, for the
spiral flow cases, the azimuthal velocity increases in the streamwise
direction. As the flow accelerates, both the pressure gradient and tem-
perature decrease (Fig. 4). Included in the top image of Fig. 4 is the
analytical pressure gradient for laminar plane channel flow, 2=Re. This
value is approached asymptotically near the inflow by the radial basic
flow.

TABLE II. Parameters for investigated cases.

Case Rea Ra Type of flow

1 200 500 000 Radial (0�); random forcing
2 200 500 000 Radial; controlled forcing (x ¼ 0:245)
3 200 500 000 Radial; controlled forcing (x ¼ 1:472)
4 200 500 000 Radial; controlled forcing (x ¼ 2:945)
5 200 500 000 Radial (360�); random forcing
6 200 500 000 Spiral (22.5�); random forcing
7 200 500 000 Spiral (45�); random forcing

aReference inflow Reynolds number.

FIG. 2. Schematic showing streamwise locations for detailed analyses.
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Figure 5 (top) presents radial velocity profiles plotted vs the chan-
nel height for three radial locations, which are s ¼ 3:319 ðr
¼ 19:599Þ; s ¼ 9:959 ðr ¼ 12:959Þ, and s ¼ 17:429 ðr ¼ 5:489Þ. For
the basic flow simulation with radial inflow, closer to the outflow
(s¼ 17.429), the radial velocity profile is much fuller and more asym-
metric compared to the location closer to the inflow (s¼ 3.319). For
the simulations with swept inflow, the radial velocity profiles lose their

almost parabolic character close to the outflow. Figure 5 (bottom)
shows the azimuthal velocity profiles for the same three radial loca-
tions. Unlike the radial velocity profiles, the azimuthal velocity profiles
appear symmetric and parabolic for all basic flow simulations (swept
and unswept). Figure 6 illustrates a strongly increasing streamwise
acceleration, @v=@s, toward the outflow boundary. Streamwise acceler-
ation has a stabilizing effect on boundary layer flows.14 Therefore,
based on Fig. 6, a noticeable stabilization of the flow is expected near
the outflow.

IV. RESULTS
A. Radial RBP flow

1. Uncontrolled cases

The reference Reynolds number and Rayleigh number for the first
simulation (case 1) are Re¼ 200 and Ra¼ 500 000. The Rayleigh num-
ber and local Reynolds number (which increases due to the radial accel-
eration) for the present simulation together with the neutral curves for
plane RBP flow by Gage and Reid1 are shown in Fig. 7. According to
Gage and Reid1 for Re < Rec ¼ 5400 and Ra > Rac ¼ 1708, the flow
is unstable with respect to buoyancy-driven instability and 3-D waves
with a wave angle of 90� are most amplified. On the contrary, for
Re > Rec ¼ 5400 and Ra < Rac ¼ 1708, viscosity-driven instability
occurs and 2D Tollmien–Schlichting waves are most unstable. The sta-
bility boundaries also indicate that as the Rayleigh number increases

FIG. 3. Channel half-height radial and azimuthal velocity for basic flows. Here and in the
following figures, s ¼ r2 � r . The velocities were made dimensionless with uref.

FIG. 4. Channel half-height pressure and temperature for basic flows. Pressure and
temperature were made dimensionless with qref u

2
ref and Tref ¼ 300 K, respectively.

FIG. 5. Basic flow profiles of radial and azimuthal velocity.

FIG. 6. Basic flow radial acceleration at the channel half height.

FIG. 7. Conditions for case 1 and neutral curves in the study by Gage and Reid.1
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for a fixed Re < Rec, oblique waves with a progressively smaller wave
angle become amplified. According to Gage and Reid,1 case 1 should
exhibit buoyancy-driven instability. Several spatial DNSs with random
forcing were carried out for three different streamwise grid resolutions
(ix¼ 120, 240, and 360, with ix being the number of grid points in the
streamwise direction) to investigate grid convergence. The number of
points in the wall-normal direction, jx¼ 48, and the number of azi-
muthal modes, kx¼ 32, were held constant (grids a, b, and c in
Table I). Figure 8 shows spatial growth rate contours for different fre-
quencies and azimuthal wavenumbers at s¼ 12.45 (closer to the out-
flow). The temporal linear stability analysis by Gage and Reid1 predicts

that for the chosen conditions, oblique waves are amplified.
Interestingly, Figs. 8(a)–8(c) also show amplified oblique waves for the
inward radial RBP flow. The positive b values correspond to right-
traveling waves, while the negative b values correspond to left-traveling
waves. A qualitative comparison of the growth rates for the different
streamwise grid resolutions in Fig. 8 reveals no significant differences.
A quantitative comparison of the amplitudes for steady azimuthal
mode k¼ 9 and growth rates for b ¼ 3:43 is provided in Fig. 9. In Fig.
9 (bottom), the gray lines are raw data and the black lines are for data
that were filtered over a frequency interval of Dx ¼ 0:38 according to

âiðxÞ ¼
1

Dx

ðxþDx
2

x�Dx
2

aiðx0Þdðx0Þ; (33)

where âiðxÞ is the filtered data. As the number of streamwise grid
points is increased, the amplitudes (Fig. 9, top image) and the growth
rates (Fig. 9, bottom image) converge. Based on this grid convergence
study, it was decided to use ix¼ 240 grid points in the streamwise
direction. Next, a wall-normal grid convergence study was conducted.
The spatial growth rate contours at s¼ 12.45 for three different wall-
normal grid resolutions (jx¼ 48, 72, and, 120) (grids b, d, and e in
Table II), fixed ix¼ 240 and 32 azimuthal modes are plotted in Fig. 10.
A quantitative comparison of the amplitudes for steady azimuthal
mode k¼ 9 and growth rate distributions for b ¼ 3:43 is shown in
Fig. 11(top) and Fig. 11 (bottom), respectively. Grid convergence is
observed for jx¼ 72. Based on these results, the wall-normal number
of grid points was set to 72.

After deciding on the grid resolution, a DNS for case 1 was car-
ried out with ix¼ 240, jx¼ 72, and 64 azimuthal modes. The same
resolution was employed for all following cases. Contours of the azi-
muthal velocity at the channel mid-height in Fig. 12 exhibit steady azi-
muthal 3D waves. Figure 12 also shows an apparent “merging” of
waves (indicated by circles) in the downstream direction. This

FIG. 8. Contours of spatial growth rate at s¼ 12.45 for (a) ix¼ 120, (b) ix¼ 240,
and (c) ix¼ 360 for case 1. ai and b are non-dimensionalized with 1=Lref , and x is
non-dimensionalized with uref =Lref .

FIG. 9. Amplitudes for steady azimuthal mode k¼ 9 vs streamwise coordinate (top)
and growth rates vs frequency at s¼ 12.45 (bottom) for different numbers of stream-
wise grid points (L¼ linear regression). In the bottom figure, gray lines represent raw
data and black lines are for data filtered over a frequency interval of Dx ¼ 0:38.
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phenomenon occurs because for a specific radial location, the azi-
muthal wavelength has to be an integer fraction of the circumference,
2pr=k. This prevents a gradual smooth transition of the wavelength as
the channel gets narrower. If the wave amplitudes were to reach non-
linear levels, this could affect possible secondary instabilities. Contours
of the growth rate for different frequencies and azimuthal wavenum-
bers and three different streamwise locations (s¼ 9.96, 12.45, and
14.94) are plotted in Fig. 13. The location s¼ 9.96 is at the radial half-
way point and s¼ 14.94 is closer to the outflow (Fig. 2). For x > 8,
the disturbance amplitudes are very small, which introduces a lot of
noise when computing the spatial growth rates. Figures 13(a)–13(c)
illustrate that the spatial growth rates decrease in the downstream

direction. This confirms that the strong streamwise acceleration stabil-
izes the inward radial RBP flow. This finding is in agreement with sta-
bility analyses for boundary layer flows.14 Figures 13(a)–13(c) also
show that steady waves (x¼ 0) have the highest growth rates. The
growth rates of the left- and right-traveling oblique waves are almost
identical and decrease with frequency. Steady waves with an azimuthal
wavenumber of b � 3:43 exhibit the largest growth rates for all three
radial locations. The corresponding wavelength is 1.83 and, thus,
slightly less than the channel height. In Fig. 14, the amplitudes and
growth rates of the steady modes computed from the wall-normal dis-
turbance velocity at the channel mid-height are plotted vs the stream-
wise coordinate. The disturbances are linear, which is confirmed by
the amplitude distributions [Fig. 14(a)]. Interestingly, lower and lower
azimuthal wavenumbers are amplified as the flow travels downstream.
Mode k¼ 10 is most amplified near the inflow, while mode k¼ 1 has
the highest growth rate near the outflow [Fig. 14(b)]. Because only
integer multiples of the azimuthal wavelength are possible, this transi-
tion to lower azimuthal mode numbers is discrete and leads to the
apparent merging of waves in Fig. 12 as discussed earlier.

FIG. 10. Contours of the growth rate at s¼ 12.45 for (a) jx¼ 48, (b) 72, and (c)
120 for case 1.

FIG. 11. Amplitudes for steady azimuthal mode k¼ 9 vs streamwise coordinate (top)
and growth rates vs frequency at s¼ 12.45 (bottom) for different numbers of wall-
normal grid points (L ¼ linear regression). In the bottom figure, gray lines represent
raw data and black lines are for data filtered over a frequency interval of Dx ¼ 0:76.

FIG. 12. Azimuthal velocity contours at the mid-channel height.
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The contours in Fig. 15(a) for s¼ 12.45 demonstrate how the
phase speed acts with frequency and azimuthal wavenumber. It is
observed that the phase speed of the steady azimuthal waves is zero.
The phase speed of both the left- and right-traveling waves becomes
larger with increasing frequency. For a fixed frequency, the phase
speeds of both families of oblique waves decrease with the increasing
azimuthal wavenumber. The wave angle gets smaller with increasing
frequency and larger with the increasing azimuthal wavenumber [Fig.
15(b)]. These results are in agreement with the plane channel flow
analyses by Hasan and Gross,12 which also revealed that the amplifica-
tion increases with the wave angle and decreases with phase speed. As

mentioned previously, the radial acceleration, @v=@s, increases almost
hyperbolically in the streamwise direction (Fig. 6). Figure 16 shows
that the growth rates of the steady waves get lower as the radial accel-
eration increases. Figure 16 also confirms that higher azimuthal mode
numbers are more amplified near the inflow and lower azimuthal
mode numbers are more amplified near the outflow.

Figures 17(a)–17(c) show the k¼ 9 disturbance amplitudes at the
channel mid-height for the steady waves, x¼ 0, and for the left- and
right-traveling oblique waves with x ¼ 1:227. The wave fronts of the
steady waves are aligned in the radial direction [Fig. 17(a)]. The wave
fronts of the right- [Fig. 17(b)] and left-traveling oblique waves [Fig.
17(c)] are at an angle to the radial direction and symmetric with
respect to each other. It is also noticed that the wave angle of the left-
and right-traveling waves increases in the streamwise direction. This
behavior is in agreement with the study by Gage and Reid1 who found
that as the Reynolds number increases for a fixed unstable Rayleigh
number, Ra > Rac ¼ 1708, the wave angle of the unstable oblique
waves increases (Fig. 7). The growth rates for the steady waves are
overall higher than for the oblique waves. As a result, the steady waves
reach higher disturbance amplitudes as seen in Fig. 17(d).

2. Controlled cases

Several DNSs with controlled inflow forcing (case 2–case 4) were
carried out for the same simulation parameters as for case 1. Toward
that end, disturbance amplitude distributions for specific frequencies
and azimuthal mode numbers were extracted from the case 1 DNS

FIG. 13. Contours of the growth rate for (a) s¼ 9.96, (b) s¼ 12.45, and (c)
s¼ 14.94 for case 1.

FIG. 14. (a) Amplitude and (b) growth rate of steady waves vs streamwise coordi-
nate for case 1.
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and introduced at the inflow boundary to excite waves with specific
frequencies (x ¼ 0:245 for case 2, x ¼ 1:472 for case 3, and
x ¼ 2:945 for case 4) and one fixed azimuthal mode number, k¼ 9.
Mode k¼ 9 corresponds to the azimuthal wavenumber, b ¼ 3:43 at
s¼ 12.45. The modes were scaled such that the maximum wall-
normal disturbance velocity amplitude was 7� 10�9. The objective
was to confirm the growth rates, phase speeds, and wave angles
obtained from the simulation with random forcing. In Fig. 18 (top),
distributions of the spatial growth rate are plotted over the streamwise
coordinate. The growth rates decrease with increasing frequency and

streamwise acceleration. The growth rates of the left- and right-
traveling waves are identical. In Fig. 18 (bottom), the growth rates for
b ¼ 3:43 at s¼ 12.45 obtained from the simulation with random forc-
ing [data were extracted from Fig. 13(b)] are compared with the

FIG. 15. Contours of (a) phase speed and (b) wave angle for s¼ 12.45 for case 1.
The phase speed is made dimensionless with uref.

FIG. 16. Growth rates for steady waves vs radial acceleration for case 1.

FIG. 17. Iso-contours of wall-normal disturbance velocity amplitude at the channel
mid-height for k¼ 9 (case 1): (a) steady waves (x¼ 0), (b) right traveling waves
(x ¼ 1:227), and (c) left traveling waves (x ¼ 1:227). d) Mode amplitudes vs
streamwise coordinate for k¼ 9.
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growth rates at s¼ 12.45 obtained from the simulations with con-
trolled forcing (symbols). The growth rates obtained from the former
are in good agreement with the growth rates obtained from the latter.
This validates the random forcing approach, which provides the stabil-
ity characteristics for a wide frequency and wavenumber range based
on a single simulation. This makes it computationally more efficient
than running separate simulations for each individual frequency and
azimuthal wavenumber.

In Fig. 19 (top), the phase speeds obtained from the simulations
with controlled forcing are graphed vs the streamwise coordinate. The
phase speeds decrease in the streamwise direction and increase with
frequency. The phase speeds of both oblique waves are very close. For
s¼ 12.45, the phase speed for b ¼ 3:43 from the simulation with

random forcing [Fig. 15(a)] is in close agreement with the phase
speed from the simulations with controlled forcing (lines and sym-
bols in Fig. 19, bottom). Unlike the phase speeds, the wave angles
for both the left- and right-traveling waves obtained from the sim-
ulations with controlled forcing (case 2–case 4) increase in the
streamwise direction and decrease with frequency as seen in Fig. 20
(top). As for the growth rates and phase speeds, the wave angles
from the DNS with controlled forcing match the wave angles from
the DNS with random forcing very well, as can be seen in Fig. 20
(bottom). Wall-normal disturbance amplitude distributions for
s¼ 12.45 are given in Fig. 21. The distributions obtained for the
left- and right-traveling waves are nearly identical. The v0 and w0

amplitude distributions have two peaks near z � 1:8 and z � 0:2.
The amplitude distributions for T 0 also exhibit two weak maxima.
The u0 disturbance amplitude distributions have only a singular
peak near the mid-channel height. The fact that the amplitude dis-
tributions for cases 1 and 2 are in close agreement provides further
justification for the random forcing approach.

FIG. 18. Spatial growth rate vs streamwise coordinate (controlled forcing) (top) and
frequency (bottom) at s¼ 12.45 (random forcing: case 1). L and R represent left-
and right-traveling waves.

FIG. 19. Phase speed vs (a) streamwise coordinate (controlled simulations) and (b)
frequency at s¼ 12.45 (uncontrolled simulation: case 1). L and R represent the
left- and right-traveling waves.

FIG. 20. Wave angle vs (a) streamwise coordinate (controlled forcing) and (b) fre-
quency at s¼ 12.45 (random forcing: case 1). L and R represent the left- and right-
traveling waves.

FIG. 21. Normalized disturbance amplitudes at s¼ 12.45 for x ¼ 0:245 and k¼ 9
(b ¼ 3:43) for cases 1 and 2.
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3. Full domain simulation-360�

To confirm that the restriction to a quarter segment of the radial
flow does not affect the result, and to check if the resolution of the
low azimuthal wavenumbers is sufficient, a radial flow (no inflow
angle) simulation with random forcing for a 360� computational
domain was performed (case 5). The Reynolds and Rayleigh number
and grid resolution were the same as for case 1. Since the number of
azimuthal modes was the same as for case 1, the largest azimuthal
wavenumber that can be resolved is four times smaller than for
case 1. This choice was made on purpose to limit the computational
expense.

The spatial growth rate contours at s¼ 14.94 for case 5 are very
similar to those for case 1 [Figs. 13(c) and 22(a), respectively]. For
both cases, the steady waves (x¼ 0) exhibit the largest growth rates.
The most amplified steady waves for case 5 have an azimuthal wave-
number of b � 3:4, which is very close to the respective value for
case 1. The unstable regions and growth rates of the left- and right-
traveling oblique waves for cases 1 and 5 are basically identical. The
growth rates for b � 3:55 at s¼ 14.94 obtained from cases 1 and 5
are compared in Fig. 22(b) and match well. In summary, the stabil-
ity characteristics for the full domain are in close agreement with
those for the 90� domain. This was expected as the disturbance
amplitudes were chosen small enough for the linear superposition
principle to hold.

B. Spiral RBP flow-22.5�

A DNS with an inflow angle of 22.5� and random forcing (case
6) was carried out for Re¼ 200 and Ra¼ 500 000 (the same as case 1).
The dependence of the spatial growth rate on the frequency and azi-
muthal wavenumber for three streamwise coordinates (s¼ 9.96, 12.45,
and 14.94) is exhibited in Fig. 23. Surprisingly, for the spiral basic flow,
the growth rates of the left- and right-traveling oblique waves with
identical azimuthal wavenumber magnitude differ. Compared to the
right-traveling waves, the left-traveling waves have higher growth rates
and the corresponding unstable regions in Fig. 23 are larger compared
to the radial flow case. The opposite observations can be made for the

FIG. 22. (a) Contours of the growth rate for case 5 and (b) comparison of growth
rates for s¼ 14.94 and b � 3:55 obtained from cases 1 and 5. In (b), gray lines
represent raw data and black lines are for data filtered over a frequency interval of
Dx ¼ 0:612.

FIG. 23. Contours of the growth rate for (a) s¼ 9.96, (b) s¼ 12.45, and (c)
s¼ 14.94 for case 6.
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right-traveling waves. This means that one family of waves is favored
over the other. Similar to the radial RBP flow, as the disturbance waves
travel downstream, the growth rates overall decrease because of the
streamwise acceleration. However, the azimuthal wavenumber associ-
ated with the most amplified waves is lower (b � 2:75) for the spiral
flow than for the purely radial flow (b � 3:43). Also, the dependence
of the growth rate on the frequency is quite different for the spiral
RBP flow compared to the radial RBP flow. For instance, the growth
rates for azimuthal wavenumbers in the range, b � �5 to b � �8
(left-traveling waves) in Figs. 23(a)–23(c), first increase up to x � 2
and then decrease as the frequency increases, while for the radial flow,
the growth rates always decrease with increasing frequency.

To allow for a more detailed quantitative comparison between
the stability characteristics of the radial and spiral RBP flow, the
growth rates, phase speeds, and wave angles at s¼ 12.45 for a fixed azi-
muthal wavenumber, b ¼ 3:43, and different frequencies are com-
pared in Fig. 24(a). For the spiral flow case (case 6), the growth rate of
the right-traveling wave is much lower than the growth rate of the left-
traveling wave. In comparison, for the radial RBP flow (case 1), the
growth rates of both waves are nearly identical. The growth rate of the
left-traveling wave for the spiral flow first increases up to x � 2 and
then decreases with frequency. Interestingly, for the right-traveling
wave, the growth rate decreases monotonously with frequency
(case 6). Figure 24(b) illustrates the dependence of the phase speed on
the frequency for the radial and spiral RBP flow. While the phase
speeds of the left- and right-traveling waves are identical for the radial
flow case, for the spiral flow case, the right-traveling waves are faster
than the left-traveling waves. For the spiral flow case, the left-traveling
waves have lower wave angles than the right-traveling waves [Fig.
24(c)]. Figure 24(c) demonstrates that the wave angles of the oblique
waves are symmetric with respect to / ¼ 0� for the radial RBP flow
and / � 9� (flow angle for chosen streamwise location) for the spiral
RBP flow. For both cases, the wave angles decrease with frequency.
Wall-normal disturbance amplitude distributions at the mid-channel
height for the steady waves (x¼ 0) and oblique waves (x ¼ 1:227)
with k¼ 9 are shown in Fig. 25. The wave fronts for the steady waves
are spiral as seen in Fig. 25(a). Different from the radial flow case, the
wave fronts for the left- and right-traveling waves [Figs. 25(b) and
25(c)] are not symmetric with respect to the radius. It is also noticed
that the left-traveling waves have higher amplitudes than the right-
traveling waves, which can be attributed to the larger growth rates.

C. Spiral RBP flow-45�

A spiral RBP flow DNS with random forcing was also carried out
for a larger inflow angle of 45� (case 7). All other parameters were
kept the same as for case 6. The objective was to investigate the depen-
dence of the stability behavior of spiral RBP flow on the inflow angle.
Contours of the spatial growth rate for different frequencies and azi-
muthal wavenumbers for the same three radial locations as for the
other cases are displayed in Fig. 26. Overall, for the 45� spiral RBP
flow (case 7), the left-traveling waves have higher growth rates and the
right-traveling waves have lower growth rates than for the 22.5� case
(case 6) as seen in Figs. 23 and 26. Similar to case 6, the growth rate
contours of the left- and right-traveling waves are asymmetric with
respect to b¼ 0 and the growth rates decrease in the streamwise direc-
tion. However, compared to case 6, the azimuthal wavenumber range
where both families of oblique waves are amplified is narrower for

case 7 and the differences between the growth rates for the left- and
right-traveling waves are more pronounced. The maximum azimuthal
wavenumber for the amplified left-traveling waves is approximately –9
for case 6 (Fig. 23) and almost –6 for case 7 (Fig. 26). The azimuthal
wavenumber associated with the most amplified waves is b � 2:75 for
case 6 and b � 2 for case 7. Interestingly, not only for the 45� inflow
case but also for the 22.5� inflow case, it appears that the unstable
regions associated with the left- and right-traveling waves split up into
a steady mode and an unsteady mode as seen for example in Figs.
26(b) and 26(c). In Fig. 26(c), the steady modes are roughly located
at x¼ 0 and b � �6; 2 while the unsteady modes are located at
0:5 � x � 6 and b � �2 and 2 � x � 8 and b � 4 (these regions
are marked in the figure). This apparent “split up” may indicate the

FIG. 24. Comparison of (a) growth rate, (b) phase speed, and (c) wave angle at
s¼ 12.45 for radial (case 1) and spiral (case 6) RBP flow and b ¼ 3:43. For a),
gray lines represent raw data and black lines are for data filtered over a frequency
interval of Dx ¼ 0:612.
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onset of another instability with increasing sweep angle that warrants
further analysis.

In Fig. 27, the growth rates, phase speeds, and wave angles at
s¼ 12.45 obtained from cases 6 and 7 are compared for b ¼ 3:43.
Figure 27(a) shows that the oblique waves are less amplified for the
case with the larger inflow angle (case 7). The phase speeds of the
right-traveling waves for the 45� case increase faster with frequency
than for the 22.5� case as seen in Fig. 27(b). The left-traveling waves
exhibit an opposite tendency. Figure 27(c) shows that the wave angle
of the right-traveling waves is increased and the wave angle of the left-
traveling waves is decreased for the larger inflow angle.

V. CONCLUSION

The instability of inward radial Rayleigh–B�enard–Poiseuille flow
was investigated with direct numerical simulation with random and

controlled small (linear in the sense of linear stability theory) ampli-
tude forcing at the inflow. While the instability of plane RBP flow has
attracted considerable attention by the scientific community, this is
not so much the case for inward radial RBP flow.

Based on the stability diagram in the study by Gage and Reid,1 a
subcritical Reynolds number and supercritical Rayleigh number were
chosen for the present analyses. For the inward radial flow with ran-
dom forcing, steady three-dimensional waves are amplified that merge
in the streamwise direction. A wide range of oblique waves are also
amplified. However, their growth rates are generally lower than for the
steady waves. The azimuthal wavelength of the most amplified steady
waves is independent of the radial location and roughly 0.916 times
the channel height (channel height, h¼ 2). As the basic flow continues
to accelerate toward the outflow, the growth rates are more and more

FIG. 26. Contours of the growth rate for (a) s¼ 9.96, (b) s¼ 12.45, and (c)
s¼ 14.94 for case 7.

FIG. 25. Iso-contours of wall-normal disturbance velocity amplitude at the channel
mid-height for k¼ 9 (case 6): (a) steady waves (x¼ 0), (b) right traveling waves
(x ¼ 1:227), and (c) left traveling waves (x ¼ 1:227).
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reduced. The left- and right-traveling oblique waves have very similar
growth rates. With increasing frequency, the phase speeds increase
and the wave angles decrease. The spatial growth rates obtained from
the simulations with controlled inflow forcing are in good agreement
with those from the simulation with random forcing. This provides
justification for the computationally more efficient simulations with
random forcing, which allow for the exploration of a wide parameter
space with a single simulation.

Two cases with spiral basic flow were considered as well. The
inflow angles for the two cases were 22.5 and 45�. For both cases, the
growth rate of one family of oblique waves dominates over the other,
and overall, the growth rates and the azimuthal wavenumbers for the
strongest amplified oblique waves are lower than those for the radial

basic flow. For a fixed azimuthal wavenumber, the left-traveling waves
attain higher growth rates and have lower phase speeds and wave
angles than for the radial flow case. Similar but opposite observations
were made for the right-traveling waves. These trends become more
pronounced as the inflow angle is increased.

In summary, the stability of inward radial RBP flow is qualita-
tively similar to the stability of plane RBP flow. Steady three-
dimensional waves are most amplified and may develop into stream-
wise convection rolls although overall the growth rates are much
reduced by the streamwise acceleration. Also different from plane RBP
flow, the spanwise wavelength has to be an integer fraction of the cir-
cumference, which explains the observed “mergings” steady waves.

The present instability investigation is important for engineer-
ing applications that rely on inward radial RBP flows such as the
collector of solar chimney power plants. The Rayleigh and
Reynolds numbers of the RBP flow in the collector of such plants
are much larger than those chosen for the present study. One may,
however, argue that the turbulent flow in large collectors may be
subject to similar instabilities as those investigated here. Instability
could lead to the development of coherent flow structures with
potential consequences for the solar chimney power plant perfor-
mance. For the future, it is planned to simulate the flow through
the collector of a 1:33 solar chimney power plant model.17 The sim-
ulations will first be validated by comparison with the experimental
measurements. Then, the unsteady data obtained from the simula-
tions will be analyzed using the same post-processing tools and pro-
cedures as for the present analysis to uncover and understand the
flow instabilities.
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